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ABSTRACT
Torque feedback control and series elastic actuators are

widely used to enable compact, highly-geared electric motors to
provide low and controllable mechanical impedance. While
these approaches provide certain benefits for control, their
impact on system energy consumption is not widely understood.
This paper presents a model for examining the energy
consumption of drivetrains implementing various target dynamic
behaviors in the presence of gear reductions and torque feedback.
Analysis of this model reveals that under cyclical motions for
many conditions, increasing the gear ratio results in greater
energy loss. A similar model is presented for series elastic
actuators and used to determine the energy consequences of
various spring stiffness values. Both models enable the
computation and optimization of power based on specific
hardware manifestations, and illustrate how energy consumption
sometimes defies conventional best-practices. Results of
evaluating these two topologies as part of a drivetrain design
optimization for two energy-efficient electrically driven
humanoids are summarized. The model presented enables robot
designers to predict the energy consequences of gearing and
series elasticity for future robot designs, helping to avoid
substantial energy sinks that may be inadvertently introduced if
these issues are not properly analyzed.

INTRODUCTION
Torque feedback control and series elastic actuators (SEAs),

used together or independently, are popular strategies for
facilitating physical interaction using high-impedance actuators
(e.g. servo-hydraulic or highly-geared electromagnetic). In
torque feedback control, the output torque (or force) is measured
at or near the point of interaction with the environment, and used
as part of a feedback control scheme to regulate either the torque
output [1], or the relationship between torque and motion at the
point of interaction (the mechanical impedance) [2]. By feeding
back the output torque, a drivetrain (actuator and transmission)
with high intrinsic impedance (large friction and reflected
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inertia) may be made to appear to have low impedance. SEA's
use an elastic element in series between a drivetrain and the
environment. The elastic element allows a position-controlled
actuator to effectively control output torque by servo-controlling
spring deflection, while also mitigating impact shock [3]. Both
approaches are theoretically compatible with large gear ratios,
meaning that large torques may be drawn from compact motors.

FIGURE 1. WANDERER (L) AND STEPPR (R) ENERGY-
EFFICIENT HUMANOID ROBOTS.

The use of these approaches stems from the need to render
controllable impedance or directly control torque to enable
interactions between a robotic system and an environment.
Common applications include physically-interactive
manipulation (e.g. exoskeletal and rehabilitative devices,
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prosthetics, and assembly robots) and dynamic legged
locomotion. In these manipulation tasks (e.g. see [4-6]), there is
frequently a need to render highly variable virtual environments,
e.g. virtual walls that require both near-zero impedance and very
stiff behavior. For legged robots, torque or impedance control is
generally needed to implement reactive walking schemes,
manage ground contact transitions, and perform behaviors that
are not strictly trajectory-based such as walking robustly over
small unmodeled obstacles. A number of recent humanoid bipeds
use SEA's [7-9].

A well-known drawback of torque feedback is that it can
induce coupled instability, particularly when in contact with stiff
environments [10]. The instability stems from attempting to
reduce the apparent inertia below the level of the actual physical
system by using a non-collocated actuator and torque sensor, and
is independent of the details of the control implementation.
Natural admittance control (NAC) allows friction to be
suppressed while mitigating instability by ensuring that the full
inertia of the physical system is felt at the point of interaction
[11]. This, however, limits the torque control quality; pure torque
control requires zero impedance (zero inertia and friction).
SEA's usually incorporate a torque feedback scheme, and can

improve coupled stability by effectively limiting the stiffness of
the interaction with the environment to that of the elastic
element. This is particularly effective if damping across the
elastic element is tailored appropriately to absorb the energy that
might destabilize interaction [12]. A clear disadvantage is
reduced high-frequency bandwidth. Sometimes cited (e.g. see
[3]), but seldom explored in depth (outside of particular
applications such as hopping), is the potential for compliant SEA
elements to save net energy by advantageously storing and
releasing energy during robot behaviors. For mobile robots in
particular (and especially legged robots, which are generally
very inefficient), energy efficiency is very important as it
translates into mission duration and range.

