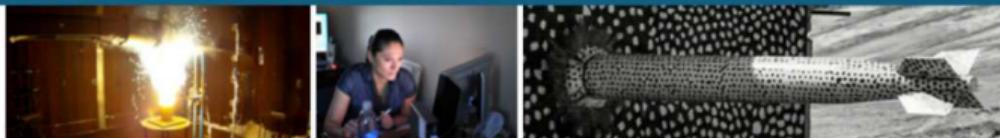


This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-6960C

Multigrid-in-time methods for optimization with nonlinear PDE/DAE constraints



Denis Ridzal, Eric Cyr

23rd International Symposium on Mathematical Programming
Bordeaux, France

ional Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a whi
iary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a whi

Administration under contract DE-NA0003525.

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

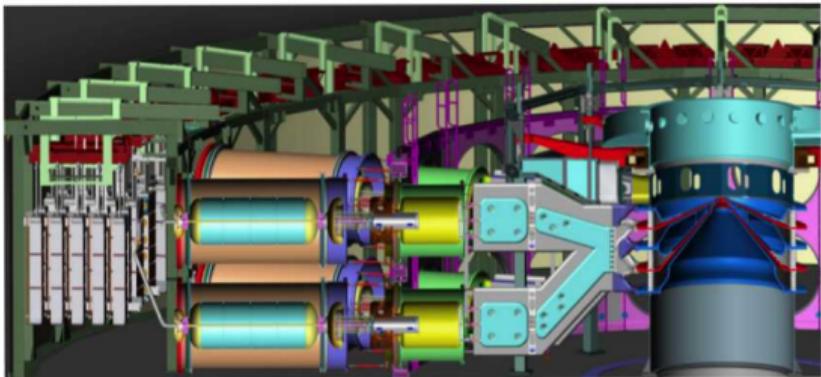
1 Design for Sandia's Z-Machine

Pulsed power is important:

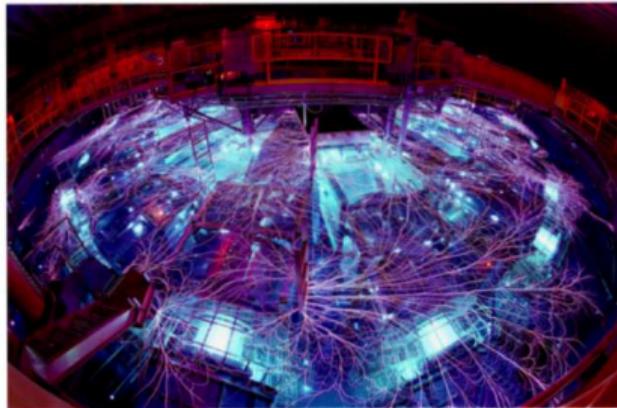
- Science;
- Fusion energy;
- National security.

Power losses have plagued current designs.

- Can numerical optimization help?



Similar challenges: optimal control of power grids, trajectory planning for atmospheric reentry, etc.

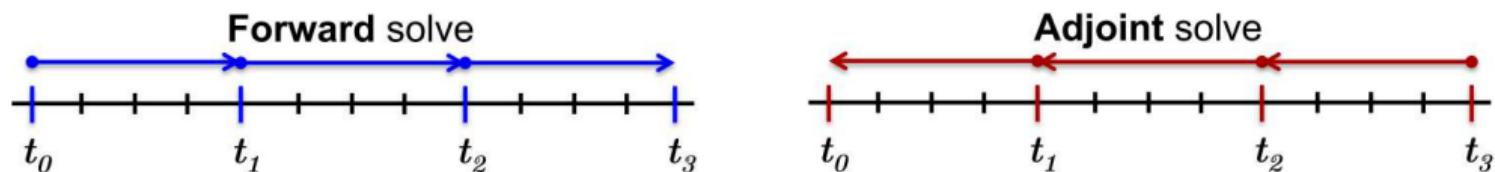


PDE constraints: Plasma models.

- Many-fluid models coupled with Maxwell's equation.
- Strongly nonlinear dynamics.
- A single transient simulation **takes a day to run!**
- Optimization: $\times 100\text{--}1000$.

Exascale computing

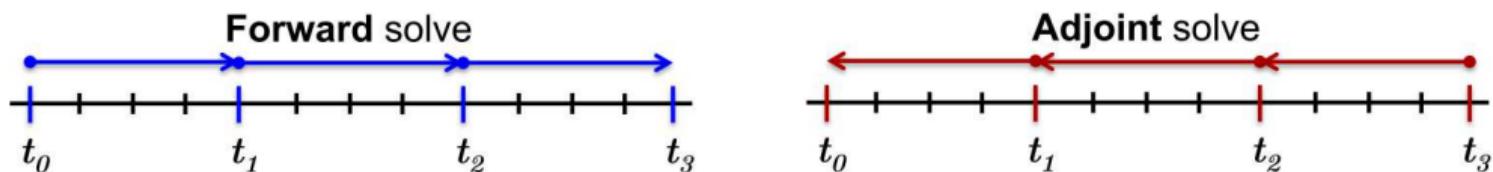
- The promise of **million-way** parallelism.
- **Hierarchies in hardware** mapping to **hierarchies in software**.
- Conventional optimization approaches inherit the **serial bottleneck** from forward simulation, namely the **time discretization**.



- Exascale may speed up forward and adjoint solves in some cases, but can we do *fundamentally better* in the context of optimization?

Exascale computing

- The promise of **million-way** parallelism.
- **Hierarchies in hardware** mapping to **hierarchies in software**.
- Conventional optimization approaches inherit the **serial bottleneck** from forward simulation, namely the **time discretization**.



- Exascale may speed up forward and adjoint solves in some cases, but can we do *fundamentally better* in the context of optimization?
- **Exploit time parallelism at the level of the optimization algorithm.**

Example: Control of viscous Burgers' equation

$$\underset{u,z}{\text{Minimize}} \quad \frac{1}{2} \int_0^T \int_0^1 (u(x, t) - \hat{u}(x, t))^2 + \alpha z^2(x, t) dx dt$$

subject to

$$\begin{aligned} \frac{\partial}{\partial t} u(x, t) - \nu \frac{\partial^2}{\partial x^2} u(x, t) + \frac{\partial}{\partial x} u(x, t)u(x, t) &= z(x, t) \\ u(0, t) = u(1, t) = 0; \quad u(x, 0) &= u_0(x) \end{aligned}$$

where $x \in (0, 1)$, $t \in (0, T)$, $u_0(x) = \{1 : x \in (0, 1/2]; 0 : x \in (1/2, 1)\}$, and $\hat{u}(x, t) = \{1 : (x, t) \in (0, 1/2] \times (0, 1); 0 : (x, t) \in (1/2, 1) \times (0, 1)\}$.

