
Multigrid-in-time methods for optimization
with nonlinear PDE/DAE constraints

Denis Ridzal, Eric Cyr
23rd International Symposium on Mathematical Programming

Bordeaux, France

July 4, 2018
DEFENSE SCIENCES OFFICE

Sat
samIta Xational Laboratories Is a mu Ion
laboratory manard and a,erats by National

AdrnInIstratIon unckr contract DE..10003525.

SAND2018-6960C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Motivation

Optimization algorithm

Time-domain decomposition

Coarse-grid correction in time

Future work

Denis Ridzal Parallel-in-tinne optinnization

Motivation

Parallel-in-time optimization

11 Design for Sandia's Z-Machine

Pulsed power is important:

• Science;

o Fusion energy;

* National security.

Power losses have plagued current designs.

• Can numerical optimization help?

PDE constraints: Plasma models.

• Many-fluid models coupled with
Maxwell's equation.

* Strongly nonlinear dynamics.

• A single transient simulation takes a
day to run!

• Optimization: x 100-1000.

Similar challenges: optimal control of power grids, trajectory planning for atmospheric reentry, etc.
Denis Ridzal Parallel-in-time optimization

2 Exascale computing

• The promise of million-way parallelism.

• Hierarchies in hardware mapping to hierarchies in software.

e Conventional optimization approaches inherit the serial bottleneck from forward
simulation, namely the time discretization.

Forward solve Adjoint solve

t0 t, t2 t3 t, t, t2 t3

o Exascale may speed up forward and adjoint solves in some cases, but can we do
fundamentally better in the context of optimization?

Denis Ridzal Parallel-in-time optimization

2 Exascale computing

• The promise of million-way parallelism.

• Hierarchies in hardware mapping to hierarchies in software.

e Conventional optimization approaches inherit the serial bottleneck from forward
simulation, namely the time discretization.

Forward solve Adjoint solve
. .

It0 t, t2 t3 t, t, t2 t3

e Exascale may speed up forward and adjoint solves in some cases, but can we do
fundamentally better in the context of optimization?

• Exploit time parallelism at the level of the optimization algorithm.

Denis Ridzal Parallel-in-tinne optinnization

3 Example: Control of viscous Burgers' equation

Minimize
u,z

subject to

1 f T 1
2 ID lo

(u(x, t) — 11(x, t))2 + az2(x, t) dx dt

a 02
au(x, t) v ax2u(x, t) + t)u(x, t) = z(x, t)

u(O, t) = u(1, t) = 0; u(x, 0) = uo(x)

where x (0, 1), t (0, T), uo(x) = {1 x (0, 1/2]; x (1/2, 1)1, and
t) = {1 : (x, t) E (0,1/2] x (0,1); 0 : (x, t) E (1/2,1) x (0,1)1.

• Nonlinear transient problem with advective and diffusive features.

• Stepping stone to Navier-Stokes and other fluid models.

• Good start for a parallel-in-time method.

Denis Ridzal Parallel-in-time optimization

4 Discretization in space and time

• Space: FE matrices M, A, Q, B; nonlinear operator N; 100 intervals.

• Time: 0-method on 0 = to < < • • • < tN+1= tF; 8 = 0.5.

o Other details: viscosity v = 0.01, control penalty a = 0.05, etc., see Heinkenschloss

(2008), Rice University CAAM Tech. Rep. TR08-05.

subject to

Minimize
u,z

N+1 LAA A

L.
L1-1. Lati T

T2 u; Mu; + g(ti)u;)+
2

i=1

N+1E
2

At; (a)

2
z
1
Qz;

i=c)

(M 00tiN(ui+i)

(—M + (1 — 0)AtiA)ui + (1 — 0)AtiN(ui)+ (1 — 0)AtiBzi = 0

Denis Ridzal Parallel-in-tirne optimization

51 Reference solution

Uncontrolled State

0.5

4150 0.2

l< < <

Denis Ridzal

0.4 0.6 0.8 1

Controlled State

0.8

0 6

0 0

0 2

18/

lllllllllllllll 0.8

/ /NO 1

\‘‘

0.6

2

0

2

.3

Control

Parallel-in-time optimization

51

Optimization algorithm

Denis Ridtal Parallel-in-tirne opfiinization

61 Sequential Quadratic Programming (SQP)

Solve equality-constrained optimization problem:

min J(x)
xcx

s.t. c(x) = 0

where J : X R and c : X C, for some Hilbert spaces X and C, and J and c are twice
continuously Frechet differentiable. We identify the spaces X and C with their duals.

