
Talk to Me: A Case Study on Coordinating
Expertise in Large-Scale Scientific Software

Projects

Reed Milewicz and Elaine M. Raybourn
Sandia National Laboratories, 1611 Innovation Pkwy SE, Albuquerque, New Mexico 87123

Abstract—Large-scale collaborative scientific software projects
require more knowledge than any one human can possess. This
makes the coordination and communication of that expertise
a key factor in creating and safeguarding software quality,
without which we cannot have sustainable software. However,
as researchers attempt to scale up the production of their
software, they are confronted by problems of awareness and
understanding. This presents an opportunity for us to develop
better practices and tools that directly address these challenges.
To that end, we conduct case study of developers of the Trilinos
project, a multi-million line computational mathematics library
developed at Sandia National Laboratories. We survey the
software development challenges they face and show how they
are connected with what they know and how they communicate.
Based on this data, we provide a series of practicable recommen-
dations, and outline a path forward for future research.

I. INTRODUCTION

Large-scale scientific software projects are among the most
knowledge-intensive undertakings in all of human history,
consisting of extremely diverse communities of practice and
inquiry. For example, a climate modeling application can
consist of numerous codes for modeling the atmosphere and
the ocean, each of which is written by a distinct research
team. The effective realization of that application in an high-
performance computing (HPC) environment relies heavily
upon those with backgrounds in computational science and
software engineering. The orchestration of that talent demands
disciplined project managers and communication with stake-
holders. Thousands of man-years of labor are poured into the
software over the course of decades.

Given the long lifespan and criticality of these projects,
sustainability has been a focal point for research in recent
years. By sustainability, we mean the ability of the software
to continue to function as intended in the future, which is
necessary for the reliability and reproducibility of research[1].
Sustainability is a multi-faceted challenge that encompasses
both social and technical aspects of software development.
In this work, we focus on one such aspect: the creation,
communication, and use of knowledge integral to the scien-
tific software development process. Large scientific software

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA0003525.

projects require diverse forms of expertise, bringing together
people of different backgrounds and perspectives; to have
success, there must be close, effective interaction between
those parties[2]. Unfortunately, as we attempt to scale up these
projects, we are confronted by barriers — logistical, technical,
and cultural — that make it hard for people to share and apply
what they know. This increases both the cost and difficulty
of software development and maintenance, and it ultimately
threatens sustainability.
From a software engineering perspective, more work is

needed to create better tools and methodologies to manage and
maintain that software development knowledge. However, as
Dennehy and Conboy 2016 observes, the culture and context
of a software project are "critical determinants of software
development success" and that "a method, practice, or tool
cannot be studied in isolatioC[3]. For these reasons, we offer
a survey and study of knowledge management practices within
the Trilinos project, a keystone scientific software library
that is used by numerous applications within Sandia National
Laboratories and elsewhere. We model how knowledge is
created and shared and its relationship to common software
development challenges in order to identify targets for inter-
vention.

A. A Motivating Example

Robust public investment into next-generation supercom-
puters is vital to the scientific enterprise. At the same time,
considering the enormous sums of money that must be spent
to construct and maintain them, stakeholders involved must be
held accountable to the taxpayers. For this reason, government
agencies stipulate rigorous requirements that must be met both
by the machine and the software that it runs; a supercomputer
must provide sufficient capabilities and the software must be
able to fully utilize them. In the acceptance testing phase,
participating research organizations put forward representative
codes to be run on a novel architecture, and their performance
is compared against the capabilities advertised by the vendor.

In the past year, those safeguards were tested when an
well-respected application powered by Trilinos struggled to
scale beyond 217 MPI processes during an acceptance phase,
resulting in a nearly 30% drop in performance on the target
architecture. Fortunately, all other applications passed the
acceptance test and the contract was completed successfully,
but the issue implied a potential "time bomb" for numerous

SAND2018-6922C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



applications and had to be fixed[4]. A team of researchers
was given several months to locate the bug to no avail,
but the issue was finally resolved when one heroic Trilinos
scientist-developer volunteered three weeks of his time to
uncover it. The ultimate cause of the bug was two-fold. First
and foremost, it was due to the misuse of an MPI function,
MPI Reduce_scatter, in a Trilinos meshing package used by
the application due to a misunderstanding of its semantics. In
addition to this, it was found that the vendor-supplied imple-
mentation of the function was inefficient, which contributed
to the overall slowdown. This was fixed by splitting the call
into separate calls to MPI_Reduce and MPI Scatter.
A subsequent investigation into the incident revealed a

deeper mystery: the exact same bug had been introduced,
found, and fixed in Trilinos multiple times over the years.
The offending code was first introduced in three packages
between 1998-2000 and fixed in 2005, copied line-for-line
into a fourth package in 2004 and fixed again in 2015, and
finally introduced into the meshing package in 2014 and
fixed in 2017. In each case, the discovery and solutions were
socialized, comments were made in the code, and notes were
left in an issue tracker, but that information did not flow to
the right parties in each subsequent incident.
We stress that none of this reflects poorly upon the project;

Trilinos is the work of a preeminent, world-class team of
researchers and developers. Rather, this presents a chance for
us to better understand the difficulties that large scientific soft-
ware teams face. As Moe et al. 2014 describes, the hallmark
of large-scale software is that no one can know everything[5].
Good, strategic communication and organization of expertise
are necessary for a team to reach its full potential. For
scientific software developers, that leads to several pertinent
questions. How do researchers share (or fail to share) their
knowledge? What practices or policies could be enacted to
prevent or mitigate problems like the ones we have described?
These we formulate as specific research questions:

. RQ1: Do scientific software developers face challenges in
sharing their knowledge? If so, what are the challenges?

. RQ2: How does individual and organizational knowledge
affect those problems?

. RQ3: How is that knowledge communicated?

