This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2015- 7176C

Algorithms and Software for Intrusive UQ

Eric Phipps (etphipp@sandia.gov)
Sandia National Laboratories

Fourth QUEST Uncertainty Quantification
Summer School

August 19-21, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly (Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned lional Laboratories
Energy's National Nuclear subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. s

About Me

Sandia National Laboratories

Center for Computing Research (CCR)
Computer Science Research Institute (CSRI)
Optimization and Uncertainty Quantification Department 1441

Been at Sandia ~13 years

~3 years as LTE (like a post-doc)
~10 years as staff member

Work focuses on embedded (a.k.a. intrusive) analysis algorithms for large-scale
science/engineering simulations:

Continuation and bifurcation analysis of dynamical systems
Automatic differentiation for sensitivity analysis, optimization, UQ
Stochastic Galerkin UQ methods

UQ methods for emerging computer architectures

Helped develop several software packages:

LOCA: Library of Continuation Algorithms
Sacado: Automatic Differentiation of C++ Codes
Stokhos: Embedded Stochastic Galerkin and Sampling Methods

— Albany: Agile Components/Embedded Analysis Demonstration Application

i

Sandia National Laboratories

[

“".".. Multidisciplinary Research within CCR

Leading Edge Algorithms and ke '
Enabling Technologies State-of-Art Computational

Science Applications

J
e S l ‘ Il Number of XT3/XT4 Sites Worldwide

Computer Science Research Institute

~

o o o o oS

Count of Sites
(Cumulative)

Scalable HPC Architectures
- and Systems
Model within Sandia for External Collaborations @ Sonchs Norceil Lboratinics

Computer Science Research Institute (CSRI)

Annual Statistics | | T
— 14 projects -)
— 4 workshops
— 102 additional visitors from 67 institutions
— 37 summer students
— 3 sabbaticals

73% of CCR’ s math and computer science hires in 2005-
2007 had prior contact through CSRI collaborations

What Are Embedded/Intrusive UQ Methods?

 Any method that is not “non-intrusive” or “black-box”

— l.e., require more from the application than “parameter to response
mapping”.

« Examples:
— Methods that link a sampling engine into their code
* E.g., Dakota library-mode
— Methods that require local Taylor series
— Stochastic Galerkin methods
— Methods that propagate more than one sample at a time
— Methods that rely on embedded optimization

* Why would we ever want to use an intrusive method?

— Potentially improved performance, robustness, scalability or
accuracy

— With the right software infrastructure, they aren’t necessarily that
much more difficult to do

* The goal of these lectures

117! Sandia National Laboratories

Agenda

Lecture 1: Derivative Methods and Software
— Use of derivatives in UQ
— Software for computing derivatives easily and efficiently
— Sacado package demo

Lecture 2: Stochastic Galerkin Methods and Software
— Overview of stochastic Galerkin methods
— Approaches for implementing stochastic Galerkin methods
— Stokhos package demo

Lecture 3: Embedded UQ Methods in Albany
— How to design C++ codes effectively using templates
— Overview of Albany code structure
— Demo on various UQ-related Albany topics

Lecture 4: Uncertainty Propagation for Next-generation Architectures
— Ensemble propagation

— Stochastic Galerkin

— Code demo

117! Sandia National Laboratories

Derivative Methods and Software

Derivatives

Derivatives are a very useful tool for simulation analysis in general

- uQ

— Error estimation
— Optimization

— Stability analysis

Derivatives can be computed efficiently with good scalability to large

numbers of independent variables
— First derivatives, especially adjoint methods

Mathematical Model

u(to) = uo(y)
u(to) = o(y)

to
£:Q — T CRM, density p, & independent

0= f(a(t),u(t),y,t), t€ [to,tf], ye T CRM

o(y) = / " g(a(t), u(t), y,)dt + h(a(ts), ults), v)

i

Sandia National Laboratories

Derivatives in UQ

« Approximate variance from first derivatives

acd ov nd ov 2
v(€) =v(0)+) 8—y_(0)sz- — Var(v) =) (a—y(O)) , & iid, E& =0,E =1
=1 2 1=1 %

— Only accurate if response is (nearly) linear over range of uncertain variables
— Only relevant if uncertain inputs are (nearly) Gaussian
— Very common approximation in neutronics calculations

Piecewise-linear response surface
— Apply the above Taylor series locally at some chosen set of points
— Estep, et al

Quick and dirty dimension reduction
— Only include random variables with significant sensitivity

Guide sampling of posterior PDF in Bayesian inference problems
— Ghattas, et al

Derivative-enhanced sampling
— PCE (example now)
— VPS (example later)

Derivative-based stochastic optimization

111! Sandia National Laboratories

Polynomial Chaos Expansions (PCE)

« Steady-state finite dimensional model problem:

Find u(¢) such that f(u,£) =0, ¢:Q — T C RM, density p

* (Global) Polynomial Chaos approximation:

u(©) =€) = Y uithi(®), (i) = / i (0); () p(y)dy = 61 (1b?)

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

* Non-intrusive polynomial chaos (NIPC, NISP):

u; =

/ a(y): (1) p(y)dy ~

(¥7) (102

Z’wku '@bz(yk)v f(u 'Y)

0

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions
— Need to be careful to ensure quadrature rule preserves discrete orthogonality

i

Sandia National Laboratories

Extending Scalability Through Derivative
Enhancement

- PCE:
— Linear regression approach for approximating PCE coefficients
P

ﬁ(yk) = U — Zuz¢z(yk) = U, f('akzayk:) =0, £k=0,...,Q
=0
— Mitigate ill-conditioning by over-sampling Q ~ 2*P
« Equality-constrained least-squares
— Reduce number of samples by adding derivative equations

= Q
Wi = u k=0,...
;u'@b (in) Uk ’ ’M—|—1
P _
oY; 0
Zui ’Qb(mk:):ﬂ? k=0,..., o
i—0 ox Bwk M—I—l

» Stochastic Collocation

— Gradient enhanced interpolants (splits, Hermite interpolating
polynomials)

117! Sandia National Laboratories

Research, development, & deployment of advanced
> DAKOTtQFatlve algorithms for simulation-based assessment and
design’

Dakota
sensitivity analysis
uncertainty quantification

optimization
model
arameters

parameter estimation

approx:maﬂon/surrogate]

Iterative systems analysis

Multilevel parallel computing

Simulation management

http://dakota.sandia.gov

RLIT]) lllll.

o
®agunaipunans?

°,

Impact across a variety of DOE mission areas
Stockpile (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF)

Abnormal environments Wind turbines, nuclear reactors Ice sheet modeling, CISM, CESM, ISSM

accumulation, temperature surface topography

flow law

shelf geometry g
melt/freeze distribu ton%
Rgure 1: Schematic of

geothermal flux

~ i ~ Small Model Problem

« 2-D incompressible fluid flow past a cylinder
— Uncertain viscosity field

« Albany code (A. Salinger et al, SNL)
* Gradient-enhanced PCE implemented by Dakota

x-velocity
0.00

|||||2|Dia||||||||ATD'D

-5.28 524

(1) Sandia National Laboratories

Comparisons on Model Problem

M=3
— NISP
*— RPCE

3 +—+ RPCE+FS |1
10% | ‘\\%% +— RPCE+AS|

Variance Error

i - | - X
10° 10* 102
Scaled Run Time

NISP
RPCE
RPCE+FS
RPCE+AS]

%

10° 10! 102 103
Scaled Run Time

10'1 M = 5 - —
| 1
5 =+ NISP
107 F +— RPCE
5103 [+— RPCE+FS|]
oot N\w\xx e RPCE+ASE
o 5| N
é 10]
£10° | E
©
>107 | E
-8 - \ a
10 “ %& “
10-9 R | X X | L
10° 10t 102 103
Scaled Run Time
| 1 1
5 =+ NISP
107 F +— RPCE
5107 | #—+ RPCE+FS|]
s b B RPCE+AS]
w = \ E
o_ 5| N
§ 10]
= 10° | =
©
>107 | E
108 = =
10-9 R R NN | T
10 10° 10' 10?2 10® 10*
Scaled Run Time

Lsﬁmaﬁunal Laboratories

Computing derivatives efficiently in large-scale

codes

—

* These techniques require accurate evaluations of

partial derivatives

 These can always be derived and coded by-hand

— Time consuming
— Error prone

— Distracts code developers from focusing on physics

* One alternative is numerical differentiation
— Difficult to make accurate, robust
— Can be very expensive

* A better alternative is automatic differentiation

— Evaluate analytic derivatives automatically, efficiently

i

Sandia National Laboratories

What Is Automatic Differentiation (AD) ?

« Analytic derivatives without hand-coding

« All differentiable computations are composition of simple
operations

—sin(), log(), +, *, /, etc...
 We know the derivatives of these simple operations
 We have the chain rule from calculus

« Systematic application of the chain rule through your
computation differentiating each statement line-by-line.

|F17) Sandia National Laboratories

A Simple Example

x «— 2

t1<—€w

ty «— logx

t3 «— iBtz

ty — t1 + 13

Y — sin t4

y =sin(e” + xlogx), = =2

d

€Xr —

dx
2.000 (1.000
7.389 | 7.389
0.693 | 0.500
1.386 | 1.693
8.775 | 9.082
0.605 | -7.233

Analytic derivative evaluated to machine

precision

Sandia National Laboratories

Related Methods

y = sin(e® + xlogx), = = 2

/

Automatic \
Differentiation

dx
x «— 2 — «— 1
dx
dtl dx
tl —e* — tl—
dx dx
dtz ldx
ty — logx —_— — ——
dx rdx
—x — —to—+—
3 2 dx 2d:c dx
; b4t dt, dty N dts
— «—
* ! 3 dx dx dx
d dt
y «— sinty A (:os(t4)—4
dx dx

d
&y — 7.233 340 400 802 31y
€T

ﬁymbolic Differentiatioﬁ

4y = cos(e” + xzlog x)-
(e” +logx + 1)
xr— 2
t; — e”
ty «— logx
t3 «— xts
ty «— t1 + 3

Y — sin t4

81 < cos ity
Sg +— 11 + t2
Sz «— S+ 1
dy

<— 8183
dmr

\dy —_7.233 340 400 802 316y
X

ﬂ? inite Differencing\

dy _y(2+4e¢) —y(2)
dx €
~-7.233 343 187

_ /

1] Sandia National Laboratories

Tangent Propagation

y=f(x), f: R" - R™

 Tangents
. __ dy of .
t)] = t —— = — —_
v = fe®) = i=5| =g
* For each intermediate operation
0 Op .
c=p(a,b) = ¢= 8—Zd—|—6—ib

« Tangents map forward through evaluation

Operation Tangent Rule
c=a+b |¢=a+ b

c=a—-b |é=a—b

c = ab ¢ = ab + ab

c=a/b ¢ = (a— cb)/b

c=a ¢ = c(blog(a) + ab/a)
c = sin(a) | ¢ = cos(a)a

c = log(a)

¢c=a/a

Y1

A Simple Tangent Example

sin(e™ 4+ xix3)
Y1

_y1‘|‘33%

: oY1
i oYy2
92 oxq

oy1

oxo

0y2

Oxo

Given x1, Lo, L1, La.

81 «— e™

— 12
«— 81 1+ S2
Yy < sin(s3)
— a:f
S5 «— Y1 + S4

Y2 — Y1/8s5
Return y1, v2, Y1, U2

él «— 812.21

éz «— J)lw.z —+ iliﬁg
83 <— 81 + $2

U1 «— cos(83)S3

.§4 <— 2$1d31

85 «— Y1 + 84

Y2 — (Y1 — y285)/55

Sandia National Laboratories

Forward Mode AD via Tangent Propagation

« Choice of space curve x(t)is arbitrary
* Tangent y depends only on =y,
« Givenxzpandv:

0 :
y(t) = f(xg+vt) — y = %’v Jacobian vector product
0
- Propagate p vectors vy, ..., v, simultaneously
... of of . .
(1 ... yp] = —[vg... ,Up] — 1% Jacobian matrix product

 Forward mode AD:

@) — (1@, 22v)

* V is called the seed matrix. Setting equal to identity matrix yields full
Jacobian

. Computational cost = (1 + 1.5p)time(f)

» Jacobian-vector products, directional derivatives, Jacobians for m > n

Gradient Propagation

| gl f(x) = constant\

 Gradients

T
=g y=7 flx) = &= (8z>

_ (97
dx _(a_a:

* For each intermediate operation

Ql

c=¢(a,b) —

S
|

0z 0z0c Oy
da Hdcda C(‘?a’
0z 0z0c _Oyp

b _ 9cob . ob

» Gradients map backward through
evaluation

) s

Operation Gradient Rule
c=a+b |a=¢ b=2¢
c=a—b |a=¢ b=—¢

c = ab a=cb, b=ca
c=a/b a=¢/b, b= —éc/b

c = a® a = éclog(a), b = écb/a
c = sin(a) | a = écos(a)

c=log(a) | a=¢c/a

A Simple Gradient Example

Y1

8 8
N =

sin(e”™ + x1x-)

Y1 .
—2 i SS9 «— IL12
Y1 T oy 1 83 81+ 82
11 yp «— sin(ss)
9y1 Oy1 L :91 i i : : .84 — mf
8CU 8CB om0 |
0w ou: ij 1R IR s
dz1 Oxy Ly y/ss
L gy — U1+ Y2/S5, 85— —Y2Y2/S5
EE i i : §1<—ﬂ1—|—§5, §4<—§5
_ _Op L By — 2841
= oy
b —= gg L B cos(s3)
b=e— , 1 81+ 83, 82 < 83
ob :

Given 1, x2, Y1, Y2:

S1 — e*l

I, < T1 + S22,

Iy < T1 + 8181

Return yi, y2, 1, T2

Iy < S2X7

Reverse Mode AD via Gradient Propagation

* Choice of normal ¢ is arbitrary
» Gradient z depends only on x,y
» Givenz, andw:

T
y=w,y= f(x) —= & = (8—) w Jacobian-transpose vector product

X
* Propagate g vectors wi,...,w,; simultaneously
B B af\T af\7* . .
[®1 .0 s Bg] = ™ [wy ... wy| = ™ W Jacobian-transpose matrix product
£ xr

* Reverse mode AD:

(@, W) — <f<w>, (%)Tw)

W is called the seed matrix. Setting equal to identity matrix yields full
Jacobian

- Computational cost =~ (1.5 + 2.5q)time(f)
m =q=1 = cost = 4 time(f)

» Jacobian-transpose products, gradients, Jacobians for n > m

Taylor Polynomial Propagation

higher degree

* Given d -} 1 coefficients xg, . ..

d
x(t) = Z)t
k=0

y(t)

1 d*y
k!dtF|

Yk

« Computational cost

y=f(z), f:R" —>R™

- Extension of tangent propagation to

,tqg € R"

f(z(t) =yt + Ot

— yk(wOa sy wk)

~ O(d*)time(f)

Operation Taylor Rule
c=a+b |cg=ar+ by

c=a—>b |c,=ap— b

c=ab Cr, = Z?:o ;b

c=a/b cr = % (ak = 2521 bjck—i)

c = exp(a)

1k
Ck = 3 ijl JCr—ja;

c = log(a)

1 k-1 . .
Ck = %ag (kak - Zj:l Jak—JCJ)

s = sin(a)

c = cos(a)

1k
Sk = 3 D_j—1JQjCk—j

_ 1 k . .
Ck = —% D j—1 JQjSk—j

Software Implementations

* Tools implementing AD have been created for many popular
programming languages
— C/C++: ADOL-C, ADIC, Sacado, ...
— Fortran: ADIFOR, OpenAD, Tapenade, ...
— Matlab: ADIMAT, MAD, ...
— Python: pyADOL-C, AD, ...

