
Algorithms and Software for Intrusive UQ

Eric Phipps (etph'ppsandia.ciov)
Sandia National Laboratories

Fourth QUEST Uncertainty Quantification
Summer School

August 19-21, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

SAND2015-7176C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

IAA About Me

• Sandia National Laboratories
- Center for Computing Research (CCR)
- Computer Science Research Institute (CSRI)
- Optimization and Uncertainty Quantification Department 1441

• Been at Sandia -13 years
- -3 years as LTE (like a post-doc)
- -10 years as staff member

• Work focuses on embedded (a.k.a. intrusive) analysis algorithms for large-scale
science/engineering simulations:
- Continuation and bifurcation analysis of dynamical systems
- Automatic differentiation for sensitivity analysis, optimization, UQ
- Stochastic Galerkin UQ methods
- UQ methods for emerging computer architectures

• Helped develop several software packages:
- LOCA: Library of Continuation Algorithms
- Sacado: Automatic Differentiation of C++ Codes
- Stokhos: Embedded Stochastic Galerkin and Sampling Methods
- Albany: Agile Components/Embedded Analysis Demonstration Application

Sandia National Laboratories

Multidisciplinary Research within CCR

Leading Edge Algorithms and
Enabling Technologies

(07-'0FR
Computer Science Research Institute

""INIPPF
NM If III=1111 -

State-of-Art Computational

Science Applications

;i 10
5

cc>
,

Number of XT3IXT4 Sites Worldwide

2 3 4 5 6

Half Years

Scalable HPC Architectures

and Systems
Model within Sandia for External Collaborations Sandia National Laboratories

Annual Statistics

— 14 projects
— 4 workshops
— 102 additional visitors from 67 institutions
— 37 summer students
— 3 sabbaticals

73% of CCR' s math and computer science hires in 2005-
2007 had prior contact through CSRI collaborations

*Imo -

What Are Embedded/Intrusive UQ Methods?

• Any method that is not "non-intrusive" or "black-box"
— l.e., require more from the application than "parameter to response

mapping".

• Examples:
— Methods that link a sampling engine into their code

• E.g., Dakota library-mode
— Methods that require local Taylor series
— Stochastic Galerkin methods
— Methods that propagate more than one sample at a time
— Methods that rely on embedded optimization

• Why would we ever want to use an intrusive method?
Potentially improved performance, robustness, scalability or
accuracy

— With the right software infrastructure, they aren't necessarily that
much more difficult to do
• The goal of these lectures

Sandia National Laboratories

oft
',%/m rulpA. Agenda

• Lecture 1: Derivative Methods and Software
— Use of derivatives in UQ
— Software for computing derivatives easily and efficiently
— Sacado package demo

• Lecture 2: Stochastic Galerkin Methods and Software
— Overview of stochastic Galerkin methods
— Approaches for implementing stochastic Galerkin methods
— Stokhos package demo

• Lecture 3: Embedded UQ Methods in Albany
— How to design C++ codes effectively using templates
— Overview of Albany code structure
— Demo on various UQ-related Albany topics

• Lecture 4: Uncertainty Propagation for Next-generation Architectures
— Ensemble propagation
— Stochastic Galerkin
— Code demo

Sandia National Laboratories

Derivative Methods and Software

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

Derivatives

• Derivatives are a very useful tool for simulation analysis in general
— UQ
— Error estimation
— Optimization
— Stability analysis

• Derivatives can be computed efficiently with good scalability to large
numbers of independent variables
— First derivatives, especially adjoint methods

o

u(to)

it(to)

v(y)

Mathematical Model

= PAM, u(t), t), t E [to, tf], yErC -

= /to (y)

= ito(y)

M

t f
= g(A(t), u(t), y, t)dt heit(t f), u(t f), y)

to

: F C M, density p, independent

Sandia National Lahoratoties

Derivatives in UQ

• Approximate variance from first derivatives

v(0 v(0)-Fld Var(v) (0)) 2
 av M(ay

ayi az=1 i=1 yi
— Only accurate if response is (nearly) linear over range of uncertain variables
— Only relevant if uncertain inputs are (nearly) Gaussian
— Very common approximation in neutronics calculations