II. BACKGROUND

A. Terminology

There is no single, agreed-upon definition for what consti-
tutes knowledge in a project. In this work, we follow the use
the definition provided by Davenport and Prusak 1998, which
states that knowledge is "a fluid mix of framed experience, val-
ues, contextual information, and expert insights that provides
a framework for evaluating and incorporating new experiences
and information. It originates in and is applied in the minds
of knowers. In organizations, it often becomes embedded not
only in documents or repositories but also in organizational
routines, processes, practices, and norms16]. For example,
Parise et al. 2006 shows how a senior research scientist at

a company is valuable not only for their own expertise but
also for their "critical relationships" with other knowledgeable
people (e.g. in academia)[7]. In other words, a successful
research project must exercise both individual knowledge and
those individuals' connections to other sources of knowledge.
We adopt the refined model introduced by Kelly 2015, one

built upon a decade of invaluable studies of scientific software
development that better captures this dynamic[8]. It consists
of five components or knowledge domains• real world (the
phenomena being studied), theory-based (the models used
to understand those phenomena), software (the development
conventions and practices), execution (the tools and environ-
ment needed to create and run the software), and operational
(the relationship between the use of the software solution and
the real world problem). Each of these elements both inform
the solution and many drive each other; for example, there
is feedback between the theory and the real world, between
writing the software and executing it on the hardware, and
between the use of the software and its application to the real
world problem.

B. Scientific Software Culture

Studies of complex R&D projects in industry have shown
that a lack of a common language creates barriers to the
communication and codification of knowledge surrounding
project activities[9]. Because of the intimate relationship be-
tween software and science, the development process requires
a diverse assortment of both domain experts and software
engineers[10], and these teams are frequently distributed and
multi-organizational[11]. As a multidisciplinary endeavour,
each member can have highly specialized knowledge that isn't
easily transferred from one person to another. This is also
a frequent source of conflict, such as between scientists and
software engineers[12][13] as well as between scientists from
different disciplines [14] [15] .

Scientists typically see software as a tool for creating
and expanding scientific understanding, and less emphasis is
placed on activities which concern knowledge of the software
itself, such as planning or documentation[12]. There is often
an implicit assumption that a scientific model and its imple-
mentation in code are connected such that knowledge of one
translates to the other. This leads to scientists use software
that they don't truly understand and write software without
creating artifacts needed to understand it[16]. Additionally,
within the scientific community at large, there is a drive to
produce publishable research, as publications are a pathway
to funding, positions, and prestige[17]. Studies have shown
that scientists, when placed under pressure to publish, tend to
focus on activities that lead to publications while neglecting
those which do not[18].

In many respects, this state of affairs is not unique to
the scientific software domain: the success of distributed and
multidisciplinary teams almost never happens by accident. In
the words of Ratcheva 2009, "simply putting people together
in groups, representing many disciplines, does not necessarily
guarantee the development of a shared understanding1191.



TABLE I: Characterization of Trilinos compared with findings
of Post and Cook 2000[20]

Property Typical DOE CSE Project

Code Complexity

Code Size

Project Age

Release Schedule

Size of Teams

20-50 independent packages

500,000 LOC

10-35 years

1-2 major releases, 20-100 minor releases per year.

3-25 professionals

Trilinos

Code Complexity

Code Size

Project Age

Release Schedule

Size of Teams

57 packages

2,247,210 SLOC

19 years

2 major releases per year

3-6 professionals

III. CASE STUDY

To investigate this topic, we surveyed developers of the
Trilinos mathematical library project at Sandia National Labs.
Trilinos is a confederation of several dozen semi-independent
packages. While packages may differ from one another in
purpose, size, maturity, testedness, clients, and development
teams, they are generally interoperable with one another,
and share datatypes, standardized interfaces, and a common
vision for the project's ecosystem. It is rare for a client
to use the entire codebase, rather they select a subset of
the packages that pertain to their application; this leads to
a combinatorial explosion in the number of ways in which
Trilinos packages can be configured, built, and arranged. To
give some perspective on the scale and complexity of the
software, we characterize Trilinos in the context of other,
similar DOE projects on Table I. The project is available
as open-source software, hosted on Github, and follows a
master-development branch model in which contributions are
promoted to master if and only if all tests pass.
We recruited participants for our survey through the internal

developers' mailing list and print advertisements; the survey
was distributed as a PDF file and as printed copies, and
respondents provided code names to separate their identities
from their responses. The mailing list consisted of 60 individ-
uals and, among these, 29 developers were considered to be
active, primary contributors. We received 36 responses, with
26 coming from the "primary' group, 5 from more periphereal
developers on the mailing list, and an additional 6 responses
from (mostly junior) members who were not subscribed to the
list. This gives us a confidence level of 95% with an interval
of ±6% for primary developers alone and ±11% for the entire
population.
Our questionnaire consisted of multiple sections: demo-

graphic information, career priorities, methods of communica-
tion, areas of expertise, and problems encountered in software
development. Additionally, we requested the Github handle of
our respondents so that we could cross-reference the survey
results with metrics on software contributions. We begin by
presenting the demographic information, which is summarized

on Figure 1. The following are the highlights from this section:

. 86% of respondents had completed their PhD, and 83%
were members of staff (the remainder being interns,
contractors, and postdocs, etc.). Collectively, respondents
had between 233 to 345 years of combined experience,
with the median respondent having between 11 to 15
years of experience.

. 77% of respondents reported that they worked on 4 or
more projects, which typically means that they spend
half their time working on a primary project, with the
other half divided between three or more smaller, focused
initatives. In total, 72% of respondents reported working
with 6 or more people on a regular basis, with the median
respondent working with between 6 and 10 people.