» See http://www.autodiff.orqg/ for a comprehensive listing

* Tools fall into two general categories
— Source transformation
— Operator overloading

111! Sandia National Laboratories

Source Transformation

 AD implemented by preprocessor
— Preprocessor reads code to be differentiated
— Uses AD to generate derivative code
— Writes-out differentiated code in original source language
— Differentiated code is then compiled using a standard compiler

* Resulting derivative computation is usually very efficient
* Works well for simple languages (FORTRAN, some C)
« ADIFOR/ADIC/OpenAD out of Argonne

« Extremely difficult for C++

111! Sandia National Laboratories

ADIFOR™ Example

subroutine func(x, y)

(@)

double precision x(2), y(2)
double precision u, v, w

u = exp(x(1))
Vv x(1)*x(2)
W = U+v

y(1) = sin(w)

u = x(l):‘::‘:z
v=y(@d) +u
y(2) = y(1)/v

return
end

o 4

“ADIFOR 2.0D

www.mcs.anl.gov/research/projects/adifor/

///’> subroutine g_func(g_p_, x, g_x, 1dg_x, y, g_y, 1d9_Y)<\\\\

C Initializations removed for clarity..
d2_v = exp(x(1))
dl_p = d2_v

do g_i_=1, g_p_

g_u(g_i) = dlp * g_x(g_i_, D)
enddo
u=d2_v

dog_i_=1, g_p_

g_v(g_i) = x(1) * g_x(g_i_, 2) + x(2) * g_x(g_i_, D
enddo
v = x(1) * x(2)

do g_'i_ = 1! g9_p_
g w(g_i) = g_v(g_i) + g_u(g_i)
enddo

o
N
<
]

sin(w)
- cos (w)
dog_i_=1, g_p_
g_y(g_i_, 1) = dl_p * g w(g_i_)
enddo
y(1) = d2_v

Q.

[}
o

]

\\SL¥ continues.. 4////

Operator Overloading

 AD implemented within source language constructs
— New data types are created for forward, reverse, Taylor modes

— Intrinsic operations/elementary operations are overloaded to compute
derivatives as a side-effect

— Data type (e.g., double) in original code is replaced with AD type
* Generally easy to incorporate into C++ codes

* Generally slower than source transformation due to function call
overhead

— This can generally be eliminated

* Requires changing data types from floats/doubles to AD types
— C++ templates greatly help

« ADOL-C, FAD/TFAD, Sacado T

Sandia National Laboratories

(Naive) Operator Overloading Example

‘\\

void func(const double x[]1, double y[]1) {
double u, v, w;

u = exp(x[01);
v = x[0]*x[1];
W = u+v;

y[0] = sin(w);

u = x[0]*x[0];
v = y[0] + u;
y[1] = y[0]/v;

¥

void func(const Tangent x[], Tangent y[1) {
Tangent u, v, w;

u = exp(x[01);
v = x[0]*x[1];
W = u+v;

y[0] = sin(w);

u = x[0]*x[0];
v = y[0] + u;
y[1] = y[0]/v;

//:;;ss Tangent {

public:
static const int N = 2;
double val;
double dot[N];

}s

Tangent operator+(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val + b.val;
for (int i=0; i<Tangent::N; 1i++)
c.dot[i] = a.dot[i] + b.dot[1i];

return c;

}

Tangent operator*(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val * b.val;

for (int i=0; i<Tangent::N; 1i++)

c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;
return c;
}
Tangent exp(const Tangent& a) {
Tangent c;

c.val = exp(a.val);
for (int i=0; i<Tangent::N; 1i++)
c.dot[i] = c.val * a.dot[i];

return c;
k

Expression Template Operator Overloading

e p

void func(const Tangent x[], Tangent y[1) {
y[0] = sin(exp(x[01) + x[0]*x[1]1);
// -

}

SinExpr< PlusExp< ExpExpr<Tangent>,
MultExpr<Tangent,Tangent>
>

y[0].val = sin(exp(x[0]) + x[0]1*x[11);
for (int i=0; 1i<N; 1i++) {
y[0].dot[i] = cos(exp(x[0]) + x[0]*x[1])*
(exp(x[0]1)*x[0] .dot[i] +
x[0]*x[1].dot[i] + x[11*x[0].dot[i]);

o _4

Public domain Fad/TFad package

//:;;p1ate <class E1, E2> class PlusExpr {
double val() const { return el.val(Q) + e2.valQ; }
double dx(int i) const { return el.dx(i) + e2.dx(i); }
const E1& el;
const E2& e2;
}s
template<class E1, class E2> PlusExpr<El,E2>
operator+(const E1& a, const E2& b) {
return PlusExpr<El,E2>(a,b);
}
template <class E1l> class SinExpr {
double val() const { return sin(el.val(Q))] }
double dx(int i) const { return cos(el.val()*el.dx(i); }
const E1& el;
f i
template<class E1l> SinExpr<El> sin(const E1l& a) {
return SinExpr<El>(a);
}
class Tangent {
public:
double val() const { return val; }
double dx(int i) const { return dot[i]; }
template <class E> Tangent& operator=(const E& e) {
val = e.val(Q;
for (int i=0; 1i<N; 1i++)
dot[i] = e.dx(i);

&}

\

Sacado: AD Tools for C++ Codes

 Several modes of Automatic Differentiation
— Forward
— Reverse
— Univariate Taylor series

— Modes can be nested for various forms of o .
higher derivatives http://trilinos.sandia.gov

« Sacado uses operator overloading-based
approach for C++ codes

— Sacado provides C++ data type for each AD
mode

— Replace scalar type (e.g., double) with template
parameter

— {nstantiate template code on various Sacado AD
ypes

— Mathematical operations replaced by
overloaded versions

— Expression templates to reduce overhead

11| Sandia National Laboratories

How to use Sacado

« Template code to be differentiated: double -> ScalarT

* Replace independent/dependent variables with AD variables

* Initialize seed matrix

— Forward: Derivative array of i’ th independent variable is i’ th row

of seed matrix

— Reverse: Derivative array of i’ th dependent variable is i’ th row of

seed matrix

« Evaluate function on AD variables
— Instantiates template classes/functions

 Extract derivatives

— Forward: Derivative components of dependent variables
— Reverse: Derivative components of independent variables

i

Sandia National Laboratories

Primary Sacado AD Classes

- #include “Sacado.hpp”
 All classes are templated on the Scalar type

* Forward AD classes:
- Sacado: :Fad: :DFad<ScalarT>: Derivative array is allocated dynamically

— Sacado: :Fad: : SFad<ScalarT>: Derivative array is allocated statically and
dimension must be known at compile time

— Sacado: :Fad: :SLFad<ScalarT>: Like SFad except allocated length may be
greater than “used” length

— Sacado: :Fad: :SimpleFad<ScalarT>: Dynamically allocated array that
doesn’t use expression templates

« Similar forward AD classes in other namespaces that use different
forward AD approaches (research ideas)

— Sacado::ELRFad, Sacado::CacheFad, Sacado::ELRCacheFad

* Reverse mode AD classes: -
— ADvar<ScalarT> (1) Sandia National Laboratories

Basic Fad Example

Seed Matrix Fad Example

Basic Rad Example

Computing Higher Derivatives

» AD classes are templated, so AD classes can be nested to compute
higher derivatives

for 0y for O <3y)
> Vo

— Forward-forward: y = J(x v > v
y=7f=@) dx dx \9x
rev 10y for O 5]
— Reverse-forward: y = f(x) TV, 722 1o, (wT—y> v
Ox Oox Oox
0 tay O
— Forward-Taylor: y, = f(x) for> yov y> ykv
83308 8%0 5
rev ta
— Reverse-Taylor: yo = f(xo) i w?t il y> wTﬂ
8330 633()

— Etc...

@E{ Sandia National Laboratories

How To Compose AD Classes

Function Evaluation
First Forward Derivative

Second Forward
Derivative

First Reverse Derivative

Forward-Reverse Second
Derivative

double
xFad<double>

xFad< yFad<double> >

ADvar<double>

ADvar< xFad<double>
>

f(x) f
f(x) f.val
%Vl f.dx
(‘j;ng) f.val.val
§§EV2 f.val.dx
5 V1 f.dx.val
(%Vl) Vo | f.dx.dx
f(x) f.val
wTal ~ xadj
£§;’B) f.val
%‘g f.val.dx
wTrel x.adj.val
(WT%> v | x.adj.dx

111) Sandia National Laboratories

Nested AD Example

Forward or Reverse?

 Forward: Computes derivatives column-wise
— Number of independent variables <= number of dependent variables
— Square Jacobians for Newton’ s method
— Sensitivities with small numbers of parameters

— Algorithm naturally calls for Jacobian-vector/matrix products
 (Block) Matrix-free Newton-Krylov

* Reverse: Computes derivatives row-wise
— Number of independent variables >> number of dependent variables
— Gradients of scalar valued functions
— Sensitivities with respect to large numbers of parameters

— Algorithm naturally calls for Jacobian-transpose-vector/matrix
products
» (Block) Matrix-free solves of transpose matrix
« Optimization

\111] Sandia National Laboratories

Choosing AD Types

* DFad
— Derivative array allocated dynamically
— Most flexible
— Slowest
— Very slow in threaded environments

« SFad
— Derivative array size fixed at compile time
— Must know exact number of derivative components
— Fastest
— Best choice in threaded environments

- SLFad
— Fixed-length derivative array, can use only a portion of it at run-time
— Compromise between the two
— Usually just a little slower than SFad
— Good choice for threaded environments

« ADvar (reverse mode)

— Due to overhead, need substantially more independent variables than dependent

variables (at least 40 more)
— Currently not appropriate for threaded environments

i

Sandia National Laboratories

Differentiating Element-Based Codes

» Global residual computation (ignoring boundary computations):

- Jacobian computation:

of N .
¢ L' 7, P,
. ;Qz k;

Beki

Jki B sz ’

» Jacobian-transpose product computation:

8f Z(Qz)TJk

» Hybrid symbolic/AD procedure

— Element-level derivatives computed via AD
— Exactly the same as how you would do this “manually”

— Avoids parallelization issues

i

Sandia National Laboratories

Performance

Scalability of the element-level derivative computation

Set of N hypothetical chemical species: |, Jacobian Eval o Adjoint Eval
£ 600 £ 10
2Xj\=\ j—1+Xj+1a 1=2,....N—1 | —=—FD —
. [3400{—s=FAD T 9
Steady-state mass transfer equations: T} 102 1)
o
u-VY; + V2, =, j=1,...,N—1 |2 200 027 | 28
N © . iz . RAD
Z Y, =1 C 0 100 200 300 400 C 0 100 200 300 400
=1 DOF Per Element DOF Per Element
« Forward mode AD i Jacobian Eval 2 Adjoint Eval
— Faster than FD S 1000 5 5.9
Z S —=—FD 8 RAD
— Better scalability in number of o —e—FAD 058
PDEs o Ke)
o 500 155 o
— Analytic derivative © : © 57
— Provides Jacobian for all Charon = 0.94 =
' [0 © 5.6
Biysics © 0 100 200 300 400 @ 0 100 200 300 400

* Reverse mode AD DOF Per Element DOF Per Element
— Scalable adjoint/gradient

DOF per element = 4*N
111! Sandia National Laboratories

Matrix/Residual Assembly Performance Test

* Performance test for measuring Jacobian/Residual assembly
using Sacado

—V - (kVu)+ov-Vu+pu?=0
— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh
— Derived from FENL Kokkos example (H. Carter Edwards)
— Thread-parallel matrix/residual assembly

» Mesh cell loop parallelized with OpenMP/CUDA
« Atomic instructions for assembling into matrix/residual

3 algorithms studied

— Traditional element derivative w.r.t. nodal solution (AD size = #
nodes/element x # equations)

— Element derivative with optimized derivative of interpolation of
nodal solution, gradient at quadrature points

— Derivative at each quadrature point w.r.t. nodal solution and
gradient interpolated at quadrature point (AD size =4 x #
equations)

117! Sandia National Laboratories

Sacado Assembly Performance

Relative Fad Assembly Time

© © © o ©
0

[

N

o

Sandy Bridge -- Linear Elements NVIDIA K20X GPU -- Linear Elements
(Single socket, 8 cores, 16 threads) o 1.4 |
£
|:> 1.3 H\E—n——-ﬂ—ﬂ—n
K]
S -—g oo £ 12
2 =~Element
=~Element o 1.1
oy - © <E~QOptimized Element
=E~Optimized Element '-; E!:Em
. 2 1 | Quad Point
Quad Point =1
T T T T 1 &J 0_9 T T T T 1
8 16 24 32 40 48 8 16 24 32 40 48
Grid Size Grid Size
Xeon Phi 7120P -- Linear Elements
(60 cores, 240 threads)
0 0.9
E
[
>0.8
o]
£
§0.7 . =o~Element
<
=E~Optimized Element
v = H\n——ﬂ Quad Point
& 0.5 .| . [. , J
o 8 16 24 32 40 48
Grid Size 111! Sandia National Laboratories