, E42 = 0, = 1

• Piecewise-linear response surface
— Apply the above Taylor series locally at some chosen set of points
— Estep, et al

• Quick and dirty dimension reduction
— Only include random variables with significant sensitivity

• Guide sampling of posterior PDF in Bayesian inference problems
— Ghattas, et al

• Derivative-enhanced sampling
— PCE (example now)
— VPS (example later)

• Derivative-based stochastic optimization
Sandia National Laboratories

oft
Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

Find u(0 such that f (u, = 0, : SZ —> F C RM, density p

• (Global) Polynomial Chaos approximation:

140 R-d-d fi = 7-1' OP j) f (OP j (Y) P (Y) dY = ij (IP
i=o

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

ui = (71
1
,7;2) jr ii(y)IN(y)P(y)dy

1 Q
Wkuk IN(?),

(°) k=0

f (uk , yk) = 0

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions
— Need to be careful to ensure quadrature rule preserves discrete orthogonality

Sandia National Laboratories

Mb Extending Scalability Through Derivative
Enhancement

• PCE:
— Linear regression approach for approximating PCE coefficients

ft(Yk) = Uk ItiMyk) = Uk, f(uk,yk) = 0, k = 0, • . . Q
i=0

— Mitigate ill-conditioning by over-sampling Q 2*P
• Equality-constrained least-squares

— Reduce number of samples by adding derivative equations

P

iPi(xk) = Uk, k 0, ..
i=0

atPi ui (xlz)

i=0

auk
= uX k k = 0,• • •

Q

+1

Q

' +1

• Stochastic Collocation
— Gradient enhanced interpolants (splits, Hermite interpolating
polynomials)

Sandia National Laboratories

Research, development, & deployment of advanced
DAKONIfative algorithms for simulation-based assessment and

_ design*
1 Dakota

sensitivity analysis
uncertainty quantification

optimization
parameter estimation

model
arameters

http://dakota.sandia.gov

Iterative systems analysis

Multilevel parallel computing

Simulation management

lmpact across a variety of DOE mission areas

Stockpile (NNSAASC)
Abnormal environments

Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF)
Wind turbines, nuclear reactors

*M. Eldred, B. Adams, et al (SNL)

Ice sheet modeling, CISM, CESM, ISSM
accumulation, temperature surface topography

surface velocity,

calving law,

shelf geometry
melt/freeze distribution

geothermal flux

Schematit of einnvations, baundary condition; anci

flow law

444::Ijr?*pkg riAki; sliding law

e"" bed t000araohv
Reference height temperature

Small Model Problem

• 2-D incompressible fluid flow past a cylinder

- Uncertain viscosity field

• Albany code (A. Salinger et al, SNL)

• Gradient-enhanced PCE implemented by Dakota

x-velocity
ii). 20.0 40.0

-5.28 52.4

Sandia National Laboratories

Comparisons on Model Problem

V
a
r
i
a
n
c
e
 E
r
r
o
r

M = 3

101
Scaled Run Time

M = 7

101 102

Scaled Run Time

102

1o3

10-1

10-2

ts 10-3

10-4
a)
10-

C

.2 10-6

ea
> 10-7

10-8

10-8
10°

M = 5

NISP

RPCE

RPCE+FS

RPCE+AS

a) 5

10-8
10-9

10-1

101 102

Scaled Run Time

M = 9

1o3

NISP

RPCE

RPCE+FS

RPCE+AS -

10° 101 102 103
Scaled Run Time

io4

 .ational Laboratories

Computing derivatives efficiently in large-scale
codes

• These techniques require accurate evaluations of
partial derivatives

• These can always be derived and coded by-hand
- Time consuming
- Error prone
- Distracts code developers from focusing on physics

• One alternative is numerical differentiation
- Difficult to make accurate, robust
- Can be very expensive

• A better alternative is automatic differentiation
- Evaluate analytic derivatives automatically, efficiently

Sandia National Laboratories

oft
'What Is Automatic Differentiation (AD) ?