. The research interests among Trilinos scientist-developers
are very diverse, and, while there is some overlap, none of
the respondents listed shared all the same interests. As a
rule, projects like Trilinos do not hire for redundancy;
each project member contributes unique skills to the
project.

In other words, our respondents tend to be highly educated,
uniquely qualified, and, at best, only in regular contact with a
small fraction of the overall organization.

IV. ANALYSIS

In this section, we present the findings of our survey.
Our presentation centers on commonly encountered software
development issues and their relationship to individual and
organizational knowledge. In Section V, we provide a sum-
mary and discussion of the findings. Where correlations are
provided, we use Pearson's r and set a = 0.05 as the threshold
for p-values to reject the null hypothesis. Survey materials and
anonymized responses can be found onlinel. On Table II, we
provide a brief overview of the key findings in this section.

A. Findings

For RQ1, respondents were presented with a list of com-
monly encountered issues in software development based on
those in LaToza et al. 2006[21], a study of the work habits and
mental models of software developers. For each, participants
reported whether the issue was not a problem, a moderately
difficult problem, or a difficult problem. The overall results can
be seen in Table III. The median respondent reported having
eleven of the nineteen problems, two of which were considered
especially difficult. Our survey results suggest widespread
agreement with the problems we listed, with majority support
for 13 of the 19 challenges. We can now refine RQ1 into
several subquestions:

. RQ1.1: Are these problems widely correlated with each
other or are they independent?

. RQ1.2: To what extent can they be explained by general
measures of experience or position in the organization?

All of the problems we investigated are, in some sense,
problems of coordination, understanding, and awareness; they

Ihttps://github.comirmmilewi/KnowledgeManagementsurvey



Education

a
Ccs

sc
al
ab
le
 s
ol

ve
rs

 

E

o

Years of Experience
People you work with
on a regular basis Number of Projects

I, 4., pso 43 no ,-p np N<0
N
 ti 

CY g?' qe ps\

Areas of Interest

un
ce
rt
ai
nt
y 
es

ti
ma

ti
on

 

m
e
s
h
 g
en
er
at
io
n 

lo
ad
 b
al
an
ci
ng
 

h
e
t
e
r
o
g
e
n
e
o
u
s
 c
o
m
p
u
t
i
n
g
 

a

mu
lt
is
ca
le
 m
e
t
h
o
d
s
 

Fig. 1: A visual summary of the demographic information collected by our survey.

TABLE II: A summary of the findings of our analysis.

Research Questions Findings
RQ1.1. Are the problems corre-
lated with one another?

RQ1.2. Do problems reflect ex-
perience, education, organizational
position, etc.?

RQ2.1. Does expertise in specific
areas help?

RQ2.2. Does knowing people who
have expertise in specific areas
help?
RQ3. Do communication strategies
affect the occurrence of problems?

(F1) No, most problems appear to
be independent of each other, sug-
gesting multiple, latent causes.
(F2, F3) Yes, six problems can
be related to demographic factors.
Moreover, there is a general re-
lationship between the number of
problems someone faces and their
position in the organizational net-
work. Well-connected people have
fewer problems.
(F4, F5) Yes, operational and exe-
cution domain knowledge are help-
ful for four problems. Surprisingly,
we find no evidence that real-
world, theoretical, or software do-
main knowledge are helpful.
(F6) Yes, ten problems are related
to having access to other people in
specific areas of knowledge.
(F7,F8,F9) Yes, communication
strategies appear to affect eight
problems. Additionally, the fre-
quency and variety of communica-
tion correlates positively with self-
perception of knowledge.

concern what people know, who they know, and how they use
that information. These challenges are certainly not unique to
scientific software, but they take on added weight and meaning
given the demanding and knowledge-intensive nature of the
work. We must understand these obstacles if we intend on
helping scientists create better software.

For RQ.1.1, we want to know whether the high number
and frequency of problems is because they are all similar.

di
st
ri
bu
te
d 
ar

ch
it

ec
tu

re
s 

so
ft
wa
re
 e
ng
in
ee
ri
ng
 

The three most commonly reported problems were dividing
attention between projects (11

sv 

dividedattention), understanding
other's code (notherscode), and finding bugs related to code

(Pbugrelatedeode); in terms of severe problems, the top three
were Pdividedattention (again), switching tasks because of
requests (?).etaskrequest), and convincing managers about code
improvement tasks We found that someOrconvincingmanagers)•

categories of problems were highly intercorrelated, but many
are composed of independent items. This we can infer using
Cronbach's alpha (which we will refer to as Ca) as a measure
of interrelatedness or reliability[22]. The score ranges from
0 to 1, and the rule of thumb is that Ca >= 0.70 suggests
a set of items has good intemal consistency; strong internal
consistency in survey measures suggests that they all measure
some common, latent variable. In Table IV, we see that this
holds true for only two of the five categories. From this, we
can conclude that while many problems are common, they are
often independent of each other and will need to be addressed
separately (e.g. finding a reviewer for your code and finding
someone to talk about a bug require different information).

Finding (F1): There are many common problems, but
likely no common explanations. The weak relationship
between survey items within each category suggests that
there are many independent, latent causes for the problems.

Next, for RQ.1.2 we want to apply Occam's Razor: can
these problems be explained by simple demographic or or-
ganizational measures (e.g. do more experienced people have
fewer problems), without our nuanced survey data?

First, we compare these responses against our demographic
data, to see which problems can be most easily explained



TABLE III: Respondent ratings of proposed problems. In the
survey, problems were presented without headings and in a
different order.