- Nonlinear transient problem with advective and diffusive features.
- Stepping stone to Navier-Stokes and other fluid models.
- Good start for a parallel-in-time method.

Discretization in space and time

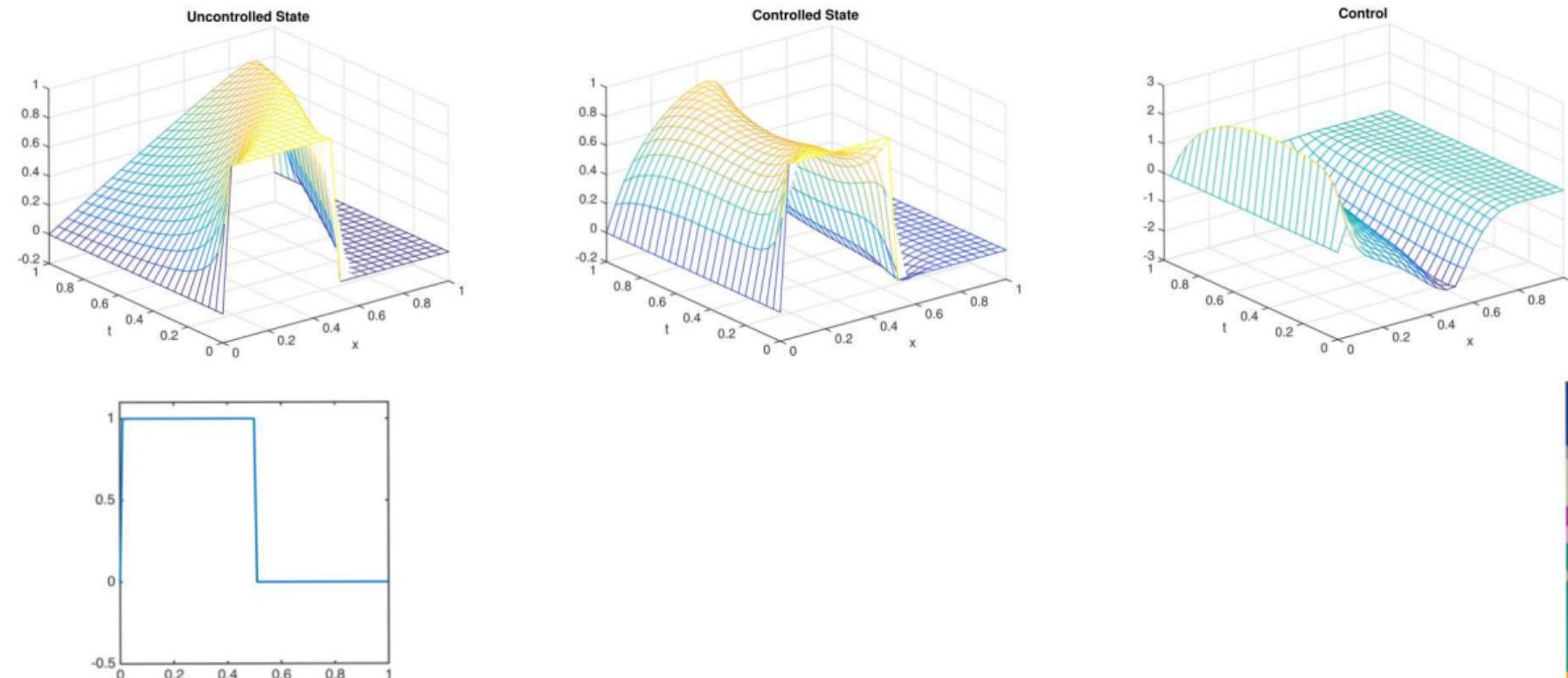
- Space: FE matrices M, A, Q, B ; nonlinear operator N ; 100 intervals.
- Time: θ -method on $0 = t_0 < t_1 < \dots < t_{N+1} = t_F$; $\theta = 0.5$.
- Other details: viscosity $\nu = 0.01$, control penalty $\alpha = 0.05$, etc., see Heinkenschloss (2008), Rice University CAAM Tech. Rep. TR08-05.

$$\underset{u,z}{\text{Minimize}} \quad \sum_{i=1}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{1}{2} u_i^T M u_i + g(t_i)^T u_i \right) + \\ \sum_{i=0}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{\alpha}{2} z_i^T Q z_i \right)$$

subject to

$$(M + \theta \Delta t_i A) u_{i+1} + \theta \Delta t_i N(u_{i+1}) + \theta \Delta t_i B z_{i+1} + \\ (-M + (1 - \theta) \Delta t_i A) u_i + (1 - \theta) \Delta t_i N(u_i) + (1 - \theta) \Delta t_i B z_i = 0$$

Reference solution



Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

6 Sequential Quadratic Programming (SQP)

Solve equality-constrained optimization problem:

$$\begin{aligned} \min_{x \in \mathcal{X}} \quad & J(x) \\ \text{s.t.} \quad & c(x) = 0 \end{aligned}$$

where $J : \mathcal{X} \rightarrow \mathbb{R}$ and $c : \mathcal{X} \rightarrow \mathcal{C}$, for some Hilbert spaces \mathcal{X} and \mathcal{C} , and J and c are twice continuously Fréchet differentiable. We identify the spaces \mathcal{X} and \mathcal{C} with their duals.

For time-dependent PDEs, $\mathcal{X} = \mathcal{U} \times \mathcal{Z} = (\mathcal{U}_\Omega \times \mathcal{U}_t) \times (\mathcal{Z}_\Omega \times \mathcal{Z}_t)$.

Define **Lagrangian functional** $L : \mathcal{X} \times \mathcal{C} \rightarrow \mathbb{R}$:

$$L(x, \lambda) = J(x) + \langle \lambda, c(x) \rangle_{\mathcal{C}}$$

If *regular* point x_* is a local solution of the NLP, then there exists a $\lambda_* \in \mathcal{C}$ satisfying the *first-order necessary optimality conditions*:

$$\begin{aligned} \nabla_x J(x_*) + c_x(x_*)^* \lambda_* &= 0 \\ c(x_*) &= 0 \end{aligned}$$

Sequential Quadratic Programming (SQP)

Newton's method applied to optimality conditions:

$$\begin{pmatrix} \nabla_{xx} L(x_k, \lambda_k) & c_x(x_k)^* \\ c_x(x_k) & 0 \end{pmatrix} \begin{pmatrix} s \\ z \end{pmatrix} = - \begin{pmatrix} \nabla_x J(x_k) + c_x(x_k)^* \lambda_k \\ c(x_k) \end{pmatrix}$$