• Analytic derivatives without hand-coding

• All differentiable computations are composition of simple
operations
— sin(), log(), +, *, /, etc...

• We know the derivatives of these simple operations

• We have the chain rule from calculus

• Systematic application of the chain rule through your
computation differentiating each statement line-by-line.

Sandia National Laboratories

A Simple Example

y = sin(ex + x log x), x = 2

x <— 2

t1 <— ex

t2 <— log x

t3 <— xt2

t4 tl + t3

y <--- sin t4

x
d

dx

2.000 1.000

7.389 7.389

0.693 0.500

1.386 1.693

8.775 9.082

0.605 -7.233

Analytic derivative evaluated to machine
precision up Sandia National Lahoratones

r

Related Methods

y = sin(ex + x log x), x = 2

Automatic
Differentiation

x +— 2

ti. <— ex

t2 <— log x

t3 xt2

t4 <— tl + t3

y <- sin t4

dy
 =-7.233 340 400 802 3158
dx

dx
<—

dx
dt1
 —
dx
dt2
 —
dx
dt3
 <—
dx
dt4

<—

<—

dx
dy

dx

1

t
dx

l dx
1 dx

x dx
dx dt2

t2 + x
dx dx

dt1 dt3

dx
+

dx

COS(
,
t4)

, dt4

dx

Symbolic Differentiation
dy

dx
cos(ex + x log x)•

x

tl

t2

t3

t4

y

(ex + log x + 1)

4-- 2

<— ex

<— log x

<— xt2

<— tl + t3

<_ sin t4

s 1

S2

83

dy

d
dy

x

- COS t4

<- tl + t2

<- 82 + 1

.<- 8183

=-7.233 340 400 802 3167

(-Finite Differencin

dy , y(2 +e) — y(2)

dx '-'-i E

,e::_i-'-7.233 343 187

Sandia National Laboratoties

Tangent Propagation

• Tangents

y = f (x) , f : Rn —> Rm

______,..../. f ---_______. Rrn

•
, , f

y (t) = f (x (t)) > y =
dy a f

= x
dt a xt=to

• For each intermediate operation

. ap .c = co (a, b) c =
act

a + ab
acob

• Tangents map forward through evaluation

y(t)

Operation Tangent Rule

c = a + b C=ii+i)

c =a—b e=et— b

c = ab e = ah + etb

c = a/b c = (a, — cb)/b

c = ab = C(b log(a) + hb/a)

c = sin(a) 6 = cos(a)it

c = log(a) 6 = etla

12.40-k A Simple Tangent Example

yl = sin(ex1 x1x2)
Yi

Y2 —
Y1 1— Xi

[am_ ayll [•
axi age2 xi
ay2 ay2 •

ax2 X2

Given X1, X2, &1, &2:

s1 exl

S2 <— X1X2

S3 <— S1 + S2

sin(s3)

S4 <— X1

S5 <— y1 + 54
Y2 <— Y1/55

Return yi, Y2,

Al

.42

š3

- X1&2 + &1x2

- š1 + š2

- CC:493).43

š4 2X1&1_

.45 š4

— Y2š5)/55

0 Sandia National Lahoratoties

Mb

144iw Forward Mode AD via Tangent Propagation

• Choice of space curve x (t) is arbitrary

• Tangent depends only on
• Given xo and v :

y(t) = f(xo vt) > y =
Of

v
Theo

Jacobian vector product

• Propagate p vectors v1, . . . , vp simultaneously
a f a f

[th_ • • • = [111 . . . vp] = V Jacobian matrix product

axo axo

• Forward mode AD:

(x , V) (f (x) , a f v)
a x

• V is called the seed matrix. Setting equal to identity matrix yields full
Jacobian

• Computational cost rr (1 1.5p)time(f)

