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Concurrent Multiscale Coupling 7| Netora

= large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneites
and more.

= Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks, Roof failure of Bosing 737 aircraft due to
etc.) and large scale (vibration, impact, high fatigue cracks. From imechanica.org
loads and other perturbations).

= Concurrent multiscale methods are essential
for understanding and prediction of
behavior of engineering systems when a
small scale failure determines the
performance of the entire system.

. > @ grain scale evolution, ~um

Surface flaw in pressure vessel by J. Foulk.
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-




Schwarz Alternating Method for Domain Decomposition (L Notowa

= First developed in 1870 for solving Laplace’s
equation in irregularly shaped domains.

= Simple idea: if the solution is known in regularly
shaped domains, use those as pieces to iteratively
build a solution for the more complex domain.

Karl Hermann Amandus Schwarz
(1843 — 1921). Source: bibmath.net

= |nitialize:
= Solve PDE by any method on (2, using an initial
guess for Dirichlet BCs on 7.

= [terate until convergence:

Q2 = Solve PDE by any method (can be different than
for £2,) on €2, using Dirichlet BCs on 7 that are
the values just obtained for £2,.

= Solve PDE by any method (can be different than
for £2,) on 2, using Dirichlet BCs on 7] that are
the values just obtained for (2,.




The Schwarz Alternating Method after Schwarz

= S.L.Sobolev posed the Schwarz method for
linear elasticity in variational form and proved
convergence of the method for linear elasticity

in 1936 by proposing a convergent sequence of

. _— ; Source: www.math.nsc.ru
= Convergence for general linear elliptic partial

differential equations was not proved until
much later by S. G. Mikhlin (1951) and I.
Babuska (1956).

= We have adapted the alternating Schwarz for
the finite deformation, nonlinear PDE and Solomon Grigoryevich Mikhlin
determined that the it converges geometrically (1908 — 1990). Source: www-
for the finite deformation problem. Computer EAT R C 5t BB eTA. oE Uk
Methods in Applied Mechanics and Engineering
(2017).

@[cp]z/BW(F,Z,T)dV—/BB'QOdV— aTBT"PdS Ilvo Babuska

(1926). Source: www-
history.mcs.st-andrews.ac.uk

DivP+B =0
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Schwarz Alternating Method for Multiscale Coupling in Quasistatics 1) National

Yy UM RERR

0@ — idx in Qs > initialize to zero displacement or a better guess in {2

n<1

repeat > Schwarz loop
@™ « x on O0p i > Dirichlet BC for €2,
™ Pa,or, (™ D]onTy > Schwarz BC for ;
@™ « arg I%lg ®,[¢] in Q; > solve in ;
ne—n+l o

until converged

It allows the coupling of regions with different meshes, different element
types, levels of refinement, and non-conforming.

Information is exchanged among two or more regions, thus the coupling is
concurrent.

Different solvers can be used for the different regions.

Different material models can be coupled provided that they are compatible
in the overlap region.

Conceptually very simple.




Four Variants of the Schwarz Alternating Method

Sandia
National
Laboratories

el « XPiney, 2 « x(X) ondp, 2§ « X onTy > initialize for 2,
2 &P x(’) inQy, },” “X(XP) on 00, 2 XD onTy > initialize for Q5
3: nput > Schwarz loop ) . ( 1) (1) (1) Tasisiis
&y zg) T —— £ :t P X(Z) inQy, x (2) — x(Xﬁz)) on zfz) — Xt(,z) onIl'y b initialize for 21
5 zgl - Plz:c(z) + Qum(z) Iy Glzwf:) > project from Q2 to 'y 2 n: ) Xy inQo, @™ « x(X},') on0pQ2, Ty” Xﬁ onI'y b initialize for Q22
6: repeat & Newton loop for £ 8: repea(tl) = o - > Newton-Schwarz loop
7. 2zl « K@D xD; m)\R(‘)(m(” gl);mgl)) > linear system 4 my’ + Pozy’ +Que,” +Gunzy v project from 2 to 'y
8: (1) - z(l) o Aa:(B” 5 Awg) — —Kf:‘),(zg);z(” mg))\RfP(mg);mgl);mg)) © linear system
9 until ||Aa:("||/||m§;)|| o st > tight tolerance 6 2§ +azf)
10: Y@z > for convergence check ¥ :zf,f) — P;lz(l) + Qzlm + Gglzﬂ > project from Q3 to '
11: :nf:) — Pzﬂm + Q2lw(l) 4 Gzlmfgl) © project from ©; to I'y 8 Am(z) — Km (2(2) ,(,2), f:) \Rf)(mg); :z:f,g); m/(;)) » linear system
12:  repeat > Newton loop for Q22 (2) @) @)
13: Amg) — —Kfl);(:cg); zgz) (2))\R(2) (w(z) l(’z);zgz)) © linear system % +wp + A0y 1/2
2

