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1

Design for Sandia’s Z-Machine

Pulsed power is important:
@ Science;
@ Fusion energy;

@ National security.

Power losses have plagued current designs.

@ Can numerical optimization help?

2 PDE constraints: Plasma models.

@ Many-fluid models coupled with

-] <o Maxwell's equation.
i @ Strongly nonlinear dynamics.
1 @ A single transient simulation takes a
day to run!
=i @ Optimization: x100-1000.

Similar challenges: optimal control of power grids, trajectory planning for atmospheric reentry, etc.
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2l Exascale computing

@ The promise of million-way parallelism.

@ Hierarchies in hardware mapping to hierarchies in software.

@ Conventional optimization approaches inherit the serial bottleneck from forward
simulation, namely the time discretization.

Forward solve Adjoint solve

1
I
o t ts ty t, t, t, ty

@ Exascale may speed up forward and adjoint solves in some cases, but can we do
fundamentally better in the context of optimization?

Denis Ridzal Parallel-in-time optimization



2l Exascale computing

@ The promise of million-way parallelism.

@ Hierarchies in hardware mapping to hierarchies in software.

@ Conventional optimization approaches inherit the serial bottleneck from forward
simulation, namely the time discretization.

Forward solve Adjoint solve

1
I
o t ts ty t, t, t, ty

@ Exascale may speed up forward and adjoint solves in some cases, but can we do
fundamentally better in the context of optimization?

o Exploit time parallelism at the level of the optimization algorithm.
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31 Example: Control of viscous Burgers’ equation

Mlnlmlze / / u(x,t) x,1))? + az’(x, t) dx dt

subject to

0 02 d
&u(x, t) — Vodd u(x,t) + a—xu(x7 tu(x,t) = z(x, t)

u(0,t) =u(l,t) =0; u(x,0) = up(x)
where x € (0,1), t € (0, T), up(x) = {1:x € (0,1/2];0: x € (1/2,1)}, and
u(x,t) ={1:(x,t) €(0,1/2] x (0,1);0: (x,t) € (1/2,1) x (0,1)}.

@ Nonlinear transient problem with advective and diffusive features.
@ Stepping stone to Navier-Stokes and other fluid models.

@ Good start for a parallel-in-time method.
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sl Discretization in space and time

@ Space: FE matrices M, A, Q, B; nonlinear operator N; 100 intervals.
@ Time: f-methodon 0=ty < t; < --- < tyr1 = tF; 0 = 0.5.

@ Other details: viscosity v = 0.01, control penalty o = 0.05, etc., see Heinkenschloss
(2008), Rice University CAAM Tech. Rep. TR08-05.

N+1

N Ati_1+ At /1
Mlnulﬁrzmze ’Z:; % (Eu,-TMu; + g(t,-)Tu,-)-i-
N+1
Ati_ 1+ At T
2T (52" QZ’)
i=0
subject to
(M + 9At,‘A)U;+1 + HAt,-N(u,-H) + 0At;Bzji 1+
(—M + (1 = G)At,'A)U,' + (1 = Q)At,'N(U,') + (1 = Q)At,'BZ,' =0
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5I Reference solution

Control

Uncontrolled State Controlled State

- b 4 o = N ow

05
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Optimization algorithm
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sl Sequential Quadratic Programming (SQP)

Solve equality-constrained optimization problem:

min J(x)
st. ¢(x)=0

where J: X - R and c: X — C, for some Hilbert spaces X and C, and J and ¢ are twice
continuously Fréchet differentiable. We identify the spaces & and C with their duals.

For time-dependent PDEs, X =U x Z = (Uqg x U;) x (Zq X Z:).

