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Concurrent Multiscale Coupling

• Large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneites
and more.

• Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks,
etc.) and large scale (vibration, impact, high
loads and other perturbations).

• Concurrent multiscale methods are essential
for understanding and prediction of
behavior of engineering systems when a
small scale failure determines the
performance of the entire system.
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Roof failure of Boeing 737 aircraft due to

fatigue cracks. From imechanica.org

* * grain scale evolaon, -vrn

Surface flaw in pressure vessel by J. Foulk.
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Previous Efforts on Concurrent Multiscale Coupling
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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Schwarz Alternating Method for Domain Decomposition

• First developed in 1870 for solving Laplace's
equation in irregularly shaped domains.

• Simple idea: if the solution is known in regularly
shaped domains, use those as pieces to iteratively
build a solution for the more complex domain.
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Karl Hermann Amandus Schwarz

(1843 — 1921). Source: bibmath.net

• Initialize:

• Solve PDE by any method on ,(21 using an initial
guess for Dirichlet BCs on

• Iterate until convergence:

• Solve PDE by any method (can be different than

for ,(21) on ,(22 using Dirichlet BCs on F2 that are
the values just obtained for ,(21.

• Solve PDE by any method (can be different than

for ,02) on ,(21 using Dirichlet BCs on Ti that are
the values just obtained for ,02.
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The Schwarz Alternating Method after Schwarz

• S. L. Sobolev posed the Schwarz method for
linear elasticity in variational form and proved
convergence of the method for linear elasticity
in 1936 by proposing a convergent sequence of
energy functionals.

• Convergence for general linear elliptic partial
differential equations was not proved until
much later by S. G. Mikhlin (1951) and I.
BabiAka (1956).

• We have adapted the alternating Schwarz for
the finite deformation, nonlinear PDE and
determined that the it converges geometrically
for the finite deformation problem. Computer
Methods in Applied Mechanics and Engineering
(2017).

(1)[(p] = W Z,T) — 1 B cp ciV — 1 T • cp S(I
. B . 13 13

Div P B = 0
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Sergei Lvovich Sobolev (1908 — 1989).

Source: www.math.nsc.ru

Solomon Grigoryevich Mikhlin

(1908 — 1990). Source: www-
history.mcs.st-andrews.ac.uk

Ivo BabLaa

(1926). Source: www-
history.mcs.st-andrews.ac.uk

5



Schwarz Alternating Method for Multiscale Coupling in Quasistatics
Sande
Mond
laboratories

1: cp(°) idx in c22
2: n 1

initialize to zero displacement or a better guess in C22

3: repeat r> Schwarz loop
4: cp(n) E— x on a„,s2, › Dirichlet BC for 52i
5: co(n) <— Poi,ri [Cp(n-1)] on ri › Schwarz BC for Qi
6: cp(n) E— arg min (Di [cp] in 52i > solve in Qi

(pEsi
7: n n 1
8: until converged

• It allows the coupling of regions with different meshes, different element
types, levels of refinement, and non-conforming.

• Information is exchanged among two or more regions, thus the coupling is
concurrent.

• Different solvers can be used for the different regions.

• Different material models can be coupled provided that they are compatible
in the overlap region.

• Conceptually very simple.
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Four Variants of the Schwarz Alternating Method

1: 4) 4— 4) in 111, xV) 4— X(XV) on 8,,,511, gV) 4— XV) on r1

2: 4) 4— XV) in n2, 4,2) 4— x(xe)) on 8,pr12, x(i32) 4— 4) nn r2
3: repeat

4: v(t) 
4— gel 

(1)

5: g(tip Qi2x12) + G124)

6: repeat

7: ,6.gi:) 4— —1C(A18(4);g11);4))\R(1)(4); Xl,1); w(p)
8: 4) <— 4) + A4)

9: until I 1.6.4)11/114Pii < Emachine

10: y(2) 4— WV)

11: X(s2) 4— P214) + C1214) + G214)
12: repeat

13: 
6:4) _K.,(421(gir me): ær ART (gir; al2); g(02))

14: x(r 4— XV) 4- 6,4)