1 2@ ca® 4+ aed 10: unti [(nAz“’u/uz“’ )"+ (1a2@I)] < et b tight tlerance
15:  until ||Az‘2’||/||a:§§’|| < esiachinn > tight tolerance

)i i (N @ @
16: unti [(Ilu“’ ~=@/N1=$)” + (v - 21121 ] < Cmacine b tight tolerance

Full Schwarz Modified Schwarz

1: <—x“)mm &) x(X{M)on 8o, 2 X onTy > initialize for Q1
2:x B , P X(Bz) in Qg, zgz) — x(X‘SZ)) on Apfa, :cff) ng) onI'y b initialize for Q2
3: repeat > Schwarz loop
4 llﬁi —af) - " p-da eofivergencelcheck: I @ (” XD inay, 2  x(X) on 8p0, b initialize for Q1
5 2 « Ppal) + Qua? + Gum © project from Q2 to 'y 2 @ X(?) in Qa, z(2) . X(X?)) on 8, > initialize for Q2
6:  repeat > Newton loop for 21 3: re pea( & NestonSchwies 1ov
7 Ae® KD @0, 50, 20\ RO @0, 50, z0)) it eyat : et P

. 5 ap@p’izy iz A (®p’i®y Ty system Az(l) Kz(all)i +K(1) K l)_l.I12 —RW

: (l) (1) (1) 4 ~ © linear system
x aSleflianf {m b} - (™ e R y
9:  until [|Az}’||/|lp’|| < € > loose tolerance, e.g. € € [1074,1071] 5 2O 2 4 Az®

: ®
10: Y@ « 1:53) > for convergence check i & (32) % &
11: (2) « le:l:(l) +Qmw(l) + Gglm(ﬁl) b project from Q3 to ' B e R 5 211/2
12 repen > Newton loop for 22 7: un [ ||Az(l)||/||:n(1)|| o ||Am(2)||/||:c(2)|| ] & eiihe > tight tolerance
13: 222  —K@ (D2 a:?))\Rf) (@22, sz)) b solve linear system ( B ) ( o = ) .
14: mg; )+ Az“’
15:  until |[Am(2)|l/||m(2)|| <e b loose tolerance, e.g. € € [1074,107]
3 1/2

16 wnt [ (15— 2 1/121)” + (16 2P /11)”] < cnnin > tight olerance

Inexact Schwarz Monolithic Schwarz

e —




Foulk’s Singular Bar

1D Proof of concept problem.

o Explore viability of method.

o Test convergence and compare with literature (Evans, 1986).

o Expect faster convergence in fewer iterations with increased overlap.
o Area proportional to square root of length.

o Strong singularity on left end of bar.

o Simple hyperelastic model with damage.

e Four Schwarz variants implemented in Matlab.

w(0) = 0 A(X) = Ao/ X/ L u(L) = A
7




Sandia
Singular Bar and Schwarz Variants QL Laboratories
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Schwarz Alternating Method in Albany o

=  Modified Schwarz version implemented in
Sandia’s open-source Albany code within the
LCM project.

= Use of components in code design for rapid
development of capabilities.

= Extensive use of libraries from the open-source
TRILINOS project.

= Use of the TRILINOS PHALANX package to
decompose complex problem into simpler
problems with managed dependencies.

= Use of the TRILINOS SACADO package for
automatic differentiation. The stiffness is neither
derived nor implemented explicitly.

= Use of TRILINOS TEKO package for block
preconditioning.

= Parallel implementation uses the Data Transfer
Kit (DTK). https://github.com/ORNL-CEES/DataTransferKit

= All software available on GitHub.




