
Add Cool Visualizations Here

VTK-m Overview

VTK-m Code Sprint
September 1-2, 2015

Kenneth Moreland
Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-XXXX PE

SAND2015-7296PE

Acknowledgements Virtu

1111, Law a lies

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific

Computing Research, under Award Numbers 10-014707, 12-015215,

and 14-017566.

Xfis
SDA

Virtu

Motivation

Supercomputers! Virtu

A clear trend in supercomputing is ever increasing parallelism

Clock increases are long gone

"The Free Lunch Is Over" (Herb Sutter)

Jaguar — XT5 Titan — XK7 Exascale*

Cores 224,256 299,008 and

18,688 gpu

1 billion

Concurrency 224,256 way 70 — 500 million way 10 — 100 billion way

Memory 300 Terabytes 700 Terabytes 128 Petabytes

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

"Everybody who learns concurrency thinks they
understand it, ends up finding mysterious races
they thought weren't possible, and discovers

that they didn't actually understand it yet after
all." Herb Sutter

AMD x86
Full x86 Core

+ Associated Cache

6 cores per die

MPI-Only feasible Ei

1 Kepler

"core"

I-I 1 m m

NVIDIA GPU
2,880 cores collected in 15 SMX

Shared PC, Cache, Mem Fetches

Reduced control logic

MPI-Only not feasible

Virtu

Getting Started

Prerequisites

Always required:

git

CMake (2.10 or newer)

Boost 1.48.0 (or newer)

Linux, Mac OS X, or MSVC

For CUDA backend:

CUDA Toolkit 7+

Thrust (comes with CUDA)

For Intel Threading Building Blocks backend:

TBB library

Virtu

Getting VTK-m

• http://m.vtk.org 4 Building VTK-m

Clone from the git repository

https://gitlab.kitware.com/vtk/vtk-m.git

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build
cd vtk-m-build
ccmake ../vtk-m
make
ctest

Virtu

Configuring VTK-m

• http://m.vtk.org 4 Building VTK-m

Create a build directory

Run ccmake (or cmake-gui) pointing back to source directory

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build
cd vtk-m-build
ccmake ../vtk-m

Virtu

Important Configuration Parameters varitm

Variable Description

VTKm_ENABLE_CUDA Enable CUDA backend. Requires CUDA Toolkit.

VTKm_ENABLE_OPENMP Enable OpenMP backend. Requires OpenMP compiler

support (not Clang). (Coming soon.)

VTKm_ENABLE_TBB Enable Intel Threading Building Blocks backend.

Requires the TBB library.

VTKm_ENABLE_TESTING Turn on header, unit, and benchmark tests.

VTKm_ENABLE_BENCH MARKS Turn on additional timing tests.

VTKm_USE_64BIT_I DS Enable 64bit index support. Older CUDA cards might

not support 64 bit integers.

VTKm_USE_DOU BLE_PRECISION Precision to use in floating point numbers when no

other precision can be inferred. Older CUDA cards

might not support 64 bit floats.

CMAKE_BUILD_TYPE Debug, RelWithDebInfo, or Release

CMAKE _INSTALL_PREFIX Location to install headers

Building VTK-m

• http://m.vtk.org -› Building VTK-m

Run make (or use your favorite IDE)

Run tests ("make test" or "ctest")

Parallel builds (-j flag) work, too

Good idea to use them as building VTK-m can take a while

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build
cd vtk-m-build
ccmake ../vtk-m
make
ctest

Virtu

More Information Virtu

We know, documentation is sparse

• http://m.vtk.ora

A user's guide is on its way. We are also working on a textbook.