• Jacobian-vector products, directional derivatives, Jacobians for m > n

1
Gradient Propagation

= f (x), f : R" —> Rm

f

g7' f (x) = constant\

\

• Gradients
(49 z\T of T

z = 911 y = 971 f (X) X
ax) — WX) Y

• For each intermediate operation

c = cp(a, b) >

az az ac thp
a
=

a
=
ca

=
c a

,

_ az az ac acp
b = =ab acab = E ab

• Gradients map backward through
evaluation

-Ty y = constant

Yo

Operation Gradient Rule

c=a+b Ct = E, b = 6

c=a—b Et=e, b= —E

c = ab Et = Eb, b = Ea

c= a/b Et = 61b, b= —Ec/b

c= ab Ca = 6c log(a), b = Ecbla

c= sin(a) Et = Ecos(a)

c= log(a) Et = Oa

A Simple Gradient Example

yi = sin(ex1 + x1x2)
Yi

Y2 =
Y1 + xi

c = co(a,b) >

T

Given xi, x2, gi, y2:

32 <— X1X2

,
1
1 s3 <-- sl + S2
, 1
, , yi <— sin(83). ,

,, , ,
1 , ,
, 1 , S4 <— X1

2

, i ,
, i ,
, , , S5 yi + S4, , ,
1 , , ,

, 1 ,
, ,

, Y2 <— Y1/55
, 1 , ,

,
, ,

: Y1 <— 9, , , 1 + y2/s5,, , ,
i , , gi <— Yi + ..51 54 ±— ..5
, i ,
, , ,
, , ,

, , 1 .
1 , JC1 <— 2š4X1

, , 1

1 1 , g3 <— gi COS(S3)
, , 1

, ,
, , S1 .<-- g3, g2 <— S3
, ,

,
, Xi *-- i + 52X21 X2 <-- 52X1

i .<— 1 + giSi

S5 <— —y2y2/S5

Return Yl, Y2, Xl, X2

- Reverse Mode AD via Gradient Propagation

• Choice of normal 9 is arbitrary

• Gradient depends only on xo ,Y
• Given x0 andw:

9 = ID, y = f(x) > X = w Jacobian-transpose vector product

• Propagate q vectors w1, • • • , tug simultaneously
f T

[i_ . . . q] =
(8f)T

[wi . . . tug] = P-L W Jacobian-transpose matrix product
ax ax

• Reverse mode AD:

(x , W) —> (f (x) , (7 1 7) W)
æ

•147 is called the seed matrix. Setting equal to identity matrix yields full
Jacobian

• Computational cost ,c,-, (1.5 + 2.5q)time(f)
irn = q = 1 > Cost e-_d' 4 time(f)

• Jacobian-transpose products, gradients, Jacobians for n > m

Taylor Polynomial Propagation

y = f (x), f : Rn —> Rrn

• Extension of tangent propagation to
higher degree

• Given d + 1 coefficients xo, . . . , xd E Rn

d

X (t)
>:

X kb
4k

k=0

y (t)

Y k

d

f (x(t)) = >_; yktk + o (td+1)

1 dk y

k! dtk
t=o

k=0

= yk (X0, . . . , X k)

• Computational cost '-,d-d 0(d2)time(f)

Operation Taylor Rule

c = a + b ck = ak + bk

c = a — b ck = ak — bk

c = ab
k

Ck = j=0 aibk-i

c = a/b ck = LT) (ak — Ejk._i bick-i)

c = exp(a) ck = t El;=1 jek-jaj

c = log(a) Ck = 'cao (kak — E3:11_ jak_ici)

s = sin(a)

c = cos(a)

sk = t Ejk.=1 jajck-j

ek = A E3k._i jajsk_j

oft .1
',%/m ruji. Software Implementations

• Tools implementing AD have been created for many popular
programming languages
— C/C++: ADOL-C, ADIC, Sacado,
— Fortran: ADIFOR, OpenAD, Tapenade,

— Matlab: ADiMAT, MAD, ...

— Python: pyADOL-C, AD, ...