Sacado Assembly Performance

o

|

N

n

Relative Fad Assembly Time
© o o o o o
E~))]

Sandy Bridge -- Quadratic Elements
(Single socket, 8 cores, 16 threads)

=~Element

=E-Optimized Element
Quad Point

A S T — — -
E—g—a =& o o

T T T T 1

24 32 40 48
Grid Size

-]
[
(=)}

NVIDIA K20X GPU -- Quadratic Elements

o 1.6
E g EEEa
[
_>.1.4
Q2
§1.2
2 =*~Element
E 1H—H_n_n_n <@-Optimized Element
[.
uad Point
0% @m@m & &o@ ¢
< 0.6 - . .] . [
8 16 24 32 40 48

Grid Size

Xeon Phi 7120P -- Quadratic Elements

=~Element

<@-Optimized Element

Quad Point

Grid Size

(60 cores, 240 threads)
v 0.8
E
[
>07 B ma nd
Q0
g
» 0.6
G @ E T T T
<
5 0.5 | o —
()]
2 |
50.4 I T T T 1
& 8 16 24 32

48

1] Sandia National Laboratories

Steady-State Local Sensitivity Analysis

,f(uv y) =0, 'v(y) — h(uvy)

Forward sensitivities Adjoint sensitivities
dv Oh [Of 'of N Oh ovt art(of ton” N oht
Oy Ou ou Oy Oy oy Oy ou OJOu oy
» Cost scales with number of » Cost scales with number of
parameters observation functions
» Solve system Jacobian » Solve system Jacobian-transpose

« Small extension for Newton-based codes

» Sensitivity (linear) solves significantly cheaper than (nonlinear) state solves
» Accurate derivatives critical (can’t use approximate Jacobian)

« Simulation code must evaluate observation functions & gradients

@E{ Sandia National Laboratories

Transient Local Sensitivity Analysis

Forward sensitivities

2 <8—u> +5 <8u> + 25 0, te oty

ou \ 0y ou \ Oy Oy
ou ou o ot
—(to) = ——» ~—(to) = ——,
oy oy = Oy oy
o0 tr /1 Og O dg 0 o0
= (e) dt+
oy tc¢ \Oudy Oudy Oy
Ohou Ohou Oh
. + -+
Ouldy Oudy 0y/|i—, ;

* Linear ODE for sensitivities
solved alongside original model

» Cost scales with number of
parameters

« Hindmarsh et al

Both techniques provided by SUNDIALS:
computation.linl.gov/casc/sundials/main.html

Adjoint sensitivities

duo (WTA>
oy ot i
» Linear ODE for adjoint that must be
integrated backward in time

* Requires full forward model
integration first (or check-pointing)

» Cost scales with number of
objective functions

 Petzold et al

e L. Q AS P R QUALIFICATION ALTERNATIVES TO SPR

Qualification of electronic devices in radiation environments

Bipolar Junction Transistor

PDE semiconductor

device simulation

4 Electric Potential R
zL ‘ 4724601 213101 461202 3.054e-01 5.646e-01 G. Hennlgan, J. Castro,
P.Lin, R. Pawlowski (SNL)

0
No irradiation: Ig=-0.05 pA 1
< 2r
=3
TE' Experiment
£
=
o 4}k
o
(7]
3]
[11]
Defect annealing
6F
10° 10* 10° 102 107 100
Time (s)

Charon Drift-Diffusion Formulation
with Defects

Current % -V Jm - _R}n @b"s n,p, Yzllw vy YN)):; Jm - -?@anw + B%n
4

Conservation for e-
and h+

7§ } , , y] T 7 % : . . o

i

Defect Continuity m@? + V- jﬂ = — R'}'; @fﬁxm n,p, Yi,..., YN)G J&‘Q = — [k %Vw — D;VY;

Electric potential —V(eV(z)) = —¢ @9){:@)} —nfz) + Nj(z) — Ny (fm);)! -y

q:Y(x)

*ﬁ'p—mzllj
Recombln_atlonl Include electron capture and hole capture by defect species
generation Ry . : :
% and reactions between various defect species
source terms

Activation Energy
Electron SO

teci . (ABizi_,zit1ye-7)

emission/capture Ry, siiiy g o Gpgigisr e) 2 @Kp([;ﬂ“ te]]

" - ' i ' . L, 4
Z' > Z" e

Cross section

117! Sandia National Laboratories

Sensitivity Analysis of a Bipolar Junction
Transistor

Sensitivities show dominant physics

time = 1.0e-03
5. 0.6 ——
+ Bipolar Junction Transistor 3 g:
« Pseudo 1D strip (9x0.1 micron) s 0
* Full defect physics %:3;22
(/7]

1
=4
o

* 126 parameters

S

10 20 30 40 50 60 70

time=1.0

o9

> o

—
-
q

o
)

-0.2F
-0.4r

Scaled Sensitivity
o

1
o
o

10 20 30 40 50 60 70 80 90 100 110 120

Parameter

Sensitivities computed at all times 1st-order Finite Difference Accurac : ”
et P | . ! e Y Comparison to FD:
FD perturbation gize v Sensitivities at all time points
=1 ' 23 v More accurate
-2 2 2f v" More robust
£ =)
z . & s v" 14x faster!
N - [$]
< o
» S
-4 o 1
-5/ — Parameter 16 1 0.5
— Paramgter 46)) G| \ .)
10° 107° 107" 107 10° 107 10° 107 107" 10°

Time (s) Time (s)

Summary

* Derivatives are useful in many forms of
simulation and analysis

— Discuss more uses in Part 3

- Automatic differentiation provides a powerful
means for computing analytic derivatives in
simulation codes

« Sacado+templating provides an effective means
for implementing these ideas in large-scale C++
codes

— More on this in Parts 3 and 4

[‘@7{ ﬂ Sandia National Laboratories

AD Research

Efficiently deploying AD in modern programming environments
— Expression templates for C++
— AD in interpreted languages (Matlab, Python, ...)

Reducing overhead of reverse-mode AD

AD in threaded-environments
— Automatically differentiating thread-parallel programs
— Exploiting thread parallelism within AD tools

Finding most efficient way to differentiate a given program
— Column/row compression
— Cross-country elimination

Efficiently evaluating higher derivatives

- Automatically detecting and exploiting sparsity in derivatives

111! Sandia National Laboratories

AD References

Introduction to AD

— A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, SIAM, 2008.

— U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation,
SIAM, 2012.

Transient sensitivity analysis
— Y. Cao, S. Li, L. Petzold, and R. Serban. “Adjoint sensitivity analysis for differential-algebraic equations: The
adjoint DAE system and its numerical solution.” SIAM J Sci Comput, 24(3):1076-1089, 2003.

— A. Hindmarsh,, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. “Sundials: Suite of
nonlinear and differential/algebraic equation solvers.” ACM Trans. Math. Softw. 31(3): 363-396, 2005.

Sacado AD

— E. Phipps, R. Bartlett, D. Gay, and R. Hoekstra. “Large-Scale Transient Sensitivity Analysis of a Radiation-
Damaged Bipolar Junction Transistor via AD.” Advances in Automatic Differentiation, C. Bischof, M. Bucker,
P. Hovland, U. Naumann, and J. Utke, eds., Lecture Notes in Computational Science and Engineering, 2008.

— E. Phipps and R. Pawlowski, “Efficient Expression Templates for Operator Overloading-based Automatic
Differentiation,” in Recent Advances in Algorithmic Differentiation, S. Forth, P. Hovland, E. Phipps, J. Utke
and A. Walther, eds., Lecture Notes in Computational Science and Engineering, Springer, 2012.

Use of templates for automatic differentiation in large-scale codes

— R. Pawlowski, E. Phipps, and A. Salinger, “Automating embedded analysis capabilities and managing
software complexity in multiphysics simulation part I: template-based generic programming,” Journal of
Scientific Programming, vol. 20 (2), 2012.

— R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, “Automating embedded analysis
capabilities and managing software complexity in multiphysics simulation part Il: application to partial
differential equations,” Journal of Scientific Programming, vol. 20 (3), 2012.

Using adjoints/derivatives in UQ

— J. Breidt, T. Butler, D. Estep. “A measure-theoretic computational method for inverse sensitivity problems I:
Basic Method and Analysis.” SINUM, 49: 1836-1859, 2011.

117! Sandia National Laboratories

Auxiliary Slides

Sacado AD Tools Perform Extremely Well

14.0
°
@
3 J L P A A
8 p
3120 /W
c 5/,5
2 100 4 gy ey 5
o ;/ ﬂ =r=Qriginal Sacado FAD
> $
g o
‘: New Sacado FAD
E
= 6.0
: .
2 =®=Source Transformation
©
2 40
S
ué u =**=Hand-coded
2 20 | ' i ;]
<]
k: X g

0.0 T T T T 1

0 20 40 60 80 100 120 140
Total Degrees-of-Freedom Per Element

» Simple set of representative PDEs

— Total degrees-of-freedom = number of nodes x number of PDEs for each element
* New expression-template implementations virtually eliminate all operator

overloading overhead
— Phipps & Pawlowski, 2012

» 2x cost relative to hand-coded, optimized Jacobian (very problem dependent)

i

Sandia National Laboratories

Stochastic Galerkin Methods and Software

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Sandia National Laboratori
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. m 2

Polynomial Chaos Expansions (PCE)

+ Steady-state finite dimensional model problem:

Find u(£) such that f(u,&) =0, £: Q2 — T C RM, density p

. (Z(S(e)rzu)eralized) Polynomial Chaos (PC, gPC) approximation (e.g., Xiu and Karniadakis,

w(©) =€) = Y uithi(®), (i) = / i (1) () p(y)dy = 61 (b?)

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N

Yi(y) = or, (Y1) .- - 4 (ym), kit -tk <N, k=0,...,P

— where

(M + N)!
= TanntT L

B Lidn s iy
p(y) = p1(y1) ... pv(ynr)

(.85 = [65,0k Py = S50, (4)%)

— (assuming independence)

117! Sandia National Laboratories

(&) = Z’W"Pz(ﬁ) — fi(uo, ..., up) =

Stochastic Galerkin UQ Methods

» Stochastic Galerkin method (see Ghanem and Spanos, 1991):

1
()

/F F(a(y), y)i(y)p(y)dy = 0, i =0,...,P

« Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

0= F(U) =

- Advantages:

fo
f1

N

Ug
Uy

up

oF

U

500 1000

1500 2000
T T

Stochastic sparsity

W ;
500 - f

N

10000 =~ \'f»,, : ;

y, N

‘ a '... /\ N

1500 N

NN

g TN

2000 G - El

Spatial sparsity

— Often fewer stochastic degrees-of-freedom for comparable level of accuracy

» Challenges:

— Computing SG residual and Jacobian entries in large-scale, production simulation codes
— Solving resulting systems of equations efficiently, particularly for nonlinear problems

i

Sandia National Laboratories

SG Jacobian

» Stochastic Galerkin Residual

a(§) = Zuﬂm(ﬁ) — fi(ugy...,up) = / f(a(y), y)v¥:(y)p(y)dy =0, i =0,...,P

1
(¥7) Jr
» Stochastic Galerkin Jacobian:

ofi
B’LLJ'

N <¢13> / Zi (@(y), y) i (¥) 5 (¥)p(y)dy,

ﬁ(a(g),g)zZAkzpk(g), Av= o [S (@), vynwp(w)ay
2 (W2)

8fi _ — i b
85 S A, (i) _ OF _ Z G ® Av, Guli,j) = Li¥ivw)
J

(¥7) OLlagsit (¥7)

k=0

@ Sandia National Laboratories

SG Linear Systems

» Stochastic Galerkin Newton linear systehs:

P P P
AAU = —F = (Z G ® Ak> (Z er ® Auk> = - ex®fu, ex=I(:,k) €R"T!

k=0 k=0 k=0
e Solution methods:

— Form SG matrix directly (expensive)

— “Matrix-free” approach for iterative linear solvers (Pellissetti &
Ghanem, 2000):

P P P
Y = AX — Zei@)yi: <ZG1¢®A1¢> (Zej ®Cl3j>
i=0

P P s &
— Yi= Z Z Akchijka Cz’jk: = Gk(z,g) — <¢Z¢'72¢k>
j=0 k=0 (¢z>

» Sparsity determined by triple product tensor
* Only requires operator-apply for each operator PCE coefficient
« Organize algorithm to minimize operator-vector applies

117! Sandia National Laboratories

SG Matrix-free Multiply Algorithm

P P
yi:ZZAk,ijijk, iZO,...,P

j=0 k=0

for 2 = 0 to P do
yi =0

end for

for Kk =0 to P do
J ={j | Cijx # 0 for some 7}
U ={z; |jcJ}

V = AU
for 5/ = 0 to |J| do
j=J’)

I = {i| Cijr # 0}
forzin I do
Yi = Yi + CieUj/
end for
end for
end for

rm Sandia National Laboratories

Stokhos: Trilinos Tools for Embedded
Stochastic Galerkin UQ Methods

Eric Phipps (lead developer) with contributions by Chris Miller, Habib Najm, Bert
Debusschere, Omar Knio

Tools for describing SG discretization
— Stochastic bases
— Quadrature rules
— Sparse triple-product tensor
— Tools for approximating nonlinear terms http://trilinos.org

C++ operator overloading library for automatically evaluating SG residuals and
Jacobians

— Template-based generic programming: extend Sacado AD ideas to projections onto
orthogonal polynomials

— Replace low-level scalar type with orthogonal polynomial expansions
— Incorporate into code through C++ templates

Tools forming and solving SG linear systems
— SG matrix operators
— Stochastic preconditioners
— Hooks to Trilinos parallel solvers and preconditioners

Nonlinear SG application code interface
— Connect SG methods to nonlinear solvers, time integrators, optimizers, ...

Embedded ensemble propagation for sampling-based UQ methods
— Propagate groups of samples using an ensemble scalar type
— Discuss this in part 4.

