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MOTIVATION
The work presented here is motivated by the need to
develop an efficient method to calculate the structural
response of nonlinear mechanical systems with a large
number of degrees of freedom (DOF) subjected to any class
of random vibration excitations.
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METHODOLOGY
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This research proposes the use of a Long Short-Term
Memory (LSTM) Network to model nonlinear structures
subjected to random vibration excitations. The LSTM
architecture shown has been implemented using the Python
packages Tensorflow and Keras.
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INTERMITTENT CONTACT
The case study considered was a three DOF problem with
intermittent mechanical contact. A random vibration input
was applied at one end, and accelerations were recovered at
one of the masses.
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LSTM NETWORK
The LSTM network architecture was selected with an
iterative process. It was found that the following features
improved the network performance:
• Bidirectional layers: Preserving information about the

"future" helped the network to anticipate contact events
and it helped reduce bias.

• Dropout: Used for regularization, helped to decrease
variance.

• Input layer: The input layer had 100 neurons.
• Hidden Layers: Each layer had 30 neurons; ReLu

activation functions were used.
• Output Layer: A dense layer with 1 neuron was used.

Trained on 180 samples
with Adam optimizer.

Tested on independent

dataset. Training and

test data shared

statistical features.
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VISUALIZING THE LSTM
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