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Boundary
cond gR)

3 I Topology Optimization and Additive Manufacturing
Given Vo e (0, 1) compute a density that solves:

min 'R (f F • S(z) dx f t • S(z) dx)
(1 1 r,

subject to fp z(x) dx < Vog, where S(z) = u solves

the linear elasticity equations

1 1
Forcing FR)

u = g,

► Uncertain external forces (loads) and boundary conditions.
► Uncertain internal forces, e.g., residual stresses due to AM.
► Uncertain material properties (porosity, etc.) due to AM.
► Compute light-weight designs that minimize the probability of structural failure.

—V • (E(z) : ru) = F, in D, a.s.

EU = 
2 
—
1
(Vtl + '714T), in D, a.s.

run = t, on Ft, a.s.

on rd, a.s.
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4 Optimization Under Uncertainty Problem Formulation

Let (SZ,T,F) be a probability space, Z be a reflexive Banach space, and X := LP(S2, T, IP)

with 1 < p < oo. We consider the optimization problem

min {R(F(z)) + p(z)}
zezad

where 7?, : X —> (—Do, oo] is a measure of risk,

F : Z —> X is the uncertain objective function,

p : Z R is a deterministic objective function, and

Zad c Z is a closed, convex set of decision variables.

0
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5 I Modeling Risk Preference Choose Your Own Adventure

What is risk? Possibility of loss or injury (Merriam Webster)

... In our optimization problem, F(z) is a risk!

We cannot directly minimize F(z) + p(z) E X := LP (S2, IP)

... How should we quantify our risk?

► Traditional Stochastic Programming: Minimize on average

R.(F(z)) = E[F(z)].

► Risk-Averse Stochastic Programming: Model risk preferences

7Z(F(z)) = E[F(z)] + cE[(F(z) — E[F(z)])P+P.

► Probabilistic Optimization: Minimize the probability of loss

R,(F(z)) = P(F(z) > T).

► Stochastic Orders: Model risk preference with a benchmark Y

IP(F(z) < x) < IF(Y < x) Vx E R.
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61 Coherent Measures of Risk Definition and Examples

: X -> (—oo,00] is a coherent measure of risk if it satisfies

(R1) Subadditivity: R(X + X') < R(X) R(X')

(R2) Monotonicity: X > a.s. R(X) > TZ(r)

(R3) Translation Equivariance: R(X t) = R,(X)+ t, Vt E R

(R4) Positive Homogeneity: 1Z(tX) = tR(X), vt > 0

Note: {(R1) + (R4) convexity} and {convexity + (R4)  > (R1)}

Examples of coherent risk measures with X E X:

0- Risk Neutral: R(X) = E[X]

0- Mean Plus Semideviation: R(X) = E[X] cE[(X - E[X])P+PiP, c E (0,1)

0- Conditional Value-at-Risk: R(X) = inf {t + (1 - 0)-11E[(X - t)+]}, E (0,1)

Ph. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance, 1999.
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7 Coherent Measures of Risk Some Good and Not So Good Properties?

Biconjugate Representation: Recall R*09) = supx{E[19X] — R(X)}

► If R. is proper, convex and lsc

> R(X) = sup {E[OX] — R*(0) E dom(R*)}

0- If R is translation equivariant and monotonic

< > dom(R*) C E X* E[O] = 1, V > 0 a.s.}

► If R is positive homogeneous

> R(X) = sup E[I9X]
n9Ectorn(R-)

Optimal 19* E dom(R*) are called risk identifiers

Example (Conditional Value-at-Risk): R = CVaRo

dom(R*) = {19 E X* I E[I9] = 1, 0 < <
1

1
  a.s.}
—

Differentiability: lf R : X —> r is coherent, then R is Fréchet differentiable

Drew Kouri

\
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E X* with > 0 a.s., E[19] = 1, and R(X) = E[19X] for all X E X
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81 Is Nondifferentiability Really an Issue?
Example: Optimal control of Burger's equation using CVaR
— Problem size is small: 1D spatial domain, 4D stochastic domain

— PDE is nonlinear  > Objective function is not convex

— CVaR risk measure quantifies tail weight and is not differentiable

Application of a nonconvex nonsmooth optimization algorithm:

0.1 0.5 0.9
# iter 9,740 10,035 10,128

Required 0(108) nonlinear and 0(108) linearized PDE solves!

Application of smoothed R. with giobalized Newton's method:

Required 0(106) nonlinear and 0(107) linearized PDE solves!

Solving real world problems is intractable without ...
0. Better nonsmooth optimization algorithm or differentiable R.
► Adaptive/variable fidelity approximation in physical and stochastic space
► In optimization, accuracy is not required far from a solution
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9 Epi-Regularized Risk Measures

Let R, I. : X —> (—cc, oo] satisfy:

1. R, 43. are proper, closed and convex

2. domR* C dom 43*

3. (dom R* — dom(1)*) contains a neighborhood of 0

The epi-regularization of R. is given by

'R., (X) := yiq {R(X — Y) + 61)(Y 1 E)} , 6 > 0

. 1
—2 ±1

4

2

x
Properties of V:

1. (R,T)* (V) = R* (V) + Eir (V) with dom(R,T)* = domR* n dom V' = dom R*

2. —E4)(0) < R(X) — RT (X) < A)* (V) V79 E OR(X)

3. Coherent Risk: RT is convex, translation equivariant and monotonic

4. Coherent Risk: RT is not positively homogeneous  > RT is not coherent
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91 Epi-Regularized Risk Measures

Let R, (1) : X (—oc, Do] satisfy:

1. R, (I) are proper, closed and convex

2. dom R* C dom 4)*

3. (dom R,* — dom 4)*) contains a neighborhood of 0

The epi-regularization of R. is given by

R,, (X) := Ynx {R (X — Y) + (Y E)} E > 0

4

—2 —1

4

2

1 2

—2 —1

Differentiability of RI':