Doxygen:

Virtu

System Overview

VTK-m Framework

Control

Environment

vtkm::cont

Execution

Environment

vtkm::exec

Virtu
lag iralits

VTK-m Framework

Control

Environment

Data Set

Array Handle

Invoke

vtkm::cont

Execution

Environment

vtkm::exec

Viritim
lag iralits

VTK-m Framework

Control

Environment

Data Set

Array Handle

Invoke

vtkm::cont

Execution

Environment

Cell Operations

Field Operations

Basic Math

Make Cells

vtkm::exec

Virtu

Cell Operations

Field Operations

Basic Math

Make Cells

Device
Adapter

Allocate
Transfer

Schedule
Sort

Cell Operations
Field Operations

Basic Math
Make Cells

Device Adapter Contents

Tag (struct DeviceAdapterFoo { };)

Execution Array Manager

Schedule

Scan

Sort

Control Environmen

Transfer
MENNEMENNEMENNENI

8 3 5
Compute

5 I 3 I 6 0 I7 4 I 0
I I 1

-Compute
8 3 5 5 3 6 0 7 4

0

Other Support algorithms

Stream compact, copy, parallel find, unique

E ecution Environment

INEEMENNEMENNEMEN

8 11 16 21 24 30 30 37 41 41

0 0 3 3 4 5 5 6 7 8

Virtu

Defining Data

Array Handle

xo yo zo

Array Handle

x1 y1 z1 X2 y2 Z2 • • •

Virtu

xo zo x1 Z1 X2 Z2yo y1 y2

xo zo x1 z1 X2 Z2yo y1 y2

Array Handle Storage

xo yo zo

Array Handle

x1 y1 z1 X2 y2 Z2 •••

xo yo zo

Array Handle

x1 y1 z1 X2 y2 Z2 •••

Array of Structs

Storage

Array Handle

Vo 111 V2 V3 V4 V5 V6 117 V8 •••

Struct of Arrays

Storage

Virtu

x0 zo x1 z1 X2 Z2yo y1 y2

vtkCellArray

Storage

MEM
Yo yi. Y2

zoFM

...

•••

•••

3 vo v1 V2 3 V3 V4 V5 3 V6 117 V8

•••

•••

Fancy Array Handles

Array Handle

c c c c c c c c C •••

Array Handle

xo yo zo x1 y1 z1 X2 y2 Z2 • • •

Array Handle

X8 X5 X5 X0 X5 X2 X0 X3 X5 •••

Constant Storage

Uniform Point

Coord Storage

Permutation

Storage

Virtu

C

f(i,j,k) = [o, + s, i, oy + sy j, oz+ sz k]

Array Handle

8 5 5 0 5 2 0 3 5 •••

Array Handle

X0 X1 X2 X3 X4 X5 X6 X7 X8 •••

Array Handle Resource Management Vritm

Control Environment

111111111111111111

Array Handle Contains

Storage

Uses

Array Handle

Array Handle Resource Management Vint"'

Control Environment

111111111111111111

Contains

Storage

U-ses - ---------------- >

Transfer

E

Implements

ecution Environment

MENNEMENNEMENNEN

Device Adapter

Array Handle Resource Management vnt"

Control Environment

f(x)

Array Handle

Storage

Contains

U-ses - ---------------- >

Transfer

Execution Environment

f(x)

Implements

Device Adapter

ArrayHandle Virtu

sir LidlErd

vtkm: : cont : :ArrayHandle<type> manages an "array" of data

Acts like a reference-counted smart pointer to an array

Manages transfer of data between control and execution

Can allocate data for output

Relevant methods

GetNumberOfValues()

GetPortalConstControl()

ReleaseResources(),ReleaseResourcesExecution()

Functions to create an ArrayHandle

vtkm::cont::make ArrayHandle(const T*array,vtkm::Id size)

vtkm::cont::make ArrayHandle(const std::vector<TAvector)

Both of these do a shallow (reference) copy.

Do not let the original array be deleted or vector to go out of scope!

