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Particle receiver development has led to the
need for an sCO2-to-particle heat exchanger

• Particle-based CSP plants enable
the use of sCO2 power cycles

• Multiple particle receivers have
been demonstrated at the
megawatt scale

• Minimal work has been
conducted on particle-to-sCO2
heat exchangers
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Moving Packed-Bed Heat Exchanger

Geometry
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sCO2 Flow Configuration

• Constructed from multiple cross-flow banks arranged in a
counter-flow configuration
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Moving Packed-Bed
Particle Flow

Multibank approach allows for particle heat
transfer enhancement

Multiple Banks with

Offset Plates

1

• Multibank configuration allows for cross-channel mixing and
multiple thermal entries
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Objective
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• Develop and test 100kWth prototype particle-to-sCO2 heat

exchanger
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100 kWt heat exchanger and sCO2 flow loop
integrated with falling particle receiver module

■ Heat Exchanger to be commissioned in late summer 2018
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Moving Packed-Bed Heat Transfer Modeling
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• Correlations required to
predicted thermal resistance in
near-wall region

• Thermal transport in particle
packed bed is characterized with
bulk effective thermal
conductivity

• Couple particle and sCO2 domain
temperature profiles
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Contributions to Effective Packed-Bed

Thermal Conductivity
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• Packed-bed thermal conductivity rises with temperature due to increased

conductivity of the gas phase and radiation contributions

• Particle diameter has a large impact on thermal conductivity at elevated

temperature due to radiation W. van Antwerpen, C. G. du Toit and P. G. Rousseau, "A review
of correlations to model the packing structure and effective
thermal conductivity in packed beds of mono-sized spherical
particles," Nuclear Engineering and Design, vol. 240, no. 7, pp.
1803-1818, 2010. 12



Particle packing in the near-wall region
increases thermal resistance

1/2 d p

Og,nw

(1 Og 0.7293 + 0.5139Y)

=
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dP 
2keff

J. M. Botterill and A. O. Denloye, "A Theoretical Model of Heat
Transfer to a Packed or Quiescent Fluidized Bed," Chemical
Engineering Science, vol. 33, no. 4, pp. 509-515, 1978.

• Particle packing in near wall region results in high void
fractions and reduced effective thermal conductivity

• Resistance is considered to be 1/2 particle diameter

Sandia
National
Laboratories

13



2-D Single Component Continuum Modeling

Approach
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• Does not capture cross/counter flow limitations or plate geometry
14



CFD Codes with closure relationships can be used
to predict overall heat transfer coefficient

Flow
Configuration
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• CFD proved to be too computationally intensive for large parametric
studies

• Model is still useful for prototype design, thermomechanical analysis and
transient simulation
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Simplified modeling methodology for
parametric studies 775°C
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• Effectiveness-NTU correlations to capture flow configuration

• Correlations for particle-wall and sCO2-wall convection coefficient

• Link bank inlets and outlets in counter-flow configuration
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Increasing the number of plate banks
improves the overall heat transfer coefficient
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• Increasing the number of cross-flow banks allows for more
cross-channel mixing to increase particle side heat transfer

• Increased pressure drop results from additional banks with
fixed sCO2 channel geometry
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Comparison of palate banks with constant
sCO2 pressure drop
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• Constant sCO2 pressure drop reduces the overall heat transfer
coefficient improvement from increasing number of banks
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Influence of Particle Size and Plate Spacing
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• Smaller channel width improve heat transfer due to shorter
heat diffusion lengths

• Smaller particle diameters are favored in smaller channels
due to particle-wall contact resistance becoming limiting
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Primary Heat Exchanger Cost Considerations
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• Performance, operating conditions, and cost targets determine allowable cost of
heat transfer surface area

• SunShot 2020 cost targets for power cycle heat addition are $150/kWt, which
requires heat transfer surface area below $2400/m2

• Full technoeconomic analysis needed to optimize operating conditions and full
plant design
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Conclusion

■ Avenues for improving moving packed-bed heat exchanger
performance identified

■ Plate spacing reduction, corresponding particle size reduction, and
increased number of banks

■ Average particle-wall heat transfer coefficients approaching
400 W/m2-K are possible with channel dimensions of 4 mm

■ Coupled technoeconomic study with predictive models of
moving packed-bed heat exchanger and falling particle
receiver is needed

■ Future work:

■ Heat exchanger 100 kW prototype will be commissioned in August
and allow for model validation

■ Particle size distribution for reduced near wall thermal resistance
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Plate Geometry
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