15: until Combine
N

16: nntll [(VI) — xT11/14)11)2 + (HO) 411/11X1V II)
2 /2 

Emachine

c. initialize for 1-11

t. initialize for 112
n Schwan loop

c. for convergence check

c• project from 112 to r1
c. Newton loop for Sit

c. linear system

t. tight tolerance

c. for convergence check

tr. project from 1-21 to
c. Newton loop for Sin

c. linear system

c• tight tolerance

c. tight tolerance

Full Schwarz

1: 4)4— 4) in Sti, gll) 4— x(4)) on 8001.4) 4— XV on Pt

2: 4) 4— xg) in 122, M?) x(X12)) on 8002, g(02) X(02) on 1'2
3: repeat

y(1) 4_ 4)

41) 4— P1242) + Q124,2) +G12x(02)
repeat

AxSP 4— —ICZ)3(g(,;); gV);4)) RT (4); gli); 4))

4) 4— 4) + AmT

until < E
y(2)

P214 + Q214) + G214)
trepea
Ax(zr —K(Z3(g

9)
,.12);.n\RT(4);.12);.(,32))

14: 4) 4— 4) + Ax(j)

15:

16: until [(111/(1) 4)11/114)11)2 + OW(2) ii/ilgini)2] "2

undl I 1.6,4) < c

< Emenhine

i> initialize for 1.1i

c. initialize for 112
c. Schwarz loop

c. for convergence check

c• project from S12 to ri
c. Newton loop for Sit

c• linear system

c. loose tolerance, e.g. e E [10-4,10-1]

tr. for convergence check

t. project from 1-11 to r2
t. Newton loop for f12

c. solve linear system

t. loose tolerance, e.g. e E [10-4,10-9

tight tolerance

Inexact Schwarz
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1: g(E:) XIP in 01, 4,1) 4— x(4)) on apch, 4) 4— XV) on r1

2: 4) 4— 4) in f12, g12) x(X1,2)) on 8pS12, 42) 4— XV) on 1'2
3: repeat

4: 4) 4— /312g8') +Qi2.12) +G,2.(,2)

5: Am(11) —1e,g(4); 4); XV))\RT(4); 4); XV))

6: mg) 4— Zg) Axi;)

7: gr P214) + (4214) G21q)

8:

9: 4) 4— 4) -I- AgV)

10: nntil [(1164)1i/H4)H)2 + 1411)2r2 Emmeline

Axir _K(:))3(4);g12); g(02)) R(ir(4); 4,2); g(02))

initialize for S11

c. initialize for Sin
c. Newton-Schwarz loop

c. project from 1-12 to ri

c. linear system

I> project from f21 to r2

c. linear system

c. tight tolerance

Modified Schwarz

1: 4) 4— 4) in S11, 4) 4— x(4)) on

2: 4) 4— XV) in S12, XV) X(XV) On
3: repeat

(01 iK,ig+Kv3Hii KZ H12
4:

12:11) f 112 1 + H22 —RA)

5: 4) 4— 4) ± A4)

6: t— 4) + .6.4)

7: until [(1164)iiiii4)11)2 + (H.64)ii/ligni) 2] 1/2 5 Emachine

c. initialize for 1-11

i> initialize for S12
c. Newton-Schwarz loop

c. linear system

C. tight tolerance

Monolithic Schwarz
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Foulk's Singular Bar

• 1D Proof of concept problem.

• Explore viability of method.

• Test convergence and compare with literature (Evans, 1986).

• Expect faster convergence in fewer iterations with increased overlap.

• Area proportional to square root of length.

• Strong singularity on left end of bar.

• Simple hyperelastic model with damage.

• Four Schwarz variants implemented in Matlab.

A(X) = Ao V X / L u(L) = A

L

Sandia
National
Laboratories

X
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Singular Bar and Schwarz Variants
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Schwarz Alternating Method in Albany

■ Modified Schwarz version implemented in

Sandia's open-source Albany code within the

LCM project.

■ Use of components in code design for rapid

development of capabilities.

■ Extensive use of libraries from the open-source

TRILINOS project.

■ Use of the TRILINOS PHALANX package to

decompose complex problem into simpler

problems with managed dependencies.

■ Use of the TRILINOS SACADO package for

automatic differentiation. The stiffness is neither

derived nor implemented explicitly.

■ Use of TRILINOS TEKO package for block

preconditioning.

■ Parallel implementation uses the Data Transfer

Kit (DTK).