• See http://www.autodiff.orq/ for a comprehensive listing

• Tools fall into two general categories
— Source transformation

— Operator overloading

Sandia National Laboratories

Source Transformation

• AD implemented by preprocessor
— Preprocessor reads code to be differentiated

— Uses AD to generate derivative code

— Writes-out differentiated code in original source language

— Differentiated code is then compiled using a standard compiler

• Resulting derivative computation is usually very efficient

• Works well for simple languages (FORTRAN, some C)

• ADIFOR/ADIC/OpenAD out of Argonne

• Extremely difficult for C++

Sandia National Laboratories

ADIFOR* Example

subroutine func(x, y)

double precision x(2), y(2)

double precision u, v, w

u = exp(x(1))

v = x(1)*x(2)

w = u+v

y(1) = sin(w)

u = x(1)**2

v = y(1) + u

y(2) = y(1)/v

return

end

*ADIFOR 2.0D

www.mcs.anl.gov/research/projects/adifor/

subroutine g_func(g_p_, x, g_x, ldg_x, y, g_y, ldg_y)

C Initializations removed for clarity...

d2_v = exp(x(1))

dl_p = d2_v

do g_i_ = 1, g_p_

g_u(g_i_) = dl_p * g_x(g_i_, 1)

enddo

u = d2_v

do g_i_ = 1, g_p_

g_v(g_i_) = x(1) * g_x(g_i_, 2) + x(2) * g_x(g_i_, 1)

enddo

v = x(1) * x(2)

do g_i_ = 1, g_p_

g—w(g—i—) = g—v(g_i_) + g_u(g_i_)
enddo

w = u + v

d2_v = sin(w)

dl_p = cos(w)

do g_i_ = 1, g_p_

g—Y(g—i_, 1) = d1_13 * g_w(g_i_)
enddo

y(1) = d2_v

continues_
_//1

Operator Overloading

• AD implemented within source language constructs
— New data types are created for forward, reverse, Taylor modes

— Intrinsic operations/elementary operations are overloaded to compute
derivatives as a side-effect

— Data type (e.g., double) in original code is replaced with AD type

• Generally easy to incorporate into C++ codes

• Generally slower than source transformation due to function call
overhead
— This can generally be eliminated

• Requires changing data types from floats/doubles to AD types
— C++ templates greatly help

• ADOL-C, FAD/TFAD, Sacado Sandia National Laboratories

24. (Naive) Operator Overloading Example

/
void func(const double x[], double y[])

double u, v, w;

u = exp(x[0]);

v = x[0]*x[1];

w = u+v;

y[0] = sin(w);

u = x[0]*x[0];

v = y[0] + u;

y[1] = y[0]/v;

1

void func(const Tangent x[], Tangent y[]) {

Tangent u, v, w;

u = exp(x[0]);

v = x[0]*x[1];

w = u+v;

y[0] = sin(w);

u = x[0]*x[0];

v = y[0] + u;

y[1] = y[0]/v;

(:1ass Tangent {

public:

static const int N = 2;

double val;

double dot[N];

};

Tangent operator+(const Tangent& a, const Tangent& b) {

Tangent c;

c.val = a.val + b.val;

for (int i=0; i<Tangent::N; i++)

c.dot[i] = a.dot[i] + b.dot[i];

return c;
}

Tangent operator*(const Tangent& a, const Tangent& b) {

Tangent c;

c.val = a.val * b.val;

for (int i=0; i<Tangent::N; i++)

c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;

return c;
}

Tangent exp(const Tangent& a) {

Tangent c;

c.val = exp(a.val);

for (int i=0; i<Tangent::N; i++)

c.dot[i] = c.val * a.dot[i];

return c;

24-t Expression Template Operator Overloading

void func(const Tangent x[], Tangent y[]) {
y[0] = sin(exp(x[0]) + x[0]*x[1]);

//-
1

111r

SinExpr< PlusExp< ExpExpr<Tangent>,
MultExpr<Tangent,Tangent>

y[0].val = sin(exp(x[0]) + x[0]*x[1]);
for (int i=0; i<N; i++) {

y[0].dot[i] = cos(exp(x[0]) + x[0]*x[1])*
(exp(x[0])*x[0].dot[i] +
x[0]*x[1].dot[i] + x[1]*x[0].dot[i]);

Public domain Fad/TFad package

template <class E1, E2> class PlusExpr {

double val() const { return el.val() + e2.val(); }

double dx(int i) const { return el.dx(i) + e2.dx(i);

const E1& el;

const E2& e2;