Problem

'lhis is a probrar rlAr
agree)
/ a difficult problem (%
agree)

Code Understanding
Understanding the rationale behind a piece 63.9% (13.9%)

of code (Pcoderationale)
Understanding code that someone else 83.3% (22.2%)
wrote (potherscode)
Understanding the history of a piece of code 58.3% (8.3%)

(Pcodehistory)
Understanding code that I wrote a while ago 22.2% (0.0%)

(Pyouroldcode)
Task Switching 
Having to switch tasks orten because — of 75.0% (38.9%)
requests from my teammates or manager

(Ptaskrequest)
Having to switch tasks because my current 55.6% (11.1%)
task gets blocked (ptaskblocked)
Having to divide my attention between 94.4% (58.3%)
many different projects (pdividedattention)
Modularit
Being aware of changes to code elsewhere 58.3% (11.1%)
that impact my code (pchangeothers)
Understanding the impact of changes I make 61.1% (2.8%)
on code elsewhere (Pchie...
Links Between Artifac
Finding all the places code has been dupli- 58.3% (2.8%)
cated (Pduplication)
Understanding who "owns" a piece of code 38.9% (0.0%)

(Pownership)
Finding the bugs related to a piece of code 75.0% (8.3%)

(Pbugsincode)
Finding code related to a bug 83.3% (11.1%)

(Pbugrelatedcode)
Finding out who is currently modifying a 33.3% (0.0%)
piece of code (n,,,nodi iers)

Convincing managers that I should spend 41.7% (25.0%)
time rearchitecting, refactoring, or rewriting
code (1,-convincingmanagers)
Convincing developers to make changes to 61.1% 16.7%)
code I depend on (n.cconvincin develo e s)
Expertise Finding
Finding the right person to talk to about a
piece of code (prightpersoncode)
Finding the right person to talk to about a
bug (Prightpersonbug)
Finding the right person to review a change
before a check-in (7),-rightpersonreview)

50.0% (8.3%)

38.8% (5.6%)

25.0% (5.6%)

TABLE IV: Cronbach's alpha scores for problem categories.

Category
Code Understanding 0.770
Task Switching 0.715
Modularity 0.474
Artifacts 0.595
Team 0.594
Expertise Finding 0.579

by factors such as the level of education or the number of
projects. We find that only three problems have any correla-
tions significant at the ce = 0.05 level: work experience and

Pbugrelatedcode (r = —0.350,p = 0.036), and the number of
projects and both Pcodehistory (r = 0.361,p = 0.030) and

Pchangeothers (r = —0.342,p = 0.041). Meanwhile, none of
the demographic variables can directly account for the number
of problems that people face (difficult or otherwise). In other
words, even though many of the problems we listed relate to
understanding and awareness, raw quantities of experience and
contact with others are only narrowly useful predictors.

Finding (F2): Experience and workload influence three
of the nineteen problems (two positively, one negatively).
However, there are no significant correlations between
demographic measures and the number of problems that
respondents face in general.

Second, we consider the relationship between problems and
organizational network structure by looking at team compo-
sition. The Team API of Github allows projects to group
developers into teams, and the Trilinos project uses this feature
to match developers with particular packages or cross-cutting
concerns (e.g. the framework team); we found 57 teams,
one of which was a global team of all developers that we
excluded from our analysis. From this data we produced the
team member graph seen in Figure 2, which provides a rough
estimation of the lines of communication between developers.
For each node in the graph, we computed its triangle count,
which is the number of triangles (cyclic paths of length 3)
formed between it and its neighbors; triangle counting is a
common measure in social network analysis and it is the
underpinning for measures such as the clustering coefficient
(see [23]). As we illustrate in Figure 2, there is a moderate,
statistically significant negative correlation between triangles
and problems: the more embedded a person is in the team
network, the less likely they are to have problems. However,
the triangle count only correlates with three specific problems
at the a = 0.05 level: Pyouroldcode (r = —0.335,p = 0.045),

Augsincode (r = —0.465,p = 0.004), and Prtghtpersontrug
(r = —0.353, p = 0.004). From this, we can conclude for
RQ1.2 that we need to dig deeper into what and who people
know, how they know them, and why.

Finding (F3): There is a moderate, significant relationship
between embeddedness in the organizational network (as
measured by triangle count) and the number of problems
that people face, and three of the nineteen problems can be
directly tied to this näive measure.

For RQ2, we want to characterize the range of expertise of
each participant and their access to others with expertise. For
this, we refine RQ2 into two subquestions:
• RQ2.1: What do they know? Does that matter?
• RQ2.2: Who do they know? Does that matter?
We selected eight topics corresponding to the five knowl-

edge areas described in Kelly 2015[8], and these are described



16

14

co 12

10

0_
45 8

.o 6

Z 4

2

0

Development Problems as a Function of Triangle Count

•
•

•

•

•

•

•

•

•

•

•

•

•
•

0 20 40 60
Number of Triangles

80 100

Fig. 2: Above, a graph of Trilinos developers on Github as-
signed to teams, where each edge indicates that two developers
belong to the same development sub-team. The graph is color-
coded to reflect the number of triangles formed between a node
and its neighbors, red being more interconnected and blue
being less interconnected. Below, we plot a linear regression
on the number of problems reported by developers as a
function of their triangle count (r = —0.434,p = 0.008). Even
without considering our survey data, we see how problems of
understanding and awareness are linked to the way in which
developers are situated in the organization.

in Table V. For each topic, we asked participants to provide
a self-assessment of their own familiarity with the topic on a
5-point Likert scale ranging from "not very knowledgeable"
to "very knowledgeable'. Additionally, we asked participants
whether they worked with someone else that they "could turn
to for help on that topic". Our survey results can be seen in
Table V.

