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Introduction &)

= Next-generation supercritical
CO, (sCO2) Brayton power
cycles are being pursued

= >50% thermal-to-electric
efficiency

= Need sC0O2 > 700 °C at 220 MPa

= Would like renewable energy
heat source for sCO2 cycle

= Current state-of-the-art CSP
cannot meet high
temperatures; molten nitrate
salt decomposes at ~600 °C

Particle elevator

= Use solid particles as heat-
transfer and storage medium



CSP and sCO2 Brayton Cycle )i

“A Good Match”
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E> At a solar concentration ratio of ~1000, ideal temperature for CSP system
matches desired turbine inlet temperature for sCO2 cycle (~700 °C)




Problem Statement =

" Particle-to-sCO2 heat #t
exchangers do not exist 7
= sCO22>700°Cat=20MPa R NI N N T HEhT | LowT gl

Storage Recuperator Recuperator

Heliostat Field

u Ch d I | e nges Solarized sCO2 recompression Brayton cycle

= Particle-side heat transfer

= Thermomechanical stresses

= Materials

= High operating temperatures and
pressures

= Erosion

= Costs



Objectives W=

= Evaluate alternative particle heat exchanger designs that can heat
sCO2 to 700 °C at 20 MPa for 100 kW prototype
= Define design criteria
= Use quantitative Analytical Hierarchy Process
=  Construct and integrate final design with Sandia’s falling particle system

Heat Exchanger Advantages Disadvantages

Fluidized Bed High heallt-.transfer Energy anc;l mass loss
coefficients from fluidization
Moving packed bed Gravity-fed particle Low particle-side heat
(shell/tube) flow; low erosion transfer

High potential surface
area for particle
contact; low erosion

Moving packed bed
(shell/plate)

Requires diffusion-
bonding of plates
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Design Criteria =

Cost Want low cost of prototype and larger scale systems (< $150/kW,)

EETRNEL IS RO (A (8 \Want large overall heat transfer coefficient (>100 W/m?2-K)

Want maximum allowable working pressure > 20 MPa at minimum

SUEUE el ) design metal temperature of 750 C; long-term reliability

Manufacturability Want ease of manufacturing and demonstrated ability to build
EICE W CE T HCELT-E0 \Want low power requirements, pressure drop, and heat losses

Scalability Need to be able to scale up to ~20 MW, thermal duty

Compatibility Can be readily integrated with particle receiver and sCO2 flow loop

. . Want to minimize thinning of walls and tubes from particle and sCO2
Erosion & Corrosion _ e
flow; need to ensure 30 year lifetime

Transient Operation Want to minimize transient start-up and impact of thermal stresses

Want ability to inspect internals of the heat exchanger to evaluate

Inspection Ease : : .
corrosion, erosion, fatigue, etc.
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Analytical Hierarchy Process () i,

|dentify a goal
ldentify criteria to achieve goal and weight criteria
Define alternative designs or options to achieve goal

= 2 I =

For each criterion, perform pairwise comparison of
each design option

5. Obtain a final score for each design option

E> A team of researchers and heat-exchanger vendors independently
assigned ratings to each pair of criteria and to each pair of design options
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Pairwise Ratings of Design Criteria
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Cost 100 | 050 | 0.50 | 1.00 | 3.00 | 1.00 | 2.00 | 2.00 | 3.00 | 5.00
Heat Transfer Coefficient| 2.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 3.00 | 2.00 | 3.00 | 5.00

Structural Reliability 200 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 2.00 | 1.00 | 2.00 | 4.00
Manufacturability 1.00 | 0.50 | 050 | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 2.00 | 4.00
Parasitics & Heat Losses | 0.33 | 0.50 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 2.00 | 4.00
Scalability 1.00 | 0.50 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00 [ 2.00 | 2.00 | 4.00
Compatibility 0.50 0.33 0.50 0.50 0.50 1.00 1.00 | 0.50 | 2.00 | 3.00
Erosion & Corrosion 050 | 0.50 | 1.00 | 1.00 | 1.00 | 0.50 | 2.00 | 1.00 | 2.00 | 4.00
Transient Operation 0.33 | 0.33 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 1.00 | 3.00
Inspection Ease 0.20 0.20 | 0.25 0.25 0.25 0.25 0.33 0.25 0.33 1.00
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Pairwise Ratings of Design Criteria and @&,
Options

Criteria Weightings
=1/5 (or 0.2): Extremely worse (less important)
= 1/4 (or 0.25): Significantly worse (less important)
= 1/3: Moderately worse (less important)
=1/2 (or 0.5): Slightly worse (less important)
= 1: Equal (equally important)
= 2: Slightly better (more important)
= 3: Moderately better (more important)
= 4: Significantly better (more important)
= 5: Extremely better (more important)
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Final Criteria Weightings @
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Final weighted scores for each design
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Fluidized Bed

Shell-and-Tube

Shell-and-Plate

Cost - : :
Design Final Weighted Score
Inspection Ease et Tremster Fluidized Bed
P Coefficient
Shell-and-Tube
Transient Structural Shell-and-Plate U
Operation Reliability
Er05|or'\ = Manufacturability
Corrosion
E> Shell-and-plate
Compatibility Parasitics & Heat was selected for
LoRReS final design and
labili
Scalability procurement

—Fluidized Bed —Shell-and-Tube ——Shell-and-Plate _
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Shell-and-Plate Final Design () i,

Flow Particle sCO,
Configuration Temperature Temperature
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Measured performance of bench-scale @&,
system
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Albrecht and Ho (2017)

IZ> Measured particle/wall heat transfer coefficients ~200 W/m2-K
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Integrated System

High
temperature
Olds elevator

Top hopper

Water-
cooled flux
target

|

~12m

|

High-pressure
sCO, flow
loop (under
construction)

Cavity receiver

Bottom
hopper

Particle-to-
sCO, heat
exchanger
(under
construction)

Low
temperature
bucket

elevator

Particle receiver testing at the
National Solar Thermal Test Facility at
Sandia National Laboratories,
Albuquerque, NM

High-Temperature Particle Receiver

Solex/VPE particle/sCO2
shell-and-plate heat
exchanger

¢ Heat duty = 100 kW

¢ Tparticle,in = 775°C
¢ Tparticle,out =570 °C

* Tecoain =550 °C
* Ticoz,0ut=700°C

S

* m=0.5kg/s

Preheater

Pump
\

\

— |
Water cooler Recuperator

sCO, flow system provides pressurized sCO, at 550 °C

to heat exchanger for test and evaluation




=

Summary

= Analytical Hierarchy Process was used to quantitatively evaluate
alternative particle-to-sCO2 heat exchangers
® Fluidized bed

= Shell-and-tube moving packed bed
= Shell-and-plate moving packed bed

= Design criteria were defined and pairwise ratings were performed
for each criteria and design option

= The shell-and-plate design was selected and is being procured for
integration with Sandia’s particle test loop and sCO2 flow system




Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov




Cost Criterion =

Cumulative probability of meeting total power-block

100% -
0% budget of $900/kWe as a function of heat exchanger cost
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E> 50% probability of meeting total power block cost with heat exchanger
cost of ~$300/kW,, or ~$150/kW,
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