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Flow Regimes in Frictional Granular Materials
Forterre and Pouliquen, Ann. Rev. Flu. Mech., 40 (2008)
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Key aspects analyzed:

• Dynamics of a granular material near the phase transition
between flowing and arrest

• Three-dimensional rheology in the flowing state
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Stress Boundary Conditions: Granular RVE
second Piola-Kirchhoff stress
(thermodynamic tension)

[0 T 0

°0 O 0 Parinello-Rahman dynamics
isenthalpic-isotension ensemble

• fully periodic with no surface
effects

• uniform boundary stress state
• homogenous boundary

deformation
• stable during jamming and

finite-rate flows

Macroscopic 
Observables:
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volume fraction: (t)

accumulated strain (3D): € (t)

instantaneous strain rate (3D): €(t)

internal stress (3D): a (t)



Constant Shear Stress and Pressure Simulations

initial low-density assembly: Ch = 0.05

harmonic contacts

applied stress
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Strain-rate Evolution:

Arrest (creep) vs. Steady Flow
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shear rate

: :0.5 Ÿyi Pyij

Steady Flow:
• constant strain rates at long times
• strain rate is shear stress dependent

(monotonically increasing)

Arrest/Creep:
• orders of magnitude drop in strain rate

during creep towards an arrested state



Steady-State Flow-Arrest Phase Diagram
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Steady Flow:
• significant dilation as shear stress is

increased for all microscopic friction
• static yield stress strongly depends

on microscopic friction (increases)

Arrest/Creep:
• shear-arrested states show increased

compaction as the flow-arrest phase
boundary is approached

• relative magnitude of compaction
increases with increasing microscopic
friction



Steady-State Flow-Arrest Phase Diagram:

Critical Points

ORCP

ORLI"

Cee0,0e)

shear-arrested

'Ta

Pa

P
>

Ta [Ta

a Pa

0.4

0.3

0.2

0.1

critical state theory: 0.37

o

o o

-o

❑ u

0.64

"*?

_ 6 ), 
0.62

0.60

0.58
(Pc, 0c)CS

10-3 10-2 10-1. 100 i()[
its

-o
o o

o

o
o
o
o
o

critical state theory: 0.59

10-3

RCP

❑

1

Sandia
National
Laboratories



Flow-Arrest Phase Transition: Power-law Scaliriffiitiola.=.
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• power law scaling enables precise
computation of the critical yield stress

• time to arrest below yield diverges at the
critical yield stress as a power law

• sensitivity of the arrest time to the distance
to critical yield stress increases with
decreasing microscopic friction



Arrest Times Distribution
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applied stress:

distance from yield stress

p,"Mii1O-3, 10-1
microscopic friction

/1=0.051 0.5

• long-tailed distribution:

generalized Gamma distribution

• large variance near critical yield stress

• variance more sensitive to shear for

smaller microscopic friction: could be

because of increased fluctuations

(noise) at particle-particle contacts

(DeGiuli and Wyart, PNAS 2017)
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A  ii)(t) f fiAuids ai3 dVf 3 (Aui) 
F J V aXti

change in kinetic energy

Arrest (Jammed):

Yielding:

boundary traction work second order work (constitutive)

ILA/aids= I',
fr f,AuidS > fv

a 
0 (Au,) 

dV,,)
.1 axi

D (Aui) dV
axi

equilibrium: balance of internal and external
stress

rapid increase in kinetic energy: imbalance of
internal and external stresses

Nicot et. al., lJP, 29 (2012)

Hill, J. Mech. Phys. Sol., 6, 1958



Steady State Flow: Rheology

0.5

0.4

0.3

0.2

0.1

0.0 
0 0.02 0.04 0.06

I

0.08 0.1

creasing
iction

0.12

0.4

0.3

'')
0.2

0.1

Sandia
National
Laboratories

la — ladl/kV2

I = Kld/Vp/p
Jop et. al., Nature, 441, 2008
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Steady State Flow: Dilation
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Steady State Flow: Normal Stress Differences
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• although granular materials dilate to flow, they're incompressible in steady state
• rheology, however, can not be described by a shear viscosity function alone
• systematic variations in the two normal stress differences are observed
• is this an example of viscometric flow characterized by viscosity and normal stress difference functions?
• need to check co-axiality/co-directionality of the flows to probe any non-viscometric behavior
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• a homogenous stress-based method enables probing flow-arrest transition and three-dimensional granular rheology

• power-law divergence at the transition and critical phase transition line is identified; shows correspondence with
known results from soil mechanics and jamming literature

• granular rheology (three-dimensional) is more complicated than predicted by \mu(l) rheology; existence of normal
stress difference functions indicate possibility of viscometric flows

Future Work

• subject frictional granular materials to more complex stress loading paths to predict 3D rheology; check for non-
viscometric flows

Ishan Srivastava: isriva@sandia.gov