If $\nabla_{xx} L(x_k, \lambda_k)$ is positive definite on the null space of $c_x(x_k)$, the above [KKT system](#) is necessary and sufficient for solving the QP:

$$\begin{array}{ll} \min_{s \in \mathcal{X}} & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k) s, s \rangle_{\mathcal{X}} + \langle \nabla_x L(x_k, \lambda_k), s \rangle_{\mathcal{X}} + L(x_k, \lambda_k) \\ \text{s.t.} & c_x(x_k) s + c(x_k) = 0 \end{array}$$

Sequential Quadratic Programming (SQP)

Newton's method applied to optimality conditions:

$$\begin{pmatrix} \nabla_{xx} L(x_k, \lambda_k) & c_x(x_k)^* \\ c_x(x_k) & 0 \end{pmatrix} \begin{pmatrix} s \\ z \end{pmatrix} = - \begin{pmatrix} \nabla_x J(x_k) + c_x(x_k)^* \lambda_k \\ c(x_k) \end{pmatrix}$$

If $\nabla_{xx} L(x_k, \lambda_k)$ is positive definite on the null space of $c_x(x_k)$, the above KKT system is necessary and sufficient for solving the QP:

$$\begin{array}{ll} \min_{s \in \mathcal{X}} & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k) s, s \rangle_{\mathcal{X}} + \langle \nabla_x L(x_k, \lambda_k), s \rangle_{\mathcal{X}} + L(x_k, \lambda_k) \\ \text{s.t.} & c_x(x_k) s + c(x_k) = 0 \end{array}$$

Solve a sequence of *nonconvex* quadratic **trust-region** subproblems:

$$\begin{array}{ll} \min_{s \in \mathcal{X}} & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k) s, s \rangle_{\mathcal{X}} + \langle \nabla_x L(x_k, \lambda_k), s \rangle_{\mathcal{X}} + L(x_k, \lambda_k) \\ \text{s.t.} & c_x(x_k) s + c(x_k) = 0, \quad \|s\|_{\mathcal{X}} \leq \Delta_k \end{array}$$

Possible incompatibility of constraints: **Byrd-Omojokun composite-step approach**.

Composite-step method for trust-region subproblem

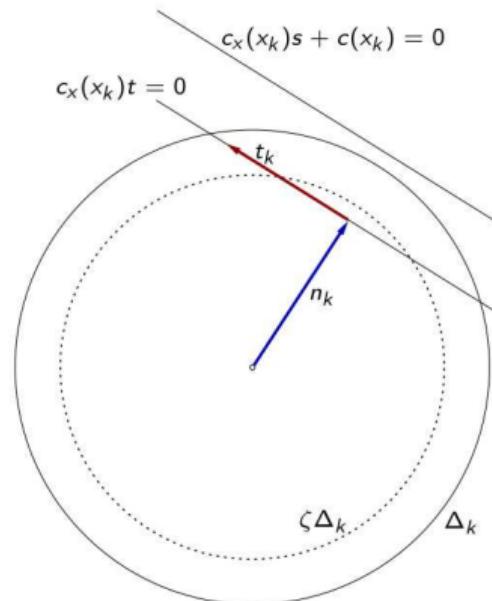
- Trust-region step: $s_k = n_k + t_k$

- Quasi-normal step n_k :
reduces linear infeasibility

$$\begin{aligned} \min_{n \in \mathcal{X}} \quad & \|c_x(x_k)n + c(x_k)\|_{\mathcal{C}}^2 \\ \text{s.t.} \quad & \|n\|_{\mathcal{X}} \leq \zeta \Delta_k \end{aligned}$$

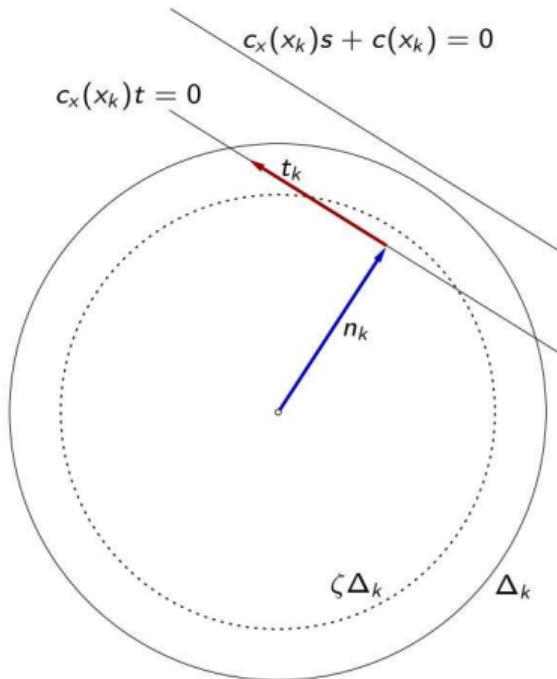
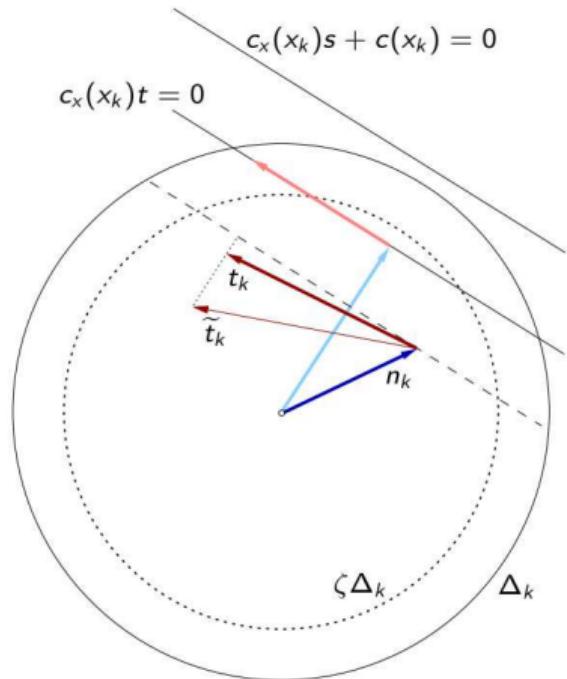
- Tangential step t_k :
improves optimality while staying in the null
space of the linearized constraints

$$\begin{aligned} \min_{t \in \mathcal{X}} \quad & \frac{1}{2} \langle \nabla_{xx} L(x_k, \lambda_k)(t + n_k), t + n_k \rangle_{\mathcal{X}} + \langle \nabla_x L(x_k, \lambda_k), t + n_k \rangle_{\mathcal{X}} + L(x_k, \lambda_k) \\ \text{s.t.} \quad & c_x(x_k)t = 0, \quad \|t + n_k\|_{\mathcal{X}} \leq \Delta_k \end{aligned}$$



