SAND2015- 7296 PE

VTK-m Overview

VTK-m Code Sprint
September 1-2, 2015

Kenneth Moreland
Sandia National Laboratories

_ - Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-XXXX PE

\// i
Acknowledgements T
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific

Computing Research, under Award Numbers 10-014707, 12-015215,
and 14-017566.

y

)/

Motivation

Ve
Supercomputers! 3
P P CE

= Aclear trend in supercomputing is ever increasing parallelism

" Clock increases are long gone
“The Free Lunch Is Over” (Herb Sutter)

Jaguar — XT5 Titan — XK7 Exascale*®
Cores 224,256 299,008 and 1 billion
18,688 gpu

Concurrency 224,256 way 70 — 500 million way 10— 100 billion way
Memory 300 Terabytes 700 Terabytes 128 Petabytes

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

“Everybody who learns concurrency thinks they
understand it, ends up finding mysterious races
they thought weren’t possible, and discovers
that they didn’t actually understand it yet after
all.” Herb Sutter

— 1mm

AMD x86

Full x86 Core
+ Associated Cache 1 x86

core

6 cores per die
MPI-Only feasible

o Vg - =

- A A | TG T T T | T TR P it | o s i | T

! Kepler s
“core” NVIDIA GPU
2,880 cores collected in 15 SMX
Shared PC, Cache, Mem Fetches
Reduced control logic
MPI-Only not feasible

Getting Started

Prerequisites

= Always required:
git
CMake (2.10 or newer)
Boost 1.48.0 (or newer)
Linux, Mac OS X, or MSVC
= For CUDA backend:
CUDA Toolkit 7+
Thrust (comes with CUDA)

" For Intel Threading Building Blocks backend:
TBB library

Getting VTK-m

= http://m.vtk.org = Building VTK-m

= Clone from the git repository
https://gitlab.kitware.com/vtk/vtk-m.git

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build

cd vtk-m-build

ccmake ../vtk-m

ELG

ctest

Configuring VTK-m

= http://m.vtk.org = Building VTK-m
= Create a build directory

= Run ccmake (or cmake-gui) pointing back to source directory

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build

cd vtk-m-build

ccmake ../vtk-m

\// /\/'/’

Important Configuration Parameters N

Variable

Description

VTKm_ENABLE_CUDA
VTKm_ENABLE_OPENMP

VTKm_ENABLE_TBB

VTKm_ENABLE_TESTING
VTKm_ENABLE_BENCHMARKS
VTKm_USE_64BIT_IDS

VTKm_USE_DOUBLE_PRECISION

CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX

Enable CUDA backend. Requires CUDA Toolkit.

Enable OpenMP backend. Requires OpenMP compiler
support (not Clang). (Coming soon.)

Enable Intel Threading Building Blocks backend.
Requires the TBB library.

Turn on header, unit, and benchmark tests.
Turn on additional timing tests.

Enable 64bit index support. Older CUDA cards might
not support 64 bit integers.

Precision to use in floating point numbers when no
other precision can be inferred. Older CUDA cards
might not support 64 bit floats.

Debug, RelWithDebInfo, or Release

Location to install headers

. 5 \///(,
Building VTK-m T

= http://m.vtk.org = Building VTK-m
* Run make (or use your favorite IDE)
= Run tests (“make test” or “ctest”)

= Parallel builds (-j flag) work, too

Good idea to use them as building VTK-m can take a while

git clone http://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtk-m-build

cd vtk-m-build

ccmake ../vtk-m

ELG

ctest

More Information km
() i

We know, documentation is sparse
http://m.vtk.org
= A user’s guide is on its way. We are also working on a textbook.

= Doxygen:

System Overview

Vritem

VTK-m Framework

vtkm::cont vtkm::exec

Vritem

VTK-m Framework

vtkm::cont vtkm::exec

VTK-m Framework

Control
Environment

Data Set
Array Handle
Invoke

vtkm::cont

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

vtkm::exec

19O/

VTK-m Framework

Control
Environment

Data Set
Array Handle
Invoke

vtkm::cont

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

vtkm::exec

19540

Vritm

VTK-m Framework

vtkm::cont vtkm::exec

Device Adapter Contents

" Tag (struct DeviceAdapterFoo { };)

