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2 Shock Physics:A Multi-scale Problem

64 James R. Asay and Lalit C. Chhabildas
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Shock waves can uniquely generate conditions of extreme
pressure-temperature in materials

Deformation in a shock wave needs to be understood at all
levels for a fundamental understanding



31 Microsopic Length Scales
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Microscopic events occurring behind a shock is nontrivial
especially for solids

Transition from mechanical to chemical energy remains an active
area of study

Understanding the timescale can elucidate possible initiation
mechanisms in energetic solids



Ultrafast Shock Compression Study
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Ultrafast experiments can provide insight towards phenomena
such as chemical reactions and phase changes

The capability of resolving the shock-to-detonation transition
would be valuable for understanding the complex shock initiation
mechanisms in energetic solids



5 I Achieving Picosecond Time Resolution

1 F V I I I Ali 1

4 I

, Mir I I

time

E•1

- Measure in time-frequency domain to probe the material during
the initial stages of shock compression with fast time resolution

- Ultrafast pulses are linearly chirped to —350 ps

The linear chirp on the pulses maps the frequencies to a time
axis, allowing the time-dependent phase difference to be measured
with a spectrometer in a single shot
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6 I Ultrafast Shock Interrogation (USI)
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,I Pentaerythritol Tetranitrate (PETN)

Relatively high oxygen balance

• Thin reaction zone

Many reports of the dynamics of initiation in
PETN
Evidence of decomposition behind plastic wave

Reported intermediate velocity transitions — partial
decomposition

• Anisotropic shock sensitivity — steric-hindrance
model

between the reaction zone and the shock front_ Further im-
provement in the understanding of the PETN detonation
wave front requires subnanosecond time resolution data_

Tarver et al., J. Appl. Phys. (1997)
Halleck et al.J. Appl. Phys. (1976)
Dick et al.J. Appl. Phys. (1991)
Dick et al., Appl. Phys. Lett. (1984)



81 PETN thin film samples

• Vapor-deposited PET\ samples

- High density (2 97% unstrained
crystal density — estimated from
SEM images of fracture cross-
sections)

Very strongly textured with (110)
planes parallel to the surface
(measured using x-ray diffraction)
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91 Ultrafast Shock-induced Reactions
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• Good agreement with literature results with the <110> elastic Hugoniot

• <110> longitudinal elastic sound speed of 2.93 km/s within the 95%
confidence interval.

Halleck et al.,/ Appl. Phys. (1976)

Dick et al.,J. Appl. Phys. (1997)



111 Ultrafast Shock-induced Reactions
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• Reported <110> sensitive from
8.5 — 12.5 Gpa

Thermochemical calculations
suggest that even on the timescale
of the experiment, the higher
pressure shots have induced
considerable exothermic reaction

- Exothermic chemical reactions
begin less than 50 ps after shock
arrival

Dick et al.J. Appl. Phys. (1991)
Green et al., Int. Symp. Pyro. Expl. (1987)



121 Ultrafast Shock-induced Reactions
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• Recently reported results from confinement thickness
experiments with similar thin-film PETN samples suggest
reactions occur <90 ps

MD simulations may provide information about the
kinetic mechanisms

Strachan et al., Phys. Rev. Lett. (2003)
Knepper et al., SCCNI Proc. (in press)
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131 Preliminary Results on 16-CL-20

beta polymorph of CL-20

preferred (111) orientation

Compare to s-CL-20 Hugoniot
calculated from isothermal
compression measurements (LLNL)

Do not observe any indication of
reaction outside of noise

Possible indication of structural
sensitivity?
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14 Summary & Conclusions

Direct measurement of the transient of the initial chemical
reactions induced by shock in PETN thin films.

• Observe a large volume a large volume expansion in PETN
that places state of the material well above the unreacted
Hugoniot (-8 GPa and V/V0 — 0.78)

• Suggest that exothermic chemical reactions begin less
than 50 ps after shock arrival

• Possible indication of structural sensitivity from CL-20
experiments
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181 Sylgard 184

• Good agreement with previously
reported gas gun results on
polymer, Sylgard 184

USI results are expected to lie on
gas gun results because there are
no expected chemical or physical
changes in the material under
shock compression
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Red-shift of electronic bandgap
during compression leads to increase
in refractive index (Kramers-Kronig
relation)

Bandgap far away from pulse
spectrum used in experiment

• Do not observe any absorptive
losses in experiment

Conroy et al., Nys. Rev. B (2008)
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Figure 3. Time-resolved absorption spectra of PETN shocked to 5.1
GPa along the [100] direction (experiment A3). At 0 ns shock enters
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PETN

1 59

1 58

1_57

1.56

1_55

1 54
400 600 BOO 1404 1200 1400

wavelength [nm]

3000

(7r)

s 2500
e
a 2000

;,a) 1 500

1000

CL20



22 1

II

goirmn..-11%_ 11-11.

cp10 - I

1.1.1.i

11.11.0 11.115 11011 1).45 Gni cre5 oat! OAS 10.411 1.111}

Valuing tarnpremilon ratio (WV4r1

Tan et al., Ph s. B (2011)