■ All software available on GitHub.

Sandia
National
Laboratories

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-CEES/DataTransferKit
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Hyperleastic Cuboid, Convergence with Overlap and Mesh Size
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u—s (hp h2) = (1,1)

A--a h2) = (1, i)

h2) = (I, I)
• h2) = (1, 1)

h2) = (1,1)
• h2) = (1,1)

h2) =

ch, = (1, I)
• (hi, /12) =

= (i,
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Cuboid: Schwarz Error

d.P_Z
10:0•011

,5,11.041

Subdomain u3 relative error o-33 relative error

Q1 1.24 x 10-14 2.31 x 10-13

Q2 7.30 x 10-15 3.06 x 10-13

Santla
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Hyperleastic Notched Cylinder

64

(a) Schematic

32

16

8

16

8

16

32

(b) Entire Domain S2 (c) Fine Region C21
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(d) Coarse Region C22
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Notched Cylinder: Conformal HEX-HEX Coupling

(a) (b) C22
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(C) Qref

Absolute residual tolerance
u3 relative error

1.0 x 10-4 7.60 x 10-3 3.20 x 10-3
1.0 x 10-8 3.10 x 10-5_ 1.71 x 10-5_
1.0 x 10-1' 1.34 x 10-9 5.10 x 10-19
1.0 x 10-14_ 1.23 x 10-1_1 4.69 x 10-12
2.5 x 10-1' 1.14 x 10-13 8.37 x 10-14
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u3
6.400e-03
0.006

0.005

=0.003

0.002

0.000e+00
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Notched Cylinder: Non-Conformal HEX-HEX Coupling

(a) C21 and C22
(b) ciref mesh (c) C2ref 

solution

Sanaa
_banal .=own=

u3
6.400e-03
0.006

=0.003

0,002

0.000e+00
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Notched Cylinder: Non-Conformal HEX-HEX Coupling

(b)

Absolute residual tolerance
tt3 relative error

C.21 C22

1.0 x 10-8 1.31 x 10-3 4.45 x 10-4
1.0 x 10-12 1.30 x 10-3 4.43 x 10-4
1.0 x 10-14 1.30 x 10-3 4.43 x 10-4
2.5 x 10-16 1.30 x 10-3 4.43 x 10-4
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u3 error
.1.446e-05

1 .2e-5

-79e-6

I6e-6

3e-6

000e+00
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Notched Cylinder: TET-HEX Coupling

(a) Q 1 (b) Q2
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u3

f
6.400e-03

10.006

0.005

=0.003

0.002

=0.000e+00
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Notched Cylinder: TET-HEX Coupling

(b) Q2

Absolute residual tolerance
u3 relative error

C21

9.27 x 10-3 3.70 x 10-3

Sande
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u3 error.5.820e-05

4e-5

—3e-5

10.000e+00
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Notched Cylinder: TET-HEX Coupling

■ The method is capable of coupling different mesh topologies.

■ The notched region, where stress concentrations are expected, is finely meshed with

tetrahedral elements.

■ The top and bottom regions, presumably of less interest, are meshed with coarser

hexahedral elements.

Sandia
National
Laboratories
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Notched Cylinder: TET-HEX Coupling

X
—11PY

dhp_ fringratude
5.070.E.-02

.— 0.01

-0.0009*00

X

Caucty_Streff.._09
1.IXX•e•O4

-5eFa
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Coupling Isotropic and Crystal Hyperelasticity

anisotropic
crystal elasticity

isotropic
elasticity

overlap

Two distinct bodies, the component

scale and the microstructural scale, are

coupled iteratively with alternating

Schwarz

distinct
models

concurrent
coupling

plotting axial
stress

c'5,4Priar
teciraitertefrelar,4004'4100,4t1p,-,proger,o-â,
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Work by J. Foulk, D. Littlewood,
C. Battaile, H. Lim

microstructural
scale

component
scale

21



Laser Weld: Strong Scalability of Parallel Schwarz with DTK

• Isotropic elasticity
• J2 plasticity
• Identical parameters for weld and

base materials for proof of concept,
to become independent models

• -200,000 DOFs

Sandia
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64

32

16

4

2

1
32 64 128 256 512 1024 2048

Number of Processors
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Numerical Example: Tensile Bar
Work by C. Alleman, J. Foulk,

