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Particle receiver development has led to the ()i
need for an sCO,-to-particle heat exchanger

= Particle-based CSP plants enable Particle Inlet

sCO, Outlet
the use of sCO, power cycles

700°C

= Multiple particle receivers have
been demonstrated at the
megawatt scale

= Minimal work has been A%
conducted on particle-to-sCO, SCO, Inlet
heat exchangers

l Particle Outlet

570°C
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Moving Packed-Bed Heat Exchanger ) e
Geometry

ParticIeOInIet Moving Packed-Bed sCO, Flow Configuration
775°C g sCO, Outlet Particle Flow

700°C - |
7 T 7

Particle Outlet
570°C

= Constructed from multiple cross-flow banks arranged in a

counter-flow configuration i




Multibank approach allows for particle heat ()i
transfer enhancement

Multiple Banks with

Moving Packed-Bed

Offset Plates Particle Flow

= Multibank configuration allows for cross-channel mixing and
multiple thermal entries
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= Develop and test 100kW,, prototype particle-to-sCO, heat

exchanger
8




100 kW, heat exchanger and sCO, flow loop ()i,
integrated with falling particle receiver module
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= Heat Exchanger to be commissioned in late summer 2018 9
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Moving Packed-Bed Heat Transfer Modeling
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Correlations required to
predicted thermal resistance in
near-wall region

Thermal transport in particle
packed bed is characterized with
bulk effective thermal
conductivity

Couple particle and sCO, domain
temperature profiles




Contributions to Effective Packed-Bed
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Packed-bed thermal conductivity rises with temperature due to increased
conductivity of the gas phase and radiation contributions

Particle diameter has a large impact on thermal conductivity at elevated

temperature due to radiation

of correlations to model the packing structure and effective
thermal conductivity in packed beds of mono-sized spherical
particles," Nuclear Engineering and Design, vol. 240, no. 7, pp.
1803-1818, 2010.
st e e e ————— e ——— e

W. van Antwerpen, C. G. du Toit and P. G. Rousseau, "A review
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Particle packing in the near-wall region i)
increases thermal resistance

(1-¢,)(0.7293+0.5139Y)

Py = 1+Y
R " dp
T2k

J. M. Botterill and A. O. Denloye, "A Theoretical Model of Heat
VA d Transfer to a Packed or Quiescent Fluidized Bed," Chemical
P Engineering Science, vol. 33, no. 4, pp. 509-515, 1978.

= Particle packing in near wall region results in high void
fractions and reduced effective thermal conductivity

= Resistance is considered to be % particle diameter

13




2-D Single Component Continuum Modeling (@) &=,

Approach - i
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= Does not capture cross/counter flow limitations or plate geometry
14




CFD Codes with closure relationships can be used

to predict overall heat transfer coefficient

Flow
Configuration

Particle
(775°C)

(550°C)

= CFD proved to be too computationally intensive for large parametric

studies
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= Model is still useful for prototype design, thermomechanical analysis and

transient simulation

15




Simplified modeling methodology for i) deo
parametric studies 775°C

\ 700°C
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= Effectiveness-NTU correlations to capture flow configuration
= Correlations for particle-wall and sCO,-wall convection coefficient

= Link bank inlets and outlets in counter-flow configuration 16
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= Heat Exchanger Design Considerations
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Increasing the number of plate banks

improves the overall heat transfer coefficient
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= |ncreasing the number of cross-flow banks allows for more
cross-channel mixing to increase particle side heat transfer

= |ncreased pressure drop results from additional banks with
fixed sCO, channel geometry 18




Comparison of palate banks with constant ()&=,
sCO, pressure drop
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= Constant sCO, pressure drop reduces the overall heat transfer
coefficient improvement from increasing number of banks
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Influence of Particle Size and Plate Spacing
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= Smaller channel width improve heat transfer due to shorter
heat diffusion lengths

= Smaller particle diameters are favored in smaller channels

due to particle-wall contact resistance becoming limiting 20
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Primary Heat Exchanger Cost Considerations
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= Performance, operating conditions, and cost targets determine allowable cost of
heat transfer surface area

= SunShot 2020 cost targets for power cycle heat addition are $150/kW,, which
requires heat transfer surface area below $2400/m?

= Full technoeconomic analysis needed to optimize operating conditions and full
plant design 21
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Conclusion )

= Avenues for improving moving packed-bed heat exchanger
performance identified
= Plate spacing reduction, corresponding particle size reduction, and
increased number of banks
= Average particle-wall heat transfer coefficients approaching
400 W/m?-K are possible with channel dimensions of 4 mm

= Coupled technoeconomic study with predictive models of
moving packed-bed heat exchanger and falling particle
receiver is needed

= Future work:

= Heat exchanger 100 kW prototype will be commissioned in August
and allow for model validation

= Particle size distribution for reduced near wall thermal resistance
22
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Plate Geometry

Overall Heat Transfer Coefficient (W/m?-K)
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