For time-dependent PDEs, X =14 x Z = x L(t) x (Z0 x

Define Lagrangian functional L:XxC R:

L(x, A) = J(x) + (À, c(x))C

zt).

If regular point x* is a local solution of the NLP, then there exists a A. E C satisfying the
first-order necessary optimality conditions:

V xJ(x*) + cx(x*)* = 0

c(x„) = 0

Denis Ridzal Parallel-in-tinne optinnization

71 Sequential Quadratic Programming (SQP)

Newton's method applied to optimality conditions:

(VxxL(xk,Ak) c.„(xk)*1 (V),./(xk)+ c.,<(xk)*Ak)
c,(xk) O) C(Xk)

If V„L(xk, Ak) is positive definite on the null space of c.,(xk), the above KKT system is necessary
and sufficient for solving the QP:

2
min —sVx,(Lyck, Ak)s, s)x + Ak), s)x

,
Ak)

sEX

s.t. cx(x0s C(Xk) = O

Denis Ridzal Parallel-in-tinne optindzation

7 Sequential Quadratic Programming (SQP)

Newton's method applied to optimality conditions:

(V,0(1-(xk,

c,(xk)
Cx(Xok)* (Sz) cx (xk)* k)

c(xk)

If VxxL(xk, Ak) is positive definite on the null space of cx(xk), the above KKT system is necessary
and sufficient for solving the QP:

min
SEA'
s.t.

(V.L(xk,)s, s)x + (Vx L(xk, Ai<). s)x + L(xk. Ak)

cx(xk)s + C(Xk) = O

Solve a sequence of nonconvex quadratic trust-region subproblems:

min ,
z
+,(V,„(L(xk,Ak)s,$)x + XL(xk, Ak), s)x + L(xio Ak)sEx

s.t. c,c(x0s + C(Xk) = O, 11511x < Ak

Possible incompatibility of constraints: Byrd-Omojokun composite-step approach.

Denis Ridzal Parallel-in-time optimization

8 Composite-step method for trust-region subproblem

o Trust-region step: sk = nk + t k

• Quasi-normal step nk:
reduces linear infeasibility

2min Ilcx(xk)r-i -Fc(x011c
nEX

5.Y. Mrillx (Ak

• Tangential step tk:
improves optimality while staying in the null
space of the linearized constraints

remix 2
n —

1
(VxxL(xk, Ak)(t nk), t + nk)x + k L(xk, Ak), t + 14) x + L(xk, Ak)

s.t. c„(xk)t= 0, Ilt+nkllx Ak

Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

Denis Ridzal Parallel-in-time optimization

cx(xk)s + c(xk) = 0

91 Composite step with iterative (matrix-free) solvers

cx(xk c(xk) = O

c„(xk)t = O c„(xk)t = O

cx(xk)s+ c(xk)= O

With matrix-free linear algebra — such as iterative linear solvers — the quasi-normal and
tangential steps are computed inexactly. This is an opportunity!

CI

Denis Ridzal Parallel-in-time optimization

10 Matrix-free trust-region SQP algorithm

cx(xk)s c(xk) =

cx(xk)t = 0

Composite step:
Sk — nk tk

• Compute quasi-normal step nk using
inexact Powell dogleg.

• Solve tangential subproblem for ik using
inexact projected Steihaug-Toint CG.

• Restore linearized feasibility, yielding
tangential step tk.

• Update Lagrange multipliers Ak+1.

• Evaluate progress.

Ridzal, Ph.D. Thesis, Rice University (2006)
Heinkenschloss, Ridzal, SIAM J. Opt. (2014)

Denis Ridmi Parallel-in-time optimization

111 Linear systems are ALL augmented constraint systems

CX(Xk)

c.x(xk) (

)

y1 2 2bl (64)
0)

• The size of (el e2) is governed by various model reduction conditions, i.e., the progress of
the optimization algorithm:

+ 11e211c func b 1 1 x,11b211c, y1 1
• These are KKT systems for the convex quadratic problems

min
1

(.311,Y1)x — (1,1, Yl)x

s.t. cx(x0y1 = b2.

&<,

• True even if the original trust-region subproblems are not convex!

Denis Ridzal Parallel-in-tinne optinnization

Time-domain decomposition

Denis Ridzal Parallel-in-time optimization

12 Time-domain decomposition

• Our approach is heavily influenced by:

• Heinkenschloss (2005), J. Comp. Appl. Math., 173:169-198.
o Comas (2006), Ph. D. Thesis, Rice University.