Fancy Array Handles Virtu

ArrayHandleCompositeVector: Zips components of source arrays to
compose vector values

ArrayHandleConstant: An array with a single constant value

ArrayHandleCounting: An array that starts at an index and counts up

ArrayHandlelmplicit: Each entry of the array is the value returned
from the provided functor

ArrayHandlePermutation: Rearranges the entries in one
ArrayHandle by the indices of another ArrayHandle

ArrayHandleTransform: Modifies the values of one ArrayHandle by
feeding them through a provided functor

ArrayHandleUniformPointCoordinates: Defines the point
coordinates from a uniform rectilinear grid

ArrayHandleZip: An array of Pair with values coming from two

provided arrays

Other Important ArrayHandle

Features We're Skipping

Storage template parameter

Selects array layout for zero-copy semantics

Supports implicit and derived arrays (all those fancy array handles)

Generic array interface for data through an ArrayPortal

In principle like an STL iterator, but simpler

Type of object returned from GetPortalConstControl

Can exist in execution environment (depends on definition)

VInt74

DynamicArrayHandle Virtu

DynamicArrayHandle is a magic untyped reference to an
ArrayHandle

Statically holds a list of potential types and storages the contained
array might have

Can be changed with ResetTypeList and ResetStorageList

Changing these lists requires creating a new object

Parts of VTK-m will automatically staticly cast a
DynamicArrayHandle as necessary

Requires the actual type to be in the list of potential types

Data Model

vtkm::cont::DataSet

Virtu

vtkm::cont::CellSet

vtkm::cont::Field

vtkm::cont::CoordinateSystem

A DataSet Has Virtu

1 or more CellSet

Defines the connectivity of the cells

Examples include a regular grid of cells or explicit connection indices

0 or more Field

Holds an ArrayHandle containing field values

Field also has metadata such as the name, the topology association (point,
cell, face, etc), and which cell set the field is attached to

0 or more CoordinateSystem

Really just a Field with a special meaning

Contains helpful features specific to common coordinate systems

Structured Cell Set

k

i

i

Virtu

Structured Cell Set

k

Cell

/ /

1
 •
Point

Virtu

Example: Making a Structured Grid irritsi

vtkm::cont::DataSet dataSet;

const vtkm::Id nVerts = 18;

const vtkm::Id3 dimensions(3, 2, 3);

// Build cell set

vtkm::cont::CellSetStructured<3> cellSet("cells");

cellSet.SetPointDimensions(dimensions);

dataSet.AddCellSet(cellSet);

// Make coordinate system

vtkm::cont::ArrayHandleuniformPointCoordinates coordinates(dimensions);

dataSet.AddCoordinateSystem(vtkm::cont::CoordinateSystem("coordinates", 1, coordinates));

// Add point scalar data

vtkm::Float32 vars[nVerts] = {...};

dataSet.AddField(Field("pointvar", 1, vtkm::cont::Field::ASSOC_POINTS, vars, nVerts));

// Add cell scalar

vtkm::Float32 cellvar[4] = {...};

dataSet.AddField(Field("cellvar", 1, vtkm::cont::Field::ASSOC CELL SET,

"cells", cellvar, 4));

Explicit Connectivity Cell Set Virtu

Map Cell to

Shapes Num Indices Connectivity Connectivity

TETRA

TETRA

HEDAHEDRON

WEDGE

HEXAHEDRON

HEXAHEDRON

TETRA

4 0 0>

4 4 1

8 8 2

6 16 3

8 22 0

8 30 2

4 38 1

4

5

6

7

Virtu

Running Worklets

Invoking Worklets Virtu

Each worklet has a type (e.g. Map Field, Generate Topology, etc.)

Inherits from a corresponding vtkm: : worklet : :Worklet* class (e.g.
WorkletMapField, WorkletMapTopology, etc.)

Each worklet type has a corresponding dispatcher

Name matches the worklet type (e.g.
vtkm: :worklet : :DispatcherMapField)

All dispatchers take worklet type as first template argument.

All dispatchers take a worklet instance on its constructor (or
construct a new one).

All dispatcher have an Invoke method that runs the worklet on a
given set of parameters.