Define Lagrangian functional L: X x C — R:
L(x,A) = J(x) + (N e(x))e

If regular point x, is a local solution of the NLP, then there exists a A, € C satisfying the
first-order necessary optimality conditions:

Vid(x:) + ex(x:)* A =0
c(x)=0
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71 Sequential Quadratic Programming (SQP)

Newton's method applied to optimality conditions:

(vXXL(X/ﬂ)\k) Cx(Xk)*> <5> _ <VXJ(Xk) + Cx(Xk)*)\k)

Cx(xk) 0 z) c(xx)

If Vix L(xk, k) is positive definite on the null space of ¢, (xk), the above KKT system is necessary
and sufficient for solving the QP:

. 1
n;l}rg §<VXXL(X/<, )\k)5,5>X + <VXL(Xk, )\k),5>X + L(Xk, )\k)
s

s.t. cx(xk)s +c(xk) =0
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Sequential Quadratic Programming (SQP)

Solve a sequence of nonconvex quadratic trust-region subproblems:

1
n;i/@ §<VXXL(X/<, Ak)S, ) x + (VL (xk, M), $) a0 + L(xk, Ak)
s

s.t. (xk)s+c(xk) =0, |sl|lx < A

Possible incompatibility of constraints: Byrd-Omojokun composite-step approach.
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sl Composite-step method for trust-region subproblem

@ Trust-region step: s, = ny + ti ce(xi)s + clx) = 0

ex(x)t =0
@ Quasi-normal step ny:
reduces linear infeasibility
; 2
min Cx( Xk )n C(X
minflex(x)n + <)l

s.t. ||nHX < CAg

o Tangential step t;:

improves optimality while staying in the null
space of the linearized constraints

, 1
min 5 (VaoeL (i, At 4 1), £ 4 i) & + (VL O, M)y £+ i)+ Lk, Ak)
s.t. CX(Xk)t':O7 Ht+ nkH)( < Ay

Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

Denis Ridzal Parallel-in-time optimization



ol Composite step with iterative (matrix-free) solvers

cx(xk)s + c(xk) =0 cx(xk)s + c(xk) =0

With matrix-free linear algebra — such as iterative linear solvers — the quasi-normal and
tangential steps are computed inexactly. This is an opportunity!
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10l Matrix-free trust-region SQP algorithm

cx(xi)s + c(xi) =0 Composite step:

Sk = hy + ty

© Compute quasi-normal step ny using
inexact Powell dogleg.

@ Solve tangential subproblem for £ using
inexact projected Steihaug-Toint CG.

© Restore linearized feasibility, yielding
tangential step tx.

@ Update Lagrange multipliers Agt1.

© Evaluate progress.

Ridzal, Ph.D. Thesis, Rice University (2006)
Heinkenschloss, Ridzal, SIAM J. Opt. (2014)
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11| Linear systems are ALL augmented constraint systems

(ot “87) ()= (%) (2)

@ The size of (el e?) is governed by various model reduction conditions, i.e., the progress of
the optimization algorithm:

le*lx + lle*lle < func (6% |, [6%[lc, 1y ]2, Ak, €)
@ These are KKT systems for the convex quadratic problems
1

min §<y1;yl>x - <b1,y1>x

st c(xe)yt = b2

@ True even if the original trust-region subproblems are not convex!
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Time-domain decomposition
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12l Time-domain decomposition

@ Our approach is heavily influenced by:

Heinkenschloss (2005), J. Comp. Appl. Math., 173:169-198.
Comas (2006), Ph. D. Thesis, Rice University.

@ Related to multiple shooting methods.

@ Some potential differences:

Denis Ridzal

Take a purely algebraic view of the optimization problem.

Introduce virtual state variables, at the discrete level, to weaken the coupling in time and
define parallelizable smoothers.

Use a coarse-grid strategy for the full optimality system.

Embed the approach in our nonlinear (SQP) optimization scheme.
Make heavy use of inexact linear solvers.

Ensure applicability to general (PDE, DAE, etc.) nonlinear systems.