Hyperleastic Cuboid, Convergence with Overlap and Mesh Size i ot
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Cuboid: Schwarz Error

Subdomain w3 relative error o33 relative error

04 1.24 x 10714 2.31 x 10713
0 7.30 x 1071 3.06 x 10713




Hyperleastic Notched Cylinder 7| Netora

T
32
s
16

! r X
128 >Ql : @ 16
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(a) Schematic (b) Entire Domain 2 (c) Fine Region €21 (d) Coarse Region {22
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Notched Cylinder: Conformal HEX-HEX Coupling 77 Ntora

Absolute residual tolerance

1.0 x 1074
1.0 x 1078
1.0 x 1072
1.0 x 1014
9.5 x 10—

ul
6.400e-03
E0.00b
%’50.005
—50.003
| 7”0.002
0.000e+00
(c) Qref
ug relative error
Q4 Qs
7.60 x 1073 3.20 x 1073
3.10x 107° 1.71 x10°°
1.34 x 1072 5.10 x 1071°
1.23 x 107! 4.69 x 10712
1.14 x 19~ 8.87 % 10~ "




Notched Cylinder: Non-Conformal HEX-HEX Coupling 7| Netora

(a) €21 and Q9 (b) Qer mesh (¢) Qe solution

ud

0.005

0.003

0.002

mmmllmmmlnm

0.000e+00




Notched Cylinder: Non-Conformal HEX-HEX Coupling

.,,_,

(@ 2 (b) Q2

h

ug relative error

Absolute residual tolerance O
1.0 x 10~8 1.31 x 1073 4.45 x 10~
1.0 x 10712 1.30 x 1073 4.43 x 1074
1.0 x 10~ 14 1.30 x 1073 4.43 x 1074
9.5 5 1o~ 1.30 x 1073 4.43 x 10~

u3 error

1.446e-05

1.2e-5

Qe-6

be-6

aRRARAARRRRRRRRARRAL!

3e-6

0.000e+00
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Notched Cylinder: TET-HEX Coupling i

T

6.400e-03
0.006

0.005

0.003

* B i
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0.002

0.000e+00

(a) 1 (b) Q2




Notched Cylinder: TET-HEX Coupling 77 Ntora

u3 error
5.820e-05

4e-5

3e-5

R RRRRARRRRRARR

le-5

0.000e+00

(@

us relative error
Absolute residual tolerance 9 Qs

1.0 x 10~ 9.27 x10™® 3.70 x 102
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Notched Cylinder: TET-HEX Coupling o m. ol

= The method is capable of coupling different mesh topologies.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.

19
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Notched Cylinder: TET-HEX Coupling

disz_ Maognitude
5.070e-02

0.04

0.000a+00




Coupling Isotropic and Crystal Hyperelasticity e

Two distinct bodi h Work by J. Foulk, D. Littlewood,
wo distinct boaies, the component C. Battaile, H. Lim

an/sotrop/_c. scale and the microstructural scale, are
crystal elasticity : . ; .
coupled iteratively with alternating

isotropic Schwarz
elasticity

distinct
models

overlap

component

concurrent
scale

coupling

plotting axial

stress microstructural

scale 21




Laser Weld: Strong Scalability of Parallel Schwarz with DTK

 |sotropic elasticity

« J2 plasticity

 |dentical parameters for weld and
base materials for proof of concept,
to become independent models

« ~200,000 DOFs

64 1 1 i i i
""" Ideal
~— Fine
(272} IV . SN, SO SO R —
— (Coarse
T16 ...................................................................................
=,
&
8 Lt N e S e oo s s e ol
=
=
S| SURRRTRURS SURROMR SUN.. YOO’ SO0 Y SOOI S
Db NG

61 1238 256 512 1021 204s
Number of Processors
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Numerical Example: Tensile Bar amctoris
Work by C. Alleman, J. Foulk,

D. Littlewood, H. Lim, G. Bergel Cauchy STr]ezgso 1
| 92.5
-~ 60.0
27.5

Embed microstructure in
ASTM tensile geometry




Tensile Bar: Meso-Macroscale Coupling

Macroscale

Mesoscale

SPARKS-genereated
microstructure (F. Abdeljawad)

cubic elastic constant : C';; = 204.6 GPa
cubic elastic constant : C15 = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

