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2| Motivating Applications

Reservoir Optimization
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Direct Field Acoustic Testing

5 1 5

4} 4

| 3|

gi 0.5 2

1\ N 1

N

0 N 0 0 i
- A = \
_;1 st 5 _12 Nt
-3 . - -8
-4} -4

5, -1

54-32-1012345 '5’5-4-3-2-1 012345

—Au— k1 +o0) u=z

Smoothing in Risk-Averse Optimization

Superconductor Vortex Pinning
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s | Topology Optimization and Additive Manufacturing

Given V;, € (0,1) compute a density that solves:

min_ R(/DPS(z)dx—i—/F t-S(z)dx)

subject to [, z(x) dx < V,|D|, where S(z) = u solves
the linear elasticity equations

Boundary
cond g(¢)

| | | —V - (E(z) : eu) = F, inD, a.s.
1 ;

Forcing F(&) €u = E(Vu +vu'), inD, a.s.

eun = t, onTI}, a.s.

u=g, onTy, a.s.

» Uncertain external forces (loads) and boundary conditions.

» Uncertain internal forces, e.g., residual stresses due to AM.

» Uncertain material properties (porosity, etc.) due to AM.

» Compute light-weight designs that minimize the probability of structural failure.
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4 Opt|m|zat|on Under Uncertainty Problem Formulation

Let (Q, F,P) be a probability space, Z be a reflexive Banach space, and X := L7 (Q, F,P)
with 1 < p < co. We consider the optimization problem

min {R(E(2)) + p(z)}

2€Z:a

where R : X — (—o0, 0] is @ measure of risk,

Drew Kouri

F:Z — X is the uncertain objective function,
p : Z — R is a deterministic objective function, and
Z.q C Z is a closed, convex set of decision variables.
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5 | Modeling Risk Preference  choose Your own Adventure
What is risk? Possibility of loss or injury (Merriam Webster)
... In our optimization problem, F(z) is a risk!
We cannot directly minimize F(z) + p(z) € X := LF(Q, F,P)
... How should we quantify our risk?

v

Traditional Stochastic Programming: Minimize on average
R(F(2)) = E[F(2)].
Risk-Averse Stochastic Programming: Model risk preferences
R(F(z)) = E[F(2)] + cE[(F(z) — E[F(2)])}]"".
Probabilistic Optimization: Minimize the probability of loss
R(F(z)) =P(F(z) > 7).
Stochastic Orders: Model risk preference with a benchmark Y
P(F(z) <x) <P(Y<x) VxeR

v

v

v
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s | Coherent Measures of Risk  peiinition and Examples
R : X — (—o0, ] is a coherent measure of risk if it satisfies
(R1) Subadditivity: R(X+X') <R(X)+ R(X)
(R2) Monotonicity: X>X as. = RX)>RX)
(R3) Translation Equivariance: R(X+1t) =R(X)+t VteR
(R4) Positive Homogeneity: R(tX) =tR(X), Vt>0

Note: {(R1) + (R4) = convexity} and {convexity + (R4) — (R1)}
Examples of coherent risk measures with X € X:

» Risk Neutral: R(X) = E[X]

» Mean Plus Semideviation: R(X) =E[X] + cE[(X — E[X})ﬂ’r}l/”, ce(0,1)

» Conditional Value-at-Risk: R(X) = inf {t+ (1 — B)'E[(X — t)4]}, B € (0,1)

Ph. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance, 1999.
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7 COheI’en’[ Measures Of R|Sk Some Good and Not So Good Properties?
Biconjugate Representation: Recall R*(¢) = sup, {E[¢X] — R(X)}
» If R is proper, convex and Isc
— RX)=sup{E[UYX] —R"(¢) | ¢ € dom(R")}
> If R is translation equivariant and monotonic
<~ dom(R")C{dex” | EW =1 09>0as.}
» If R is positive homogeneous wEp

— RX)= sup E[¥X]
Yedom(R*)