Enable reasonable software interfaces for large-scale applications.
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13I Time-domain decomposition

N
min > Jilwi, z)
i=1
subject to  u; = F(wi—1,%i—1,ti—1,t;)
fori=1,...,N

ty t ty ty

N
min E Ji(ui, iy 2:)
Ui Vi 24
41

subject to  (I) w; = F(vi—1,2i—1,ti—1,t;)
() u; =v;; fori=1,...,N
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1l Discretization in space and time for Burgers

N+1
Atj_ At; /1

Minui’rpize Zl %—(EU,'TMU,' +g(ti)TUi>+
N+1

b, S (5T o)
i=0

subject to

(/\/I + HAt,'A)U,'.H + 9At,-N(u;+1) + 0At; Bz +
(—M + (1 = Q)At;A)U,' + (]. — O)At,'N(U,') + (1 — G)At,'BZ,'
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151 Discontinuous-in-time, decoupled control

subject to

Denis Ridzal

N+1
L. Ati_1+ At /1
Mmulqrplze Zl —12 <§u,-TMu,~ + g(t,-)Tu;)—I—

N

Z At; (%Z,-TQZ;>

i=

(M -+ 9At;A)U;+1 + 9At;N(u,~+1) +

(—M + (1 — H)At;A)U,' + (1 — Q)At,'N(U,') + At;Bz;
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16l Virtual state variables 4+ coupling constraint

N+1
. At + At /1 T - _
MlnuI‘TIZG ; —2—(§(u, +v;) " M(uj + vi) + g(ti) " (ui + v,)>—|—
a0 o7 2)
ZAt,' az,-TQz,-
i=0
subject to
(M + GAt,‘A)UH,l + OAI','N(U,‘_H_) +
(—M+(1 —H)At,'A)V,'+(1—9)At,'N(V,')+At,'BZ,' =0

W(U,‘*V,‘) =0
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171 The augmented system

Ordering: vy vi vo ... Zgzz ... A1 A2 o
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181 Weakly coupled optimality systems

\\\

Transform: uy 2p Al Vi Uz z1 1 )\2 DEE Vo U3 zp 2 /\3
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One-timestep Jacobi
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201 Two-timestep Jacobi
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211 Two-timestep backward Gauss-Seidel

N\ N
N
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N A
N\
\ N\
N\ N
N \\
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N\




221 Two-timestep forward Gauss-Seidel

\ N\
N
NN
\\: \
N A
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Some properties |

Q N\

B |
\‘ @ The diagonal blocks can be interpreted as optimality
N\

n
systems for optimization problems on the time ﬂ

N \\\ subdomains.

\§ \ @ The subdomain optimization problems are convex
QPs, regardless of the constraint equation or the
8

k\ objective function. ‘

\\ @ If the constraint Jacobian is surjective, the
N
N

subdomain QPs are strictly convex.

@ Under this (weak) assumption, the diagonal blocks I
N are invertible. |
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221 Performance as preconditioners for GMRES

@ Jacobi
#ts/subdomain 1 2 4 8
LS lter 153.2 727 373 203
CG lter 22 21 22 16
Opt lter 10 10 10 5
Speeedup 0.65 069 0.66 0.62
@ Backward Gauss-Seidel*
#ts/subdomain 1 2 4 8
LS lter 1343 593 313 168
CG lter 18 17 14 14
Opt lter 3 3 3 3
Speeedup 0.74 0.84 0.80 0.74
@ Forward Gauss-Seidel*
#ts/subdomain 1 2 4 8
LS Iter 69.7 33.1 174 83
CG lter 14 10 9 16
Opt lter 7 5 5 5
Speeedup 143 151 144 150

Denis Ridzal

#ts = 100, opt tol = 1074

LS Iters averaged over the entire SQP run

In principle, the approach works, however,

There is no significant speedup based on
fixed- point iterations alone.