In this paper we analyze the energy implications of using high-
impedance drivetrains with torque feedback and SEA's. We
identify the conditions under which these approaches save and
cost energy. We focus on the energy impact of compensating for
increased gear reductions (which enable the use of smaller
motors) with feedback, and of tailoring SEA stiffness for
different target behaviors. This analysis reveals that these
approaches sometimes come with a substantial energy penalty.
Therefore, mobile robot designers should carefully consider
energy issues when considering these drivetrain architectures.
Previous works have assessed the energetic impact of series
elasticity by comparing it with parallel elastic elements [13-17].
A primary outcome is that series elastic actuators can save
energy, but the savings are narrowly focused within specific
operating frequency or speed bounds [13-15]. Prior experimental
work has demonstrated that electrical power consumption can
increase dramatically when operating beyond the passive SEA
bandwidth [9]. Other relevant work has focused on examining
the role of physical models on predictions for geared electric
motor consumption [18] and the optimization of motor and
gearing parameters for a specific task based on energy and

bandwidth [19]. The role that torque feedback control and the
tailoring of motor size and gear ratio play in determining energy
consumption remains unclear. Clarifying this is the goal of the
work presented herein.

In this paper we analyze a model for torque feedback control
and consider the energy implications of using feedback to
compensate for differences between the intrinsic physical system
impedance and the desired endpoint behavior. Subsequently we
include series elastic components and evaluate the impact of
spring stiffness on energy consumption. We summarize relevant
results of design optimizations for energy efficient legged
humanoid robots (Fig. 1) in which the energy impact of series
elasticity is explored for a variety of robot leg trajectories.
Finally, we provide discussion and conclusions.

NOMENCLATURE
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Rotational damping coefficient, gear output (Nms/rad)
Rotational damping coefficient, motor (Nms/rad)
Rotational damping coefficient, output link (Nms/rad)
Total drivetrain rot. damping coefficient (Nms/rad)
cos cot
Motor coil height (m)
Motor current (A)
Desired control moment of inertia (Nms2/rad)
Moment of inertia, gear output (Nms2/rad)
Moment of inertia, motor (Nms2/rad)
Moment of inertia, output link (Nms2/rad)
Total drivetrain moment of inertia (Nms2/rad)
Desired control stiffness (Nm/rad)

Motor constant (Nm/VIN)
Series elastic element coefficient (Nm/rad)
Motor torque constant (Nm/A)
Gear reduction ratio
Frequency of cyclic motion (rad/s)
Power applied to motor ( W)
Motor resistance (0)
Laplace variable
sin cot
Motor torque (Nm)
Applied load torque at output (Nm)
Rotation angle (rad)
Angular velocity (rad/s)
Angular acceleration (rad/s2)
Rotation angle of gear output stage (rad)
Angular velocity of gear output stage (rad/s)
Angular acceleration of gear output stage (rad/s2)
Rotation angle of output link (rad)
Angular velocity of output link (rad/s)
Angular acceleration of output link (rad/s2)
Motor coil width (m)

2 Copyright © 2018 by ASME



ENERGY ANALYSIS OF TORQUE FEEDBACK
CONTROL

In this section we develop and analyze a model for energy
consumption for geared electric motor-based drivetrains that use
endpoint torque feedback. This energy-focused model enables
analytical and rapid evaluation of the interplay between
increasing the gear ratio (generally done to enable the use of
lower-torque, smaller / lighter motors) and the energy expended
using torque feedback to achieve desired endpoint behavior.

Power Consumption Model
The model, shown in Fig. 2, includes a rotary motor driving

an output stage link through a gear reduction with ratio N. Output
torque To is applied to the geared output, which has inertia JG and
linear rotational damping coefficient BG. The motor has inertia
JM, damping BM, resistance RM, torque constant Kr, motor
constant Km, and produces torque TM via current M. Transmission
backlash, while important for control, does not fundamentally
affect energy consumption and is ignored.

The mechanical dynamics in the link frame are:

JT° BTO = NTM + TO (1)

where the total apparent inertia and damping at the output are:

JT = JG + N2J1,4 and BT = BG + N2Bm (2)

FIGURE 2. MODEL OF RIGID ROTARY LINK DRIVEN BY
GEARED ROTARY MOTOR.