• Related to multiple shooting methods.

• Some potential differences:

o Take a purely algebraic view of the optimization problem.

• Introduce virtual state variables, at the discrete level, to weaken the coupling in time and
define parallelizable smoothers.

• Use a coarse-grid strategy for the full optimality system.

• Embed the approach in our nonlinear (SQP) optimization scheme.

• Make heavy use of inexact linear solvers.

o Ensure applicability to general (PDE, DAE, etc.) nonlinear systems.

o Enable reasonable software interfaces for large-scale applications.

Denis Ridzal Parallel-in-time optimization

131 Time-domain decomposition

min E ,)
subject to ui =

for i = 1, ,N

u3

to ti t2 ti

min
—1

subject to (I) ui = F(14_1, ti)
ui = vi; for i = 1,...,N

Denis Rickel optinnization

14 Discretization in space and time for Burgers

subject to

Minimize
u,z

N+1E
2

Ati_1+ Ati

(2 '

1 T
Mu' g(ti)Tui)d-

i=1

N+1E
2

+ Ati (Ce

2
z

i
Lai

i=0

(M + BAtiA)ui+i + OAtiN(u1+1) + OAtiBzi+1+

(—M + (1 — O)AtiA)u1+ (1— (9)AtiN(u0+ (1 — 0)AtiBzi o

1

Denis Ridzal Paranel-in-tinne optimization

151 Discontinuous-in-time, decoupled control

subject to

Minimize
u.z

N-I-1
Ati_i Ati (

2

1 7-
TLl•

'
MU- + g(ti)ui)

2
d-

i=1
N

EAtirzTQzi)
2 '

i=0

(M+BAtiA)ui+i OAtiN(ui+i)
(—M + (1 — 8)AtiA)u; + (1 — (9)AtiN(u;)+ AtiBzi = 0

Denis Ridzal Parallel-in-time optimization

16 Virtual state variables + coupling constraint

subject to

Minimize
u.z

N+1
Ati-1 At; (1

2
i=1

N

E ti(aziT Qzi)
i=o

(M + 8,6,t1A)ui+i + 9AtiAl(ui+i)

(—M + (1 — O)AtiA)vi + (1 — O)Ati Al(vi)+ At1E3z1

W(ui — v1)

(Li; + v1)TM(ui+ I/1) etinui Vi))±

= o
= o

Denis Ridzal Parallel-in-time optimization

171 The augmented system

Ordering: u1 vl u2 v2 Z0 Z1 Al tti A2 P2

III

Denis Ridzal Paraliel-in-tinne optimization

181 Weakly coupled optimality systems

•

•

•

•

•

•

Transforrn: ul zo 1/1 U2 Z1 /21 A2 •

•

."1
I/2 U3 Z2 p,2 A3 .

Denis Ridzal Parallel-in-tinne optiinization

191 One-timestep Jacobi

N'‘

\':
\\
\

Denis Ridzal Parallel-in-tinne optiinization

201 Two-timestep Jacobi

`
\X
\\

\
\ \

\ \
\\N

\'.

\ \•••

I

I

I

1
I

1
Denis Ridzal Parallel-in-tinne optiinization

211 Two-timestep backward Gauss-Seidel

N \ •
\\
\‘
\•,

•
\ \
•‘'‘
\

•

•
‘ \\

\ N ,

•
, \ \

1 \
• •

Denis Plaza! Parallel-in-tirne optimization

221 Two-timestep forward Gauss-Seidel

\ \ N
N\

\'‘
\

\
\ \\ _
\ N.
, \ •
1••
\ N .

\
, \ •

\
\\\

I

1
I

1
Denis Ridzal Parallel-in-tirne optimization

23 Some properties

\ N, •
•N
NN.
\ \N
\\ \ N
\\\

\
•

NN% \
\ N,

• ••••
•N\

Theorem

• The diagonal blocks can be interpreted as optimality
systems for optimization problems on the time
subdomains.

• The subdomain optimization problems are convex
QPs, regardless of the constraint equation or the
objective function.

o lf the constraint Jacobian is surjective, the
subdomain QPs are strictly convex.

o Under this (weak) assumption, the diagonal blocks
are invertible.