Coarse-grid correction?

l.e., are these methods good smoothers for
a multigrid scheme?
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25| Numerical evidence for good time-domain smoothers
. Emorafter 5 iterations (ide view) . Eroratr s teraions (sdo view) o Stal’t Wlth randOm right—hand Side.
L @ Apply smoother iteratively and compute error.
e @ Observation: The error is confined to the time
A e subdomain interfaces!

Error after 5 iterations (top view) Error after 5 iterations (top view)
1

@ Hajghassem, Cyr, Ridzal, A Time-Parallel Method for
& I & I the Solution of PDE-Constrained Optimization
} i Problems, in Center for Computing Research Summer

Time Time Proceedings 2015, Technical Report SAND2016-0830R,
Error after 100 iterations (top view) : Error after 100 iterations (top view) Sandia National Laboratories, 2015’ pp. 79-92.

02

04 08
Time
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Coarse-grid correction in time
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Two-grid approach

@ Applying as a preconditioner for GMRES.

e For a fine grid in time (t), we want to approximate the action of K, on a vector v, using:

— The solution with a coarse grid in time (T) operator Kr;
— A smoother J7!; and
— Appropriate restriction and prolongation operators, R and P, resp.

Pre-smooth: x; = J~1v.
Solve: Krer = R(v — Kix1).
Correct: xo = x1 + Per.

Post-smooth: x3 = xp + J71(v — Kix2).

LAl )

Return x3.

Denis Ridzal
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271 Restriction and prolongation operators

@ For states and adjoints,
we define R as a

3-point average.

. L 2 ‘ L L 2 @ E) @ L 2
@ For controls, we define /’ ‘\\
R as a 2-interval / \
average. £ ad L s 3

@ For states and adjoints, *~ A
we define P via linear L >

interpolation.

@ For controls, we define ® A ¢ ® o ® ® 1 °
P via injection (copy). ¥ 4 \,
=4 . 4 o ° \
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Two-grid results

@ Using one-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS lter 13.6 148 141 159
CG lter 41 30 30 28
Opt Iter 6 5 6 6
Speeedup 735 135 284 503

@ Using two-timestep Jacobi as the smoother:

Speedup =
#timesteps /
##ts-per-subdomain /
#£LS-iters /

2 (pre/post Jacobi)

# time steps 200 400 800 1600
LS lter 8.7 9.4 10.6 127
CG lter 27 50 32 9
Opt lter 4 6 7 4
Speeedup 5.75 10.6 18.9 315

@ Using four-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS Iter 9.2 104 109 113
CG lter 67 15 9 10
Opt lter 7 4 3 4
Speeedup 272 485 9.17 17.7

Denis Ridzal
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281 Two-grid results

@ Using one-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS lter 13.6 148 141 159
CG lter 41 30 30 28
Opt lter 6 5 6 6
Speeedup 735 135 284 503

@ Using two-timestep Jacobi as the smoother:

Speedup =
#timesteps /
##ts-per-subdomain /
#£LS-iters /

2 (pre/post Jacobi)

# time steps 200 400 800 1600

LS Iter 8.7 9.4 106 12.7

CG lter 27 50 32 9

Opt Iter 4 6 7 4 e Raw speedup:
Speeedup 575 10.6 18.9 315 50x or better!

@ Using four-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS Iter 9.2 104 109 113
CG lter 67 15 9 10
Opt lter 7 4 3 4
Speeedup 272 485 9.17 17.7

Denis Ridzal
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281  Two-grid results

@ Using one-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS lter 13.6 | 148 141 159
CG lter 41 30 30 28
Opt Iter 6 5 6 6
Speeedup 7.35 | 13.5 28.4 503

@ Using two-timestep Ja

cobi as the smoother:

Speedup =
#ttimesteps /
#£ts-per-subdomain /
#LS-iters /

2 (pre/post Jacobi)

# time steps 200 400 800 1600

LS lter 8.7 9.4 10.6 127

CG lter 27 50 32 9

Opt lter 4 6 7 4 e Raw speedup:
Speeedup 5.75 | 10.6 | 189 315 50x or better!