To achieve an arbitrary output torque To, regardless of control
implementation, Tm must approach the following:

, BT A TOTm = iT —N
A -r —17 --N

A simple electromechanical model for the motor is:

(3)

TM = Ktlm; Km = Kt/ Xi (4)

The power to the motor includes joule heating (FR) losses as
well as the mechanical output:

Pm = IkRm + NTm0 (5)

Substituting (1), (3), and (4) into (5) produces:

2

Pm = + 0 - 
\ 
+ (JO + BT0 — to)0 (6)KmN KmN KmN

Substituting (2) and rearranging produces:

N , 1 . )12
Pm ={1Tri Um8 + BO) IcAlUGB + BG9 To)

+11G9 + BO) + N2(Im0 + Bmo) — To]O (7)

Equation (7) is a general expression for motor power,
regardless of output behavior. The first bracketed term represents
the FR losses that result from the production of torque via
current; the first interior term represents power spent
overcoming motor dynamics, and the second is power to
overcome link dynamics and produce the desired output. The
second bracketed term is the mechanical power, which similarly
includes elements to move the motor, the link, and produce
output torque.

Scaling with Gear Ratio and Motor Size
Aggressive gearing is frequently used in robotics to increase

the torque output from smaller motors. In the model in Fig. 2, we
are interested in the effect of increasing N, simultaneously
shrinking the motor to achieve a specified maximum output
torque, and then closing a feedback control loop around output
torque to achieve the desired output. To analyze this requires a
model of how electric motor parameters scale with the motor's
output torque capacity. One simplified way to model this is to
consider a rotary motor with windings contained in a cylinder of
height h. The individual windings are approximately rectangular
with width w, as shown in Fig. 3. If other aspects of the motor
design are kept constant, and any torque generated by the
winding end turns is neglected, the motor torque capacity (and
Kt) may be considered proportional to h. JM and Bm may also be
approximated as proportional to h. Because the wire coils change
in length with h but not in their width, Rm changes with h in a
way that depends on motor geometry. If the width of the coils is
neglected, then the total wire length increases in proportion to h,
and RM is proportional to h. In actuality, Rm scales more weakly
with h. For the analysis that follows, we assume that Rm changes
proportionally with h, which means that Km is proportional to
h° 5. This assumption is most energetically favorable to the
common approach of using aggressive gear reductions and small
motors; if RA,/ is more weakly dependent on h, then Km scales
more strongly with h, and the results that follow become less
favorable to gearing. For specific design cases, the relationships
between motor parameters may be derived from actual candidate
motors.
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When N is varied around an operating point, the motor
torque capacity required to execute a behavior (and therefore h,
.4.1, and BM) may be scaled in inverse proportion, while Km scales
with N-°5. So with respect to the terms in (7), the following
proportionality relationships may be defined:

N2jm.,_,N2BiewIVn ; Tmjm— Tm l3M—KmN—ar (8)

Increasing gear ratio N, and simultaneously reducing motor size
can either increase or decrease required energy. This depends on
the motion profile, loading, and system parameters. Considering
several common control cases can provide additional insight,
particularly for the (highly relevant) case when trajectories are
cyclical.

FIGURE 3. MODEL OF MOTOR WINDING GEOMETRY. A
SINGLE REPRESENTATIVE COIL IS HIGHLIGHTED IN RED.

Control Cases of Interest
Several generic examples that cover a broad spectrum of

typical desired actuator behaviors are examined in this section.
Desired inertial and stiffness actuator dynamics are considered.
These cases choose impedance-based actuator behaviors, which
enables actuator analysis and control to be decoupled from the
load dynamics. Load dynamics may be difficult to predict for
legged robots and may vary widely during a gait cycle. Pure
torque control, which includes a wide variety of actuator
behavior that is controlled independent of the load, is also
analyzed. In this analysis we make no assumptions about the load
dynamics — we rely only on an assumption of cyclic motion,
which is valid for any sustained walking behaviors.