D. Littlewood, H. Lim, G. Bergel

Embed microstructure in
ASTM tensile geometry

Cauchy Stress 1 1
— 125.0

92.5

60.0

27.5

-5.0

Sandia
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Tensile Bar: Meso-Macroscale Coupling
Mesoscale

SPARKS-genereated
microstructure (F. Abdeljawad)

cubic elastic constant : C11 = 204.6 GPa

cubic elastic constant : C12 = 137.7 GPa

cubic elastic constant : C44 = 126.2 GPa

reference shear rate : i/o = 1.0 1/s

rate sensitivity factor : m= 20

hardening rate parameter : go = 2.0 x 104 1/s

initial hardness : go = 90 MPa

saturation hardness : g, = 202 MPa

saturation exponent : w = 0.01

Fix microstructure, investigate ensembles

• .

0.6 • •
• •

• • .

0.4 • • • •
• • .•

0.2

0.0

-0.2
•

•

•
•

•
•
•

••
•• •
• . •

te • .
••• .:. ••

-0.4

-0.6
••
• . •

0.60

-0.6

151 axial vectors
from 3 of the 10
ensembles of
random rotations
(blue, green, red)
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Macroscale

• Load microstructural ensembles in uniaxial stress
• Fit flow curves with a macroscale J2 plasticity model

350

300

250

(r)(r)

200

150

eeee ••••••••eeeeeee

•• •eeeeee 01,

Young's modulus : E = 195.0 GPa

Poission's ratio : v = 0.3-

yield stress : ao = 144 MPa

hardening modulus : H = 300 MPa-

saturation modulus : S = 170 MPa

saturation exponent : a = 190_

• • 10 CP ensembles
— J2 fit

113
0
.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

equivalent plastic strain(mm/mm)

ay = (To Hcp + S(1 — e—"€P)
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Tensile Bar: Results

Reduction in cross-
sectional area over time

0.01005

0.01000

c.71—

— 0.00995

0.00990

time

0.00935 
0.10 —0.05 0.00

Location [min]
0.05 0.10

F 11
.1.035

1.025

1.014

1 1.003
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F 11
1.035

-1.025

1.014

.003
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Schwarz Alternating Method: Summary of Findings
Sandia
National
Laboratories

■ Adopt the original method developed by Schwarz for the finite-deformation solid mechanics
problem. The method is formulated by recourse to a variational setting.

■ The development and introduction of four variants of the Schwarz alternating method and
explicit algorithms for their implementation. The choice of one variant over another depends
on the existing infrastructure of a computer implementation.

■ Demonstration by means of numerical examples that the convergence of the Schwarz
method in its four variants is for the most part linear. The numerical examples revealed that
the Modified Schwarz method occasionally displays non-monotonic behavior.

■ Demonstration of coupling of conformal meshes, non-conformal meshes, meshes with
different levels of refinement, meshes with different element topologies, and more than two
subdomains.

■ Demonstration that the error in the coupling can be decreased up to numerical precision
provided that no other sources of error (such as geometric mismatch) exist.

■ The development of a parallel implementation of the Schwarz method in the ALBANY code
and demonstration that the strong scalability of our implementation is close to ideal.

26



Schwarz Alternating Method: Future Work

■ Extension of the methods presented herein to transient dynamics problems with the ability
to use different time steps and time integrators for each subdomain.

■ Development of a multi-physics coupling framework based on variational formulations and
the Schwarz alternating method.

Sandia
National
Laboratories
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Schwarz Alternating Method in Dynamics

• In the literature the Schwarz method is applied to dynamics by using space-time

discretizations.

• This was deemed unfeasible given the design of our current codes and size of

simulations.
Time

f2 F'
•

h h2

T2

Spacc

Overlapping non-matching meshes and

time steps in dynamics.

Sandia
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A Schwarz-like Time Integrator.
Sandia
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• We developed an extension to Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.

• Can use different integrators with different time steps within each domain.

• 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

1

1 Controller time stepper
Time integrator for ,(21

  Time integrator for ,(22

29



Dynamic Singular Bar

• Inelasticity masks problems by introducing energy dissipation.

• Schwarz does not introduce numerical artifacts.

• Can couple domains with different time integration schemes (Explicit-Implicit below).