= Execution Array Manager

= Schedule

= Scan
= Sort

= QOther Support algorithms

Control Environment

Schedule

8

3

5

5

3

6

8

3

5

5

3

6

Transfer

ompute

ompute

Stream compact, copy, parallel find, unique

Execution Environment

11

16

21

24

30

30

37

41

41

Defining Data

Vriem
Array Handle T

Array Handle Storage VT

-- Xo| Yo| 2| X1 | V1| 21| %a| 2| 2o

Array Handle Storage VT

XO Xl X2 XY
yo yl yz coe
INEARAE

Array Handle Storage VT

Fancy Array Handles T

- C
-- f(i’j’k) = [OX + SX i’ oy + Syj’ Oz + SZ k]

Array Handle Resource Management -\V’"‘"

Array Handle Resource Management -\V’"‘"

Array Handle Resource Management -\V’"‘"

\ 1
CER

= vtkm::cont::ArrayHandle<type> manages an “array” of data
Acts like a reference-counted smart pointer to an array

ArrayHandle

Manages transfer of data between control and execution
Can allocate data for output

= Relevant methods
GetNumberOfValues()
GetPortalConstControl()
ReleaseResources(), ReleaseResourcesExecution()

* Functions to create an ArrayHandle

vtkm: :cont: :make_ArrayHandle(const T*array,vtkm::Id size)
vtkm: :cont: :make_ArrayHandle(const std::vector<T>&vector)
Both of these do a shallow (reference) copy.

= Do not let the original array be deleted or vector to go out of scope!

VLT

Fancy Array Handles T

ArrayHandleCompositeVector: Zips components of source arrays to
compose vector values

ArrayHandleConstant: An array with a single constant value
ArrayHandleCounting: An array that starts at an index and counts up

ArrayHandlelmplicit: Each entry of the array is the value returned
from the provided functor

ArrayHandlePermutation: Rearranges the entries in one
ArrayHandle by the indices of another ArrayHandle

ArrayHandleTransform: Modifies the values of one ArrayHandle by
feeding them through a provided functor

ArrayHandleUniformPointCoordinates: Defines the point
coordinates from a uniform rectilinear grid

ArrayHandleZip: An array of Pair with values coming from two
provided arrays

Other Important ArrayHandle
Features We’re Skipping

= Storage template parameter
Selects array layout for zero-copy semantics
Supports implicit and derived arrays (all those fancy array handles)

= Generic array interface for data through an ArrayPortal
In principle like an STL iterator, but simpler

Type of object returned from GetPortalConstControl

Can exist in execution environment (depends on definition)

DynamicArrayHandle -

* DynamicArrayHandle is a magic untyped reference to an
ArrayHandle

= Statically holds a list of potential types and storages the contained
array might have
Can be changed with ResetTypelist and ResetStoragelist
Changing these lists requires creating a new object

= Parts of VTK-m will automatically staticly cast a
DynamicArrayHandle as necessary
Requires the actual type to be in the list of potential types

Data Model

Vritem

* * *

A DataSet Has L

= 1 or more CellSet

Defines the connectivity of the cells

Examples include a regular grid of cells or explicit connection indices
= 0 ormore Field

Holds an ArrayHandle containing field values

Field also has metadata such as the name, the topology association (point,
cell, face, etc), and which cell set the field is attached to

= 0 or more CoordinateSystem
Really just a Field with a special meaning
Contains helpful features specific to common coordinate systems

Structured Cell Set

Structured Cell Set

Ce',p"

@
Point

Ve

Example: Making a Structured Grid T

vtkm: :cont: :DataSet dataSet;

const vtkm::Id nVerts = 18;
const vtkm::Id3 dimensions(3, 2, 3);

// Build cell set

vtkm: :cont::CellSetStructured<3> cellSet("cells");
cellSet.SetPointDimensions(dimensions);
dataSet.AddCellSet(cellSet);

// Make coordinate system
vtkm: :cont: :ArrayHandleUniformPointCoordinates coordinates(dimensions);
dataSet.AddCoordinateSystem(vtkm: :cont::CoordinateSystem("coordinates"”, 1, coordinates));

// Add point scalar data
vtkm: :Float32 vars[nVerts] = {..};
dataSet.AddField(Field("pointvar", 1, vtkm::cont::Field::ASSOC_POINTS, vars, nVerts));

// Add cell scalar

vtkm::Float32 cellvar[4] = {..};

dataSet.AddField(Field("cellvar", 1, vtkm::cont::Field::ASSOC CELL_SET,
"cells", cellvar, 4));

Explicit Connectivity Cell Set -

Map Cell to

Shapes Num Indices Connectivity Connectivity
TETRA 4 0 I 0
TETRA 4 4 1
HEDAHEDRON 8 8 2
WEDGE 6 16 3
HEXAHEDRON 8 22 0
HEXAHEDRON 8 30 2
TETRA 4 38 1
4
5
6

Running Worklets

\ 1

Invoking Worklets T

= Each worklet has a type (e.g. Map Field, Generate Topology, etc.)