Inertial Control One common behavior is to mimic a
desired inertia JD. For example, the use of NAC might seek to
target JD<JT, i.e. to present an apparent drivetrain inertia to the
load that is less than the physical value [11]. Conversely, JD>JT
may be used to provide loading for intelligent rehabilitation
devices. An inertia impedance controller takes the form:

To = JD° (9)

Substituting into (7) produces:

Pm 
— [(N2.1114 JD) e +(N2BM BG) 

KmN KinN

+(N2JM +JG .ID)619 + (N2BM + BG)62

2

(10)

Further insights may be gained by exploring cyclical
behaviors in the frequency domain. Cyclical behaviors are
typical for many relevant applications, including gaits for legged
robots and exoskeletons as well as repetitive manipulation tasks.
Without loss of generality, cyclical behavior may be analyzed by
assuming the link moves in a sinusoidal manner; similar results
are obtained for arbitrary cyclic trajectories by approximating
with a Fourier series. Sinusoidal behavior may be analyzed by
substituting 61 = sin cot and its derivatives. In the equations that
follow, s = sin cot and c = cos wt. Substituting into (10)
produces:

Pm =[ (N2.1M Jo)(02s (N213m + Bo) cocl

—(N2JAI + .1G .113)(03ST + (N21314 + BG)CD2C2 (11)

2

Integrating this expression over the interval t = 0: 27r/w yields
energy for a full period. Dividing by that period provides the
average power. Because the integral of (sin•cos) over an integer
period is zero, the third term (mechanical power due to inertia)
disappears. Physically, this is because no net energy is required
to oscillate a free mass. The cross term from squaring the
bracketed quantity also disappears. The resulting average motor
power is:

2
1 N21A4 -FIG —ID 4 1 N2BAI + BG 2

Pavg 2

2

(.1) +   w
KmN 2 

KmN

+1 (N2Bm + BG)w2 (12)

Examination of this expression produces several important
insights. The third term (mechanical power due to friction)
increases with N at all frequencies. The first two terms relate to
the I2R loss due to the difference between the physical and
desired inertia and damping, respectively. These two terms
increase with N for all co as long as: 1) JD<JT, and 2) the link
inertia and damping do not dominate the reflected motor
dynamics. The latter is true for most geared robot designs.
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FIGURE 4. AVERAGE POWER VERSUS FREQUENCY FOR
TORQUE FEEDBACK MODEL WITH DESIRED INERTIA.
GEAR RATIO N AND RATIO OF DESIRED / PHYSICAL

INERTIAS ARE SHOWN.

Thus, when torque feedback is used to reduce the apparent
inertia in the presence of significant gearing, it usually requires
more energy to use a larger gear ratio and smaller motor. In
addition, if friction is eliminated from the physical system, the
last two terms in (12) disappear, but the first remains. This makes
clear that friction is not the sole source of loss in torque feedback
systems; compensating for undesired inertia is a large potential
loss. The power lost can grow quite large when feedback is
aggressively used to reduce inertia. Figure 4 plots the expression
in (12) for several different gear ratios. The motor parameters are
based on a Maxon 167131 motor for N=100, and are scaled
according to (8) for other gear ratios. For all cases the link inertia
and desired inertia are constant at JD = 5JG. At N=-100,JT=10.k.
At the lowest gear ratio (N=10), JD is actually greater than JT (the
relationship is shown in the legend). This is why at high
frequencies, where the first term in (12) dominates, the low gear
ratio is disadvantageous. Even in this case, a lower gear
reduction saves energy at low frequencies. At N=50, JD is very
close to JT, but slightly smaller. Therefore, the inertia term does
not dominate until very high frequencies. The other ratios are
much more typical, in that torque feedback is used to
significantly reduce apparent impedance. In this case, the penalty
for increasing N is significant. For example, increasing the gear
ratio from 100 to 200 increases the average total power by —2x
or more across all frequencies.

The following examples follow a similar process. Damping
is often omitted from the equations for brevity.