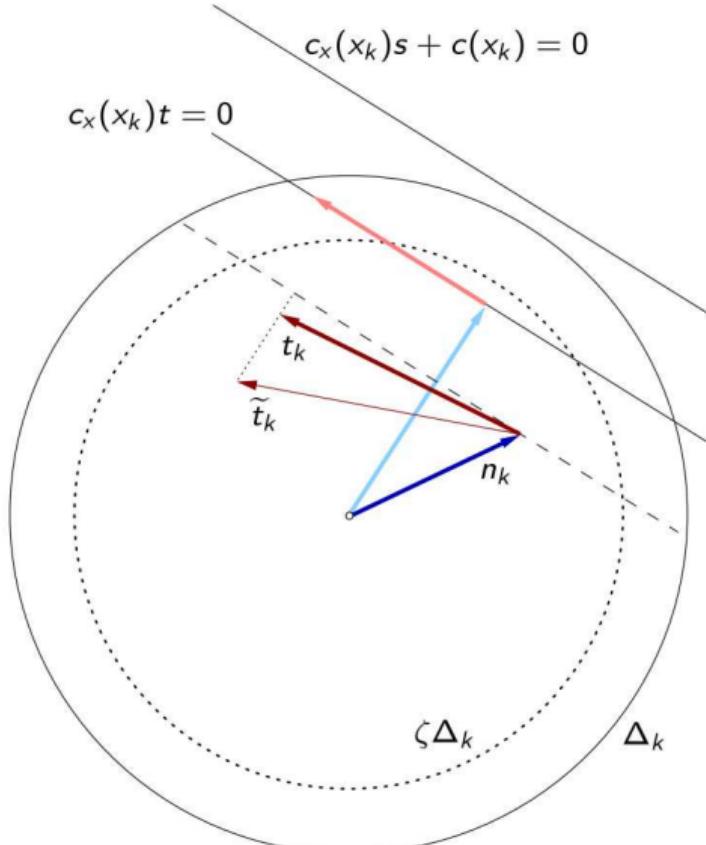
Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

Composite step with iterative (matrix-free) solvers



With matrix-free linear algebra — such as [iterative linear solvers](#) — the quasi-normal and tangential steps are computed **inexactly**. This is an **opportunity**!

Matrix-free trust-region SQP algorithm



Composite step:

$$s_k = n_k + t_k$$

- ➊ Compute quasi-normal step n_k using **inexact Powell dogleg**.
- ➋ Solve tangential subproblem for \tilde{t}_k using **inexact projected Steihaug-Toint CG**.
- ➌ Restore linearized feasibility, yielding tangential step t_k .
- ➍ Update Lagrange multipliers λ_{k+1} .
- ➎ Evaluate progress.

Ridzal, *Ph.D. Thesis, Rice University (2006)*
 Heinkenschloss, Ridzal, *SIAM J. Opt. (2014)*

Linear systems are ALL augmented constraint systems

$$\begin{pmatrix} I & c_x(x_k)^* \\ c_x(x_k) & 0 \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = \begin{pmatrix} b^1 \\ b^2 \end{pmatrix} + \begin{pmatrix} e^1 \\ e^2 \end{pmatrix}$$

- The size of $(e^1 \ e^2)$ is governed by various model reduction conditions, i.e., the progress of the optimization algorithm:

$$\|e^1\|_{\mathcal{X}} + \|e^2\|_{\mathcal{C}} \leq \text{func}(\|b^1\|_{\mathcal{X}}, \|b^2\|_{\mathcal{C}}, \|y^1\|_{\mathcal{X}}, \Delta_k, \xi)$$

- These are KKT systems for the **convex quadratic problems**

$$\begin{aligned} \min \quad & \frac{1}{2} \langle y^1, y^1 \rangle_{\mathcal{X}} - \langle b^1, y^1 \rangle_{\mathcal{X}} \\ \text{s.t.} \quad & c_x(x_k) y^1 = b^2. \end{aligned}$$

- True even if the original trust-region subproblems are not convex!

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

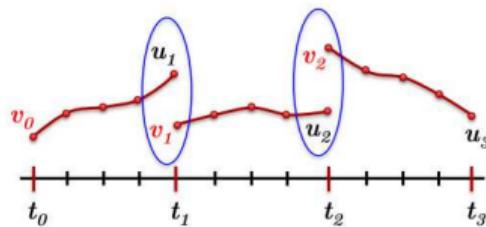
Time-domain decomposition

- Our approach is heavily influenced by:
 - Heinkenschloss (2005), J. Comp. Appl. Math., 173:169-198.
 - Comas (2006), Ph. D. Thesis, Rice University.
- Related to multiple shooting methods.
- Some potential differences:
 - Take a purely **algebraic** view of the optimization problem.
 - Introduce **virtual state variables**, at the discrete level, to weaken the coupling in time and define parallelizable smoothers.
 - Use a **coarse-grid** strategy for the **full optimality system**.
 - Embed the approach in our **nonlinear** (SQP) optimization scheme.
 - Make heavy use of **inexact linear solvers**.
 - Ensure applicability to **general (PDE, DAE, etc.)** nonlinear systems.
 - Enable reasonable **software interfaces** for large-scale applications.

Time-domain decomposition

$$\min_{u_i, z_i} \sum_{i=1}^N J_i(u_i, z_i)$$

subject to $u_i = F(u_{i-1}, z_{i-1}, t_{i-1}, t_i)$
for $i = 1, \dots, N$



$$\min_{u_i, v_i, z_i} \sum_{i=1}^N J_i(u_i, v_i, z_i)$$

subject to

- (I) $u_i = F(v_{i-1}, z_{i-1}, t_{i-1}, t_i)$
- (II) $u_i = v_i$; for $i = 1, \dots, N$

Discretization in space and time for Burgers

$$\underset{u,z}{\text{Minimize}} \quad \sum_{i=1}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{1}{2} u_i^T M u_i + g(t_i)^T u_i \right) + \\ \sum_{i=0}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{\alpha}{2} z_i^T Q z_i \right)$$

subject to

$$(M + \theta \Delta t_i A) u_{i+1} + \theta \Delta t_i N(u_{i+1}) + \theta \Delta t_i B z_{i+1} + \\ (-M + (1 - \theta) \Delta t_i A) u_i + (1 - \theta) \Delta t_i N(u_i) + (1 - \theta) \Delta t_i B z_i = 0$$