Denis Ridzal Parallel-in-time optimization

241 Performance as preconditioners for GMRES

o Jacobi
#ts/subdomain 1 2 4 8
LS Iter 153.2 72.7 37.3 20.3

CG lter 22 21 22 16

Opt Iter 10 10 10 5

Speeedup 0.65 0.69 0.66 0.62

o Backward Gauss-Seidel*
#ts/subdomain 1 2 4 8
LS Iter 134.3 59.3 31.3 16.8

CG lter 18 17 14 14

Opt lter 3 3 3 3

Speeedup 0.74 0.84 0.80 0.74

✓ Forward Gauss-Seidel*
#ts/subdomain 1 2 4 8

LS Iter 69.7 33.1 17.4 8.3

CG lter 14 10 9 16

Opt Iter 7 5 5 5

Speeedup 1.43 1.51 1.44 1.50

— #ts = 100, opt tol = 10-4

— LS kers averaged over the entire SQP run

o In principle, the approach works, however,

a There is no significant speedup based on
fixed- point iterations alone.

o Coarse-grid correction?

o I.e., are these methods good smoothers for
a multigrid scheme?

Denis Ridzal Parallel-in-time optimization

251 Numerical evidence for good time-domain smoothers
Initial errer Initial error

spac, 0
Time

Error after 5 POMPOM) (Side view)

0 0.2 OA OS 0.6 1 p 02 o.< nme ae 0.6 I

1p.°'

El/Welter 51180.1On. 005 WWW)

02 0.4 00 08
Time

Erre. eller 11301teretiOne (top view)

0

02

02

Error alter 5 IterellOre (011,

02 04 06 08
Time

Error after 100 iterations (top view)

04 06 OB
Time

co Start with random right-hand side.

ia Apply smoother iteratively and compute error.

ia Observation: The error is confined to the time
subdomain interfaces!

o Hajghassem, Cyr, Ridzal, A Time-Parallel Method for
the Solution of PDE-Constrained Optimization
Problems, in Center for Computing Research Summer
Proceedings 2015, Technical Report SAND2016-0830R,
Sandia National Laboratories, 2015, pp. 79-92.

Denis Ridzal Parallel-in-time optimization

251

Coarse-grid correction in time

Denis Ridzal Parallel-in-time optimization

261 Two-grid approach

o Applying as a preconditioner for GMRES.

✓ For a fine grid in time (t), we want to approximate the action of Kt-1 on a vector v, using:

— The solution with a coarse grid in time (T) operator KT;
— A smoother J-1; and
— Appropriate restriction and prolongation operators, R and P , resp.

1. Pre-smooth: x1 = J-1v.

2. Solve: KTeT = R(v — Ktx1).

3. Correct: x2 = xl + PeT.

4. Post-smooth: x3 = x2 + J-1(v — Ktx2).

5. Return x3.

Denis Ridzal Parallel-in-tinne optinnization

271 Restriction and prolongation operators

• For states and adjoints,
we define R as a
3-point average.

o For controls, we define
R as a 2-interval
average.

• For states and adjoints,
we define P via linear
interpolation.

• For controls, we define
P via injection (copy).

•
te
r •

V •

 •
••••

• • \ •

if•

;4-

1Vr
•

Denis Ridzal Parallel-in-time optimization

281 Two-grid results

• Using one-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 13.6 14.8 14.1 15.9

CG [ter 41 30 30 28

Opt !ter 6 5 6 6

Speeedup 7.35 13.5 28.4 50.3

• Using two-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 8.7 9.4 10.6 12.7

CG [ter 27 50 32 9

Opt !ter 4 6 7 4

Speeedup 5.75 10.6 18.9 31.5

• Using four-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS Iter 9.2 10.4 10.9 11.3

CG !ter 67 15 9 10

Opt !ter 7 4 3 4

Speeedup 2.72 4.85 9.17 17.7

Speedup =
#timesteps /
#ts-per-subdomain
#LS-iters /
2 (pre/post Jacobi)

/

1

Denis Ridzal Parallel-in-time optimization

281 Two-grid results

• Using one-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 13.6 14.8 14.1 15.9

CG !ter 41 30 30 28

Opt !ter 6 5 6 6

Speeedup 7.35 13.5 28.4 50.3

• Using two-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 8.7 9.4 10.6 12.7

CG !ter 27 50 32 9

Opt !ter 4 6 7 4

Speeedup 5.75 10.6 18.9 31.5

• Using four-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS Iter 9.2 10.4 10.9 11.3

CG !ter 67 15 9 10

Opt !ter 7 4 3 4

Speeedup 2.72 4.85 9.17 17.7

Speedup =
#timesteps /
#ts-per-subdomain
#LS-iters /
2 (pre/post Jacobi)