0.030
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0.020

'A 0.015

▪ 0.010
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0.000
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0.8
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1 0

0.2 0.4 0.6
Position

0.2 0.4 0.6
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0.8

0.8

1 0

1 0

1.5 x 107

-1.0

0.2 0.4 0.6
Position
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0 0.2 0.4 0.6
Position
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Schwarz Domain Decomposition
for Bolted Joint Problem
• Schwarz solution compared to single-domain

solution on composite tet 10 mesh.

• ni = bolts (composite tet 10), n2 = parts (hex 8).

• Inelastic .12 material model in both subdomains.

• f21: steel

• n2 : steel component, aluminum (bottom) plate

Sandia
National
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• BC: x-disp = 0.02 at T =

1.0e-3 on top of parts.

• Run till T = 5.0e-4 w/ dt =

le-5 + implicit Newmark

with analytic mass matrix

for composite tetl0s.



Bolted Joint Problem: x-displacement

I ir nc 0.000000

Single c2

cit p_ X

MUM5 13.11117!-, 1.1)11014-1K,

Schwarz
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Bolted Joint Problem: y-displacement
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Bolted Joint Problem: z-displacement

lirmc: 0.000000
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Bolted Joint Problem: nodal eqps

Time : 0.000000

nc.)ric_11_c_lqr_vj
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Bolted Joint Problem: nodal eqps

Tirne: 0.000000
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Cross-section of bolts obtained via clip (right)
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Bolted Joint Problem: Some Schwarz
Performance Results

Schwarz / solver settings

• Relatively loose Schwarz

tolerances were used:

• Relative Tolerance: 1.0e-03.

• Absolute Tolerance: 1.0e-04.

• Newton tolerance on NormF: le-8

• Linear solver tolerance: le-5

• MueLu preconditioner

70
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-- 40
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.41, M. {LW
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1.1
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ti me (s)

3.5 4 4.5 5

• Top right plot: # Schwarz iterations for each time step.

• After start-up, # Schwarz iterations / time step is —9-10 — this is not bad given

how small is the size of the overlap region for this problem.
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Bolted Joint Strong Scaling on Skybridge:
Schwarz vs. Single Domain with Ifpack2

10

10 4

0J

0J

o
1013

6,.

Bolted! Joint Problern - Strong Scal ing

123 256 512
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0 Total - Output, 20dt, Schwarz Ofpack2)
— — linear Solve, 20dt, Schwarz (Ifpack)

  Total - Output, finer, 10dt, Schwarz (Ifpack2)
— — linear Solve, finer, 10dt, Schwarz (Ifpack2)
  Total - Output, 20dt, Single .q Ofpack2)

— — linear Solve, 20dt, Single (Ifpack2)
0 Total - Output, finer, 10dt, Single 1! Ofpack2)

— — linear Solve, finer, 10dt, Single Q Ofpack2)

  slope = -1

• Strong scaling for
Schwarz is slightly
less than ideal
linear speedup.

• Likely this is due
to linear solve.

• Schwarz scaling is
similar to single
domain scaling.
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Bolted Joint Strong Scaling on Skybridge:

Single Domain, Ifpack2 vs. MueLu

10
4

103

1 0 2

16

Bolted Joint Problem - Strong Scaling {Single S)}

64 128

procs

25 6 512
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 Total - Output, 20dt (Ifpack2)

— — Lin-ear Solve, 20dt (lfpack)

— Total - Output, 20dt (flueLu)
Lin.ear Solve, 20dt (141ueLu)

  Total - Output, finer, 10dt (Ifpack2)

— — Linear Solve, finer, 10dt (lfpack2)
  Total - Output, finer, 10dt (MueLu)

— — Linear Solve, finer, 10dt (MueLu)

  slope = -1

• CPU times are

much faster

with MueLu,

but scaling

deteriorates for

large # cores.
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Bolted Joint Strong Scaling on Skybridge:

Schwarz, Ifpack2 vs. MueLu

105

102

Bolted Joint Problem - Strong Scaling {Schwarz)

a

64 128

# procs
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o Total - Output, 20dt Ofpack2)

— — Linear Solve, 20dt Ofpack)

  Total - Output, 20dt (MueLu)
— — Linear Solve, 20dt (MueLu)

O Total - Output, finer, 10dt (Ifpack2)

— — Linear Solve, finer, 10dt (Ifpack2)
0 Total - Output, finer, lOdt (hilueLu)

— — Linear Solve, finer, 10dt (MueLu)

  slope = -1

• Linear solve

much faster

with MueLu but

total CPU time

much slower!