1] Sandia National Laboratories

1-Dimensional Basis Polynomials

« Stokhos::OneDOrthogPolyBasis<ordinal_type, value_type>
— Abstract interface for orthogonal polynomials in one variable
— Evaluate, norms, Gauss points, ...

* General implementation provided by RecurrenceBasis
— Based on 3-term recurrence formula:

Pr+1(Y) = Yot1((Ony — ar)dr(y) — Brdr—1(y))

— Each implementation only needs to provide recurrence coefficients

_ Jyoiwe(y)dy
* Currently there are implementations for gy 1= [2()p(y)dy ~ 0,1,2,...
— Hermite polynomials (Gaussian) [&2 @)ow)d
— Legendre polynomials (Uniform) B = B\ PR , k=1,2,...
» Gauss-Legendre quadrature points f ¢i_1(y)P(y)dy
« Clenshaw-Curtis quadrature points Bo =1
» Gauss-Patterson quadrature points ’
— Jacobi polynomials Ye =0, =1, k=0,1,2,...

— General user-provided weight-function using the Discretized Stieltjes Procedure
(W. Gautschi, 2004) e.g., Rys polynomials for truncated Gaussian.

— Various approaches for defining new bases in terms of given PC expansions, e.g.,
Constantine et al, 2012.

117! Sandia National Laboratories

Multi-Dimensional Basis Polynomials

» Stokhos::OrthogPolyBasis<ordinal_type, value type>
— Abstract interface for orthogonal polynomials in multiple variables
— Similar to 1-D interface

* Primary implementation is CompletePolynomialBasis
— Total-order tensor product of 1-D orthogonal polynomials:

Yi(y) = op, (Y1) -0, (Ynr)s ki +kpy <N

— Provides methods for multi-variate indexing k «— (k1,...,knr)
using a “total order” ordering scheme

» TotalOrderBasis
— Similar to CompletePolynomialBasis but allows for different ordering
schemes
* Total order, lexicographic, Mortan-Z

— Lexicographic ordering yields more “compact” Cijk tensor, leading to
improved matrix-vector product performance in some cases

117! Sandia National Laboratories

Multi-Dimensional Basis Polynomials

» TensorProductBasis
— Full tensor product

 SmolyakBasis
— Product basis built to be consistent with Smolyak sparse grid
— More on this later

» Several additional research-level bases used within various
dimension reduction approaches

— See, e.g., Constantine et al, 2012.

111! Sandia National Laboratories

Multi-Dimensional Quadrature

» Stokhos::Quadrature<ordinal_type, value_type>
— Abstract interface for quadrature in multiple dimensions, e.g.,

Q
/F F@)os @)y = S wif (u)w; (ur)

— Implementations provide quadrature points, weights, and values of basis
functions at quadrature points

* TensorProductQuadrature
— Tensor product of 1-D gauss points

» SparseGridQuadrature
— Calls John Burkardt’s (http://people.sc.fsu.edu/~jburkardt/) sparse-grid
package through Dakota
* Requires enabling TriKota package in Trilinos
* Unpack Dakota tarball in TriKota directory
— Can use any Stokhos basis using a kludgy interface

« SmolyakSparseGridQuadrature
— Limited implementation of Smolyak sparse grids directly within Stokhos

117! Sandia National Laboratories

Sparse Triple Product Tensor

» Stokhos::Sparse3Tensor<ordinal_type, value_type>
— Stores expectations of products of three basis functions

(Vijte) = /F Vi (Y)Y (y) i (y)p(y)dy

— Stored in sparse format (Najm, Debusschere, Knio)

— Entries computed via product basis leveraging tensor product
structure

— New construction algorithm only iterates of non-zeros in final tensor,
based on non-zeros for sparse tensor from each 1-D basis
« Avoids P”3 algorithm

117! Sandia National Laboratories

Polynomial Approximation

» Stokhos::OrthogPolyApprox<ordinal_type, value_type>
— Stores coefficients of a scalar polynomial chaos expansion

u(y) = > uptr(y)

— Provides several convenience routines for managing expansion
(evaluation, global indexing, (dimension, order) indexing, statistics, ...)

117! Sandia National Laboratories

Intrusive polynomial chaos through operator
overloading

f(u, &) =0, a(¢) = Z uitp; (€)

— F;(ugy...,up) =

5 @@ @y =0, i=o0,....P

* By orthogonality of the basis polynomials

(Wi t) = (Wav) = [bw)vsw)pw)dy = W33,
* The F; are just the first P | 1 coefficients of the polynomial chaos

expansion
f(a(y),y) = Z Fivp; (y)

» Basic idea is to compute such a truncated polynomial chaos
expansion for each intermediate operatlon in the calculation of f(u,y)

Given a(y) = Z a;i(y), b= Z bii(y), find c(y) = Z cihi(y)

such that | (e(y) = @(a(w). b)) ¥(Wp()dy = 0, i=0,...,P

* Implement rules in operator overloading library, similar to Sacado for
AD

— See Le Maitre and Knio, 2010. |1[’w Sendb N atiorial i Ak

SG Projections of Arithmetic Operations

 Addition/subtraction
c=atb=c =a;tb;

* Multiplication

c=axb= Zciqpi — Zzaz bjpih; — cp = ZZ b; <¢EZJ;>M:>
: k

2

* Division

c=a/b=) Y cbibih; =) anhi — Y Y cibj(ihithr) = ar(})
i i]

117! Sandia National Laboratories

Projections of Transcendental Operations
e.g., ¢ = exp(a)

» Taylor series approximations (Debusschere et al, UQ Toolkit)

k!

C =~

k=0

— Use arithmetic rules for evaluating Taylor polynomial
— Convergence can cause problems

» Time integration (Debusschere et al, UQ Toolkit)

du
u(x) = exp(x) is a solution to ODE ik
— Translate this to an ODE on coefficients of ¢
— Call time integration package (e.g., CVODE)
— More accurate and robust, but more expensive
— Both approaches provided by Stokhos::ForUQTKOrthogPolyExpansion

— Requires the Fortran version of their UQ toolkit

* Quadrature) 0
- | exp(a(y))p(y)dy =) wexp(a(y))
<'¢k> r =0
— | found to be more robust than Taylor series, more efficient than time integration

— Take advantage of sparse-grid technology
— Stokhos::QuadOrthogPolyExpansion T

Cr =

Sandia National Laboratories

Galerkin Expansion Classes and Scalar Types

« Stokhos::OrthogPolyExpansion<ordinal_type, value_type>

— Abstract interface for computing Galerkin PC expansion/projection for
each type of elementary operation (+, -, *, /, exp, log, sin, cos, ...), e.g.,

— One method for each elementary operation

— Coefficients stored in OrthogPolyApprox<> objects

« Stokhos::PCE::OrthogPoly<>, Stohos::ETPCE::OrthogPoly<>
— Stochastic Galerkin scalar types
— Internally store coefficients in OrthogPolyApprox<> objects
— Use OrthogPolyExpansion<> to implement overloaded operators

— “ET” version uses limited expression templates (addition, subtraction,
multiplication)

* For quadrature expansion approach, a more complete ET implementation
could be useful, but not implemented

117! Sandia National Laboratories

Simple PCE Example

Solving Stochastic Problems

* Tools discussed so far provide means of
generating stochastic Galerkin residual &
Jacobian entries

F, = / £(a(y),)i (v)p(w)dy, () = / . p(y)dy

oF; & 1 of .
=) R, = | 5 (@) vt w)p(w)dy

ou;

* To solve problems, we need
— Parallel data structures
— Solver algorithms
— Interfaces between solvers and application codes

117! Sandia National Laboratories

Parallel Linear Algebra

Epetra: Trilinos Linear Algebra Services Package

— Concrete data structures for distributing vectors and matrices across

parallel machine

— Hard-coded to double precision floating point numbers and 32-bit integer

indexing (local & global)
« Thyra: Abstract interfaces to linear algebra

« Tpetra: Next-generation Epetra templated on scalar and ordinal types

— Foundation for many solver/preconditioner packages
* AztecOO, Amesos, Ifpack, ML, ...

— Often encapsulates Trilinos interface into application code

Epetra_Map

— Describes layout of linear algebra objects across machine

Epetra_Vector/Epetra_MultiVector

— Parallel distributed vector/multi-vector
Epetra_CrsMatrix

— Parallel distributed sparse matrix format
Epetra_Operator

— Abstract operator interface
Stokhos parallel tools are currently built on Epetra

— Assume application code provides deterministic vectors/matrices through

Epetra objects
— On-going work to build on Tpetra (more on this in part 4).

i

Sandia National Laboratories

Vector/Matrix/Operator Polynomials

» Stokhos::VectorOrthogPoly<coeff type>

— Analog of Stokhos::OrthogPolyApprox where coefficients

are vectors/matrices/operators instead of scalars

» SG residual polynomial:
— VectorOrthogPoly<Epetra_Vector>

P 1
F(y) = I;)ka(y), Fy, = o

— F_k = Epetra_Vector

« SG Jacobian matrix/operator polynomial:
— VectorOrthogPoly<Epetra_CrsMatrix>
— VectorOrthogPoly<Epetra_Operator>

of
= (¥) Jr Ou
— J_k = Epetra_CrsMatrix or Epetra_Operator

Jy) = > Jebu(y)s Tk =

i

/F F(u(®),)% (W) o (¥)dy

—(u(y), ¥) VY (y)p(y)dy

Sandia National Laboratories

Product Vectors/Multi-Vectors

- EpetraExt::BlockVector, BlockMultiVector

— Map collection Epetra_Vectors/EpetraMultiVectors
(with same parallel distribution) to a single product

vector Fo
{F(),...,Fp}—> .

FP

— Supports arbitrary parallel redistribution of
resulting block vector/multivector

* E.g., supports additional parallelism over blocks
— Isa Epetra_Vector/Epetra_MultiVector (inheritance)

— Allows easy construction of SG solution & residual
vector from VectorOrthogPoly coefficients

1] Sandia National Laboratories

Product Matrices

« EpetraExt::BlockCrsMatrix

— Map collection of Epetra CRS matrices to a single

sparse CRS matrix

{Joy.-.rdp} —

NS N\ RN
.

2000 4000 6000 8000 10000 12000

p=5, d=4, nz = 3017178

— Stokhos can do this, but it is expensive and
unnecessary (for iterative solvers)

i

Sandia National Laboratories

SG Matrix Free Operator

» Stokhos::MatrixFreeEpetraOp
— Implements SG operator-vector apply using

formula
OF; l OF P P
u, ~ 2 T — (%V)i ~ ; ,;) T, (it sk

— Requires
* VectorOrthogPoly<Epetra_Operator>
(Epetra_Operator interface for each J_k)

» Sparse3Tensor

117! Sandia National Laboratories

SG Matrix-free Multiply Algorithm

P P
yi:ZZAk,ijijk, iZO,...,P

j=0 k=0

for 2 = 0 to P do
yi =0

end for

for Kk =0 to P do
J ={j | Cijx # 0 for some 7}
U ={z; |jcJ}

V = AU
for 5/ = 0 to |J| do
j=J’)

I = {i| Cijr # 0}
forzin I do
Yi = Yi + CieUj/
end for
end for
end for

rm Sandia National Laboratories

Preconditioning

» Stokhos::MeanEpetraOp

— Preconditioner for SG operator using a preconditioner for the mean block,
applied on the diagonal])
PO O e o o O

)) 0 P ... 0
PilrJyt, P=

O 0 ... B

— Simply an approximate block-diagonal preconditioner

» Extensions of this to more complex block preconditioners:
— Jacobi (Stokhos::ApproxJacobiPreconditioner)
— Gauss-Seidel (Stokhos::ApproxGaussSeidelPreconditioner)

— ;(a?on)ecker product (Stokhos::KroneckerProductPreconditioner) (E. Ullman, SISC,

— Schur-complement (Stokhos::ApproxSchurComplementPreconditioner)(
Sousedik et al, NLA, 2014)

» Each of these can use several Trilinos preconditioners to approximate inverse
of the blocks

— Ifpack (incomplete LU/Cholesky, relaxation, polynomial, overlapping Schwarz)
— ML (algebraic multigrid)

« With these tools, we can support preconditioned iterative linear solvers
— E.g., GMRES and CG by AztecOO and Belos 11! Sandia National Laboratories

(Nonlinear) Application Code Interface

 Originally, each nonlinear analysis package had

its own application code interface

— Nonlinear solver, time integration, optimization,

stability analysis, ...
— Difficult for applications to support
— Reinventing the wheel for each new package

 ModelEvaluator
— Single interface for all analysis packages

— Application only needs to support one interface

— Concrete (EpetraExt — for applications) and
abstract (Thyra — for abstract analysis packages)

versions

i

Sandia National Laboratories

EpetraExt::ModelEvaluator

Interface to get residuals, Jacobians, etc...from an application code

Single evalModel routine
— Often more efficient to evaluate quantities together instead of separate calls
* E.g., residual and Jacobian
— InArgs and OutArgs store inputs and outputs

InArgs: Struct storing all the things the solution might depend on
— Solution vector x,
— Solution time derivative vector dx/dt
— Timeft,
— Parameters p

OutArgs: Struct storing all the things model can compute
— Residual vector f
— Transient Jacobian W = a*df/dx + b*df/(dx/dt),
— Parameter derivatives df/dp,
— Response functions g,

How is this implemented?
— Application code specifies what InArgs and what OutArgs it supports

— Application checks for those InArgs and OutArgs, and computes whatever was requested

i

Sandia National Laboratories

Stochastic Galerkin ModelEvaluator Extensions

* For most InArgs and OutArgs, SG versions added
for stochastic Galerkin analog
—E.g.,x_sqg,f sg, W _sg, p_sg, -..
— Each is a Stokhos::VectorOrthogPoly of
corresponding coefficient type
* VectorOrthogPoly<Epetra_Vector> for x_sg, f sg,
* VectorOrthogPoly<Epetra_Operator> for W

* SG-enabled application just checks for these
InArgs and OutArgs and computes them based
on its implementation

— E.g., operator overloading, quadrature, ...