Pure Torque Control Another widely-used case is pure
torque control, wherein the desired impedance is zero and the
output torque is entirely independent of motion. Because all
dynamics must be suppressed, this can be approximated with
ro=0, or JD=0 in (11). The zero torque case is itself of particular

interest, e.g. for exoskeletal and rehabilitation devices which
seek to avoid loading the subject within certain parameters. If
damping is omitted (for brevity), the power reduces to:

pm = [(N2JM-FJG) 612 +[(N2JA, + JG)e]eKmN

Assumption of sinusoidal trajectories (as above) yields:

101°

1 05

0

a) 
10 

0
> 

1 (N2JA4-1-JG)2p co4=  
avg 2 KmN

. „ 

N-10,
 N-50
 N-100
 N-150
 N-200

10° 101
(rad/s)

102

(13)

(14)

103

FIGURE 5. AVERAGE POWER VERSUS FREQUENCY FOR
ZERO TARGET IMPEDANCE.

The power expended is a direct function of the physical
impedance, and increases strongly with increases in N, (unless
link inertia JG dominates, which typically only occurs with very
low N), as more and more control effort is expended to suppress
the inertia. Thus, even if torque feedback produces the desired
behavior, it can be extremely inefficient if the physical
impedance is large. Figure 5 plots the expression in (14) for
varying N.

Stiffness Control In a third case of interest, the closed-
loop system is made to behave as a virtual spring at the point of
interaction, following the relationship T0 = KDO. Equation (7),
with damping omitted, yields:

Pm = [(N2 ZENJG) B 
KmN 

012 +RN2JM+ KDO]6 (15)

For cyclical trajectories,

1 [(N2JA4-F/G) 2 AD 
2

P = co —avg 2 KmN K N (16)
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This relationship is plotted in Fig. 6. The same parameters
are used as for Fig. 4 and 5, with KD=1 00 Nm/rad. At frequencies
below the break point (which is dictated by KD and.IT), increased
gearing provides strong energy benefits. At higher frequencies,
increasing N requires more power.
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FIGURE 6. AVERAGE POWER VERSUS FREQUENCY FOR A
VIRTUAL SPRING IN A TORQUE FEEDBACK MODEL.

ENERGY ANALYSIS OF SENS
For the reasons summarized in the introductory sections, a

series elastic element is frequently added to torque feedback
architectures. Here we examine the impact of this element on
energy consumption.

Model
The model, shown in Fig. 7, resembles that of the previous

section but includes a series spring with stiffness Ks coupling the
gear output stage to an actuator output stage with position 00,
moment of inertia Jo and damping coefficient Bo, to which To is
applied. The dynamics at the output are described by:

.1060 + BOOO = TO KS(00 OG) (17)

In most SEA designs, the mass and friction at the output
stage are minimal compared to the robot links that they drive. To
make the analysis easier to understand, Jo and Bo may be
modeled as part of the load and neglected in the actuator model.
This assumption does not substantively affect the results
presented below, and produces:

io = 1090 — OG) (18)

To analyze power consumption, the dynamics in terms of the
output motions of the gearing are the same as in (1):

JTOG + BTBG = NTAI + To (19)

The ideal motor torque is the same as (3) in terms of OG:

IT " BT ' TO
TM = —N °G N °G N

The motor power is the same as (6), but in terms of OG:

(20)

Pm = Gif:N6G KBrnTN 6G  K,:iN)2 + 076G + To)6G (21)

These equations are unchanged from the version without a
spring; however the OG trajectories may vary from the actual
output trajectories 00. In other words, any differences in energy
consumption stem from the difference between the motion on the
two ends of the spring. To compute power with respect to output
behavior requires PM in terms of 00. This is solved on a case-by-
case basis below.

To

N:1

JBR Ifw, A4, A4, A4
FIGURE 7. MODEL OF ROTARY SERIES ELASTIC

ACTUATOR.

-10 BO

Control Cases of Interest
For these cases, we maintain fixed N and consider the motor

and link inertias as one, for clarity.