Example: Invoking a Worklet

void RunElevation(vtkm::cont::DataSet &dataSet)
{

vtkm::worklet::PointElevation pointElevationWorklet;

pointElevationWorklet.SetLowPoint(vtkm::Vec<vtkm::Float64,3>(0.0, 0.0, 0.0);

pointElevationWorklet.SetHighPoint(vtkm::Vec<vtkm::Float64,3>(1.0, 1.0, 1.0);

Virtu

vtkm::worklet::DispatcherMapField<vtkm::worklet::PointElevation>

dispatcher(pointElevationWorklet);

vtkm::cont::ArrayHandle<vtkm::Float32> elevationOutput;

dispatcher.Invoke(dataSet.GetCoordinateSystem().GetData(), elevationOutput);

dataset.AddField(vtkm::cont::Field("elevation", 1, vtkm::cont::Field::ASSOC_POINTS,

elevationOutput));
}

Virtu

Anatomy of a Worklet

struct Sine: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(FieldIn<>, FieldOut<>);

typedef _-* ExecutionSignature(_1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);
}

1;

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);

}

struct Sine {

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);

}

1;

struct Sine: public vtkm::worklet::WorkletMapField {

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);
}

1;

struct Sine: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(FieldIn<>, FieldOut<>);

typedef _-* ExecutionSignature(_1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);
}

1;

struct Sine: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(FieldIn<>, FieldOut<>);

typedef ExecutionSignaturecli);

1;)
temp te<typename T>

M_EXEC_EXPO

()operator() x) const

return vtkm::Sin(x);
}

1;

struct Sine: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature4r=10*,

typedef ExecutionSignature(

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const

return vtkm::Sin(x);
}

1;

struct Sine: public vtkm::worklet::WorkletMapField
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef ExecutionSignature(_1);

template<typename T>
VTKM_EXEC_EXPORT

T operator()(T x) const
return vtkm::Sin(x);

}

} ;
Execution Environment

Control Environment

vtkm::cont::ArrayHandle<vtkm::Float32> inputHandle =
vtkm::cont::make ArrayHandle(input);

vtkm::cont::ArrayHandle<vtkm::Float32> sineResult;

vtkm::worklet::DispatcherMapField<Sine> dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

Execution Environment

Control Environment

vtkm::worklet::DispatcherMapField<Sine> dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

struct

Execution Environment

Control Environment

vtkm::worklet::DispatcherMapField() dispatcher;
dispatcher.Invoke(inputHandle, sinResult);

typedef void ControlSignature

Execution Environment

Control Environment

)4

)4

vtkm::worklet::Dispatch Field<Si e> dispatcher;
dispatcher.Invoke

struct Sine: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(FieldIn<>, FieldOut<>);

typedef _-* ExecutionSignature(_1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {

return vtkm::Sin(x);
}

1;

struct Zip2: public vtkm::worklet::WorkletMapField

typedef void ControlSignature(

FieldIn<vtkm::TypeListTagScalar>,

FieldIn<vtkm::TypeListTagScalar>,

FieldOut<vtkm::TypeListTagFieldVec2>);

typedef void ExecutionSignature(_1, _2, _3);

typedef<typename T1, typename T2, typename V>

VTKM_EXEC_EXPORT

void operator()(T1 x, T2 y, V &result) const {

result = V(x, y);
}

1;

{

struct ImagToPolar: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(

FieldIn<vtkm::TypeListTagScalar>,

FieldIn<vtkm::TypeListTagScalar>,

FieldOut<vtkm::TypeListTagScalar>,

FieldOut<vtkm::TypeListTagScalar>);

typedef void ExecutionSignature(_1, _2, _3,),•

template<typename

typename

typename

typename

VTKM_EXEC_EXPORT

void operator()(RealType real,

ImaginaryType imag,

MagnitudeType &magnitude,

PhaseType &phase) const {

magnitude = vtkm::Sqrt(real*real + imag*imag);

phase = vtkm::ATan2(imaginary, real);