As a litmus test for our topic choices, we compare our
survey findings against the five factor model by aggregating
measures according to category, as can be seen on Figure 3.
Our findings lend strong support to the model with agreement
on eight out of ten possible edges. We found a strong rela-
tionship between operational and software knowledge (r =
0.639,p = 0.00004) which is not predicted by the five factor
model; this is likely an artifact of the Trilinos team being

Operational

r=0.523

Theory

r=0.639

Execution

Fig. 3: A map of correlations between knowledge categories
significant at the a = 0.05 level. Dashed blue lines indicate
relationships predicted by the model, and solid red lines
indicate relationships suggested by our data.

library developers (i.e. writing code for other people's code).
More mysterious is the missing edge between theory and
software knowledge: many Trilinos developers translate theory
into code, but there's no evidence that one domain is used to
increase knowledge in the other. If we dig into the data, we
find that scores increase with years of experience for every
topic except for mathematics (r = 0.001,p = 0.994). This
suggests that self-perception of knowledgeability in this area
is relatively fixed, so our survey instrument is not picking
up on any cross-pollination that may happen between theory
domain and software domain topics.

For question RQ2.1, we want to know whether self-reported
expertise has any measurable impact on the occurrence of
problems (i.e. whether more knowledgeable people are more
or less likely to report having problems).

We found knowledge had a significant, positive influence
on four of the nineteen problems. First, finding the right
person to talk about a piece of code (przghtpersoncode) was
less likely a problem among people with knowledge of
version control (r = —0.337,p = 0.044) and hardware
(r = —0.348,p = 0.037). Second, finding duplicated code

(Pduplzeation) was seen as easier by people with high knowl-
edge of compilers (r = —0.362,p = 0.030) and hardware
(r = —0.336,p = 0.045). Third, knowledge of client codes and
of version control were related to the problem of understanding
code written by others (7),-othersoode, r = —0.344,p = 0.040
and r = —0.365,p = 0.040). Finally, compiler expertise
strongly predicts the problem of determining code ownership

(Pownership, r = —0.503,p = 0.002). Taken all together, we
argue that the common driver in these findings is a deep
awareness of the work context, such as the needs of clients or
the execution of the code on target architectures.



TABLE V: Results for knowledge self-assessment questions

Topic Knowledge Area Histogram Median (out of 5) % know someone else
Knowledge of the real-world phenomena that the software is used to study. Real-World 3 63.8%
The selection of mathematical techniques to attack a problem. Theory 4 63.8%
Software design Software __ME- 4 50.0%
Software construction Software 5 50.0%
Compilers and compiler optimizations Execution 4 55.0%
The effects of hardware architecture on algorithm performance Execution 3 58.3%
Using a version control system Execution 5 55.0%
How the software is integrated with client codes Operational 4 47.2%

Finding (F4): Operational and execution domain knowl-
edge have a positive effect on four of the nineteen prob-
lems. The common denominator is a deep awareness of
how the software is assembled and used.

We also observed a few negative impacts: people with a
high knowledge of design are more likely to report problems
with getting requests to switch tasks (r = 0.353,p = 0.035)
and having to divide their attention between projects (r =
0.337,p = 0.043), and people with a high knowledge of
math were more likely to have problems with tracking who
is modifying different pieces of code (r = 0.358,p = 0.037).
Equally interesting are the missing connections. For example,
despite the fact that all of our problems pertain to software
development, there's no evidence that knowledge of software
design or construction is helpful.

Finding (F5): Real-world, theory, and software domain
knowledge provided no measurable benefit. These are
software development problems but not problems solved
by writing better software or doing better research.

Next, for question RQ2.2 we want to know what benefits
there are to being connected with other people who have
knowledge. We carefully worded the prompt to check for
contacts that a respondent "could turn to for help", with the
expectation that people who have problems are more likely
to seek out people who can help them. The results matched
expectations: the average respondent reported having contacts
that covered 4.4 of the 8 topics, and the amount of coverage
was found to be a strong predictor of problems (r = 0.455,p =
0.005). Additionally, the only reliable indicator that someone
had a contact for one topic was that they had a contact for
another topic (average r = 0.808, average p = 0.0000002).
This is to say that the ability or tendency to engage in this kind
of networking was independent of an individual's background
or position in the organization.

Ten of the nineteen problems are correlated with having peo-
ple to reach out to (average r = 0.389, average p = 0.0245)
spread across the following categories: code understand-

ing (Potherscode,Pcodehistory, and Pyouroldcode), task switch-
ing (ptaskreguest,Ptaskblecked, and Pdividedattention), modular-

ity (Pchangeothers), links between artifacts (0,_ ownership and

Pbugsincode), and team (91convincingdevel opers). This suggests
that people are motivated to seek out knowledge-related con-
tacts in order to maintain awareness of code and to negotiate
and coordinate with others. Conspicuously absent from this list

One-on-one conversations 11%

impromptu meetings with multiple people 50%

Regular planned meetings 8%

Large meetings with multiple teams or
stakeholders 83%

Private email exchanges 3%

Public mailing lists 36%

One-on-one phone calls 36%

Conference phone calls 25%

SMS text messages 81%

Videoconferencing software 22%

Personal instant messaging services 78%

Social media 81%

Team collaboration software 47%

issue tracking and task management software 11%

Documentation, code comments, or tutorials 28%

100 50 0

Percentage

22

0%

86°1

421

33 

25

11°

19°

6%

8%

33

64°

28°

50 100

• Never or not in the last year Monthly • Daily
Response ■ 

Less than once a month Weekly

Fig. 4: The results of the communications portion of the
survey, which examined how and how frequently developers
communicated with each other.

are problems in the expertise finding category, all of which are
highly independent of this measure (average p = 0.53), and
we will return to this momentarily.

Finding (F6): Ten of the nineteen problems are influenced
by seeking help from others. A theme that emerges is that
these relationships are instrumental both for maintaining
awareness of code as well for negotiating and coordinating
with others.