Inertial Control A relationship generating inertial
dynamics is:

TO = IDeo  = KS(0 0 9 G) (22)

To relate OG to 00, we take the Laplace transform and solve,
where cy is the Laplace variable:

eG =190(1— j1r2) (23)
Ks

Substituting in (21) and returning to the time domain yields:
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p = rIT ID) 6 hip  80)1m 2
KmN ° KniN Ks °

+[UT MOO - T*D ,1)1 (0 0 — fits. 0?) (24)

Analysis of cyclical trajectories yields:

JTJD 4 OT-JD) 602 )2
Pavg = 2 KmNKSW KmN (25)

The second term can be positive or negative depending on
the relationship between the physical and target inertias. This
expression is plotted in Fig. 8 for JD less than, equal to, and more
than JT. In virtually all cases, softer springs cause significantly
greater energy consumption, with the effect increasing with
frequency. The only exceptions to this are narrow areas around
particular frequencies for the case where the system is attempting
to emulate a much greater inertia than the physical level
(JD>>JT). For typical applications, SEAs and torque feedback
are far more likely to be used to reduce, rather than increase,
apparent inertia. This analysis suggests that to implement a
broad, versatile capability to emulate various inertias, stiffer
springs are more energy efficient.
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10° 1 01
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102 103

FIGURE 8. AVERAGE MOTOR POWER VERSUS
FREQUENCY FOR SERIES ELASTIC ACTUATOR SYSTEM

EMULATING VARIOUS DESIRED INERTIAS JD.

Pure Torque Control For the case of pure torque control,
'to =0 leads to OG =190, from (19). Analytically, this is identical
to the case with no spring, illustrated (with damping omitted) in
(14) and Fig. 5; the spring does not affect energy consumption.

Stiffness Control Finally, stiffness control behavior is
described by:

To = KDOO - Ks(90 OG)

The resulting power relationship is:

(26)

(.1T(KS KD) 60 KD 00)
2

Pu 
=

KmN Ks KmN

+ (1T(Kic
s-sICD) ijo KD00) (KS-KD) 60 (27)

) \ Ks

In the extreme, very small KD converges to pure torque control
and Ks has no effect. If KD=Ks, all terms except the second drop
out. In this isolated case, the physical spring provides the desired
dynamics, and increasing N saves energy. However, this would
clearly hinder efficient versatile functionality of the actuator.

For cyclic trajectories, the average power is:

DD 1 ( w IT(Ks-KD) 2 K )2
lavg - 2 KmNKS K N (28)

This is plotted in Fig. 9 for various values of Ks, with
KD=100. KS=KD provides an energy optimal condition, as noted
above, at which power is independent of motion frequency. For
Ks either smaller or larger, the power rapidly increases,
particularly at higher frequencies. Physical stiffnesses below the
desired value are particularly problematic, as these require the
system to be driven beyond its inherent bandwidth. Stiffnesses
greater than KD provide some energy savings at high frequencies.
However, savings are relatively modest, as indicated by the
relatively small difference between Ks=200 and Ks=10000, an
effectively infinite value. These savings are dwarfed by the cost
of frying to exceed the physical stiffness under any operating
conditions. In practice, system designers will select a stiffness
that is greater than any value they expect to emulate, and that
will provide the bandwidth required for both nominal and
recovery behaviors, with a healthy margin. This means that
relatively stiff springs are typical.
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LEGGED ROBOT SYSTEM DESIGN EXEMPLAR
The analysis in the preceding sections relies on simplified

models of single joint drivetrains executing generalized cyclic
trajectories. This elucidates, in a comprehensible form, overall
energy consumption trends associated with using torque
feedback control and SEAs to render various dynamic behaviors.
The results are general and complete at a single-joint level,
subject to the key assumptions: 1) motion is cyclic, 2) individual
joint motion / torque trajectories are invariant with drivetrain
design, 3) joint behaviors are idealized time-invariant inertias,
springs, or motion-independent torque sources, 4) the model
accurately reflects the drivetrain, and 5) motor parameters scale
as described in (8). With these assumptions, the analytical results
suggest that in many cases, choosing larger motors with small N
is energetically preferable to smaller motors with large N, and
that highly compliant SEAs offer little energetic benefit.