RealType,

ImaginaryType,

MagnitudeType,

PhaseType>

struct Advect: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(

FieldIn<vtkm::TypeListTagFieldVec3>,

FieldIn<vtkm::TypeListTagFieldVec3>,

FieldIn<vtkm::TypeListTagFieldVec3>,

FieldOut<vtkm::TypeListTagFieldVec3>,

FieldOut<vtkm::TypeListTagFieldVec3>,

FieldOut<vtkm::TypeListTagScalar>,

FieldOut<vtkm::TypeListTagScalar>);

typedef void ExecutionSignature(

, , _, .4, _5, _6, _7);

template<typename T1, typename T2, ...>

VTKM_EXEC_EXPORT

void operator()(T1 startPosition,

T2 startVelocity,

T3 acceleration,

T4 &endPosition,

T5 &endVelocity,

T6 &rotation,

T7 &angularVelocity) const {

Virtu

Creating Worklets

Worklet Types Virtu

WorkletMapField: Applies worklet on each value in an array.

WorkletMapTopology: Takes from and to topology elements (e.g.
point to cell or cell to point). Applies worklet on each "to" element.
Worklet can access field data from both "from" and "to" elements.
Can output to "to" elements.

Many more to come...

Elements of a Worklet Virtu

Subclass of one of the base worklet types (from previous slide)

Typedefs for Controlsignature and ExecutionSignature

A parenthesis operator

Must have VTKM EXEC EXPORT

Input parameters are by value or const reference

Output parameters are by reference

The method must be declared const
1

struct ImagToPolar: public vtkm::worklet::WorkletMdpField {
typedef void ControlSignature(FieldIn<vtkm::TypeListTagscalar>,

FieldIn<vtkm::TypeListTagscalar>,
FieldOut<vtkm::TypeListTagscalar>,
FieldOut<vtkm::Typc 2 7Tagscalar>);

typedef void Executionsignature(_1, _2, _3, _4);

template<typename -1 , typename T2, typename T3, typename T4>
VTKM_EXEC_EXPORT 3.1 3.2
void operator()(T1 real, T2 imaginary,

3.4
T3 &magnitude, T4 &ph?

3.3
const

Worklet Arguments Virtu

Argument type based on concept defined in Controlsignature

A field in the same domain (e.g. Fieldln in a WorkletMapField
or eldInTo in a WorkletMapTopology)

Base type in the corresponding array (e.g. vtkm: : Float32)

A field associated with the "from" topology (e.g. ildInFrom in a
WorkletMapTopology)

An object that has overloaded operator [] to behave like array or
vtkm: :Vec.

Also has ComponentType typedef and GetNumber0-FComponents method.

Virtu

Working with Cells

Cell Shapes Virtu

VTK-m cell shapes copy those of VTK

Basic shapes defined in vtkm/CellShape.h

Every cell shape has an enum identifier

e.g. vtkm: :CELL_SHAPE_TRIANGLE, vtkm: :CELL_SHAPE_HEXAHEDRON

Every cell shape has a tag struct

e.g. vtkm: :CellshapeTagTriangle, vtkm: :CellShapeTagHexahedron

All cell shape tags have a member ld set to the identifier
vtkm::CellShapeTagTriangle::Id == vtkm::CELL_SHAPE_TRIANGLE

For a constant cell shape identifier, can get tag with
vtkm: :CellShapeIdToTag

vtkm: :CellShapeIdToTag<CELL_SHAPE_TRIANGLE>: :Tag is

typedefed to vtkm: : CellShapeTagTriangle

Generic Cell Shape

vtkm: :CellshapeTagGeneric is a special shape tag

Has no corresponding integer identifier

Id field set at runtime

Can write specialized cell functions on generic shapes using
vtkmGenericCellShapeMacro