® | oad microstructural ensembles in uniaxial stress

reference shear rate : 99 = 1.0 1/s 350
rate sensitivity factor : m = 20 T Y PR
hardening rate parameter : go = 2.0 x 10* 1/s 300+

initial hardness : go = 90 MPa Young’s modulus : £ = 195.0 GPa

saturation hardness : g, = 202 MPa § 250+ Poission’s ratio : v = 0.3
saturation exponent : w = 0.01 é yield stress : 09 = 144 MPa

Fix microstructure, investigate ensembles % 00| hardening modulus : H = 300 MPa |
= saturation modulus : S = 170 MPa

151 axial vectors
from 3 of the 10
ensembles of
random rotations

150

e e 10 CPensembles
— J2fit

saturation exponent : o = 190 |

= Fit flow curves with a macroscale J, plasticity model

(blue, green, red)
equivalent plastic strain(mm/mm)

oy =00+ Hey +5(1 —e )

l I I I I I I I
8(.)000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

24




Tensile Bar: Results

Reduction in cross-
sectional area over time

0.01005

(0.01000

time

mm2]

—(0.00995}

Area

0.00990 -

0.00985

=910 ~0.05 0.00 0.05
Location [mm]

0.10

F_HO3
1.035
I

- 1.025
- 1.014
I].OOS

F 11
1.035
Es] 025
1014
1.003




Schwarz Alternating Method: Summary of Findings 1 Nt

= Adopt the original method developed by Schwarz for the finite-deformation solid mechanics
problem. The method is formulated by recourse to a variational setting.

= The development and introduction of four variants of the Schwarz alternating method and
explicit algorithms for their implementation. The choice of one variant over another depends
on the existing infrastructure of a computer implementation.

= Demonstration by means of numerical examples that the convergence of the Schwarz
method in its four variants is for the most part linear. The numerical examples revealed that
the Modified Schwarz method occasionally displays non-monotonic behavior.

= Demonstration of coupling of conformal meshes, non-conformal meshes, meshes with
different levels of refinement, meshes with different element topologies, and more than two
subdomains.

= Demonstration that the error in the coupling can be decreased up to numerical precision
provided that no other sources of error (such as geometric mismatch) exist.

= The development of a parallel implementation of the Schwarz method in the ALBANY code
and demonstration that the strong scalability of our implementation is close to ideal.




Schwarz Alternating Method: Future Work h m” .

=  Extension of the methods presented herein to transient dynamics problems with the ability
to use different time steps and time integrators for each subdomain.

= Development of a multi-physics coupling framework based on variational formulations and
the Schwarz alternating method.




Schwarz Alternating Method in Dynamics i\l ml ol

= |nthe literature the Schwarz method is applied to dynamics by using space-time
discretizations.
*= This was deemed unfeasible given the design of our current codes and size of

simulations.
Time

*
* (2
TA Ql <~ e >

& é—» Space
>

h1 h2

Overlapping non-matching meshes and
time steps in dynamics. )8




A Schwarz-like Time Integrator. 7| Netora

=  We developed an extension to Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.

= Can use different integrators with different time steps within each domain.

= 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

Controller time stepper
[ I I

Time integrator for (2,

| | |
Time integrator for (2,




Dynamic Singular Bar 1) Naona

= |nelasticity masks problems by introducing energy dissipation.
=  Schwarz does not introduce numerical artifacts.
=  Can couple domains with different time integration schemes (Explicit-Implicit below).
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Schwarz Domain Decomposition

for Bolted Joint Problem

e Schwarz solution compared to single-domain
solution on composite tet 10 mesh.