};

template<class E1, class E2> P1usExpr<E1,E2>

operator+(const E1& a, const E2& b) {

return P1usExpr<E1,E2>(a,b);

}

template <class E1> class SinExpr {

double val() const { return sin(el.val())] }

double dx(int i) const { return cos(el.val())*el.dx(i);

const E1& el;

1,
template<class E1> SinExpr<E1> sin(const E1& a) {

return SinExpr<E1>(a);

}

class Tangent {

public:

double val() const { return val; }

double dx(int i) const { return dot[i]; }

template <class E> Tangent& operator=(const E& e) {

val = e.val();

for (int i=0; i<N; i++)

dot[i] = e.dx(i);

}

}

} ;

oft
Sacado: AD Tools for C++ Codes

• Several modes of Automatic Differentiation
— Forward
— Reverse
— Univariate Taylor series
— Modes can be nested for various forms of
higher derivatives

• Sacado uses operator overloading-based
approach for C++ codes
— Sacado provides C++ data type for each AD
mode

— Replace scalar type (e.g., double) with template
parameter

— Instantiate template code on various Sacado AD
types

— Mathematical operations replaced by
overloaded versions

— Expression templates to reduce overhead

http://trilinos.sandia.gov

Sandia National Laboratories

How to use Sacado

• Template code to be differentiated: doubl e -> Scal arT

• Replace independent/dependent variables with AD variables

• Initialize seed matrix

— Forward: Derivative array of th independent variable is th row
of seed matrix

— Reverse: Derivative array of th dependent variable is th row of
seed matrix

• Evaluate function on AD variables

— Instantiates template classes/functions

• Extract derivatives
— Forward: Derivative components of dependent variables
— Reverse: Derivative components of independent variables

Sandia National Laboratories

imb
tia• 10116 Primary Sacado AD Classes

• #i ncl ude "Sacado. hpp"

• All classes are templated on the Scalar type

• Forward AD classes:
- Sacado: : Fad : :DFad<Scal arT> : Derivative array is allocated dynamically
- Sacado: : Fad : :SFad<Scal arT> : Derivative array is allocated statically and

dimension must be known at compile time
- Sacado: : Fad : :SLFad<Scal arT> : Like SFad except allocated length may be

greater than "used" length
- Sacado: : Fad : :Si mpl eFad<Scal arT> : Dynamically allocated array that

doesn't use expression templates

• Similar forward AD classes in other namespaces that use different
forward AD approaches (research ideas)
- Sacado::ELRFad, Sacado::CacheFad, Sacado::ELRCacheFad

• Reverse mode AD classes:
- ADvar<Scal arT> Sandia National Laboratories

Basic Fad Example

Sandia National Laboratories

Seed Matrix Fad Example

Sandia National Laboratories

Basic Rad Example

Sandia National Laboratories

Computing Higher Derivatives

• AD classes are templated, so AD classes can be nested to compute
higher derivatives

— Forward-forward: y = f (x)

— Reverse-forward: y = f (x)

— Forward-Taylor: yo

— Reverse-Taylor: Yo

— Etc...

for ay for a ay
—>

ax
v, —>

ax
axvi) v2

rev Tay for a i Tay\, w _, w
ax ax ax)

= f (xo)

= f (xo)

for aYo tay aYk
 v
ax0 ax 0

rev Tam tay Tayk
w w

ax0 ax 0

v

Sandia National Laboratories

How To Compose AD Classes

Evaluation

Function Evaluation double

First Forward Derivative xFad<double>

Second Forward xFad< yFad<double> >
Derivative

First Reverse Derivative ADvar<double>

Forward-Reverse Second ADvar< xFad<double>
Derivative

f (x)

[xV)11
f (x)
a f V2
ax Vi

a (Lf ax VI) V2

[f (x)WT
a f
ax

f (x)
f V
W af

ax

:x (WT
af
 V

f

f.val
f.dx

f.val.val
f.val.dx
f.dx.val
f.dx.dx

f.val
x.adj

f.val
f.val.dx

x.adj.val
x.adj.dx

Sandia National Laboratories

Nested AD Example

Sandia National Laboratories

Forward or Reverse?