@ Using four-timestep Jacobi as the smoother:

# time steps 200 400 800 1600
LS lter 9.2 104 | 109 | 11.3
CG lter 67 15 9 10
Opt lter 4 4 3 4
Speeedup 272 4.85 | 9.17 | 17.7

Denis Ridzal

o Fix 200 subdomains:

About 10x, scales.
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281  Two-grid results

@ Using one-timestep Jacobi as the smoother:

# time steps 200 400 800 1600

LS lter 13.6 14.8 141 159 —
CG Iter a1 |30 |30 28 Speedup =
Opt lter 6 5 6 6 #timesteps / .
Speeedup 735 | 13.5 | 28.4 50.3 #ts-per-subdomain /
. : . LS-iters

@ Using two-timestep Jacobi as the smoother: f(pre/pos{ Jacobi)
# time steps 200 400 800 1600

S

LS lter 8.7 9.4 10.6 12.7
CG lter 27 50 32 9
Opt lter 4 6 7 4 e Raw speedup:
Speeedup 5.75 10.6 | 18.9 | 31.5 50x or better!

@ Using four-timestep Jacobi as the smoother: @ Fix 200 subdomains:
Z time steps 200 400 800 1600 About 10x, scales.
LS Iter 9.2 10.4 109 | 11.3 e Fix 400 subdomains:
CG lter 67 15 9 10
Opt Iter 7 2 3 1 About 20x, scales.
Speeedup 272 485 9.17 | 17.7
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29| Very coarse solver tolerances

relative linear solver residual
=)

Denis Ridzal

—T T

*¥

1 1 1 1 1 1

L

10‘0.64

20 30 40 50 60 70
linear solver calls

red squares denote quasi-normal step computations

red asterisks correspond to the first STCG iterations
blue asterisks denote the subsequent STCG iterations
black crosses correspond to tangential step computations

green circles denote Lagrange multiplier computations

80
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300 Very coarse solver tolerances are

@ Using two-timestep Jacobi, max tol = 0.9:
# time steps 200 400 800 1600

LS lter 8.7 9.4 106 12.7

CG lter 27 50 32 9

Opt Iter 4 6 7 4

Speeedup 5.75 10.6 18.9 315 °

@ Using two-timestep Jacobi, max tol = 10~%

# time steps 200 400 800 1600 °
LS lter 21.0 222 221 220

CG lter 14 14 14 14 °
Opt lter 3 3 3 3

Speeedup 2.38 450 9.05 18.2

@ Using two-timestep Jacobi, max tol = 107%:
# time steps 200 400 800 1600

LS Iter 53.8 58.6 64.0 64.0
CG lter 14 14 14 13
Opt Iter 3 3 3 3
Speeedup 093 1.71 3.13 6.16

Denis Ridzal

important!

Tighter tolerances may give slightly better
convergence of the optimization loop.

Typically not needed.

We observe fast superlinear convergence
even with max tol = 0.9.

Keep the linear solver tolerances coarse!
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Future work
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311 Future work

@ Improve two-grid scheme; extend two-grid to multigrid.

@ Research 1: Theoretical understanding of the scaling.

@ Research 2: Prolongation and restriction operators.

@ Research 3: Smoother improvements, inexact smoothers.

@ Research 4: Subdomain / coarse-grid KKT solvers.
o Serial Schur-complement approaches (Rees/Dollar/Wathen /Stoll) appear to work well; a
handful of iterations of forward/adjoint solves.

@ Research 5: Balancing storage requirements with raw speedup.
e Amortizing precomputations; memory hierarchies, memory access; compression and
checkpointing.

o Developing a comprehensive performance model.

o Implementation in the Rapid Optimization Library ( R@/L ).

@ More interesting physics: Navier-Stokes, coupled fluid/Maxwell's systems, DAE systems
such as power networks and electric circuits.
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