Finally, for RQ3, we want to know how expertise is
communicated among Trilinos developers, and what impact
that has. We provided respondents with a list of different
communication media, and for each we asked them to describe
how frequently they used them on a 5-point scale from "never
or not in the last year to "daily'. The results can be seen
on Figure 4. We found that knowledge scores were strongly
tied to communication scores in that those who communicated
more frequently considered themselves more knowledgeable
and vice versa (for average scores, r = 0.491, p = 0.002).



Meanwhile, we were able to link eight of the nineteen prob-
lems to differences in communication strategies.

Finding (F7): Knowledge scores mirror communication
scores; those who communicate more, know more.

Face-to-face communication was a significant factor in
all problems in the expertise finding category. Finding a
reviewer for code (7)rightpersonreview) was easier for peo-
ple who engaged in frequent one-on-one meetings (r =
—0.360,p = 0.031); a similar relationship was found for
one-on-one phone calls and finding someone to talk about a
bug (Prightpersonbug,r = —0.403,p = 0.016). Unstructured
meetings with multiple people, meanwhile, was implicated in
finding the right person to talk about a bug (r = —0.360,p =
0.043). Finally, large meetings with multiple stakeholders
were correlated with both finding people to talk about code

(Prightpersoncode,r = —0.383,p = 0.021) as well as bugs
(r = —0.339,p = 0.031). The takeaway is that these problems
are a function of close and sustained communication, moreso
than mere awareness of others (cf. RQ2.2).

Finding (F8): Face-to-face communications enable
expertise-finding activities, affecting three of the nineteen
problems. However, the evidence suggests that awareness
of other's expertise alone is not enough: there must be
ongoing, sustained contact.

Meanwhile, we found that digital communications were
effective at solving some challenges while fueling others.
Private email makes it easier to keep track of how other peo-
ple's distant changes may affect your code (7),r-changeothers,r =

—0.372,p = 0.430), but it is also a high-bandwidth channel
of communication that is a frequent source of interruptions

Oodividedattention,r = 0.437,p = 0.008). Likewise, video
conferencing has made it possible to keep people involved
in many different projects, even when separated over great
distances, but that certainly doesn't help with the divided
attention problem (r = 0.451,p = 0.006). Meanwhile,
team collaboration software (e.g. Jira, Confluence, etc.) has
made it easier to track who is responsible for work items

(Nwnership,r = —0.329,p = 0.50) and to piece together
the origins of bugs (plragrelatedcode,r = —0.383,p = 0.021),
but unaccounted slack which could be spent on rearchitect-
ing and refactoring activities may be harder to come by
(Pconvincingmanagers,r = 0.401,p = 0.015). Lastly, on a
purely positive note, we found that documentation was a
valuable tool in bug finding (pbugrelatedcode,r = —0.396,p =
0.016).

Finding (F9): Digital communication strategies are use-
ful for protecting modularity and understanding the links
between artifacts, but the communication overhead also
introduces new challenges.

V. DISCUSSION

A. Summary of Results

As we attempt to scale up the production of scientific
software to meet the demands for innovation, we are beset
by problems of understanding, coordination, and awareness.
In general, they are not cured by time or experience (F2). We
found no proof to suggest that additional domain or software
development training will make them go away (F5). What
evidence we do have tells us that they are complex and multi-
faceted issues for which there can be no single solution (F1).
In our case study, we found that the number of problems that
respondents reported was, in some sense, a reflection of their
"embeddedness" in the team (F3), which motivated further
investigation into how expertise is situated and accessed.
The most useful forms of expertise were those that allowed

respondents to position themselves between domains of ac-
tivity, namely between the code and the machine (execution
knowledge) and between the developers and the clients (op-
erational knowledge)(F4). The benefit of that knowledge is
indirect. For example, people who know more about compilers
had fewer problems identifiying code ownership, but this is
likely because compiler experts find it more important to
keep track of where different code is coming from. Likewise,
people with a high knowledge of design had more attention
problems, and this is probably because those who do design
work spend more time supporting and coordinating different
people's activities.
Most of the problems are not able to be solved by in-

dividuals in isolation, and we found that this was a strong
motivator for respondents to seek out contacts across different
areas of expertise (F6). This was especially important for
people having to negotiate with others to carry out work
and for those trying to maintain awareness of code written
by others. Interestingly, seeking out help did not reduce the
frequency with which respondents reported problems, which
implies that this is a risk mitigation rather than a risk reduction
strategy. From this reading of the data, we can conclude
that mere awareness and/or periodic contact is not enough
to reduce the occurrence of issues: several of the problems
we studied depended upon the quantity and quality of contact
with others. Frequent communication was found to increase
individual knowledge across the board (F7). With respect
to particular problems, frequent face-to-face communications
were important for locating and using other people's expertise
(F8). Meanwhile, digital communications were found to help
with change awareness and bug-finding, but also had the
potential to exacerbate attention problems and create new
bureaucratic barriers (F9).

B. Recommendations

The problems described in this paper are very common
among large software development projects. However, not all
solutions readily translate to the scientific software domain
Sletholt et al. 2012, a literature review on the use agile
practices in scientific software development, found support for



TABLE VI: The number of problems in each category that
have a statistically significant relationship
studied in our survey.