Discontinuous-in-time, decoupled control

$$\underset{u,z}{\text{Minimize}} \quad \sum_{i=1}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{1}{2} u_i^T M u_i + g(t_i)^T u_i \right) + \\ \sum_{i=0}^N \Delta t_i \left(\frac{\alpha}{2} z_i^T Q z_i \right)$$

subject to

$$(M + \theta \Delta t_i A) u_{i+1} + \theta \Delta t_i N(u_{i+1}) + \\ (-M + (1 - \theta) \Delta t_i A) u_i + (1 - \theta) \Delta t_i N(u_i) + \Delta t_i B z_i = 0$$

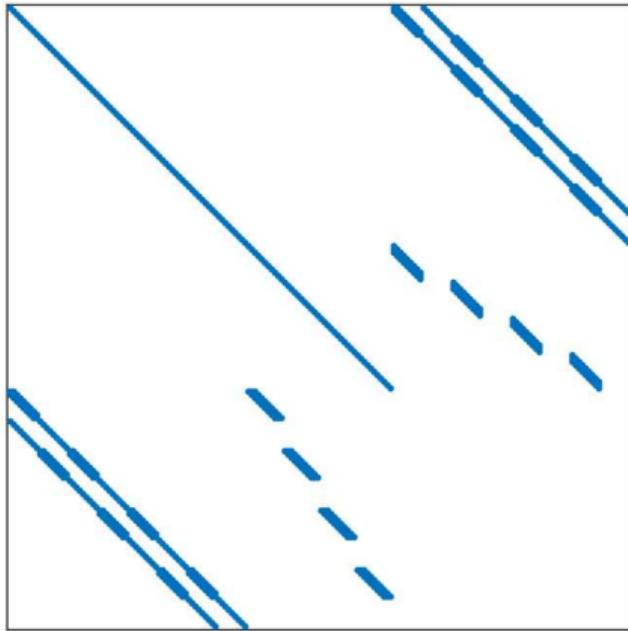
Virtual state variables + coupling constraint

$$\underset{u, z}{\text{Minimize}} \quad \sum_{i=1}^{N+1} \frac{\Delta t_{i-1} + \Delta t_i}{2} \left(\frac{1}{2} (u_i + \textcolor{red}{v}_i)^T M (u_i + \textcolor{red}{v}_i) + g(t_i)^T (u_i + \textcolor{red}{v}_i) \right) + \\ \sum_{i=0}^N \Delta t_i \left(\alpha z_i^T Q z_i \right)$$

subject to

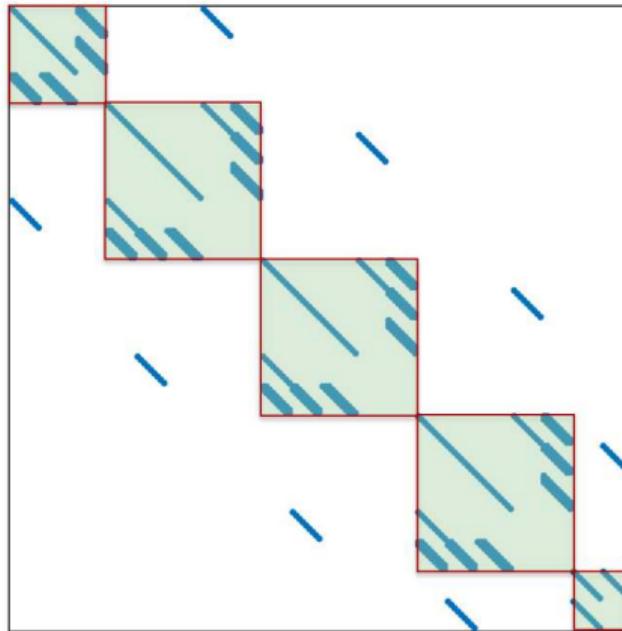
$$(M + \theta \Delta t_i A) u_{i+1} + \theta \Delta t_i N(u_{i+1}) + \\ (-M + (1 - \theta) \Delta t_i A) \textcolor{red}{v}_i + (1 - \theta) \Delta t_i N(\textcolor{red}{v}_i) + \Delta t_i B z_i = 0 \\ W(u_i - \textcolor{red}{v}_i) = 0$$

17 The augmented system



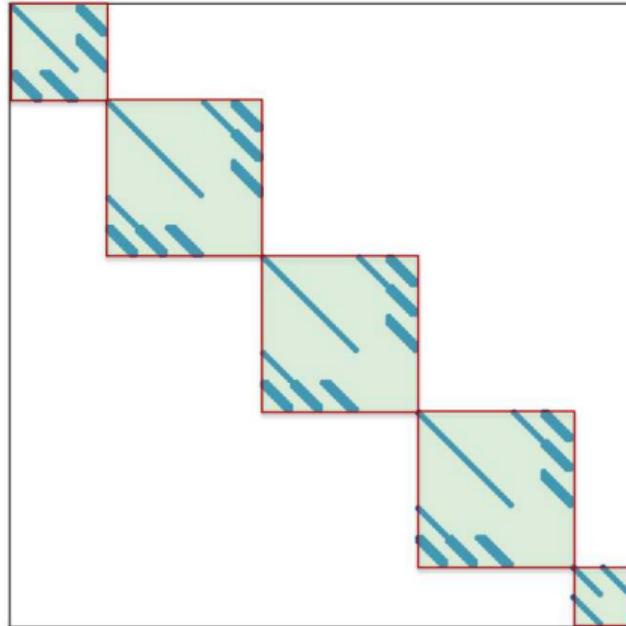
Ordering: $u_1 \ v_1 \ u_2 \ v_2 \ \dots \ z_0 \ z_1 \ \dots \ \lambda_1 \ \mu_1 \ \lambda_2 \ \mu_2 \ \dots$

Weakly coupled optimality systems

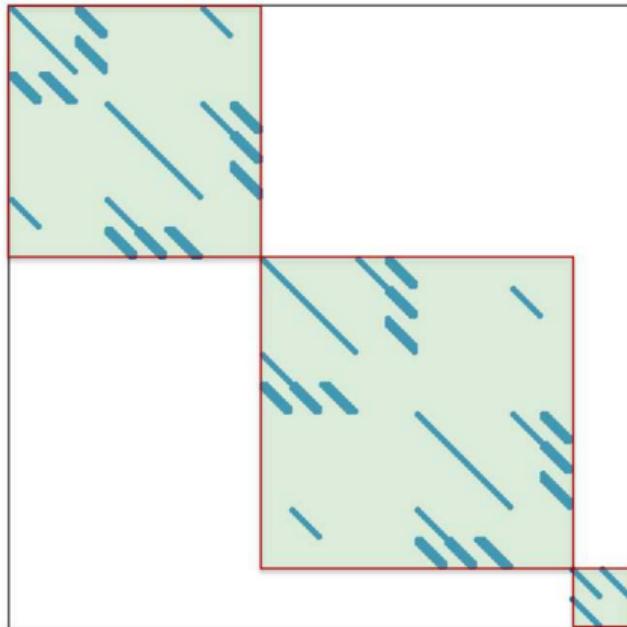


Transform: $u_1 \ z_0 \ \lambda_1 \quad v_1 \ u_2 \ z_1 \ \mu_1 \ \lambda_2 \quad \dots \quad v_2 \ u_3 \ z_2 \ \mu_2 \ \lambda_3 \quad \dots$