111! Sandia National Laboratories

Stokhos SG Model Evaluator

» Translates Stochastic Galerkin problem to a standard deterministic problem

— Converts SG in/out-args to standard (block) in/out args:
* IN_ARG_X_SG (VectorOrthogPoly<Epetra_Vector>) <- IN_ARG_X (Epetra_Vector)

’U,O_
P Uy
a€) = uihi(€) U =
=0
uP
« OUT_ARG_F_SG (VectorOrthogPoly<Epetra_Vector>) <-> OUT_ARG_F (Epetra_Vector)
o
. P J1
FO=> fipi® o F=|"
1=0 :
e

« OUT_ARG_W_SG (VectorOrthogPoly<Epetra_Operator>) <-> OUT_ARG_W
(Epetra_Operator)

X L oF
A) =) Aipi(¢) + A= Tk Y G ® Ay

1=0 k=0

111! Sandia National Laboratories

Stokhos SG ModelEvaluator

* SG ModelEvaluator can then be given to standard
solvers

— NOX (nonlinear solvers)
— Rythmos (time integration)

 Also provides interface for creating customized
preconditioners

 Encapsulated within Piro package
— More on this in Part 3.

™

| m |

| |
|

wE)

Sandia National Laboratories

Simple Nonlinear Solver Examples

Factories

» Stokhos employs the “factory” pattern for many of its objects
— Basis
— Quadrature
— Pseudospectral operators
— Galerkin operators
— Preconditioners

* These handle creating the object for you
— Insulate setup code from needing to know all possible options
— Easy to drive through ParameterList’s

» Use extensively in Piro and Albany
— More on this in Part 3

117! Sandia National Laboratories

Advanced Topic: MatrixFreeEpetraOp
Implementation

Advanced Topic: Preconditioner Implementations

Advanced Topic: Preconditioner Factory

Advanced Topic: Smolyak Basis and
Pseudospectral Operator

Pseudospectral Approximations

* When approximating PCE coefficients numerically, must be careful to preserve discrete

orthogonality of the PCE basis

* First discovered with regards to sparse grid quadrature for pseudospectral approximations

— Constantine et al, CMAME, 2012
— Later analyzed in Conrad and Marzouk, SISC, 2013.

Q
fi = /f(y)¢i(y)0(y)dy ~ Y wif (k)i (yw)
k=0

— Must have

Q
Z wkqu(yk)'(pg(yk) = 52’3’7 Za] =0,..., P
k=0

« If this is not true, this introduces O(1) error into the approximated PCE coefficients

— Called aliasing error
— See Conrad & Marzouk

« Since a Gaussian quadrature rule with n+1 points exactly integrates polynomials of order

2*n+1, this is straightforward for
— 1-D Gaussian integration
— Full tensor product integration with Gaussian rules

» For sparse grids, this creates difficulty in matching sparse grid rule to PCE basis

i

Sandia National Laboratories

Smolyak Operator and Basis

 Remedied by using Smolyak formula directly as a pseudospectral

operator

A(’CaMa[') = Z Ck:lc;lel Q- ®Li,\j\[/[
ke
 where

kq', ki
Ci ()= s, fi=> wif(u)w; (i)
j—0 =0

* The Smolyak basis is thje_set of multivariate polynomials where the

Smolyak operator preserves discrete orthogonality
— Stokhos::SmolyakBasis implements this

» Stokhos::SmolyakPseudospectralOperator implements the operator

— Can be used within operator overloading rules
(Stokhos::PseudospectralOrthogPolyExpansion)

« Can use quadrature directly when using
— Total order tensor product basis

— Sparse grid based on Gaussian abscissas with linear growth rule

i

Sandia National Laboratories

References

* Polynomial Chaos and Stochastic Galerkin

R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York, 1991.

M. Pellissetti and R. Ghanem, “Iterative solution of systems of linear equations arising in the context of stochastic finite
elements,” Advances in Engineering Software, vol. 31, no. 8, 2000.

D. Xiu and G. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic differential equations”, SISC, vol. 24, no. 2, 2002.

M. Reagan, H. Najm, R. Ghanem, O. Knio, “Uncertainty quantification in reacting-flow simulations through non-intrusive
spectral projection,” Combustion and Flame, vol. 132, no. 3, 2003.

B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem, and O. L. Maitre. “Numerical challenges in the use of polynomial chaos
representations for stochastic processes.” SISC, 26(2): 698-719, 2004.

W. Gautschi, Orthogonal Polynomials, Oxford University Press, 2004.
O.P. Le Maitre and O.M. Knio, Spectral Methods for Uncertainty Quantification, Springer, 2010.

E. Ullmann, “A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations,” SISC, Vol. 32, No. 2,
2010.

P. Constantine, M. Eldred, and E. Phipps, “Sparse Pseudospectral Approximation Method,” CMAME, vol. 229-232, 2012.
P. Conrad and Y. Marzouk, “Adaptive Smolyak Pseudospectral Approximations,” SISC, vol. 35, No. 6, 2013.

B. Sousedik, R. Ghanem, and E. Phipps, “Hierarchical Scur Complement Preconditioner for the Stochastic Galerkin Finite
Element Methods,” NLA, Vol 21, No. 1, 2014.

+ Template-based Generic Programming and UQ

R. Pawlowski, E. Phipps, and A. Salinger, “Automating embedded analysis capabilities and managing software complexity in
multiphysics simulation part I: template-based generic programming,” Journal of Scientific Programming, vol. 20 (2), 2012.
R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, “Automating embedded analysis capabilities and

managing software complexity in multiphysics simulation part Il: application to partial differential equations,” Journal of
Scientific Programming, vol. 20 (3), 2012.

* Dimension reduction (defining new polynomial bases)

P. Constantine and E. Phipps, “A Lanczos Method For Approximating Composite Functions,” Applied Mathematics and
Computation, vol. 218 (24), 2012.

P. Constantine, E. Phipps, and T. Wildey, “Efficient uncertainty propagation for network multiphysics systems,” submitted to
International Journal for Numerical Methods in Engineering, 2013.

117! Sandia National Laboratories

Stochastic Galerkin Research

- Efficiently evaluating PC coefficients for nonlinear,

transcendental operations

» Solvers and preconditioners

— Eliminate dependence on variance, polynomial order

— Multilevel solvers/preconditioners for PC system

e Transient problems
— Instabilities, stiffness

* Multiphysics coupling
— Optimizing PC basis at physics/scale interfaces

i

Sandia National Laboratories

Auxiliary Slides

Accuracy of Operator Overloading Approaches

u:log(HLm)Z)

Uniform U(-1,1) x Gaussian N(0,1) x
. Mean —— AD Quad . Mean
T : ' ' ADTay 3 10 f ' ' ' [— Global Quad
10 | AD Int | 10| _\7
S —— Global Quad S o
@ 107 \ - G 107 -
107° — 107°}
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Order Order

Standard Deviation Standard Deviation

10° f ' ; : ; - 10° f ; ' ; ; - :
L 107° } | 107} \-—\,
2 .
510 { @ '
107° —— 107°}
0 5 1l0 115 2‘0 2'5 30 0 5 10 15 20 25 30
Order Order

All 3 AD approaches fail

« Operator overloading approach is usually accurate
* Truncation error can cause catastrophic failure) o, o Laorores

Embedded UQ Methods in Albany

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Sandia National Laboratori
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. m 2

Outline

Supporting embedded algorithms in large-scale codes
— Templates
— Element-based codes and gather/scatter

Albany
— Component design
— Piro
— Heat equation example with sensitivities

Albany-Dakota
— Dakota
— TriKota
— NISP example
— Regression-PCE w/gradients example
— VPS w/gradients example

Albany-Stokhos
— Kokkos and changes it required
— SGQuadModelEvaluator
— Stochastic Galerkin example with viz

Albany internals
— Phalanx
— Gather/scatter
— PDE terms
— Parameters
— Stochastic Galerkin preconditioners

> » .
.
} e o
70 e
gl

v R v
% %
."’{'}\’:’ b ’.} TIRR LS

P

Challenges of embedded algorithms

Many kinds of quantities required

State and parameter derivatives
Various forms of second derivatives
Polynomial chaos expansions

Incorporating these directly requires significant effort

Time consuming, error prone
Gets in the way of physics/model development

Requires code developers to understand requirements of algorithmic
approaches

Limits embedded algorithm R&D on complex problems

Need a framework that

Allows simulation code developers to focus on complex physics development
Doesn’t make them worry about advanced analysis

Allows derivatives and other quantities to be easily extracted

Is extensible to future embedded algorithm requirements

111! Sandia National Laboratories

A Solution Through Templates

* Recall C++ templates provide API for incorporating

automatic derivative calculations

* Benefits of templating

— Developers only develop, maintain, test one templated code

base

— Developers don’t have to worry about what the scalar type really

Is
— Easy to incorporate new scalar types

 Templates provide a deep interface into code
— Can use this interface for more than derivatives

— Any calculation that can be implemented in an operation-by-

operation fashion will work

— Extension to general scalar types we call template-based

generic programming

"Pawlowski et al, 2012

i

Sandia National Laboratories

A solution Through Templates

 Template-based generic programming
— Code developers write physics code templated on scalar type

— Operator overloading libraries provide tools to propagate needed
embedded quantities

— Libraries connect these quantities to embedded solver/analysis tools

* Plethora of scalar types enable many forms of embedded analysis
— Jacobians - forward mode AD
— Adjoints — forward or reverse mode AD
— Hessians — nested forward/reverse AD
— Spectral UQ methods — polynomial chaos expansions
— Sampling UQ methods — multi-point vector
— Epistemic UQ methods - intervals, fuzzy numbers

 Strategy:
— Template PDE residual evaluation on scalar type

— Instantiate template code on appropriate scalar type for each type of
analysis

— Connect to high-level analysis algorithm through an interface

1] Sandia National Laboratories

Differentiating Element-Based Codes

» Global residual computation (ignoring boundary computations):

- Jacobian computation:

of N .
¢ L' 7, P,
. ;Qz k;

Beki

Jki B sz ’

» Jacobian-transpose product computation:

8f Z(Qz)TJk

» Hybrid symbolic/AD procedure

— Element-level derivatives computed via AD
— Exactly the same as how you would do this “manually”

— Avoids parallelization issues

i

Sandia National Laboratories

Template-Specialized Gather/Scatter

« Structure generalizes to all scalar types:

— For each element:
« Extract local DOFs from global solution vector
* Initialize local DOF scalars based on scalar type
« Evaluate templated local element residual
» Extract data from local element residual scalars
» Scatter data into global data structures

 Encapsulate into templated gather-scatter
operations

— Partial template specialization of each gather-
scatter on relevant scalar type

117! Sandia National Laboratories

Templates Orthogonalize Physics and Embedded

Algorithm R&D

Field Manager

% DOF Manager

:[Scatter (Extract)
C

C
C
€
C

Compute Derivs

T

[Get Coordinates

| PDETerms |

T Discretization
[Properties]

T Cell Topology
[Source Terms] Mesh

T
FE InterpolationJ MDArray

Application Interface

>y |
computeResidual()

—» computeJacobian()
computeTangent()

compuicHessian)
computeAdjoint()

Error estimation Je—

computePCE()

L Stability Analysis X computeResponse()

DOF Manager

Gather (Seed) T_}
C
€
&
|

' Application
i component/library

iEmbeddedAnaIysis ,
' component/library D ;

Generic Template Type
used for Compute Phase

_<Bwl>]

Template Specializations for
i Seed and Extract phases:

[Residual Hessian
L Adjoint i
| Tangent | | PCE

Jacobian

1
1

«. - Tools and techniques have been developed,
~ "~ implemented in SNL Albany code

Sandia National Laboratories' Albany multiphysics code

2,654 commits 8 branches 0 releases 10 contributors

m p branch: master ~ | Albany /[

adding check for quadratic input mesh

%% Ibaned authored 3 hours ago latest commit c96d76ef13E ”
B doc Merge remote-tracking branch 'github/master’ into fix_time a day ago https:l/glthub'com/gahansenlAlbany
B examples Merge remote-tracking branch 'github/master’ into fix_time a day ago . A|bany lead/PlI: Andy Salinger (SNL)
i project Continue adding nodal state field support. 4 months ago
= g eheck for dusadraty pul st kit * Hosts several application and algorithms R&D
B .gitignore Fix ETI issues uncovered by Intel compiler. 2 days ago efforts
2 ALBANY_MASTER_B... Albany development has moved to a git repository! 4 years ago = ApplicatiOnS:
[CMakeLists.txt Merge remote-tracking branch 'github/master into fix_time a day ago s MGChaniCS (LCM)
& README.md Fix another typo 11 days ago ¢ Quantum DeViceS (QCAD)
B license.txt Replace copyright banner with a short 2012 banner for Albany a year ago : IActemSo';epeht:r(eFE;:‘xa)mlcs (Aeras)
B HEADNE d + Particle-Continuum coupling (Peridigm)
+ Additive Manufacturing
Al bany — Algorithms: o
« Adaptivity (PUMI)
Albany is an implicit, unstructured grid, finite element code for the solution and analysis of partial + Embedded UQ (Eq ui nOX)
dierenilal equations. » Topological Optimization (ATO)
* Performance Portable FEM
Features (Kokkos, Intrepid2)
+ Scalable Solvers (MueLu)
Analysis of complex multiphysics problems * Adjoint-Based Inversion

+ UQ Workflow (QUEST)
* Goal-Oriented Adaptive Refinement
* Model Order Reduction (RAZOR)

* Incorporates many advanced analysis techniques

+ Effective test-bed for developing stochastic
Galerkin algorithms and solvers

(1) Sandia National Laboratories

Computational Mechanics

(1) Sandia National Laboratories

Analysis Tools

Optimization

UuQ

Application

.

v

Solvers

Nonlinear

Transient

Linear Solve

Linear Solvers

‘ Interoperability
W Use Case

__GlueCode

@_ﬂg Component-Based Application:

Version Control

Regression Testing

Build System

Libraries Interfaces
\ Input Parser
Nonlinear Problem
Model Discretization

AD Seed/Extract

Mesh Tools

Mesh Database

Mesh 1/0

v

Load Balancing

Adaptivity

Iterative

ManyCore Node

Multi-Level

Node Kernels

PDE Alsembly

Multi-Core

Accelerators

L_—¢| Field Manager

Discretization

3=

Sandia National Laboratories

Albany is built from Trilinos and
Dakota component libraries

R.O.M.E Eire.Analysis Exodus Pamgen Hand-Coded:
— g Dakota e — mm
Piro Solver ROL STK 10
NOX | v
Rythmos || Abstract Global | —— STK Mesh
LOCA) | Discretization |
MOOCHO Model PUMI
. Evaluator P
“Application” Abstract || Problem Factory
Stratimikos Problem
o Phalanx Field Manager | Sacado AD
Belos Q_I Stokhos UQ
Anasazi o 4_l—l Phalanx Evaluators |
Mi/MueLu By s | 2
mesos
Ifpack Kokkos 4' Intrepid | Mlmal Laboratories

Piro: Parameters-In Responses-Out

* Recall ModelEvaluator interface from part 2 (steady-state?:)r simplicity):

f(ua y) = 0, ’U(y) — h’(uv y)

— Model inputs: solution vector u, parameters y
— Model outputs: residual vector f, response v, derivatives df/du, df/dy, dv/du, dv/dy, ...