Drivetrain design for full robot systems involves greater
complexity. In this section we present summary results of a
comparative drivetrain design analysis for key leg joints on a pair
of energy-efficient humanoid robots, the Sandia Transmission
Efficient Prototype Promoting Research (STEPPR) and the
Walking Anthropomorphic Novelly-Driven Efficient Robot for
Emergency Response (WANDERER), shown in Fig. 1. These
robots were designed to maximize endurance by minimizing
their electrical energy consumption. While a detailed
examination of the design of these robots is beyond the scope of
this paper, summary results are examined to "sanity check" the
overall conclusions of the single-joint analysis provided in the
preceding sections in a more realistic system context.

The system-level design analysis differed from the single-
joint analysis in the following three ways. First, a library of
several different bipedal gait behaviors, including human
walking (Humanl and Human2 gaits) and robot simulations

(Humanlike, Crouchedl and Crouched2 gaits), was used to
provide accurate representations of complex joint behaviors,
which do not strictly equate to time-invariant inertias, springs, or
motion-independent torque controls over all complete gait
cycles. Second, models of three exemplar motors from the same
family were used (Allied Motion MF0310025, MF0150025, and
MF0095020), eliminating the need to make scaling assumptions.
Finally, as motors were scaled the joint torque trajectories were
scaled accordingly to appropriately penalize the use of larger
motors. Torques were scaled in proportion to the ratio of: the
robot mass with the selected motor set; to the robot mass in the
baseline simulation. In STEPPR and WANDERER, (mass-
dependent) gravity and inertial loads dominate all other loads
due to the robots' extremely low-friction drivetrain [20].

For each topology and gait, numerical optimizations were
conducted over the motion and torque trajectories to identify
design parameters that minimized the total energy per gait cycle
at each joint. First, as a baseline, the optimal N was determined
for each choice of motor, for each gait, at each joint, assuming a
topology as shown in Fig. 2. Predicted energetic costs per gait
cycle, for each of the planar joints (ankle, knee, and hip) and each
design gait, are shown in Fig. 10. Virtually all gait / joint pairs
follow the overall trend: the intermediate ("isme) motor requires
the least energy. The smallest motor requires the most energy,
and the largest motor requires an intermediate amount of energy
that is close to the level required for the intermediate motor. As
expected, the optimal gear ratios N scale inversely with the
motor size. The average optimal gear ratio (mean +/- std.
deviation) was 4.5 +/- 1.6 for the largest motor, 18.5 +/- 6.6 for
the intermediate motor, and 43.3 +/- 15.0 for the smallest motor.
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Small Mid Big Small Mid Big Small Mid Big
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• Humanl M Human2 • Humanlike Crouchedl M Crouched2

FIGURE 10. ENERGETIC COST PER GAIT CYCLE FOR
EACH JOINT AND GAIT.

Subsequently, the topology of Fig. 7 was analyzed for each
joint / gait pair by co-optimizing the stiffness Ks and gear ratio
N. Figure 11 presents summary results in the form of percent
savings, versus the baseline results from Fig. 10, provided by the
introduction of series elasticity with the (best-performing)
intermediate motor. Energy savings approach 10% in a few
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cases, but are generally less than 4%, with 1/3 of the joint / gait
pairs showing <0.1% savings. In these cases, the optimal Ks
converges to the maximum value allowed by the analysis,
100kNm/rad, effectively eliminating the series elastic effect. For
the cases where energy savings are realized, the optimal stiffness
ranged from —1000 to —4000 Nm/rad. The other two motors had
similar percentage energy savings with the addition of a series
elastic element.
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FIGURE 11. PERCENT ENERGY SAVINGS FROM OPTIMAL
SERIES ELASTIC ELEMENT, RELATIVE TO BASELINE

RESULTS IN FIG. 10.