Inherits from a corresponding vtkm: :worklet: :Worklet* class (e.g.
WorkletMapField, WorkletMapTopology, etc.)

= Each worklet type has a corresponding dispatcher

Name matches the worklet type (e.g.
vtkm: :worklet: :DispatcherMapField)

= All dispatchers take worklet type as first template argument.

= All dispatchers take a worklet instance on its constructor (or
construct a new one).

= All dispatcher have an Invoke method that runs the worklet on a
given set of parameters.

Example: Invoking a Worklet -

void RunElevation(vtkm::cont::DataSet &dataSet)
{

vtkm: :worklet: :PointElevation pointElevationWorklet;
pointElevationWorklet.SetLowPoint(vtkm::Vec<vtkm::Float64,3>(0.0, 0.0, 0.0);
pointElevationWorklet.SetHighPoint(vtkm: :Vec<vtkm::Float64,3>(1.0, 1.0, 1.90);

vtkm: :worklet: :DispatcherMapField<vtkm: :worklet::PointElevation>
dispatcher(pointElevationWorklet);

vtkm: :cont: :ArrayHandle<vtkm: :Float32> elevationOutput;
dispatcher.Invoke(dataSet.GetCoordinateSystem().GetData(), elevationOutput);

dataset.AddField(vtkm::cont::Field("elevation", 1, vtkm::cont::Field::ASSOC_POINTS,
elevationOutput));

Anatomy of a Worklet

struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef 2 ExecutionSignature(1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

template<typename T>
VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

¥

struct Sine

template<typename T>
VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

struct Sine: public vtkm::worklet::WorkletMapField {

template<typename T>
VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef 2 ExecutionSignature(1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef % ExecutionSignature ("%

temp late<typename T>

C:DopgratoF()// x) const {
return vtkm::Sin(x);
}

s

struct Sine: public vtkm::worklet::WorkletMapField {

ey e
typedef void Contr*ol&gnatur*e@Q U) ;

typedef Q@tionSignature

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef 2 ExecutionSignature(1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}

s

Execution Environment

Control Environment

vtkm: :cont: :ArrayHandle<vtkm: :Float32> inputHandle
vtkm: :cont: :make ArrayHandle(input);
vtkm: :cont: :ArrayHandle<vtkm: :Float32> sineResult;

vtkm: :worklet: :DispatcherMapField<Sine> dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

Execution Environment

Control Environment

vtkm: :worklet: :DispatcherMapField<Sine> dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

struct

Execution Environment

Control Environment

vtkm: :worklet: :DispatcherMapField dispatcher;
dispatcher.Invoke(inputHandle, sineResult);

typedef void ControlSignature@

Execution Environment

Control Environment

struct Sine: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(FieldIn<>, FieldOut<>);
typedef 2 ExecutionSignature(1);

template<typename T>

VTKM_EXEC_EXPORT

T operator()(T x) const {
return vtkm::Sin(x);

}
s

struct Zip2: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(
FieldIn<vtkm: :TypelListTagScalar>,
FieldIn<vtkm: :TypelListTagScalar>,
FieldOut<vtkm: :TypelListTagFieldVec2>);
typedef void ExecutionSignature(1, 2, 3);

typedef<typename T1l, typename T2, typename V>
VTKM_EXEC_EXPORT

void operator()(T1l x, T2 y, V &result) const {
result = V(x, y);
}
}s

struct ImagToPolar: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(
FieldIn<vtkm: :TypelListTagScalar>,
FieldIn<vtkm: :TypelListTagScalar>,
FieldOut<vtkm: :TypeListTagScalar>,
FieldOut<vtkm: :TypelListTagScalar>);
typedef void ExecutionSignature(1, 2, 3, 4);
template<typename RealType,
typename ImaginaryType,
typename MagnitudeType,
typename PhaseType>
VTKM_EXEC_EXPORT
void operator()(RealType real,
ImaginaryType imag,
MagnitudeType &magnitude,
PhaseType &phase) const {
magnitude = vtkm::Sgrt(real*real + imag*imag);
phase = vtkm::ATan2(imaginary, real);
}
}s