with the factors

BackgrouncProblem Area 11111 What
They

Knowing
Who

How
They

Know Knows Commu-
nicate

Code Understanding (2/4) (1/4) (3/4)
Switching Tasks (2/3) (3/3) (1/3)
Modularity (1/2) (1/2) (1/2)
Links Between Artifacts (2/5) (3/5) (2/5) (2/5)
Team (1/2) (1/2)
Expertise Finding (1/3) (1/3) (3/3)

some agile methods but not others [24]. The authors also cau-
tion that their evidence is strongest when considering "small
projects with relatively few team members". For example, in a
project like Trilinos, where the number one complaint among
developers is having too many projects and not enough time,
daily stand-up meetings may not be a realistic solution for
everyone. This being said, we have identified several well-
supported solutions that we believe may be a good fit for large
scientific software teams like Trilinos.
Empowering knowledge brokers: Boden et al. 2009 calls

attention to the role of knowledge brokers in distributed
software development, that is, people capable of acting as
bridges between different teams and domains of expertise;
knowledge brokers are considered critical to enabling the
flow of information between different sites[25]. Brokers tend
to play an informal role in filling in structural holes in
social networks, but works like Parise et al. 2006 argue that
organizations should give formal recognition and power to
these people[7]. In our case study, almost all of the Trilinos
team is located within the same research building, but this
is not a good guarantee of team cohesion: a recent study
of R&D organizations found that the frequency of scientific
collaboration drops off given 100 feet of distance between
offices[26]. Along these lines, we note that 33% of our
respondents indicated that they knew no one they could turn to
for help in any of the knowledge areas while having an average
of 5 different problems that could potentially be mitigated by
having useful contacts; this is a situation where brokers could
be helpful.

Cultivating organizational awareness: A benefit of having
strong networks is the potential for serendipitous encounters.
Santos et al. 2012 points out that the most effective knowledge
sharing in complex R&D projects often happens in bars after
work[9]. While strategies such as having knowledge brokers
can help people locate specific expertise on demand, passive
and casual exchanges of knowledge can clue people in to
opportunities they might not have known about otherwise. This
is echoed by Schossau and Wilson 2014, who found that one of
the "completely unanticipater benefits of Software Carpentry
workshops was that they promoted awareness of technologies
and methods, even if that information was not immediately
useful[27]. It is possible to create these conditions through
events such as interdepartmental lunches and seminars.

Encouraging integrative work: As our survey data shows,
quality (not just quantity) of interactions matters for prob-
lems such as expertise finding. This echoes the findings of
Hara et al. 2003, which distinguished between complementary
and integrative collaborations in research groups, the former
requiring awareness and the latter requiring frequent, close
communication[14]. In our case, we found that 36% of respon-
dents reported having no daily face-to-face interactions with
other coworkers; the value of quiet isolation notwithstanding,
there is also much to be said for close collaboration. However,
the solutions in this category may be more demanding on
individuals. Pair programming, for instance, has been shown
to have great potential in conventional software development,
but it has seen only limited adoption among scientific software
teams[24]. Another strategy commonly employed in industry
is to occasionally rotate members between different teams in
order to disseminate best practices[28].

VI. THREATS TO VALIDITY

There are several potential threats to internal validity. As
with all surveys, our work is vulnerable to response biases.
One concern in crafting this survey was social desirability bias,
as our survey asks participants about their strengths and their
weaknesses. This has come up in other surveys of scientist-
developers such as Carver et al. 2013, which found that
scientists tend to overestimate their own software development
abilities[29]. We attempted to control for this by having a
vetted protocol for collecting and storing survey data to protect
the anonymity and confidentiality of responses; in general, we
found that respondents were eager to volunteer information.
Another concern was non-response bias because scientist-
developers are notoriously preoccupied, but nevertheless we
were able to get a sufficient number of responses. Moreover,
as this was an organizational survey, we were able to precisely
quantify the number of non-responses.

While our sample size is representative of the population,
the population itself is a single team, and this raises questions
about external validity. Most scientific software teams do not
operate at the size and scale of Trilinos; Pinto et al. 2018
found that 95% of scientific software teams they surveyed
had five members or fewer[30]. However, large-scale projects
(e.g. libraries) are foundational for the scientific software
ecosystem, and the problems we studied are universal to large
software projects regardless of domain.

VII. RELATED WORK

Szymczak et al 2016. argues for a rational, document-
driven approach to codifying the knowledge surrounding sci-
entific software development, and introduces Drasil, a platform
for accomplishing this[31]. Along these lines, Smith et al.
2016 provides a series of case studies on the application of
document-driven design to scientific software[32]. We recog-
nize the value of this approach, especially when it comes to
improving usability and verifiability, but we caution that most
software development knowledge is tacit and unable to be
codified; many of the specific problems we have described



in our work are not easily addressed by knowledge capture
strategies.
On the subject of training and education, Gil et al. 2014

notes that there is "a very limited focus on issues of col-
laborative software developmenr in the education of early-
career scientists[33]. Our work suggests that such training
is of special importance to large-scale scientific software
development.

VIII. CONCLUSION

In this work, we studied problems of communication and
awareness in realizing large-scale scientific software by con-
ducting a survey of developers of the Trilinos project, a
key software library at Sandia National Laboratories. Our
takeaway is that many widespread development problems
can be related to the way in which expertise is situated
and communicated within the team, and presented several
preliminary recommendations. Our findings underscore the
need for more investigation into development methodologies
suitable for large-scale scientific software development. To that
end, our future work will include ethnographic research into
the work practices of scientist-developers.

[1]

[2]

[3]

REFERENCES

S. Hettrick, "Research software sustainability: Report on a knowledge
exchange workshop," 2016.
J. Cohen, C. Cantwell, N. C. Hong, D. Moxey, M. Illingworth, A. Turner,
J. Darlington, and S. Sherwin, "Simplifying the development, use and
sustainability of hpc software," Journal of Open Research Software,
vol. 2, no. 1, 2014.
D. Dennehy and K. Conboy, "Going with the flow: An activity theory
analysis of flow techniques in software development," Journal of Systems
and Software, 2016.

[4] K. Agelastos, M. Rajan, N. Wichmann, P. Lin, R. Baker, S. Domino,
E. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier,
M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and
T. Zhu, "Performance on trinity phase 2 (a cray xc40 utilizing intel
xeon phi processors) with acceptance-applications and benchmarks
(sand2017-6390ee, uur)." Sandia National Laboratories, 2017.