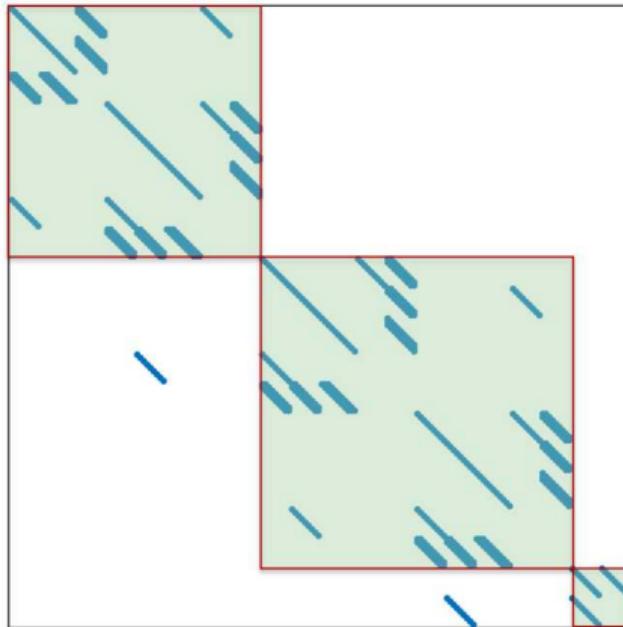
One-timestep Jacobi



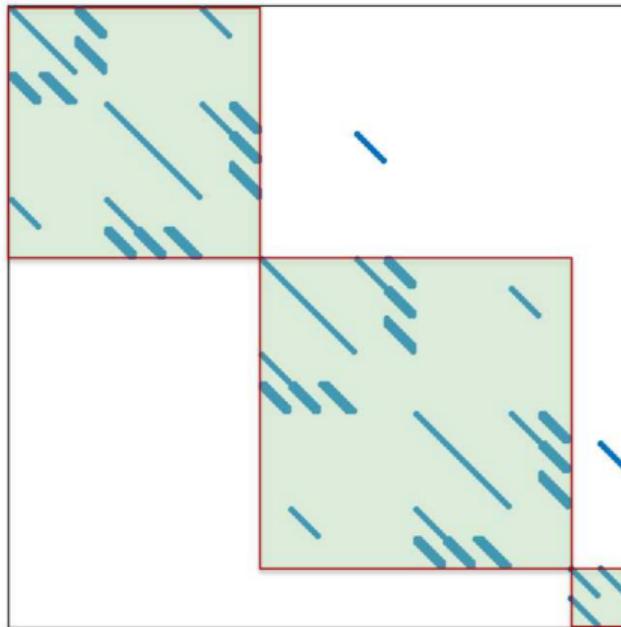
Two-timestep Jacobi

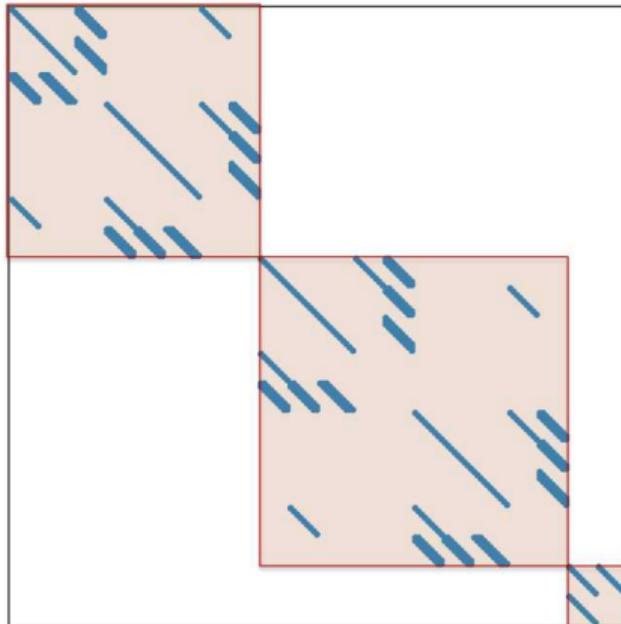


Two-timestep backward Gauss-Seidel



Two-timestep forward Gauss-Seidel





Theorem

- *The diagonal blocks can be interpreted as optimality systems for optimization problems on the time subdomains.*
- *The subdomain optimization problems are convex QPs, regardless of the constraint equation or the objective function.*
- *If the constraint Jacobian is surjective, the subdomain QPs are strictly convex.*
- *Under this (weak) assumption, the diagonal blocks are invertible.*

Performance as preconditioners for GMRES

- Jacobi

#ts/subdomain	1	2	4	8
LS Iter	153.2	72.7	37.3	20.3
CG Iter	22	21	22	16
Opt Iter	10	10	10	5
Speedup	0.65	0.69	0.66	0.62

- Backward Gauss-Seidel*

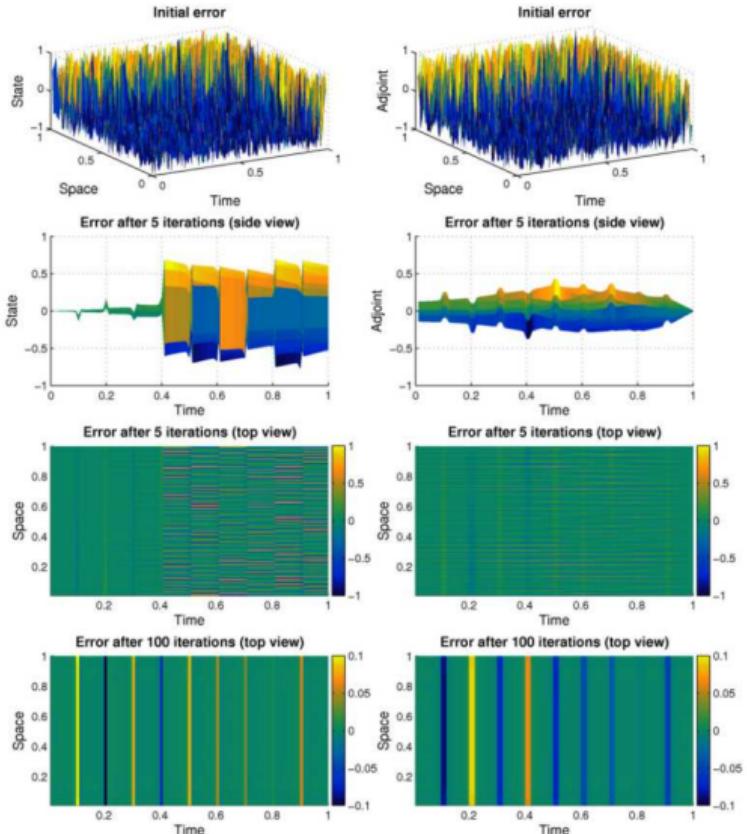
#ts/subdomain	1	2	4	8
LS Iter	134.3	59.3	31.3	16.8
CG Iter	18	17	14	14
Opt Iter	3	3	3	3
Speedup	0.74	0.84	0.80	0.74