LSS
LSS
pS s St

e (); = bolts (composite tet 10), (), = parts (hex 8).

e [Inelastic J2 material model in both subdomains.

e ():steel
e (),: steel component, aluminum (bottom) plate

BC: x-disp =0.02 at T =
1.0e-3 on top of parts.
Run till T = 5.0e-4 w/ dt =
le-5 + implicit Newmark
with analytic mass matrix
for composite tet10s.

y
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Bolted Joint Problem: x-displacement ) i,

irrex: (2.000000 clep_ ¥

i
— ¥
v

Schwarz

Single () v

32
[EEmre——ee e e —————



Bolted Joint Problem: y-displacement
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Bolted Joint Problem: z-displacement

Tirmez: (2.000000
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Bolted Joint Problem: nodal eqps ) o

nodal_ocaps
02.000=+00 .03 0.04 0.0/45 [.000e 01

WUIIII|I|||I|||II|II|‘LJ!Hi

Time: 0.000000




Bolted Joint Problem: nodal eqps =

Time: 0.000000

nodal_ocops
0.000=+00 (0.025 (.04 0.0/ |.000e 01

WJIIIIIIIIIUI|I||||I||L,

lllll
IIIIIIII
[

Cross-section of bolts obtained via clip (right)




Bolted Joint Problem: Some Schwarz ),
Performance Results

70

Schwarz / solver settings ol

e Relatively loose Schwarz 50 | Lﬁ
tolerances were used: 5 |7 '||
. = 40 r
* Relative Tolerance: 1.0e-03. : |
* Absolute Tolerance: 1.0e-04. S 30 ¥
* Newton tolerance on NormF: 1e-8 * R ..
. 20t ‘“6&%5
* Linear solver tolerance: 1e-5 r
* Muelu preconditioner 10}

* Topright plot: # Schwarz iterations for each time step.

» After start-up, # Schwarz iterations / time step is ~9-10 — this is not bad given

how small is the size of the overlap region for this problem. 27



Bolted Joint Strong Scaling on Skybridge: @&z
Schwarz vs. Single Domain with Ifpack?2

Bolted Joint Problem - Strong Scaling
T T

5
0 —&— Total - Output, 20dt, Schwarz (Ifpack2)

— = — Linear Solve, 20dt, Schwarz (Ifpack)
—&— Total - Output, finer, 10dt, Schwarz (Ifpack2)
— = — Linear Solve, finer, 10dt, Schwarz (Ifpack2)
—— Total - Output, 20dt, Single 2 (Ifpack2)
— = — Linear Solve, 20dt, Single 2 (Ifpack2)
Total - Output, finer, 10dt, Single @ (Ifpack2)

- Linear Solve, finer, 10dt, Single £ (Ifpack2)

slope =-1

104 -

e Strong scaling for
Schwarz is slightly
less than ideal
linear speedup.

Compute Time (s)

e Likely this is due
to linear solve.

: | . | | * Schwarz scaling is
10
64 128 256 512 s ! :
# procs similar to single
domain scaling.
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Bolted Joint Strong Scaling on Skybridge: @&z
Single Domain, Ifpack2 vs. MuelLu

s Bolted Joint Problem - Strong Scaling (Single Q)
10 T T T T

—&— Total - Output, 20dt (Ifpack2)
— = — Linear Solve, 20dt (Ifpack)

Total - Output, 20dt (MueLu)
— = — Linear Solve, 20dt (Muelu)
—=— Total - Output, finer, 10dt (Ifpack2)
— — — Linear Solve, finer, 10dt (Ifpack2)
—&— Total - Qutput, finer, 10dt (MuelLu)
— = — Linear Solve, finer, 10dt (MuelLu)
slope =-1

104 I

* CPU times are
much faster
with Muelu,
but scaling
deteriorates for

e ' large # cores.

Compute Time (s}

103 L




Bolted Joint Strong Scaling on Skybridge: @&z
Schwarz, Ifpack2 vs. Muelu

Bolted Joint Problem - Strong Scaling (Schwarz)
T T

10° ' ' —o— Total - Output, 20dt (Ifpack2)
— —~ — Linear Solve, 20dt (Ifpack)
— = Total - Output, 20dt (MueLu)
Linear Solve, 20dt (MuelLu)
—— Total - Qutput, finer, 10dt (Ifpack2)
— = — Linear Solve, finer, 10dt (Ifpack2)
—&— Total - Output, finer, 10dt (Muelu)
— = — Linear Solve, finer, 10dt (MuelLu)
104 F 4 slope = -1
E
=
o
3 - * Linear solve
. ] much faster
] with Muelu but
total CPU time
much slower!
1 | , , , e This highlights
> P e 26 o sensitivity of
nonlinear solver
trajectory.
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Tension Specimen Problem )=,

* Specimen is pulled from top (upper_grip) and bottom (lower_grip) simultaneously
such that displacement of 0.01 is attained at time T = 1e-3.

e Zero velocity and displacement initial condition.
* Problem is run using implicit Newmark-Beta.