1. lf ct.* is strictly convex on dom R*, then RE' is Hadamard differentiable

2. lf, in addition, (13* is weak* closed and satisfies

Ok 0 in X* and (I)* (I)*(0)  > Ok 0 in X*,

then R,,T is continuously Fréchet differentiable

1 2
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101 Example: Optimized Certainty Equivalents
Let u(t) = —v(—t) is a normalized, concave utility function and define
R(X) = inft{t +E[v(X — t)] and 4)(X) = E[0(X)], then

RI'(X) = + E[v(X Y — t)]} + 643(Y/E)}

= inf 
tE111 
{t+ yinf

x 
E [v(X — Y — t)+Ecb(Y/E)]}

Decomposability of X ensures that

'R.`,1) (X) = a{t+E [Lig {v(X — y— t) + 60(y/s)}]

The inner infimum is the infimal convolution of v(x) with 0(x)

  R:(X) = It +E[vlb.(X —

CVaR
v(x)

Entropic Risk

v(x)
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11 Epi-Regularized Risk Measures Convergence of Approximation

Results: If 4)(0) < oo and 4)(1) < oo, then

► 7ZE„ Mosco converges to 7Z for En 0

► 7Z,„ pointwise converges to 7Z for En 4. 0

0. If 4)(0) < 0, then 7Z`,1' monotonically increases to 7Z as e4. 0

Recall: Gn : X —> (—oo,00] Mosco converges to G : X (—oo, oo] if

1. For all X, X in X, we have

lim inf Gn (Xn) > G(X)
oo

2. For all X c X, there exists Xn —> X in X such that

lim sup Gn(Xn) < G(X)

Minimizers of converge to minimizers of G (cf. r-convergence)
Drew Koun Smoothing in Risk-Averse Optirnization



121 Epi-Regularized Risk Measures Consistency of Minimizers and Stationary Points

min {J(z) := (F(z)) p(z)} min {J, (z) := 'TZ`,1'(F(z)) p(z)}
zeza,zeza,

► Consistency of Minimizers:

Let zn E Zad denote a minimizer of J„ with En 4, O.

If F is completely continuous

z z* in Z > F(z) F(z*) in X.

Then any weak limit point of {zn} minimizes F over Zad.

► Consistency of First-Order Stationary Points:

Let zp, E Zad denote a 1st-order stationary point of JE,„ with En -4 0, i.e.,

0 E OcJE,,(zn) ArZad(Zn)-

If VF is completely continuous

z z* in Z  > VF(z) VF(z*) in LP (Q, P; Z*).

Then any weak limit point, z, of {zn} satisfies 0 c 0c J(z) + Aizad(z).
Drew Kouri Smoothing in Rrsk-Averse Optimization



13 l Epi-Regularized Risk Measures Convergence Rate of Minimizers

Let the following conditions hold:
► z E Zad is a minimizer of J and z, E Zad is a minimizer of Je
► F and p are continuously Fréchet differentiable
► Either (h, := z, —

1. F is twice continuously Fréchet differentiable and 3K E X s.t. K E (0, 00) a.s. and

ft

KilzE zil2z f V2 F(z Tth0)(h,,k)drdt a.s.
o o

2. p is twice continuously Fréchet differentiable and ]L > 0 such that
f l

L — z I IZ f 
1 

V2p(z Tth,)(h,,h,)dTdt
o o

Then, 319 c OR(F(z)) and c > 0 such that

clIze E(4)(0) + 11)*(0))

Epi-Regularized CVaR with (1)(X) = E[X2] + E[X]  > = 0 and .13*(19) 2( 113:0)
Drew Kouri Smoothing in Risk-Averse Optimization



14 Nonconvex Stochastic Programming in R"

Let -, > 0 and t e [-1, 1]n be fixed. Consider the optimization problem

1
Iretia; {7Z G(1 — tanh(igTz))) +

where is uniformly distributed on [0,1]n and 77 = sgn(Crt).

Epi-regularization Error in Optimal Solutions:

► R(X) = CVaRo[X] with E

► 1.(X) = 2E[X2] + E[X] with E E 00-5 , 4 . . .
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15 Risk-Averse PDE-Constrained Optimization Problem Formulation

Let D„cDcllk2 ando>0. We consider the optimization problem

1 a
min -,CVaRo (f (1 - S(z; x, 0)2+ dx) - f z(x)2 dx
ze4d L D, 2 D

where S(z) = u E Lq(Q, P; Hl (D)) solves the weak form of

—K(0,6,u(0 + c(Ou(0 = B(Oz + f in D, a.s.

n(OVu(0 • n = 0 on OD, a.s.

Coefficients: KW = 2.5 x 1&, c(0 = 1.45 x 106, r(0 = 10 3, and
(-(0 = B(Oz E L2(11,1', IED; (D)) solves the weak form of

+r(OA((0 + C(0 = z

r(OVC(0 • n = 0

in D, a.s.

on aD, a.s.
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16 Risk-Averse PDE-Constrained Optimization Numerical Results
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17 l

Conclusions:

. Numerical solution of risk-averse PDE-optimization is expensive

. Most coherent risk measures are not Fréchet differentiable

. Use infimal convolution to smooth risk measures

. Appropriate assumptions ensure smoothed risk is Fréchet differentiable

. Proved consistency of minimizers and first-order stationary points

Open Problems:

. Path-following methods for smoothed risk measures

. Algorithms for nonsmooth, nonconvex risk-averse PDE-optimization

. Analysis and algorithms for probabilistic PDE-optimization

. Analysis and algorithms for dominance-constrained PDE-optimization

I

1
1
I
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