struct Advect: public vtkm::worklet::WorkletMapField {
typedef void ControlSignature(
FieldIn<vtkm: :TypelListTagFieldVec3>,
FieldIn<vtkm: :TypelListTagFieldVec3>,
FieldIn<vtkm: :TypelListTagFieldVec3>,
FieldOut<vtkm: :TypeListTagFieldVec3>,
FieldOut<vtkm: :TypeListTagFieldVec3>,
FieldOut<vtkm: :TypeListTagScalar>,
FieldOut<vtkm: :TypelListTagScalar>);
typedef void ExecutionSignature(
1, 2, 3, 4,

5, _6, _7);

template<typename T1l, typename T2, ...>
VTKM_EXEC_EXPORT
void operator()(T1l startPosition,

T2 startVelocity,

T3 acceleration,

T4 &endPosition,

T5 &endVelocity,

T6 &rotation,

T7 &angularVelocity) const {

Creating Worklets

Ve
Worklet Types T

* WorkletMapField: Applies worklet on each value in an array.

= WorkletMapTopology: Takes from and to topology elements (e.g.
point to cell or cell to point). Applies worklet on each “to” element.
Worklet can access field data from both “from” and “to” elements.
Can output to “to” elements.

= Many more to come...

Ve

Elements of a Worklet T

1. Subclass of one of the base worklet types (from previous slide)
2. Typedefs for ControlSignature and ExecutionSignhature

3. A parenthesis operator
Must have VTKM_EXEC_EXPORT
Input parameters are by value or const reference
Output parameters are by reference
The method must be declared const 1

struct ImagToPolar: public vtkm::worklet::WorkletMapField {

typedef void ControlSignature(FieldIn<vtkm::TypelListTagScalar>,
FieldIn<vtkm::TypelListTagScalar>,

FieldOut<vtkm: :TypelListTagScalar>,
FieldOut<vtkm::Type 5 <TagScalar>);

typedef void ExecutionSignature(_1, _2, _3, _4);

template<typename *, typename T2, typename T3, typename T4>

VTKM_EXEC_EXPORT 3:1 3.9
void operator()(T1 real, T2 imaginary, 34
T3 &magnitude, T4 &phe3 3 const =

Ve

Worklet Arguments T

= Argument type based on concept defined in ControlSignature

= Afield in the same domain (e.g. FieldIninaWorkletMapField
or FieldInTo inaWorkletMapTopology)

Base type in the corresponding array (e.g. vtkm: : Float32)
= A field associated with the “from” topology (e.g. FieldInFromina
WorkletMapTopology)

An object that has overloaded operator|] to behave like array or
vtkm: :Vec.

Also has ComponentType typedef and GetNumberOfComponents method.

Working with Cells

Cell Shapes T

= VTK-m cell shapes copy those of VTK
= Basic shapes defined in vtkm/CellShape.h
= Every cell shape has an enum identifier
e.g. vtkm: :CELL_SHAPE_TRIANGLE, vtkm: :CELL_SHAPE_HEXAHEDRON
= Every cell shape has a tag struct
e.g. vtkm: :CellShapeTagTriangle, vtkm::CellShapeTagHexahedron

= All cell shape tags have a member Id set to the identifier
vtkm: :CellShapeTagTriangle::Id == vtkm::CELL_SHAPE TRIANGLE

= For a constant cell shape identifier, can get tag with
vtkm: :CellShapeIdToTag

vtkm: :CellShapeIdToTag<CELL SHAPE TRIANGLE>::Tagis
typedef’ed to vtkm: :CellShapeTagTriangle

Generic Cell Shape

= vtkm: :CellShapeTagGeneric is a special shape tag
Has no corresponding integer identifier

Id field set at runtime

= Can write specialized cell functions on generic shapes using
vtkmGenericCellShapeMacro

Cell Traits Vs

= Defined in vtkm/CellTraits.h

= vtkm::CellTraits<> template provides static cell information

TOPOLOGICAL DIMENSIONS: 3 for polyhedra, 2 for polygons, 1 for lines, O
for vertices

