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2‘ Shock Physics: A Multi-scale Problem

64 James R. Asay and Lalit C. Chhabildas
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- Shock waves can uniquely generate conditions of extreme
pressure-temperature in materials

* Deformation in a shock wave needs to be understood at all
levels for a fundamental understanding




3‘ Microsopic Length Scales
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* Microscopic events occurring behind a shock is nontrivial
especially for solids

* Transition from mechanical to chemical energy remains an active
area of study

* Understanding the timescale can elucidate possible initiation
mechanisms in energetic solids



4‘ Ultrafast Shock Compression Study
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* Ultrafast experiments can provide insight towards phenomena
such as chemical reactions and phase changes

* The capability of resolving the shock-to-detonation transition
would be valuable for understanding the complex shock initiation
mechanisms in energetic solids



;1 Achieving Picosecond Time Resolution

e

—

time

frequency

e

* Measure in time-frequency domain to probe the material during |
the initial stages of shock compression with fast time resolution

* Ultrafast pulses are linearly chirped to ~350 ps ‘

* The linear chirp on the pulses maps the frequencies to a time
axis, allowing the time-dependent phase difference to be measured |
with a spectrometer in a single shot



6‘ Ultrafast Shock Interrogation (USI)
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.| Pentaerythritol Tetranitrate (PETN)

* Relatively high oxygen balance
* Thin reaction zone

* Many reports of the dynamics of initiation in

PETN

* Evidence of decomposition behind plastic wave

* Reported intermediate velocity transitions — partial @Q%
decomposition |

* Anisotropic shock sensitivity — steric-hindrance
model

between the reaction zone and the shock front. Further im-
provement in the understanding of the PETN detonation
wave front requires subnanosecond time resolution data. ‘

Tarver et al., |. Appl. Phys. (1997)
Halleck ez al., |. Appl. Phys. (1976)

Dick et al., J. Appl. Phys. (1991)

Dick et al., Appl. Phys. Lett. (1984)



8‘ PETN thin film samples
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.| Ultrafast Shock-induced Reactions
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* Above "y~ 1.05 km/s, USI data lie well above the unreacted Hugoniot
(greater than 4 standard deviations of the experimental uncertainty)

* Indication of exothermic reaction in which expanding gaseous
products reduce the interface particle speed and increase the speed of the

lead shock
Dick et al,, |. Appi. Phys. (1991)



o1 <110> PETN Elastic Hugoniot
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* Good agreement with literature results with the <110> elastic Hugoniot

* <110> longitudinal elastic sound speed of 2.93 km/s within the 95%

confidence interval.

Halleck ez al., |. Appl. Phys. (1976)
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11‘ Ultrafast Shock-induced Reactions
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* Reported <110> sensitive from
8.5 —12.5 Gpa

* Thermochemical calculations
suggest that even on the timescale
of the experiment, the higher
pressure shots have induced
considerable exothermic reaction

* Exothermic chemical reactions
begin less than 50 ps after shock

arrival




12‘ Ultrafast Shock-induced Reactions
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* Recently reported results from confinement thickness
experiments with similar thin-film PETN samples suggest

PETN with Al confinement (bare)
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reactions occur <90 ps

* MD simulations may provide information about the

kinetic mechanisms
Strachan ez al., Phys. Rev. Lett. (2003)

Knepper ez al., SCCM Proc. (in press)
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13‘ Preliminary Results on f-CL-20
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«1 Summary & Conclusions

* Direct measurement of the transient of the initial chemical
reactions induced by shock in PETN thin films.

* Observe a large volume a large volume expansion in PETN
that places state of the material well above the unreacted

Hugoniot (~8 GPa and V/V, ~ 0.78)

* Suggest that exothermic chemical reactions begin less
than 50 ps after shock arrival |

* Possible indication of structural sensitivity from CL-20
experiments
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18‘ Sylgard 184
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* Red-shift of electronic bandgap
during compression leads to increase
in refractive index (Kramers-Kronig
relation)

* Bandgap far away from pulse
spectrum used in experiment

* Do not observe any absorptive
losses in experiment
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Figure 3. Time-resolved absorption spectra of PETIN shocked to 5.1
GPa along the [100] direction (experiment A3). At 0 ns shock enters
the sample.

Dreger et al., |. Phys. Chem. B (2002)
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