• Forward: Computes derivatives column-wise

— Number of independent variables <= number of dependent variables

— Square Jacobians for Newton' s method

— Sensitivities with small numbers of parameters

— Algorithm naturally calls for Jacobian-vector/matrix products
• (Block) Matrix-free Newton-Krylov

• Reverse: Computes derivatives row-wise

— Number of independent variables >> number of dependent variables

— Gradients of scalar valued functions

— Sensitivities with respect to large numbers of parameters

— Algorithm naturally calls for Jacobian-transpose-vector/matrix
products
• (Block) Matrix-free solves of transpose matrix

• Optimization
Sandia National Laboratories

Choosing AD Types
• DFad

— Derivative array allocated dynamically
— Most flexible
— Slowest
— Very slow in threaded environments

• SFad
— Derivative array size fixed at compile time
— Must know exact number of derivative components
— Fastest
— Best choice in threaded environments

• SLFad
— Fixed-length derivative array, can use only a portion of it at run-time
— Compromise between the two
— Usually just a little slower than SFad
— Good choice for threaded environments

• ADvar (reverse mode)
— Due to overhead, need substantially more independent variables than dependent

variables (at least 40 more)
— Currently not appropriate for threaded environments

Sandia National Laboratories

oft
I*4-1411- Differentiating Element-Based Codes

• Global residual computation (ignoring boundary computations):

f (x) = QT eki(Pix)
i=i

• Jacobian computation:

a f \N aeki
 22,c2TthiPil = DX Uxi

i=1

• Jacobian-transpose product computation:

N
Ta f - >2(c2iw)TJkiPiax j=1

• Hybrid symbolic/AD procedure

— Element-level derivatives computed via AD

— Exactly the same as how you would do this "manually"
— Avoids parallelization issues

xi =

Sandia National Laboratories

Performance

Set of N hypothetical chemical species:

2X-3 j=2,...I N —1

Steady-state mass transfer equations:

u • VY3 V2Y3 = j = 1, . N — 1

N
>_: _y_3

j=1

• Forward mode AD
— Faster than FD

— Better scalability in number of
PDEs

— Analytic derivative

— Provides Jacobian for all Charon
physics

• Reverse mode AD
— Scalable adjoint/gradient

Scalability of the element-level derivative computation

Jacobian Eval
E 600

To 400

(I)▪ 200

TD 0cc 0 100 200 300 400
DOF Per Element

.•
1 000

0_

500

>
.ct
(3) 0
cc 0 100 200 300 400

DOF Per Element

Jacobian Eval

—E—FD
—e— FAD

1 55

0.94

1

-5 5.9

8_ 5.8-

sz.) 5.7

TD 5.6
cc 0 100 200 300 400

DOF Per Element

Adjoint Eval

RAD

100 200 300 400
DOF Per Element

Adjoint Eval

RAD

DOF per element = 4*N
Sandia National Lahoratones

Matrix/Residual Assembly Performance Test

• Performance test for measuring Jacobian/Residual assembly
using Sacado

-V • (kVu) ay • Vu i3u2 = 0
— 3-D, linear FEM discretization
— lx1x1 cube, unstructured mesh
— Derived from FENL Kokkos example (H. Carter Edwards)
— Thread-parallel matrix/residual assembly

• Mesh cell loop parallelized with OpenMP/CUDA
• Atomic instructions for assembling into matrix/residual

• 3 algorithms studied
— Traditional element derivative w.r.t. nodal solution (AD size = #

nodes/element x # equations)
— Element derivative with optimized derivative of interpolation of

nodal solution, gradient at quadrature points
— Derivative at each quadrature point w.r.t. nodal solution and

gradient interpolated at quadrature point (AD size = 4 x #
equations)

Sandia National Laboratories

Sacado Assembly Performance

w 1

0.9

E 0.8
0J

0.7

LL

13

0.6

g 0.5
7D
cc 8

Sandy Bridge -- Linear Elements
(Single socket, 8 cores, 16 threads)