[5] N. B. Moe, D. Smite, A. •S'ablis, A.-L. Börjesson, and P. Andréasson,
"Networking in a large-scale distributed agile project," in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 12.

[6] T. H. Davenport and L. Prusak, Working knowledge: How organizations
manage what they know. Harvard Business Press, 1998.

[7] S. Parise, R. Cross, and T. H. Davenport, "Strategies for preventing a
knowledge-loss crisis," MIT Sloan Management Review, vol. 47, no. 4,
p. 31, 2006.

[8] D. Kelly, "Scientific software development viewed as knowledge acqui-
sition: Towards understanding the development of risk-averse scientific
software," Journal of Systems and Software, vol. 109, pp. 50-61, 2015.

[9] V. R. Santos, A. L. Soares, and J. A. Carvalho, "Knowledge sharing
barriers in complex research and development projects: an exploratory
study on the perceptions of project managers," Knowledge and Process
Management, vol. 19, no. 1, pp. 27-38, 2012.

[10] E. S. Mesh and J. S. Hawker, "Scientific software process improvement
decisions: A proposed research strategy," in Software Engineering for
Computational Science and Engineering (SE-CSE), 2013 5th Interna-
tional Workshop on. IEEE, 2013, pp. 32-39.

[11] D. Heaton and J. C. Carver, "Claims about the use of software engi-
neering practices in science: A systematic literature review," Information
and Software Technology, vol. 67, pp. 207-219, 2015.

[12] J. Segal, "Scientists and software engineers: A tale of two cultures,"
2008.

[13] D. F. Kelly, "A software chasm: Software engineering and scientific
computing," IEEE Software, vol. 24, no. 6, pp. 120-119, 2007.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

N. Hara, P. Solomon, S.-L. Kim, and D. H. Sonnenwald, "An emerging
view of scientific collaboration: Scientists' perspectives on collaboration
and factors that impact collaboration," Journal of the Association for
Information Science and Technology, vol. 54, no. 10, pp. 952-965, 2003.
C. H. Jakobsen, T. Hels, and W. J. McLaughlin, "Barriers and facilitators
to integration among scientists in transdisciplinary landscape analyses: a
cross-country comparison," Forest Policy and Economics, vol. 6, no. 1,
pp. 15-31, 2004.
K. Hinsen, "Technical debt in computational science," Computing in
Science & Engineering, vol. 17, no. 6, pp. 103-107, 2015.
M. S. Anderson, E. A. Ronning, R. De Vries, and B. C. Martinson, "The
perverse effects of competition on scientists work and relationships,"
Science and engineering ethics, vol. 13, no. 4, pp. 437-461, 2007.
H. P. Van Dalen and K. Henkens, "Intended and unintended conse-
quences of a publish-or-perish culture: A worldwide survey," Journal of
the Association for Information Science and Technology, vol. 63, no. 7,
pp. 1282-1293, 2012.
V. Ratcheva, "Integrating diverse knowledge through boundary spanning
processes—the case of multidisciplinary project teams," International
Journal of Project Management, vol. 27, no. 3, pp. 206-215, 2009.
D. Post and L. Cook, "A comparison of software engineering practices
used by the llnl nuclear applications codes and by the software indus-
try," in Nuclear Explosive Code Developers Conference. Oakland, CA,
Lawrence Livermore National Laboratory, vol. 18, 2000.
T. D. LaToza, G. Venolia, and R. DeLine, "Maintaining mental models: a
study of developer work habits," in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 492-501.
L. J. Cronbach, "Coefficient alpha and the internal structure of tests,"
psychometrika, vol. 16, no. 3, pp. 297-334, 1951.
S. Suri and S. Vassilvitskii, "Counting triangles and the curse of the last
reducer," in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 607-614.
M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen, "What
do we know about scientific software development's agile practices?"
Computing in Science & Engineering, vol. 14, no. 2, pp. 24-37, 2012.
A. Boden and G. Avram, "Bridging knowledge distribution-the role
of knowledge brokers in distributed software development teams," in
Proceedings of the 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering. IEEE Computer Society, 2009, pp.
8-11.
F. W. Kabo, N. Cotton-Nessler, Y. Hwang, M. C. Levenstein, and
J. Owen-Smith, "Proximity effects on the dynamics and outcomes of
scientific collaborations," Research Policy, vol. 43, no. 9, pp. 1469-
1485, 2014.
J. Schossau and G. Wilson, "Which sustainable software practices do
scientists find most usefulr in Proceedings of the 2nd Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE2),
2014.
V. Santos, A. Goldman, and C. R. De Souza, "Fostering effective
inter-team knowledge sharing in agile software development," Empirical
Software Engineering, vol. 20, no. 4, pp. 1006-1051, 2015.
J. Carver, D. Heaton, L. Hochstein, and R. Bartlett, "Self-perceptions
about software engineering: A survey of scientists and engineers,"
Computing in Science & Engineering, vol. 15, no. 1, pp. 7-11, 2013.
G. Pinto, I. Wiese, and L. F. Dias, "How do scientists develop scientific
software? an external replication," in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 582-591.
D. Szymczak, S. Smith, and J. Carette, "Position paper: A knowledge-
based approach to scientific software development," in Software Engi-
neering for Science (SE4Science), IEEE/ACM International Workshop
on. IEEE, 2016, pp. 23-26.
S. Smith, T. Jegatheesan, and D. Kelly, "Advantages, disadvantages
and misunderstandings about document driven design for scientific
software," in Software Engineering for High Performance Computing
in Computational Science and Engineering (SE-HPCCSE), 2016 Fourth
International Workshop on. IEEE, 2016, pp. 41-48.
Y. Gil, E. Moon, and J. Howison, "No science software is an island:
Collaborative software development needs in geosciences," in Proceed-
ings of the 2nd Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2), 2014.