- Forward Gauss-Seidel*

#ts/subdomain	1	2	4	8
LS Iter	69.7	33.1	17.4	8.3
CG Iter	14	10	9	16
Opt Iter	7	5	5	5
Speedup	1.43	1.51	1.44	1.50

- $\#ts = 100$, opt tol = 10^{-4}
- LS Iters averaged over the entire SQP run
- In principle, the approach works, however,
 - ...
- There is no significant speedup based on fixed-point iterations alone.
- Coarse-grid correction?
- I.e., are these methods good smoothers for a multigrid scheme?

Numerical evidence for good time-domain smoothers



- Start with random right-hand side.
- Apply smoother iteratively and compute error.
- Observation: The error is confined to the time subdomain interfaces!
- Hajghassem, Cyr, Ridzal, A Time-Parallel Method for the Solution of PDE-Constrained Optimization Problems, in *Center for Computing Research Summer Proceedings 2015*, Technical Report SAND2016-0830R, Sandia National Laboratories, 2015, pp. 79–92.

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

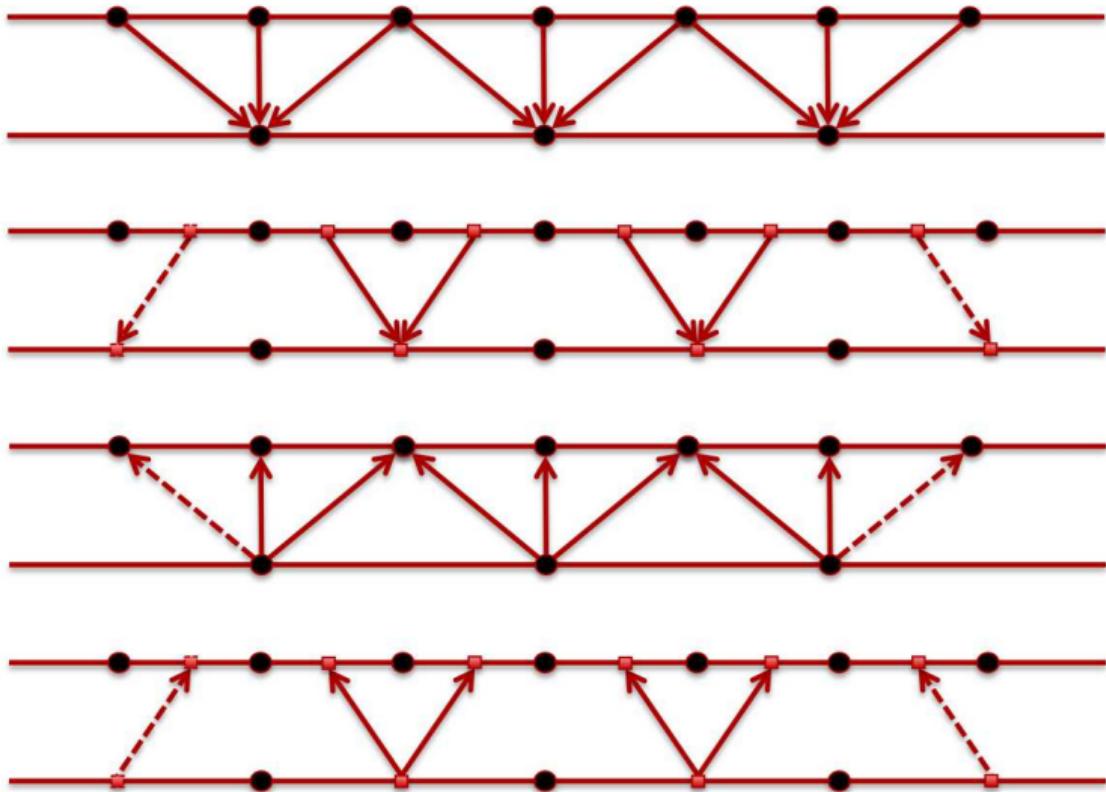
Two-grid approach

- Applying as a preconditioner for GMRES.
- For a fine grid in time (t), we want to approximate the action of K_t^{-1} on a vector v , using:
 - The solution with a coarse grid in time (T) operator K_T ;
 - A smoother J^{-1} ; and
 - Appropriate restriction and prolongation operators, R and P , resp.

1. Pre-smooth: $x_1 = J^{-1}v$.
2. Solve: $K_T e_T = R(v - K_t x_1)$.
3. Correct: $x_2 = x_1 + P e_T$.
4. Post-smooth: $x_3 = x_2 + J^{-1}(v - K_t x_2)$.
5. Return x_3 .

Restriction and prolongation operators

- For states and adjoints, we define R as a 3-point average.
- For controls, we define R as a 2-interval average.
- For states and adjoints, we define P via linear interpolation.
- For controls, we define P via injection (copy).



Two-grid results

- Using one-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	13.6	14.8	14.1	15.9
CG Iter	41	30	30	28
Opt Iter	6	5	6	6
Speedup	7.35	13.5	28.4	50.3

- Using two-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	8.7	9.4	10.6	12.7
CG Iter	27	50	32	9
Opt Iter	4	6	7	4
Speedup	5.75	10.6	18.9	31.5

- Using four-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	9.2	10.4	10.9	11.3
CG Iter	67	15	9	10
Opt Iter	7	4	3	4
Speedup	2.72	4.85	9.17	17.7

Speedup =
#timesteps /
#ts-per-subdomain /
#LS-iters /
2 (pre/post Jacobi)

Two-grid results

- Using one-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	13.6	14.8	14.1	15.9
CG Iter	41	30	30	28
Opt Iter	6	5	6	6
Speedup	7.35	13.5	28.4	50.3

- Using two-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	8.7	9.4	10.6	12.7
CG Iter	27	50	32	9
Opt Iter	4	6	7	4
Speedup	5.75	10.6	18.9	31.5

- Using four-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	9.2	10.4	10.9	11.3
CG Iter	67	15	9	10
Opt Iter	7	4	3	4
Speedup	2.72	4.85	9.17	17.7

Speedup =
 $\# \text{timesteps} /$
 $\# \text{ts-per-subdomain} /$
 $\# \text{LS-iters} /$
2 (pre/post Jacobi)

- Raw speedup:
50x or better!