/

o Raw speedup:
50x or better! 1

Denis Ridzal Parallel-in-time optimization

281 Two-grid results

• Using one-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 13.6 14.8 14.1 15.9
CG Iter 41 30 30 28
Opt [ter 6 5 6 6
Speeedup 7.35 13.5 28.4 50.3

• Using two-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 8.7 9.4 10.6 12.7
CG [ter 27 50 32 9

Opt [ter 4 6 7 4
Speeedup 5.75 10.6 18.9 31.5

• Using four-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS [ter 9.2 10.4 10.9 11.3
CG lter 67 15 9 10
Opt Iter 7 4 3 4
Speeedup 2.72 4.85 9.17 17.7

Speedup =
#timesteps /
#ts-per-subdomain /
#LS-iters /
2 (pre/post Jacobi)

O Raw speedup:
50x or better!

O Fix 200 subdomains:
About lOx, scales.

Denis Ridzal Parallel-in-time optimization

281 Two-grid results

• Using one-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 13.6 14.8 14.1 15.9
CG Iter 41 30 30 28
Opt !ter 6 5 6 6
Speeedup 7.35 13.5 28.4 50.3

• Using two-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS !ter 8.7 9.4 10.6 12.7

CG [ter 27 50 32 9

Opt [ter 4 6 7 4
Speeedup 5.75 10.6 18.9 31.5

• Using four-timestep Jacobi as the smoother:

time steps 200 400 800 1600

LS [ter 9.2 10.4 10.9 11.3

CG lter 67 15 9 10
Opt Iter 7 4 3 4
Speeedup 2.72 4.85 9.17 17.7

Speedup =
#timesteps /
#ts-per-subdomain /
#LS-iters /
2 (pre/post Jacobi)

O Raw speedup:
50x or better!

O Fix 200 subdomains:
About lOx, scales.

o Fix 400 subdomains:
About 20x, scales.

Denis Ridzal Parallel-in-time optimization

291 Very coarse solver tolerances

1 0

- 8

O

I ± I o.

- +
- o
o

**- *
* *

*

iF

•

♦

10

❑

*

*

20 30 40 50
linear solver calls

red squares denote quasi-normal step computations

red asterisks correspond to the first STCG iterations

blue asterisks denote the subsequent STCG iterations

black crosses correspond to tangential step computations

green circles denote Lagrange multiplier computations

60 70 80

th-0.64

Denis Ridzal Parallel-in-tinne optimization

301 Very coarse solver tolerances are important!
o Using two-timestep Jacobi, max tol = 0.9:

time steps 200 400 800 1600

LS her 8.7 9.4 10.6 12.7
CG !ter 27 50 32 9

Opt !ter 4 6 7 4
Speeedup 5.75 10.6 18.9 31.5

a Using two-timestep Jacobi, max tol = 10-2:

time steps 200 400 800 1600

LS !ter 21.0 22.2 22.1 22.0
CG !ter 14 14 14 14
Opt [ter 3 3 3 3
Speeedup 2.38 4.50 9.05 18.2

• Using two-timestep Jacobi, max tol = 10-8:

time steps 200 400 800 1600

LS Iter 53.8 58.6 64.0 64.0
CG !ter 14 14 14 13
Opt !ter 3 3 3 3
Speeedup 0.93 1.71 3.13 6.16

o Tighter tolerances may give slightly better
convergence of the optimization loop.

o Typically not needed.

a We observe fast superlinear convergence
even with max tol = 0.9.

o Keep the linear solver tolerances coarse!

Denis Ridzal Parallel-in-time optimization

301

Future work

I
u,

1

I
1

I
,
I

Denis Ridzal Parallel-in-time optimization

31_ Future work
• Improve two-grid scheme; extend two-grid to multigrid.

• Research 1: Theoretical understanding of the scaling.

• Research 2: Prolongation and restriction operators.

• Research 3: Smoother improvements, inexact smoothers.

o Research 4: Subdomain / coarse-grid KKT solvers.
o Serial Schur-complement approaches (Rees/Dollar/Wathen/Stoll) appear to work well; a

handful of iterations of forward/adjoint solves.

• Research 5: Balancing storage requirements with raw speedup.
o Amortizing precomputations; memory hierarchies, memory access; compression and

checkpointing.

• Developing a comprehensive performance model.

• Implementation in the Rapid Optimization Library (RIK) .

o More interesting physics: Navier-Stokes, coupled fluid/Maxwell's systems, DAE systems
such as power networks and electric circuits.

Denis Ridzal Parallel-in-tinne optimization