Optimal ¥* € dom(R™) are called risk identifiers

Example (Conditional Value-at-Risk): R = CVaRg

—0.8 I

* * 1 - 1 01

= = <9< S

dom(R*) {1962( | EY] 1,0_19_1_6as} é’1 I

Differentiability: If R : X — R is coherent, then R is Fréchet differentiable |
— JYex withd>0as.,EW =1 and R(X) =E[WX]forall X € X

Drew Kouri Smoothing in Risk-Averse Optimization



s | Is Nondifferentiability Really an Issue?
Example: Optimal control of Burger’s equation using CVaR
— Problem size is small: 1D spatial domain, 4D stochastic domain

— PDE is nonlinear —> Objective function is not convex
— CVaR risk measure quantifies tail weight and is not differentiable

Application of a nonconvex nonsmooth optimization algorithm:
g | 0.1 0.5 0.9
#iter | 9,740 10,035 10,128

Required O(10%) nonlinear and O(108) linearized PDE solves!
Application of smoothed R with globalized Newton’s method:
Required O(10°) nonlinear and O(107) linearized PDE solves!

Solving real world problems is intractable without ...
» Better nonsmooth optimization algorithm or differentiable R
» Adaptive/variable fidelity approximation in physical and stochastic space
» In optimization, accuracy is not required far from a solution
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o | Epi-Regularized Risk Measures .

Let R, & : X — (—o0, 00| satisfy:
1. R, @ are proper, closed and convex

2. domR* C dom ®* 2 ) 1 2
3. (dom R* — dom ®*) contains a neighborhood of 0 "
The epi-regularization of R is given by 2
Re(X) :== inf {R(X-Y)+e®(Y/e)}, >0 \
YeXx -2 -1 1 2

Properties of R?:
1. (R2)*(9) = R*(Y) + e@*(¥) with dom(R2?)* = dom R* N dom ®* = dom R*
2. —ed(0) < R(X) — RE(X) < e®*(¥) VI € OR(X)
3. Coherent Risk: R? is convex, translation equivariant and monotonic
4. Coherent Risk: R? is not positively homogeneous = R?2 is not coherent
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o | Epi-Regularized Risk Measures .

Let R, ® : X — (—oc, oo] satisfy: 2 /
1. R, ® are proper, closed and convex ‘

2. domR* C dom ®* =2 1 1 2
3. (dom R* — dom ®*) contains a neighborhood of 0

The epi-regularization of R is given by 2
Re(X) :== inf {R(X-Y)+e®(Y/e)}, >0 \
Yex 2 1 2

Differentiability of R?:
1. If ®* is strictly convex on dom R*, then R® is Hadamard differentiable
2. If, in addition, ®* is weak* closed and satisfies
O —*0 inX* and ®*(6) — ®*(0) = Gxr—0 inX*

then R2 is continuously Fréchet differentiable
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10| Example: Optimized Certainty Equivalents

Let u(t) = —v(—t) is a normalized, concave utility function and define
R(X) = infi{t + E[v(X — t)] and ®(X) = E[¢(X)], then

R2(X) = jnf {tigﬂg{tnLIE[v(X— Y - t)}}+a<1>(¥/5)}

~ inf {t +infE[p(X =Y )+ 6¢(Y/s)]}

Decomposability of X’ ensures that

RE(X) = tlg]}g {t +E [;glg (v(X—y—1t)+ €¢(y/€)}} } Entropic Risk

The inner infimum is the infimal convolution of v(x) with ¢(x)

[ —  RIX) = inf {t + Eo2 (X - )]}
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111 Epi-Regularized Risk Measures  convergence of Approximation
Results: If $(0) < oo and ®(1) < oo, then
» R., Mosco convergesto R fore, | 0
» R, pointwise convergesto R fore, | 0

» If ®(0) <0, then R® monotonically increasesto R as e | 0

Recall: G, : X — (—o0, 00] Mosco convergesto G : X — (—oo, o] if
1. Forall X,, — X in X, we have

liminf G, (X,) > G(X)

n—o00

2. Forall X € X, there exists X,, — X in X such that

limsup G, (X,,) < G(X)

n—oo

= Minimizers of G, converge to minimizers of G (cf. I'-convergence)
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12 Epi-RegUIarized Risk Measures Consistency of Minimizers and Stationary Points
min{f(z) = RIFE) + @l ~» minfllz) = RZ(E(2) + p(2)}
» Consistency of Minimizers:
Let z, € Z,q4 denote a minimizer of |, with ¢, | 0.
If F is completely continuous
z—z" iInZ = F(z) > FZ") inX.