* J2 material model is employed with properties of aluminum.

* Figure below shows initial and final configurations.

Initial y-disp

Final y-disp




Tension Specimen Problem: Conformal @&,
Hex-Hex Schwarz Coupling

* Domain is decomposed into 2 subdomains for
Schwarz, discretized with conformal hexahedral
meshes.

* Schwarz solution is compared with single-domain
solution computed on a hex mesh conformal with
the Schwarz meshes.

* Implicit Newmark-Beta is employed with dt = 1e-5.
e Schwarz relative and absolute tolerances = 1e-6.

* Qols: displacement, nodal_eqps,
nodal_Cauchy_Stress 5.




Tension Specimen Problem: Conformal @ =
Hex-Hex Schwarz Coupling

.10% Tension-Specimen (Schwarz tol = le-6)

Ends
Gauge | |

o
T

==

e Displacement relative errors
" in Schwarz solution is of

| O(1e-6), same as Schwarz
tolerance (as expected!).

h

Disp relative error
i L

Lt

e Errors do not grow in time.

Pt

—

=

Time (s) +«10°3




Tension Specimen Problem: Conformal @ =
Hex-Hex Schwarz Coupling

- Tension-Specimen (Schwarz tol = le-6) o5 .10 Tension-Specimen (Schwarz tol = le-6)
Ends Ends
0.018 Gauge 4t Gauge
4 =
0.016 o
— U 3.5
T 0.014 x
® E 3T
< 0.012 "
m 1
= in 2.5
= 0.01 o
o o
o ooz
© 0.008 2
I 5 1.5
= 51
g 0.006 g
0.004 5 1
(=]
=z
0.002 0.5
G 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Time (s) %1073 Time (s) %1073

* Above plots show maximum relative error in nodal egps (left) and 5t
component of nodal Cauchy Stress (right). Errors are O(1e-3).




Tension Specimen Problem: Conformal =
Hex-Hex Schwarz Coupling

Single () Schwarz

_ . Time = 1e-5
* Note that there is a bug in computing the
nodal_epqgs and nodal_Cauchy_ Stress fields
in the single domain run — th.ese fields a.re Oin S —
15t time-step for reference (single domain) 7 458e-03
solution if “Exodus Write Interval” = 1.
* The same thing happens for bolted joint —0.0055939
problem. =
* Non-nodal egps and Cauchy_Stress fields =0.0037292
are non-zero in 1%t time step. E
. Prqblem does not occur when Exodus 00018646
Write Interval > 1.
0.000e+00
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Tension Specimen Problem: Schwarz ) i,
Convergence for Conformal Hex-Hex Coupling

24

22

# Schwarz iters
= = I
w5 ] [ &) il ]

=t
N

=
Pt

10 1 1 1 1
0 0.2 0.4 0.6 0.8 1
time (s) 1073

* Above plot: # Schwarz iterations for each time step.

e #Schwarz iters declines during transient runs.

* Schwarz tolerance is pretty small (1e-6) even though overlap is large. 46



Tension Specimen Problem: Hex-
Comp05|te Tet Coupling

| tried to run this with ends hex meshed and the gauge composite tet 10 meshed, but
linear solver in composite tet 10 mesh failed (Ifpack2 and MuelLu).

* Same thing happened with all composite tet 10 single domain mesh obtained by
splitting original hex mesh into tets.

* Need to try again with “good” all composite tet 10 mesh.

* Thoughts? Run quasi-statically? Talk to MuelLu guys about settings?




Tension Specimen Problem with Faster ()&=,
Loadmg

Same problem as before except we apply a faster loading to run explicitly.

« Specimen is pulled from top (upper_grip) and bottom (lower_grip) simultaneously such
that displacement of 0.01 is attained at time T = 1e-6.

» Zero velocity and displacement initial condition.

* Problem is to be run using explicit Newmark-Beta (or explicit-implicit coupling using
Schwarz).
* Need to discuss issue with running explicitly — solution is incorrect.

* ]2 material model is employed with properties of aluminum.

Initial y-disp

Final y-disp