TopologicalDimensionsTag: Set to
vtkm::CellTopologicalDimensionsTag<TOPOLOGICAL DIMENSIONS>

IsSizedFixed: Setto vtkm: :CellTraitsTagSizeFixedif thereisa
static number of points, vtkm: :CellTraitsTagSizeVariable otherwise

NUM_POINTS: Set to the number of points in the cell. Only defined if the size
is fixed

Using Cell Shapes in Worklets -

= Usethe ExecutionSignature tag CellShape
Defined in worklet types that support it (e.g. WorkletMapTopology)

struct MyWorklet : public vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagPoint,
vtkm: :TopologyElementTagCell>

{
typedef void ControlSignature(TopologyIn topology,

FieldInFrom<Scalar> inField,
FieldOut<Scalar> outCells)

typedef 3 ExecutionSignature(CellShape, 2);

template<typename CellShapeTag, typename InValues>
VTKM_EXEC_EXPORT
T operator()(CellShapeTag shape, const InValues &inValues) const

{
// Operate using shape...

Cell Operations T

= #finclude <vtkm/exec/ParametricCoordinates.h>

Convert between world coordinates and parametric coordinates (locations in
the cell are always in the range [0,1])

= #include <vtkm/exec/CellInterpolate.h>

Given a group of field coordinates and a parametric coordinate, interpolates
the field to that point.

= #include <vtkm/exec/CellDerivative.h>

Given a group of field coordinates and a parametric coordinate, computes the
derivative (gradient) of the field at that point.

Error Handling

Ve

Errors Signaled with Exceptions T

= On error, Dax toolkit throws a subclass of vtkm: : cont: :Error

#include <vtkm/cont/Error.h>

int main(int argc, char **argv)
{
try
{
// Do something cool with VTK-m
/] .
}

catch (vtkm::cont::Error error)

{

std::cout << error.GetMessage() << std::endl;
return 1;

}

return 0;

}

Types of Errors Wikin

= vtkm::cont::ErrorControlAssert

VTK-m fails an assertion. This might be a bad parameter value (such as an
index out of range) with the check removed in release builds.

= vtkm::cont::ErrorControlBadType

A VTK-m encounters an unexpected, invalid, or unknown type.

= vtkm::cont::ErrorControlBadValue

A VTK-m function or method encounters an invalid value.

= vtkm::cont::ErrorControlInternal

VTK-m detects an internal state that should never be reached. This error

usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid
input.

= vtkm::cont::ErrorControlOutOfMemory

A VTK-m function or method tries to allocate an array and fails.

Reporting Errors in Worklets -

= Exceptions cannot be thrown in the execution environment
Not supported in CUDA. Problematic with multiple threads.

= All worklets have a method named RaiseError

Call this method with a message string.

= In the control environment, a vtkm: :cont: :ErrorExecution
will be thrown with the given message

= Behaves as if the error was thrown in the worklet
Be aware, raising an error might not actually halt any execution.

VTKM_EXEC_EXPORT
T operator()(T x) const

{
if (x < 9)
{
this->RaiseError("Cannot take square root of negative number.");
}

return vtkm::math::Sqrt(x);
}

Asserts

= VTKM_ASSERT_CONT defined in vtkm/cont/Assert.h

Behaves like POSIX assert except that it throws
vtkm: :cont: :ErrorControlAssert instead of exiting the program.

Will be removed when NDEBUG is defined.
= CMake adds this to Release builds.

= VTKM_ASSERT_EXEC defined in vtkm/exec/Assert.h

Takes a second argument that is a worklet.

Behaves like POSIX assert except that it throws
VTKM: :cont: :ErrorExecution instead of exiting the program.
Will be removed when NDEBUG is defined.

= CMake adds this to Release builds.

Timers

Ve

Timing Parallel Code T

= vtkm::cont::Timer safely times parallel VTK-m algorithms
Starts on construction or Reset. Reports on GetElapsedTime.

vtkm: :cont::Timer<> timer;

dispatcher.Invoke(
grid.GetCoordinateSystem().GetData()GetPointCoordinates(),
results);

// This call makes sure data is pulled back to the host

// in a host/device architecture.

results.GetPortalConstControl();

vtkm: :Float32 elapsedTime = timer.GetElapsedTime();