Cell Traits Virtu

Defined in vtkm/CellTraits.h

vtkm: :CellTraits<> template provides static cell information

TOPOLOGICAL_DIMENSIONS: 3 for polyhedra, 2 for polygons, 1 for lines, 0

for vertices

TopologicalDimensionsTag: Set to

vtkm: :CellTopologicalDimensionsTag<TOPOLOGICAL_DIMENSIONS>

IsSizedFixed: Set to vtkm: : CellTraitsTagsizeFixed if there is a

static number of points, vtkm: : CellTraitsTagsizevariable otherwise

NUM_POINTS: Set to the number of points in the cell. Only defined if the size

is fixed

Using Cell Shapes in Worklets Virtu

Use the ExecutionSignature tag ilShap

Defined in worklet types that support it (e.g. WorkletMapTopology)

struct MyWorklet : public vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagPoint,

vtkm::TopologyElementTagCell>
{

typedef void ControlSignature(TopologyIn topology,

FieldlnFrom<Scalar> inField,

FieldOut<Scala > outCells)

typedef ExecutionSignature(CellShapel);

template<typename CellShapeTag, typename InValues>

VTKM EXEC EXPORT

T operator()(CellShapeTag shape, const InValues &inValues) const
{

// Operate using shape...

Cell Operations Virtu

#include <vtkm/exec/ParametricCoordinates.h>

Convert between world coordinates and parametric coordinates (locations in
the cell are always in the range [0,1])

#include <vtkm/exec/CellInterpolate.h>

Given a group of field coordinates and a parametric coordinate, interpolates
the field to that point.

#include <vtkm/exec/CellDerivative.h>

Given a group of field coordinates and a parametric coordinate, computes the
derivative (gradient) of the field at that point.

Virtu

Error Handling

Errors Signaled with Exceptions Virtu

On error, Dax toolkit throws a subclass of vtkm: : cont : : Error

#include <vtkm/cont/Error.h>

int main(int argc, char **argv)
{

try
{

// Do something cool with VTK-m

// • ..
}

catch (vtkm::cont::Error error)
{

std::cout << error.GetMessage() << std::endl;
return 1;
}

return 0;
}

Types of Errors Virtu

vtkm::cont::ErrorControlAssert

VTK-m fails an assertion. This might be a bad parameter value (such as an
index out of range) with the check removed in release builds.

vtkm::cont::ErrorContronadType

A VTK-m encounters an unexpected, invalid, or unknown type.

vtkm::cont::ErrorContronadValue

A VTK-m function or method encounters an invalid value.

vtkm::cont::ErrorControlInternal

VTK-m detects an internal state that should never be reached. This error
usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid

input.

vtkm::cont::ErrorControlOut0fMemory

A VTK-m function or method tries to allocate an array and fails.

Reporting Errors in Worklets Virtu

Exceptions cannot be thrown in the execution environment

Not supported in CUDA. Problematic with multiple threads.

All worklets have a method named RaiseError

Call this method with a message string.

In the control environment, a vtkm: : cont : : ErrorExecution
will be thrown with the given message

Behaves as if the error was thrown in the worklet

Be aware, raising an error might not actually halt any execution.

VTKM_EXEC_EXPORT

T operator()(T x) const
{

if (x < 0)
{

this->RaiseError("Cannot take square root of negative number.
}

return vtkm::math::Sqrt(x);
}

Asserts Virtu

VTKMASSERTCONT defined in vtkm/cont/Assert.h

Behaves like POSIX assert except that it throws

vtkm: : cont : : ErrorControlAssert instead of exiting the program.

Will be removed when NDEBUG is defined.

CMake adds this to Release builds.

VTKM_ASSERT_EXEC defined in vtkm/exec/Assert.h

Takes a second argument that is a worklet.

Behaves like POSIX assert except that it throws

VTKM: : cont : : ErrorExecution instead of exiting the program.

Will be removed when NDEBUG is defined.

CMake adds this to Release builds.

Virtu

Timers

Timing Parallel Code Virtu

4..

vtkm: : cont : :Timer safely times parallel VTK-m algorithms

Starts on construction or Reset. Reports on GetElapsedTime.

vtkm::cont::Timer<> timer;
dispatcher.Invoke(

grid.GetCoordinatesystem().GetData()GetPointcoordinates(),
results);

// This call makes sure data is pulled back to the host
// in a host/device architecture.
results.GetPortalConstControl();
vtkm::Float32 elapsedTime = timer.GetElapsedTime();