Two-grid results

- Using one-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	13.6	14.8	14.1	15.9
CG Iter	41	30	30	28
Opt Iter	6	5	6	6
Speedup	7.35	13.5	28.4	50.3

- Using two-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	8.7	9.4	10.6	12.7
CG Iter	27	50	32	9
Opt Iter	4	6	7	4
Speedup	5.75	10.6	18.9	31.5

- Using four-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	9.2	10.4	10.9	11.3
CG Iter	67	15	9	10
Opt Iter	7	4	3	4
Speedup	2.72	4.85	9.17	17.7

Speedup =
 $\frac{\# \text{timesteps}}{\# \text{ts-per-subdomain}}$ /
 $\frac{\# \text{LS-iters}}{2 \text{ (pre/post Jacobi)}}$

- Raw speedup:**
50x or better!
- Fix 200 subdomains:**
About 10x, scales.

Two-grid results

- Using one-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	13.6	14.8	14.1	15.9
CG Iter	41	30	30	28
Opt Iter	6	5	6	6
Speedup	7.35	13.5	28.4	50.3

- Using two-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	8.7	9.4	10.6	12.7
CG Iter	27	50	32	9
Opt Iter	4	6	7	4
Speedup	5.75	10.6	18.9	31.5

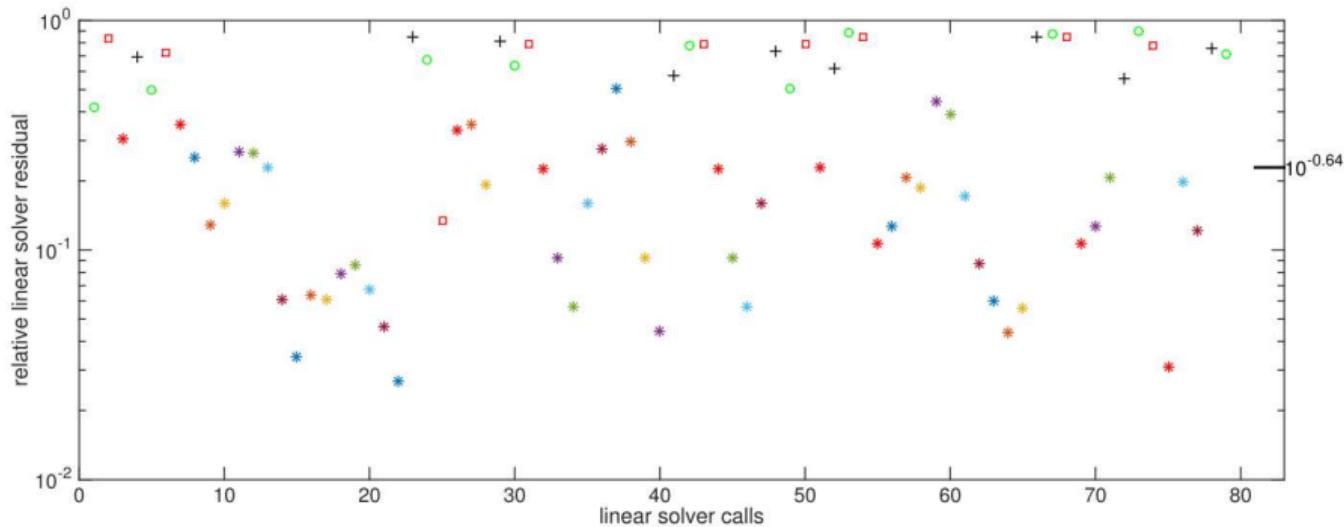
- Using four-timestep Jacobi as the smoother:

# time steps	200	400	800	1600
LS Iter	9.2	10.4	10.9	11.3
CG Iter	67	15	9	10
Opt Iter	7	4	3	4
Speedup	2.72	4.85	9.17	17.7

Speedup =
 $\# \text{timesteps} /$
 $\# \text{ts-per-subdomain} /$
 $\# \text{LS-iters} /$
2 (pre/post Jacobi)

- Raw speedup:**
50x or better!
- Fix 200 subdomains:**
About 10x, scales.
- Fix 400 subdomains:**
About 20x, scales.

Very coarse solver tolerances



- red squares denote quasi-normal step computations
- * red asterisks correspond to the first STCG iterations
- * blue asterisks denote the subsequent STCG iterations
- + black crosses correspond to tangential step computations
- green circles denote Lagrange multiplier computations

Very coarse solver tolerances are important!

- Using two-timestep Jacobi, max tol = 0.9:

# time steps	200	400	800	1600
LS Iter	8.7	9.4	10.6	12.7
CG Iter	27	50	32	9
Opt Iter	4	6	7	4
Speedup	5.75	10.6	18.9	31.5

- Using two-timestep Jacobi, max tol = 10^{-2} :

# time steps	200	400	800	1600
LS Iter	21.0	22.2	22.1	22.0
CG Iter	14	14	14	14
Opt Iter	3	3	3	3
Speedup	2.38	4.50	9.05	18.2

- Using two-timestep Jacobi, max tol = 10^{-8} :

# time steps	200	400	800	1600
LS Iter	53.8	58.6	64.0	64.0
CG Iter	14	14	14	13
Opt Iter	3	3	3	3
Speedup	0.93	1.71	3.13	6.16

- Tighter tolerances may give slightly better convergence of the optimization loop.
- Typically not needed.
- We observe fast superlinear convergence even with max tol = 0.9.
- Keep the linear solver tolerances coarse!

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

Future work

- Improve two-grid scheme; extend two-grid to multigrid.
- **Research 1:** Theoretical understanding of the scaling.
- **Research 2:** Prolongation and restriction operators.
- **Research 3:** Smoother improvements, inexact smoothers.
- **Research 4:** Subdomain / coarse-grid KKT solvers.
 - Serial Schur-complement approaches (Rees/Dollar/Wathen/Stoll) appear to work well; a handful of iterations of forward/adjoint solves.
- **Research 5:** Balancing storage requirements with raw speedup.
 - Amortizing precomputations; memory hierarchies, memory access; compression and checkpointing.
 - Developing a comprehensive performance model.
- Implementation in the Rapid Optimization Library ().
- More interesting physics: Navier-Stokes, coupled fluid/Maxwell's systems, DAE systems such as power networks and electric circuits.