Discussion
The results in Fig. 10 predict that in the absence of series

elasticity, the intermediate sized motor, using gear reductions
from —8:1 to —25:1, performs best. The smallest motor, paired
with gear ratios of 30:1 or more, is more typical of many legged
robot designs that use aggressive gearing to reduce motor mass.
Our analysis predicts that for the robot architecture and gaits
studied, such an architecture may be substantially less energy-
efficient than using larger motors and less gearing — even when
the increased joint torques caused by larger overall system mass,
to support larger motors, is considered. Our analysis also predicts
that using even larger motors with very modest gearing (<8:1)
may require —10-15% more energy than the intermediate motors,
but still be much more efficient than highly-geared smaller
motors. This is consistent with the results in Figs. 4 and 6, which
show that very low gear ratios offer energetic benefits in some
regimes (e.g. certain frequency ranges) and costs in others when
the drive system emulates inertial or spring-like dynamic
behavior. These regimes are defined by the relationship between
the physical drivetrain dynamics and the target behavior, which
is complex and time-variant for true legged trajectories. These
results indicate that, at the very least, designers of robot
drivetrains should consider the energy impact of larger-motor /
lower-gear ratio architectures in the context of the specific
dynamic behaviors required by their systems.

Results of the energy optimization of SEAs (Fig. 11) predict
energy savings ranging from zero, with the elastic elements
disappearing, to 10%, with joint stiffness values in the 1000-
4000 Nm/rad range. To place these joint stiffness and energy
savings numbers into context, the results may be compared to
those predicted for the alternative architecture of parallel
elasticity, which is discussed in detail elsewhere [21]. When
optimized, joints that use springs placed in parallel (rather than
series) with geared motors, applied to same gaits, behaviors, and
motor models, predict energy savings ranging from 6% to 53%.
These results are introduced only to clarify that the 0-10% energy
savings predicted using SEAs are much smaller than the
maximum possible using passive dynamic elements. As
predicted, SEAs provide comparatively little energy benefit.

Optimal parallel spring stiffness values for these gaits and
joints are all less than 300 Nm/rad, which provides some
indication of characteristic joint behavior. The energy-optimal
SEAs use stiffness values approximately an order of magnitude
greater; this stems from the need to maintain drive stiffness well
above that of typical joint behavior to provide sufficient
bandwidth for high-frequency components of real-world gait
behaviors without suffering the severe energy penalties at high
frequencies predicted as shown in Figs. 8 and 9.

Ultimately, for the STEPPR and WANDERER robot
designs, we chose drivetrains using large, high-torque motors
and gear ratios of N=10 or less at each leg joint. These ratios
were chosen for low energy consumption as well as to negate the
need for torque sensing and feedback and the resulting
complexity and stability risks; the robots achieve torque control
via current control. Ultimate robot results were quite promising,
with the fully self-powered 93 kg WANDERER robot able to
walk continuously using less than 300 W of total locomotive
power.

CONCLUSIONS
This paper presents analyses of the energy implications of

impedance and torque control drivetrain architectures that use
significant gearing and/or series elastic elements to help render
apparent impedance that differs significantly from that of the
physical system. These architectures are widely used, generally
with the goal of achieving quality impedance control
performance using small, lightweight actuators. As they become
more prevalent, it is important to consider the impact of these
design topologies on energy consumption.

Our energy-focused analysis indicates that in many cases,
high gear ratios cause substantial energy losses — particularly in
cases where the gear ratios move the intrinsic impedance away
from target behaviors. Large gear ratios produce large reflections
of motor inertia and damping to the output; if low impedance is
desired, the actuator must actively suppress these dynamics,
which costs energy. In particular, when pure torque control (zero
impedance) is desired, increasing the gear ratio is quite
detrimental. In contrast, there are some cases in which increased
gearing saves substantial energy — generally when high
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impedance behavior is desired, and for low-frequency spring-
like behavior.

Similarly, our analysis finds that series elasticity does not
significantly improve the energy picture for such systems. For
many cases, the stiffest springs are most energy-efficient, while
for other cases the series springs offer some net energy benefit
but gains are relatively modest. Of course, series springs offer
other potential benefits which may outweigh potential energy
expenditures for certain applications.

This work provides a framework for evaluating the energy
impact of torque feedback and series elastic topologies in
physically interactive robots. As increasingly functional
capabilities are demonstrated in fields such as legged robots,
mobile manipulators, and exoskeletons, we anticipate that
energy efficiency will become a more prevalent concern, making
analysis like this more important.
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