» Given application ModelEvaluator, Piro creates a ModelEvaluator that “looks” like just a
mapping from parameters y to responses v (response-only ModelEvaluator):

v(y) = h(u(y),y) s.t. f(u(y),y) =0

— Given parameters y, solve for u by through nonlinear solver
— Evaluate response v
— Compute response gradient via implicit function theorem:

dv Oh [Of 'of +ah vt art [of ton” +ahT
dy Ou ou 0y oy dy Oy ou Ou Oy

* Internally Piro creates nonlinear solver (NOX) or time-integrator (Rythmos) to accomplish this
— Entirely ParameterList driven

- Additionally, Piro provides simple interface for various analysis methods that operate on a
response-only ModelEvaluator

— Optimization (Dakota, ROL, MOOCHO, ...)
— Sampling-based UQ (Dakota) and Stochastic Galerkin UQ (Stokhos)

111! Sandia National Laboratories

Albany heat-equation demo

* Input file

« Steady-state solve
* Visualization

» Sensitivities

™

| m |

| |
|

wE)

Sandia National Laboratories

Research, development, & deployment of advanced
> DAKOTtQFatlve algorithms for simulation-based assessment and
design’

Dakota
sensitivity analysis
uncertainty quantification

optimization
model
arameters

parameter estimation

approx:maﬂon/surrogate]

Iterative systems analysis

Multilevel parallel computing

Simulation management

http://dakota.sandia.gov

“Illl Illll.

o
AT, T

°,

Impact across a variety of DOE mission areas
Stockpile (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF)

Abnormal environments Wind turbines, nuclear reactors Ice sheet modeling, CISM, CESM, ISSM

accumulation, temperature surface topography

flow law

shelf geometry g
melt/freeze distribu ton%
Rgure 1: Schematic of

geothermal flux

TriKota and Albany

» TriKota package in Trilinos makes Dakota look like just
another Trilinos package

— Unpack Dakota tarball inside TriKota directory
— Add -D Trilinos_ENABLE_TriKota to Trilinos configure
— Builds Dakota as a library within Trilinos

» TriKota provides implementation of Dakota’s embedded
application interface using a Piro response-only
ModelEvaluator

— “Dakota library mode”

— Piro can then call Dakota for any kind of Dakota UQ/Optimization
analysis

* Makes it simple to run Dakota analysis on Albany
— Just supply a Dakota input-file (no scripting necessary)

— Requires Albany to implement any pre/post-processing for
parameters/responses

111! Sandia National Laboratories

Albany-Dakota Examples

* NISP example
* Regression-PCE w/gradients example

‘u\ Sandia National Laboratories

VPS: Voronoi Piecewise Surrogates

Given a d—dimensional pointset and function
evaluations pairs {x;, f(x;)}, build a surrogate to estimate the function

elsewhere. ‘ ’ 2

Consider the given points as '

. For each cell, find the polynomial coefficients that fits
the function value at the cell seed and minimizes the error at
the neighbors in the sense.

« Only needs neighbors, not Voronoi edges.
* No explicit Voronoi Tessellation construction (no curse of dimensionality).

« Varies from local (only direct neighbors used) to global (extended
neighbors).

« Better error performance compared to the global Gaussian Process
Surrogate.

« A surrogate evaluation = polynomial evaluation (cheap).
« All polynomial coefficients are calculated once (less computational cost).

111! Sandia National Laboratories

. .VPS with derivatives information

Given a d—dimensional pointset {x}, function

evaluations {f(x;)}, as well as gradients, and Hessians, build a surrogate to
estimate the function elsewhere.

Consider the given points as implicit Voronoi seeds. For each cell, use
the function evals, gradients, and hessians to approximate the constant, linear, and
quadratic coefficients of the surrogate polynomial, in a Taylor series context. If a
higher order polynomial is needed, use [cast Squares to solve a regression problems
for the remaining polynomial coefficients.

15t order VPS — 121 points 2" order VPS — 121 points 15t order VPS — 121 points 2" order VPS — 121 points
Least Squares Regression Least Squares Regression w/ Gradient info w/ Gradient and Hessian

Albany VPS example

Stochastic Galerkin UQ in Albany

Navier-Stokes

x velocity standard deviation

HHH\O"][HHH,_O'Q\
0 0.2256

* Incompressible flow past a cylinder
— Uncertain viscosity field
— Standard deviation of x-velocity field

Mechanics

von Mises

.191e+04
3.000e+04

*2.000e+04

von Mises
4.132e+05
4,000e+05
:3.600e+05
11.000e+04

i

2.801e+05 i 1.247+01

:3.200e+05

Displacement (Mean) Displaceme/nt (Std. Dev.)

* Neo-Hookean nonlinear elasticity
— Uncertain Young’s Modulus field

Thermal-Electrostatics

solution_Y
0.3735989

 Sliding electromagnetic contact
— Uncertain electrical conductivity
— Standard deviation of maximum

temperature

i

Sandia National Laboratories

Pseudospectral SG Residual/Jacobian Evaluation

PCE scalar type (from part 1) incorporated into Albany for SG residual/Jacobian evaluation

Currently this is disabled due to Kokkos transition

— Kokkos is a performance portability library for next-generation multicore CPU, GPU, Xeon Phi
architectures

— Internal PDE evaluation code being converted to use Kokkos for thread parallelism (more on
this later)

— Kokkos data structures currently don’t support PCE scalar type used in Albany
— This will be fixed in the future

However Albany also supports a semi-intrusive pseudospectral evaluation of SG residual
and Jacobian via (sparse-grid) quadrature:

F, = / F@@), 9B @)p@)dy ~ 3w f (), i) (i)
r k=0

Implemented by Stokhos::SGQuadModelEvaluator
— Computes X_SG, W_SG, ... OutArgs by sampling given (deterministic) ModelEvaluator
— Evaluate X_SG, P_SG at each quadrature point, evaluate model, sum results into SG OutArg
— Provides SG capabilities to any ModelEvaluator
— Incorporated into Piro

In the future will also support
— SPAM approach
— Applying quadrature/SPAM at element-level (for better cache performance)

111! Sandia National Laboratories

Albany-Stokhos Examples
* SG example

* Viz. of mean/variance
* Preconditioners

Sandia National Laboratories

-

i |
| |
P ii |
wE)

Lightweight DAG-based Expression Evaluation
with Phalanx (R. Pawlowski)

« Albany leverages Phalanx (R.
Pawlowski) for evaluating PDE terms

« Decompose a complex model into a
graph of simple kernels (functors)

» Supports rapid development, separation
of concerns and extensibility.

* A node in the graph evaluates one or
more fields:
— Declare fields to evaluate
— Declare dependent fields
— Function to perform evaluation

« Separation of data (Fields) and kernels
(Expressions) that operate on the data

— Fields are accessed via multidimensional array
interface

Q

Navier-Stokes Example

N, Nq
Ry =Y [(pCov- VT — Hy) ¢ —q - V'] wgljl =0
e=1 g=1

Albany source-code deep-dive

- Heat equation evaluator setup
 Diffusion coefficient

* Source term

» Gather/scatter

 Parameters

 SG Preconditioners

=) . . ’
|1[rM Sandia National Laboratories

References

» Use of templates for automatic differentiation in large-scale codes

— R. Pawlowski, E. Phipps, and A. Salinger, “Automating embedded analysis capabilities
and managing software complexity in multiphysics simulation part I: template-based
generic programming,” Journal of Scientific Programming, vol. 20 (2), 2012.

— R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, “Automating
embedded analysis capabilities and managing software complexity in multiphysics
simulation part ll: application to partial differential equations,” Journal of Scientific
Programming, vol. 20 (3), 2012.

 Phalanx

— P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, “Graph-Based Software Design for
Managing Complexity and Enabling Concurrency in Multiphysics PDE Software,” ACM
Transactions on Mathematical Software, Vol. 39, No. 1 (2012).

« Dakota/UQ

— A. Rushdi, L. Swiler, S. Mitchell, and M. Ebeida, “VPS: Voronoi Piecewise Surrogates
for High-Dimensional Data Fitting,” to be submitted to SIAM/ASA Journal on
Uncertainty Quantification.

— B.M. Adams, L.E. Bauman, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, P.D.
Hough, K.T. Hu, J.D. Jakeman, L.P. Swiler, , J.A. Stephens, D.M. Vigil, and T.M.
Wildey, "Dakota, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis,” Version 6.2 user’s manual. Sand Report SAND2014-4633, Sandia National
Laboratories, May 2014, updated 2015.

117! Sandia National Laboratories

Auxiliary Slides

ElasticityResid Evaluator

template<typename EvalT, typename Traits>
void ElasticityResid<EvalT, Traits>::
evaluateFields (typename Traits::EvalData workset)
{
for (std::size_t cell=0; cell < workset.numCells; ++cell) ({
for (std::size_t node=0; node < numNodes; ++node) ({
for (std::size_t dim=0; dim<numDims; dim++) Residual (cell,node,dim)=0.0;
for (std::size_t gp=0; gp < numQPs; ++qgp) {
for (std::size t i=0; i<numDims; i++) {
for (std::size_t dim=0; dim<numDims; dim++) {
Residual (cell ,node,i)
+= Stress(cell, gp, i, dim) * wGradBF (cell, node, gp, dim);

120 N B B

if (workset.transientTerms && enableTransient)
for (std::size_t cell=0; cell < workset.numCells; ++cell) ({
for (std::size_t node=0; node < numNodes; ++node) {
for (std::size t gp=0; gp < numQPs; ++qgp) {
for (std::size_t i=0; i<numDims; i++) {
Residual (cell,node, i)
+= uDotDot (cell, gqp, i) * wBF(cell, node, qgp):;

P

117! Sandia National Laboratories

Template-Based Generic Programming:
Codes are born ready for embedded algorithms

FE Interpolation
. Compute Derivs

:Get Coordinates:}
[N

=>[Gather (Seed) mh]

Field Manager
Scatter (Extract) Legend
< | —— Global Data Structures !
[§ ! 1
X i — Local Data Structures
PDE Terms | | |;ooc-omgmmommmmooomoooooooooos
N :Generic Template Type
wused for Compute Phase
Prop?rtles [<EvalT>]
| Source Terms | e e .
s Y / ‘Template Specializations for

:Seed and Extract phases:

[‘@7{ ﬂ Sandia National Laboratories

ElasticityResid Evaluator

template<typename EvalT, typename Traits>
void ElasticityResid<EvalT, Traits>::
evaluateFields (typename Traits::EvalData workset)
{
for (std::size_t cell=0; cell < workset.numCells; ++cell) ({
for (std::size_t node=0; node < numNodes; ++node) ({
for (std::size_t dim=0; dim<numDims; dim++) Residual (cell,node,dim)=0.0;
for (std::size_t gp=0; gp < numQPs; ++qgp) {
for (std::size t i=0; i<numDims; i++) {
for (std::size_t dim=0; dim<numDims; dim++) {
Residual (cell ,node,i)
+= Stress(cell, gp, i, dim) * wGradBF (cell, node, gp, dim);

120 N B B

if (workset.transientTerms && enableTransient)
for (std::size_t cell=0; cell < workset.numCells; ++cell) ({
for (std::size_t node=0; node < numNodes; ++node) {
for (std::size t gp=0; gp < numQPs; ++qgp) {
for (std::size_t i=0; i<numDims; i++) {
Residual (cell,node, i)
+= uDotDot (cell, gqp, i) * wBF(cell, node, qgp):;

P

PHX: :MDField<EvalT: :ScalarT,Cell,QuadPoint,Dim,Dim> Stress; B\Sandia National Laboratories

Conversion of a finite element kernel to
Kokkos programming model for portable
node-level parallelism

template<typename EvalT>
Void VecGrad<EvalT>: :evaluateFields ()

{

// Outer loop over a Workset of Elements

for(int cell = 0; cell < NumCells; cell++) {
for(int gqp = 0; gp < numQPs; qgp++) {
for(int i = 0; i < numVecs; i++) {
for(int dim = 0; dim < numDims;
for(int nd = 0; nd < numNodes;

vecGrad[cell] [gp] [i] [dim] +=

vec|[cell] [nd] [i]
* basisGrads[cell] [nd] [gp] [dim] ;

dim++) {
nd++) {

}
} // cell loop

}

Refactoring follows simple recipe:
* Outer loop moved to parallel for(int)

* Inner kernel moved to operator (int) functor e
* Arrays ali][j] converted to Kokkos::Views a(i,))

template<typename EvalT>

void VecGrad<EvalT>: :evaluateFields ()

{
// Outer loop over a Workset of Elements
Kokkos: :parallel for (NumCells, *this);

}

hkhkkhkkhkkkhkhkkkkhkhkkhkkhkhkkkhkhkkhkkhkhkkhkkkhkhkkhkkhkhkkhkkkhkhkkkkhkkx

template<typename EvalT>

KOKKOS_INLINE FUNCTION

void VecGrad<EvalT>:: operator ()
(const int cell) const

{
for(int gp = 0; gp < numQPs; qgp++) {

for(int i = 0; i < numVecs; i++) {
for(int dim = 0; dim < numDims; dim++) {
for(int nd = 0; nd < numNodes; nd++) {
vecGrad(cell, gp, i, dim) +=
vec(cell, nd, i)
* basisGrads(cell, nd, gp, dim);