Then any weak limit point of {z,,} minimizes F over Z,q.

» Consistency of First-Order Stationary Points:
Let z, € Z,q denote a 1%t-order stationary point of J., with ¢, | 0, i.e.,
0 € dcJe, (zn) + Nz, (zn)-
If VF is completely continuous
z—z" iInZ = VF(z) —» VF(z*) inLP(Q,F,P;Z").
Then any weak limit point, z, of {z, } satisfies 0 € dcJ(z) + Nz, (z).
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13 Epi'RegUIarized Risk Measures Convergence Rate of Minimizers

Let the following conditions hold:
> z € Z,q is a minimizer of ] and z. € Z,q4 is @ minimizer of |.
» F and p are continuously Fréchet differentiable
» Either (h. :=z. —2)
1. Fis twice continuously Fréchet differentiable and 3K € X s.t. K € (0, 00) a.s. and

1 1
m%—4@§/ /va+memﬂgwwas
0 0
2. pis twice continuously Fréchet differentiable and 3L > 0 such that
1 1
Lllze — 22 g/ / V2p(z + Tthe) (e, he)drdt
0 0

Then, 3¢ € OR(F(z)) and ¢ > 0 such that

cllze — 2|7 < e(2(0) + 2*(9))

Epi-Regularized CVaR with ®(X) = JE[X*] + E[X] = ®(0) =0and ®*(v) < Z—(fiz—m
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14 | Nonconvex Stochastic Programming in R”

Lety > 0and z € [-1,1]" be fixed. Consider the optimization problem

min
zERM?

{R <%<1 S tanh(ngTz»)

2

where ¢ is uniformly distributed on [0, 1]" and 1 = sgn(¢ 'z).

Epi-regularization Error in Optimal Solutions:

» R(X) = CVaRg[X] with 3 € {0.1,0.2,...,0.9}
» ®(X) = IE[X* + E[X] with e € {1075,107%,...,10%}
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15 | Risk-Averse PDE-Constrained Optimization  rrobiem Formulation

Let D, € D ¢ R? and o > 0. We consider the optimization problem

; 1 . 2 & 2
Znegr}1 2CVaRg (/Du(l S(z; x,€))5 dx) + > /Dz(x) dx
where S(z) = u € L1(Q2, F,P; H (D)) solves the weak form of

—R(§)Au(§) + c(&u(S
R(E)Vu(E) -n

I

B(&)z+f inD, a.s.
0 on dD, a.s.

Coefficients: x(&) = 2.5 x 105, ¢(¢) = 1.45 x 10%, r(¢) = 10%, and
C(&) = B(&)z € L2(Q, F,P; H (D)) solves the weak form of

—r(§)A(E) +¢(§) =z inD, a.s.
r(§)V¢(§) -n=0 on dD, a.s.
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1e| Risk-Averse PDE-Constrained Optimization  numerical Results
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Left: CDF of full objective. Center: CDF of random objective. Right: Control errors.
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Conclusions:

Numerical solution of risk-averse PDE-optimization is expensive
Most coherent risk measures are not Fréchet differentiable

>

>

> Use infimal convolution to smooth risk measures

> Appropriate assumptions ensure smoothed risk is Fréchet differentiable
>

Proved consistency of minimizers and first-order stationary points

Open Problems:

v

Path-following methods for smoothed risk measures

> Algorithms for nonsmooth, nonconvex risk-averse PDE-optimization
» Analysis and algorithms for probabilistic PDE-optimization

> Analysis and algorithms for dominance-constrained PDE-optimization
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