• This highlights

sensitivity of

nonlinear solver

trajectory.
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Tension Specimen Problem

• Specimen is pulled from top (upper_grip) and bottom (lower_grip) simultaneously
such that displacement of 0.01 is attained at time T = le-3.

• Zero velocity and displacement initial condition.

• Problem is run using implicit Newmark-Beta.

• J2 material model is employed with properties of aluminum.

• Figure below shows initial and final configurations.

-, A
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Initial y-disp

Final y-disp
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Tension Specimen Problem: Conformal

Hex-Hex Schwarz Coupling

• Domain is decomposed into 2 subdomains for
Schwarz, discretized with conformal hexahedral
meshes.

• Schwarz solution is compared with single-domain
solution computed on a hex mesh conformal with
the Schwarz meshes.

• Implicit Newmark-Beta is employed with dt = le-5.

• Schwarz relative and absolute tolerances = le-6.

• Qols: displacement, nodal_eqps,
nodal Ca uchy_Stress_5.

nref
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Tension Specimen Problem: Conformal

Hex-Hex Schwarz Coupling

8

x10'6 Tension-Specimen (Schwarz to! = le-6)

Ercs
Ca e

0 0.2 0.4 0.6

Time (s)

0.8 1

xlio 3
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• Displacement relative errors

in Schwarz solution is of

0(1e-6), same as Schwarz

tolerance (as expected!).

• Errors do not grow in time.
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Tension Specimen Problem: Conformal

Hex-Hex Schwarz Coupling
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0.016
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1
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x 10 3 Tension-Specimen (Schwarz tol = le-6)

Ends

GuLige

0..2 n.4 0.6 0.8 1

Time is) x10'3

• Above plots show maximum relative error in nodal eqps (left) and 5th

component of nodal Cauchy Stress (right). Errors are 0(1e-3).
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Tension Specimen Problem: Conformal

Hex-Hex Schwarz Coupling

• Note that there is a bug in computing the
nodal_epqs and nodal_Cauchy_ Stress fields
in the single domain run — these fields are 0 in
1st time-step for reference (single domain)
solution if "Exodus Write Interval" = 1.

• The same thing happens for bolted joint
problem.

• Non-nodal eqps and Cauchy_Stress fields
are non-zero in 1st time step.

• Problem does not occur when Exodus
Write Interval > 1.

Single n Schwarz
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Time = le-5

nodal_eqps
7.458e-03t

710.0055939

=0.0037292

7E0.0018646

t0.000e+00
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Tension Specimen Problem: Schwarz
Sandia
National
Lahoratories

Convergence for Conformal Hex-Hex Coupling

22

20

14,11,14

cz22...zors22....50

10  
0.6 0.8

time (5)

9 ff2.172.1-233S1

• Above plot: # Schwarz iterations for each time step.

• # Schwarz iters declines during transient runs.
• Schwarz tolerance is pretty small (le-6) even though overlap is large.
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Tension Specimen Problem: Hex-

Composite Tet Coupling
• l tried to run this with ends hex meshed and the gauge composite tet 10 meshed, but

linear solver in composite tet 10 mesh failed (lfpack2 and MueLu).

• Same thing happened with all composite tet 10 single domain mesh obtained by
splitting original hex mesh into tets.

• Need to try again with "good" all composite tet 10 mesh.

• Thoughts? Run quasi-statically? Talk to MueLu guys about settings?
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Tension Specimen Problem with Faster

Loading

Sandia
National
Laboratories

• Same problem as before except we apply a faster loading to run explicitly.

• Specimen is pulled from top (upper_grip) and bottom (lower_grip) simultaneously such

that displacement of 0.01 is attained at time T = le-6.

• Zero velocity and displacement initial condition.

• Problem is to be run using explicit Newmark-Beta (or explicit-implicit coupling using

Schwarz).
• Need to discuss issue with running explicitly — solution is incorrect.

• J2 material model is employed with properties of aluminum.

Initial y-disp

Final y-disp
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