Sandia National Laboratories

Sacado/Stokhos- and Kokkos-
-ification of FE assembly

typedef Kokkos::0penMP ExecutionSpace;

template<typename ScalarT>

vectorGrad<ScalarT>: :vectorGrad ()

{

Kokkos: :View<ScalarT**** ExecutionSpace> vecGrad(numCells, numQP, numVec, numDim) ;

}

hkkhkkhkhkkkhkhkkkhkhkkhkkhkhkhkkhkkhkhkkkhkhkkkhkhkkhkkhkhkkhkkhkhkkhkkkhkkhkkkxxkx

template<typename ScalarT>
void vectorGrad<ScalarT>: :evaluateFields ()
{
Kokkos: :parallel for<ExecutionSpace> (numCells, *this);

}

hhkkhkhkkkhkhkkhkkkhkhkkkhkhkkkhkhkkhkkkhkhkkhkhkhkhkkkhkhkkkhkhkkhkkkhkkhkkxkx

template<typename ScalarT>
KOKKOS INLINE FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const

{
for (int gp = 0; gp < numQP; gp++) {
for (int dim 0; dim < numVec; dim++) {
for (int i 0; i < numDim; i++) {
for (int nd = 0; nd < numNode; nd++) {
vecGrad(cell, gqp, dim, i) += val(cell, nd, dim) * basisGrad(nd, gqp, i)

n -~

PP}

117! Sandia National Laboratories
133

Uncertainty Quantification for Next-
Generation Architectures

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

, 1) Sandia National Laboratories

Computer Architectures Are Changing
Dramatically

 Historically (super)computers have gotten
faster by
— Increasing clock frequency

— Adding more compute nodes that
communicate through an interconnect

* Power requirements make this approach
untenable for future performance increases

* Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism

— Many, many threads executing
simultaneously

— Memory access, arithmetic on wide vectors

— Complex memory hierarchies that require
processing units to share data

10,000,000

Dual-Core Itanium 2
1,000,000 .

m

100,000

10,000

4,000

00

10

s
e / =
1 o 2 S @ Transistors (000) -
‘.{. .”r= @ Clock Speed (MHz)
£ ..' A Power (W)

@ Perf [Clock (ILP)

¢ | I]
1870 1875 1388 1985 1880 1985 2000 2003 2ele

Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

117! Sandia National Laboratories

Emerging Architectures Motivate New
Approaches to Predictive Simulation

« UQ approaches traditionally implemented as an outer loop:

Dakota
sensitivity analysis
uncertainty quantification

optimization
7/ model ‘
\parameters/

parameter estimation

5" approximation/surrogate "

http://dakota.sandia.gov

o Q

* Increasing UQ performance will require
— Speeding-up each sample evaluation, and/or
— Evaluating more samples in parallel

* Many important scientific simulations will struggle with upcoming architectures
— Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
— Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
— Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

* Investigate improving performance and scalability through embedded UQ approaches that
propagate some UQ information at lowest levels of simulation

— Improve memory access patterns and cache reuse
— Expose new dimensions of structured fine-grained parallelism
— Reduce aggregate communication

117! Sandia National Laboratories

Sparse CRS-Format Matrix-Vector Product

/I CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {
int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; /I matrix values of type T, [0,num_entries)

|5

Il Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

Jnal Laboratories

Simultaneous ensemble propagation

* PDE:
f(u,y) =0

* Propagating m samples — block diagonal (nonlinear) system:

- = i aF B
FU,Y)=0, U=) eQu; Y =) e®yi, F=) e@f(ui,yi), ==Y eie]® /
=1 =1 =1 é)l]— i=1 é)QLi

o0 500 1000 1500 2000
T T

500 -
1000

L]
2 S, 1500(-
L]

2000}

— Spatial DOFs for each sample stored consecutively

Eﬁpﬁrﬁ&“v gmm::g 117! Sandia National Laboratories

Ensemble Matrix-Vector Product

/| Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int e=0; e < m; ++e) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;

111! Sandia National Laboratories

Simultaneous ensemble propagation

« Commute Kronecker products:

Fc(Uca Yc) =0, Us = Z u;Qe;, Y. = Z Y;Xe;, Fp = Z f(uw yi)®ei9 ﬁ = Z 8“’@616?
1=1 i=1 i—=1 c F—1 i

0 500 1000 1500 2000
T T T T

— |,

N

5001~ -

1000

1500

2000}

— m sample values for each DOF stored consecutively

Eﬁpﬁrﬁ&“v gmm::g 117! Sandia National Laboratories

Commuted, Ensemble Matrix-Vector Product

/| Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum[m];
for (int e=0; e < m; ++e)
sumie] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
for (int e=0; e < m; ++e) {
sum[e] += A.values[entry*m + e] * x[col*m + e];
}
}
for (int e=0; e < m; ++e)
y[row*m + e] = sum[e];
}
}

« Automatically reuse non-sample dependent data

« Sparse access latency amortized across ensemble

« Communication latency amortized across ensemble
 Math on ensemble naturally maps to vector arithmetic

Sandia National Laboratories

C++ Ensemble Scalar Type

Il Ensemble scalar type
template <typename U, int m>
struct Ensemble {
U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;
}
Ensemble& operator+=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

-
b

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {
Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

W s

mmiﬂa_ﬁunal Laboratories

Ensemble Matrix-Vector Product Through
Operator Overloading

« Original matrix-vector product routine, instantiated with T =
Ensemble<double,m> scalar type:

Il Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

117! Sandia National Laboratories

Ensemble Scalar Type Provided by

Currently called Sacado::MP::Vector
— Uses expression templates to fuse loops

Stokhos

d=axb+c={ay Xbi+ci,...,am X by +cm}
— Very similar implementation as Sacado AD data types

http://trilinos.org

Enabled in simulation codes through template-based generic programming

— Template C++ code on scalar type

— Instantiate template code on ensemble scalar type

Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
— Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble

Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra

— Exploits templating on scalar type

— Krylov solvers (Belos)

— Algebraic multigrid preconditioners (MuelLu)
— Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers

(Ifpack2)
— Sparse-direct solvers (Amesos2)

i

Sandia National Laboratories

MP::Vector Example

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications’

« Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations

— Containers: Thread-scalable implementations of common data
structures (vector, map, CRS graph, ...)

— LinAlg: Sparse matrix/vector linear algebra

* Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty http://trilinos.org

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type "H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... |.ois

Kokkos Integration

« Kokkos views of UQ scalar type internally stored as views of 1-higher rank

— UQ dimension is always contiguous, regardless of layout

 Facilitates
— Fine-grained parallelism over UQ dimension
— Efficient allocation and initialization
— Specialization of kernels
— Transfering data between host and device and MPlI communication

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”,

10);

* Requires specialized kernel launch for CUDA to map warp to UQ dimension to

achieve performance

i

Sandia National Laboratories

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures’

» Tpetra: Sandia’s templated C++ library for distributed
memory (MPI) sparse linear algebra
— Epetra but templated
» Scalar, local-ordinal, global ordinal, node

— Builds distributed memory linear algebra on top of Kokkos
library

— Distributed memory vectors, multi-vectors, and sparse
matrices

— Data distribution maps and communication operations

— Fundamental computations: axpy, dot, norm, matrix-vector
multiply, ...

— Templated on “scalar” type: float, double, automatic
differentiation, polynomial chaos, ensembles, ...

= Higher level solver libraries built on Tpetra
— Preconditioned iterative algorithms (Belos)
— Incomplete factorization preconditioners (Ifpack2, ShyLU)
— Multigrid solvers (MueLu)
— All templated on the scalar type

http://trilinos.org

M. Heroux, M. Hoemmen, et al (SNL)

(h

Sandia National Laboratories

Techniques Prototyped in FENL Mini-App

Simple nonlinear diffusion equation

—V - (k(z,y)Vu) +u?* =0

— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh

— KL truncation of exponential random field model for diffusion coefficient

— Trilinos-couplings package

Hybrid MPI+X parallelism

— Traditional MPI domain decomposition using threads within each domain

Employs Kokkos for thread-scalable
— Graph construction
— PDE matrix/RHS assembly

Employs Tpetra for distributed linear algebra
— CG iterative solver (Belos package)

— Smoothed Aggregation AMG preconditioning (MueLu)

http://trilinos.org

Supports embedded ensemble propagation via Stokhos through entire assembly and

solve
— Samples generated via Smolyak sparse grids

i

Sandia National Laboratories

Ensemble PDE Matrix/RHS Assembly Speed-Up

Matrix/RHS Assembly
(1 MPI Rank, 64x64x64 Spatial Mesh)

6 - =@~Sandy Bridge
5

(1 NUMA, 16 threads)

=>-Blue Gene/Q
(64 threads)
=*=Cray XK7
(1 NUMA, 8 threads)

3 . \viDIA K80 GPU

. A1 - a

=@=-Xeon Phi Accelerator
(240 Threads)

I I | I I | 1

4 8 12 16 20 24 28 32
Ensemble Size

» Speed-up results from

— Reuse of mesh,
discretization data
structures

— Replacement of
sparse gather with
contiguous load

— Perfect vectorization
of math

Ensemble size X Time for single sample

Speed-Up =

Time for ensemble

111! Sandia National Laboratories

Ensemble Sparse Matrix-Vector Product

Speed-Up

Matrix-Vector Product
(1 MPI Rank, 64x64x64 Spatial Mesh)

==Sandy Bridge
(1 NUMA, 16 threads)

==Blue Gene/Q
(64 threads)

ol Cray XK7
(1 NUMA, 8 threads)

NVIDIA K80 GPU

=@=Xeon Phi Accelerator
0 , ‘ (240 threads)

4 8 12 16 20 24 28 32
Ensemble Size

» Speed-up results from
— Reuse of matrix
graph (20%)
— Replacement of

sparse gather with
contiguous load

— Perfect vectorization
of multiply-add

Ensemble size X Time for single sample

Speed-Up =

Time for ensemble

111! Sandia National Laboratories

Interprocessor Halo Exchange

Speed-Up

25

20

15

10

5

0

Halo Exchange -- Blue Gene/Q Halo Exchange -- Cray XK7
(1 MPI Rank/Node, 64 Threads/Rank, (2 MPI Ranks/Node, 8 Threads/Rank,
64x64x64 Mesh/Node) 64x64x64 Mesh/Node)
25
--64 Nodes =64 Nodes
-#-128 Nodes m 128 Nodes
256 Nodes [l 256 Nodes
-=512 Nodes =512 Nodes
-Fit ==1024 Nodes
-*-Fit
0
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Ensemble Size Ensemble Size

Time =~ a + bm
Ensemble size X Time for single sample

Speed-Up =
. - Time for ensemble

M » Speed-up results from reduced
a+ bm aggregate communication latency
— Fewer, larger MPI messages
— Communication volume is the same

Q

111! Sandia National Laboratories

AMG Preconditioned CG Solve

- - « Smoothed-
Multigrid Preconditioned CG Solve ; .
o aggregation algebraic
(64x64x64 Mesh/Node, Ensemble Size = 32) muItigrio_I o
11.0 preconditioning
100 =& (MueLu)
<@-Sandy Bridge — Chebyshev
smoothers
==Blue Gene/Q)
» — Sparse-direct coarse-
T Cray XK7 grid solver
NVIDIA K80 GPU (Amesos2/Basker)
=0-Xeon Phi Accelerator — Multi-jagged parallel

repartioning (Zoltan2)

1.0 ! - i ;]
1 4 16 64 256 1024
Compute Nodes

Ensemble size X Time for single sample

Speed-Up =

Time for ensemble

111! Sandia National Laboratories

FENL Ensemble UQ Example

Ensemble Propagation for More Challenging
Problems

« Assuming number of CG iterations doesn’t vary
significantly from sample to sample

— True for problems with tame diffusion coefficient on
regular meshes

— Implies number of CG iterations for ensemble does not
increase

* For general problems, number of iterations will
increase for ensemble system

— Spectrum of ensemble matrix must spread out

— Need to group samples to group matrices with similar
spectra

* Note: Do not require smoothness (of matrix, RHS,
solution) between samples!

111! Sandia National Laboratories

Summary

- Embedded sampling approach improves aggregate UQ
performance by

— Eliminating sparse memory accesses
— Amortizing communication/access latency
— Perfect fine-grained vector/Cuda-thread parallelism

« Embedded sampling approach does not

— Substantially change floating-point operation to memory
access ratios

— Increase cache reuse
— Reduce communication volume

* To achieve this, we need some form of compression of
stochastic information

— Trade reduced stochastic DOFs for increased FLOPs

111! Sandia National Laboratories

DR

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Embedded Stochastic Galerkin UQ Methods

« Stochastic Galerkin method (Ghanem and many, many others...):

a'UJP) =

(12)/f(a(y), y)vi(y)p(y)dy =0, i=0,...,P

P
a(g) = Zuim(s) — fi(uo, ...

« Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

P P r 500 1000 1500 2000
F(U):O, U:Zei@)ui, F:Ze’L@f'L =l __//\; _
=1 i=1 \
3 F <¢Z ¢J ,(pk > 1000 e , Az
— Z Gk &® Ak;, Gk('L J) = ,ij = v) /\ ‘
oU k—0 <¢1, > 1500 > " \\x

Stochastic sparsity
« Many fewer stochastic degrees-of-freedom for comparable level of accuracy:

6

7

1 5 1

3 20 39 3 56 153
5 56 151 5 252 933
7 120 407 if 792 3697
g 220 871 9 2002 11581

Spatial sparsity

rm Sandia National Laboratories

Commuted SG Structure for Emerging
Architectures

* DOF layout can be reorganized in similar manner to embedded sampling:
— Store PC coefficients for each spatial DOF consecutively

P
At'r‘ad — Z Gk R Ak:

k=0

500 -

1000}

i
1500

500 1000 1500 2000
T T T

2000

P
Acom — ZAIG R Gy

Stochastic sparsity

* Implemented in same manner as embedded sample propagation
— Scalars replace by PC coefficient arrays

Spatial sparsity

k=0
) 500 1000 1500 2000 /
O - 1
Y\, 7
500 - ’
// \\\\x —————_,_———
1000 & \' y
'1,, . ’i‘:
" ‘i- /\ -__--~\
15000 = - TN TN
i ;
NN N
ROIR N
2000 T N

Spatial sparsity

— Apply operator overloading approach from part 2 to linear algebra

— Stokhos::OrthogPoly<Epetra_CrsMatrix> replaced Tpetra::CrsMatrix<

Sacado::UQ::PCE<>,...>

— Approach implemented within Stokhos package

Stochastic sparsity

Sandia National Laboratories

Commuted SG Matrix-Vector Multiply

P P P
Yy om = Aom X O — Z'yi ®e; = (Z Ak ® Gk) (Z Tj & ej)
i=0

1=0 k=0
* Two level algorithm
— Outer: sparse (CRS) matrix-vector multiply algorithm
— Inner: sparse stochastic Galerkin product

Ra(l) ={m | Ao(l,m) # 0} Rc(i) ={(4,k) | C(i,75,k) # 0}

’stochastic‘ ~ stochastic 'stochastic stochastic | triple
- basis ybases sum basis 1 basis ~ product

y@)= Y > Akl mz(j,m)Cli, k)

mESA (l) (7,k)ERC(2)

" FEM | FEMbases | " FEM | [FEM
__basis | | sum | __basis | | basis

@ Sandia National Laboratories

Sparse Matrix-Vector Product’

Intel Sandy Bridge CPU
(n=262k, 8 threads)

25
20 CARrAE-A Commuted
(N=3)
< 15 -~Commuted
& (N=5)
(G)

-#-Scalar Mat-

-y g gy |
5 Vec
0

0 200 400 600

Stochastic Discretization Size P

Blue Gene Q CPU
(n=32k, 64 threads)

10 Commuted
6 2o ~-Commuted

+ Emmoo oo -

2 “Scalar Mat-
Vec

0

0 200 400 600
Stochastic Discretization Size P

AMD Interlagos CPU
(n=32k, 8 threads)
10
8 Commuted
AT AN (N=3)
< 6 ~~Commuted
g a (N=5)
o <*-Scalar Mat-
2 Vec
0

0 200 400 600
Stochastic Discretization Size P

Nvidia Kepler K80 GPU

(n=32k)
200
175 Commuted
150 (N=3)
125
£ i - -~-Commuted
o oa N=5
9 s a (N=5)
(G} 50 *-P\Slcellar Mat-
25 €
0

0 200 400 600
Stochastic Discretization Size P

GFLOP/s

Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted
(N=3)

==Commuted
(N=5)

<#-Scalar Mat-
Vec

0 200 400 600
Stochastic Discretization Size P

"Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013.

* Increased throughput
arises from substantial
reuse within PCE multiply

117! Sandia National Laboratories

Performance driven by C(i,j,k) tensor

y(i,1) = Z Z

meRA (1) (4,k)ERc(7)

* Precompute and store C

* Given I,m, load A(:,l,m), y(:,1),
x(:,m) into cache

* Iterate over non-zero C(i,j,k)
entries

» Sparse accesses of A, x, but in
fast cache

— Very fast for GPU

* Lots of reuse of A, x entries

— Effectiveness determined by
ordering of nonzeros in C(i,},k)

« Can load A, x for multiple values
of I,m to reduce reads of C

A(k, 1, m)x(j, m)C(s, j, k)

i

' Sandia National Laboratories

Traded one bandwidth limit for another

* NVIDIA GPU, Intel
accelerator

— Performance no longer
driven by bandwidth of
reading matrix, vector
entries

— Instead limited by bandwidth
of reading sparse tensor

« Can we remedy this?
— Generate C(i,j,k) entries on-
the-fly
— Possible for general PC

discretizations, but difficult
to do efficiently

— Might be possible for
quadratic basis

111! Sandia National Laboratories

Stochastic Galerkin Preconditioning

* Preconditioning stochastic Galerkin system is a significant challenge

« Common approach is mean-based preconditioning:

(A°™) "1 Mo™ = My Q Ip, My~ Ag"

mean

* Applying mean preconditioner in commuted layout is very efficient:

P P
Yoo = Ml XM =) yi®e; = (MO ° IP> (Z oo ej)
§=0

1=0
— (Yo, .. . yp] = Mpy[Egy - s25]

— Matrix-times-multivector with row-wise layout
— Vectorize over multivector columns
— Reuse of matrix/graph entries

« Applying preconditioner is often dominant cost

-

i |
| |
P ii |
wE)

Sandia National Laboratories

Mean Matrix-Vector Multiply

Intel Sandy Bridge CPU Blue Gene Q CPU AMD Interlagos CPU
(n=262k, 8 threads) (n=32k, 64 threads) (n=32k, 8 threads)
50 8 12
40 ==Commuted ; hﬂ_ﬂ -=Commuted 10 wﬂ‘\n -~Commuted
30 w5 8
ﬁ “Scalar Mat- =4 pememn RS “Scalar Mat- ﬁ “*Scalar Mat-
S 20 Vec S, Vec 9 Vec
o e L 4 EEEmTT-T-a
(U] (U] 2 (U]
10
R0 g g | 1
0 0 0
0 200 400 600 0 200 400 600 0 200 400 600
Stochastic Discretization Size P Stochastic Discretization Size P Stochastic Discretization Size P
Nvidia Kepler K80 GPU Xeon Phi 7120P Accelerator
(n=32k) (n=32k, 240 threads)
80 70
70 60 ;
==Commuted ==Commuted
60 50
w» 50 »
T a0 “Scalar Mat- =40 <=Scalar Mat-
©] Vec O 30 Vec
30 fra
O 20 G 20
10 10 Do
0 0
0 200 400 600 0 200 600
Stochastic Discretization Size P Stochastic Discretization Size P

111! Sandia National Laboratories

AMG Preconditioned CG Solve

Stochastic Galerkin CG-AMG Solve Speed-Up

Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, M=5,N=3

A
Iy “*Titan CPU

-=Sandy Bridge
CPU

=-Blue Gene Q
CPU

Nvidia K80 GPU

1 4 16 64 256 1024
Compute Nodes

« Speed-up arises
from:

— Increased floating-
point throughput

— Reduced
preconditioner
applies

— Reduced
aggregate
communication
volume

111! Sandia National Laboratories

Embedded Ensemble Scalar Type for PDE
“Assembly”

« Operator overloading approach meant to mitigate challenges with SG
PDE residual/Jacobian assembly

* Difficult in multicore environment

— Wide range in UQ problem dimension suggests “dynamic” memory
allocation approach

— But new/delete, malloc/free introduces global thread synchronization cost
— Very large overhead

* For general nonlinear problems, found a “pseudospectral”’ approach
most-effective:

F, = / f(a(y), v)v:(y)p(y)dy ~ Zwkf(U(yk) Yr) Vi (Yr)

— Sparse-grid quadrature on residual/Jacobian (either local element or global)

— Requires only two additional assembly kernels: PCE evaluation and
quadrature

— Use ensemble scalar type for evaluating residual/Jacobian at multiple
quadrature points simultaneously

111! Sandia National Laboratories

FENL PCE UQ Example

Concluding Remarks

* Investigated reordering of UQ algorithms to propagate some UQ
information at lowest levels

— Trade coarse-grained for fine-grained UQ parallelism

— Alleviate burden of deterministic simulation code from exploiting all fine-
grained parallelism

* Propagating ensembles of samples at lowest level of simulation leads
to improved aggregate UQ performance

— Eliminate sparse memory accesses
— Amortize communication/access latency
— Perfect fine-grained vector/Cuda-thread parallelism

 Embedded stochastic Galerkin additionally
— Introduces more cache reuse
— Reduction in communication volume
— At the expense of increased mat-vec FLOPs (which eventually dominate)

« Applying technique through C++ templates greatly facilitates
implementation

111! Sandia National Laboratories

Challenges/Future Work

 Ensemble approach:

— Effective grouping of samples in ensembles for non-
smooth, less-smooth problems

— Dealing with code divergence (e.g., conditionals)

» Stochastic Galerkin approach

— Partitioning/adapting PC basis to improve scalability,
reduce memory burden

* Low-order spectral DG over random variable space
* Building PC basis within Voronoi cells

— Ordering of Cijk tensor, generating on-the-fly to eliminate
bandwidth limitations

— Improved pseudospectral assembly kernels
* Incorporating SPAM/Smolyak
— Commuted-layout preconditioning kernels

111! Sandia National Laboratories

References

 UQ for multicore architectures

E. Phipps, H.C. Edwards, J. Hu, and J. Ostien, “Exploring emerging manycore
architectures for uncertainty quantification through embedded stochastic Galerkin
methods,” IJCM, vol. 91, no. 4, 2013.

E. Phipps, H.C. Edwards, J. Hu, “Exploring Heterogeneous Multicore Architectures
for Advanced Embedded Uncertainty Quantification,” Sandia Technical Report,
SAND2014-17875, Sandia National Laboratories, 2014.

E. Phipps, M. D’Elia, H.C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanaickam,
“Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures,”
to be submitted to ACM TOMS, 2015 (preprint available on request).

* Next-generation Trilinos packages

H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish, “Manycore
performance-portability: Kokkos multidimensional array library,” Scientific
Programming, vol. 20, 2012.

C. G. Baker and M. A. Heroux, “Tpetra, and the use of generic programming in
scientific computing,” Scientific Programming, vol. 20, 2012.

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal of
Parallel and Distributed Computing, vol. 74, 2014.

P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps, A.

Prokopenko, S. Rajamanickam, C. Siefert, and S. Kennon, “Towards extreme-scale
simulations with second-generation Trilinos,” Parallel Processing Letters, 2014.

117! Sandia National Laboratories

Extra Slides

Polynomial Chaos Expansions (PCE)

« Steady-state finite dimensional model problem:

Find u(¢) such that f(u,£) =0, ¢:Q — I C RM, density p

* (Global) Polynomial Chaos approximation:

u(©) = 4(6) = Y uithi(®), (i) = / i ()i () p(y)dy = 6:; (2

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

* Non-intrusive polynomial chaos (NIPC, NISP):

u; =

/ a(y): (1) p(y)dy ~

(¥7) (102

Z’wku '@bz(yk)v f(u 'Y)

0

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions

i

Sandia National Laboratories

SG Method Performs Well Over Moderate Range
of Stochastic Problem Size

Stochastic Galerkin PCG Solve Speed-Up Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Over Non-intrusive Polynomial Chaos
Sampling (n=32k, N=3, Sandy Bridge CPU) Sampling (n=32k, M=5, Sandy Bridge CPU)
15 2.0
1.5
S1.4 5
? ©1.0
(7} (7}
&13 &
0.5
1.2 0.0
3 5 7 9 11 13 15 2 3 4 5
Stochastic Dimension Polynomial Order

Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos
Sampling (n=32k, M=5, N=3, Sandy Bridge CPU)
1.6

0.8

Speed-Up

0.4

0.0
01 02 03 04 05 06 0.7

Random Field Coefficient of Variation

+ Speed-up in time-to-solution of SG
method compared to non-intrusive
sampling

— Smolyak sparse-grids for building
PC basis
— Gaussian abscissas

— Comparable accuracy between SG
solution and NISP solution

* Increased floating-point throughput
(mat-vec, prec-vec) + reduced prec
applies (P/Q) offset by increased
FLOPs in mat-vec

117! Sandia National Laboratories

Stochastic Galerkin Assembly

c

o
=
3
o

Sl

3
15.0

Stochastic Galerkin Pseudospectral
Assembly Slow-Down Over Non-intrusive

Polynomial Chaos Sampling
(n=32k, N=3, Sandy Bridge CPU)

25.0
20.0

10.0
5.0
0.0

3 5 7 9 11 13 15
Stochastic Dimension

Sandia National Laboratories

Sandia’s History

“Exceptional service in the national interest”

THE WHTE MOUSE
.G TN

Moy 13, 1946

Coar ir. Wlswm
1 @ informed that the Atoxic Inergy Coondssion intends
o atk that the Bali Telephene laboratoriss assept under sontreet
the direstion of the fantia leborstory st Albujuerque, New Nexico.
Tuls operation, wiich is & vitl segct of the atomlc
wespees progrem, 1s of exirwme Lmportasee asd ergedy Lo Ue sae
tlonal defemse, and sbould hawe the best possisle techaloal direo-

Lhen.
1 hepe that after you have beand core 1o detall from the
Maends Dsergy Commiselon, yeur ergerisation will flad (0 possible
o undertale this task. In ay cplafon you have Dere mn eppartanity
Lo reader an smsepiloral service in the ratlonal Letarsst.
1 a2 writing & sixilar note dimet o Or. O. E. Puskdey.
Fory sincerely yours, .—

Lo

Er. Levoy A ¥ilson,
Presicent
Amwrican Tolophess srd Telagreph Conpany,

Sandia National Laboratories

Sandia “Who We Are” movie

- Sandia’s Sites

1970s

e " The Evolution of Our Mission

1990s 2000s

Production Development Multiprogram Research, Post-Cold War Expanded national
engineering and engineering laboratory development and transition security role
manufacturing . production :
R & |
700%
90%
80%
% NW FUNDING 70%
50%
40%,
30%
20%
10%
0%

|
|

5 (Some of)

>~ P What we do

JyjParaView

Parallel Visualization Application

- Kitware ParaView

Turbine buckets?

Paraneters | oipiay] inomaon|

Department 1441 Mission

In partnership with others, we strive to transform
computational simulation through the integration
of new optimization, UQ, and discretization

technologies into traditional engineering design
and analyses.

111! Sandia National Laboratories

1441 R&D Focus Areas

* Uncertainty Quantification & Sensitivity Analysis
— Methods for parameter and model UQ
— Numerical uncertainty/verification
— Reduced-order models/surrogates

* HPC Algorithms (Architecture Aware)
— Inverse methods
— Numerical PDE solution and multiphysics coupling
— Mathematical and numerical analysis

« HPC Applications
— V&V methodologies

* Optimization
— Design optimization
— Design of physical/computational experiments

117! Sandia National Laboratories

Computer Science Research Institute (CSRI)

Annual Statistics | | T
— 14 projects -)
— 4 workshops
— 102 additional visitors from 67 institutions
— 37 summer students
— 3 sabbaticals

73% of 1400’ s math and computer science hires in 2005-
2007 had prior contact through CSRI collaborations

