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Flow Regimes in Frictional Granular Materials @&,
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Key aspects analyzed:
* Dynamics of a granular material near the phase transition ) .
btheen rowirg1g and arrest P rate-independent Bingham-type Bagnold
quasi-static; visco-plastic regime;
* Three-dimensional rheology in the flowing state yield surface concept rheology kinetic

theories



Stress Boundary Conditions: Granular RVE ) e,

second Piola-Kirchhoff stress
(thermodynamic tension)
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0 0 'ﬂ Parinello-Rahman dynamics Macroscopic
isenthalpic-isotension ensemble Observables:
volume fraction: ¢(t)
* fully periodic with no surface ) . ( )
offects accumulated strain (3D): € t
* uniform boundary stress state
* homogenous boundary instantaneous strain rate (3D): E(t)

deformation
* stable during jamming and

finite-rate flows internal stress (3D): U(t)
—




Constant Shear Stress and Pressure Simulations@ &=
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Strain-rate Evolution:
Arrest (creep) vs. Steady Flow
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Steady Flow:

* constant strain rates at long times

* strain rate is shear stress dependent
(monotonically increasing)

Arrest/Creep:
* orders of magnitude drop in strain rate
during creep towards an arrested state



Steady-State Flow-Arrest Phase Diagram ) i,
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filled symbols: flowing 1 _
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Steady-State Flow-Arrest Phase Diagram: i
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Flow-Arrest Phase Transition: Power-law Scalingy &=..
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* power law scaling enables precise
computation of the critical yield stress
* time to arrest below yield diverges at the
igh critical yield stress as a power law

000 005 010 015 020 025 030 035 * sensitivity of the arrest time to the distance

macroscopic friction to critical yield stress increases with

_ _ decreasing microscopic friction
averaged over 100 simulations



Arrest Times Distribution

100 high friction low friction
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applied stress:
distance from yield stress

He — b= 10_37 10_1

microscopic friction

1 = 0.05,0.5

long-tailed distribution:

generalized Gamma distribution

large variance near critical yield stress
variance more sensitive to shear for
smaller microscopic friction: could be
because of increased fluctuations
(noise) at particle-particle contacts
(DeGiuli and Wyart, PNAS 2017)



Stress States at Yielding and Flow )
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Nicot et. al., IJP, 29 (2012)
Hill, J. Mech. Phys. Sol., 6, 1958



Steady State Flow: Rheology
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Steady State Flow: Dilation ) ..
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Steady State Flow: Normal Stress Differences @&,
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although granular materials dilate to flow, they’re incompressible in steady state

rheology, however, can not be described by a shear viscosity function alone

systematic variations in the two normal stress differences are observed

is this an example of viscometric flow characterized by viscosity and normal stress difference functions?
need to check co-axiality/co-directionality of the flows to probe any non-viscometric behavior
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Conclusions

* a homogenous stress-based method enables probing flow-arrest transition and three-dimensional granular rheology

* power-law divergence at the transition and critical phase transition line is identified; shows correspondence with
known results from soil mechanics and jamming literature

» granular rheology (three-dimensional) is more complicated than predicted by \mu(l) rheology; existence of normal
stress difference functions indicate possibility of viscometric flows

Future Work

* subject frictional granular materials to more complex stress loading paths to predict 3D rheology; check for non-
viscometric flows
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