16 24 32

Grid Size

40 48

Element

Optimized Element

Quad Point

a, 1.4
E

> 1.3

aJ 1.2

NVIDIA K2OX GPU -- Linear Elements

A

8 16 24 32 40 48

Grid Size

Element

Optimized Element

Quad Point

a, 0.9

>0.8

i:1•,), 0.7
-0
60_ 0.6
0J

ca 0.5

Xeon Phi 7120P -- Linear Elements
(60 cores, 240 threads)

PPM
Element

-E Optimized Element

8 16 24 32 40 48

Grid Size

-A-Quad Point

tit) Sandia National Laboratories

Sacado Assembly Performance

a, 0.9
.E

0.8

ji1 0.7
Element

Zi▪ 0.6
-0 Optimized Element

1:1 • • • •
It • 0.5 u Quad Point

ra 0.4

ce 8 16 24 32 40 48

Grid Size

Sandy Bridge -- Quadratic Elements
(Single socket, 8 cores, 16 threads)

a, 1.2

> • 0
"
8

*.G ra
Ti)
cc 0.6

NVIDIA K2OX GPU -- Quadratic Elements

A

A

.71

8 16 24 32 40 48

Grid Size

Element

Optimized Element

Quad Point

Xeon Phi 7120P -- Quadratic Elements
(60 cores, 240 threads)

a, 0.8
E

12-11--11-
- 0.7
7:2
E
5' 0.6
4 a "11--M--M--W" El
LZ 0.5 u

as 0.4

cc 8 16 24 32 40 48

Grid Size

Element

Optimized Element

Quad Point

EN Sandia National Laboratories

Steady-State Local Sensitivity Analysis

f(u,y) = 0, v(y) = h(u,y)

Forward sensitivities

av ah (of -1 a f\ ah

ay — au au ay)1- ay

• Cost scales with number of
parameters

• Solve system Jacobian

Adjoint sensitivities

avT a fT (Of _T o~h ahT
 +

ayay au aU

• Cost scales with number of
observation functions

• Solve system Jacobian-transpose

• Small extension for Newton-based codes

• Sensitivity (linear) solves significantly cheaper than (nonlinear) state solves

• Accurate derivatives critical (can't use approximate Jacobian)

• Simulation code must evaluate observation functions & gradients

Sandia National Laboratories

24-4411- Transient Local Sensitivity Analysis

Forward sensitivities

a f ait) a f (4971
a n, 49y + au ay

au auo
ay(to) = ,ay

a f
 = 0, t E [to, t
ay

021, alto
 (to) = ,ay ay

av
=

tf ag ag au ag
dt+ay ail ay au ay + ay)

ah ait ah au ah\
491:1, ay au ay ay

t=t f

• Linear ODE for sensitivities
solved alongside original model

• Cost scales with number of
parameters

• Hindmarsh et al

Both techniques provided by SUNDIALS:

computation.11nl.gov/casc/sundials/main.html

Adjoint sensitivities

(Of TA au A+) af
T

 agT
dt au au =0, t E [to, tt],

(af: A) ahTa

d

avT ft f

ay Ito

au
t=t f t=t f

(ag

aT
fTA) dt ahTay ay ay

auoT (a f TA)

ay ail
t=to

t=tf

• Linear ODE for adjoint that must be
integrated backward in time

• Requires full forward model
integration first (or check-pointing)

• Cost scales with number of
objective functions

• Petzold et al

QAS P R
QASPR
QUALIFICATION ALTERNATIVES TO SPR

Qualification of electronic devices in radiation environments

Bipolar Junction Transistor

Electric Potential

-4.7214e-01 -2.131e-01 4.612e-02 3.0 -01 5.646e-01

Defect
reactions

Si interstitial (I) (+2,+1,0,-1,-2)

Annihilation

Annihilation

Vacancy (V) (+2,+1,0,-1,-2)

W (+1,0,-1,-2)

VP (0,—)

VO (0,—)

BIB (0,—)

BIO (+,0)

ClIARCAN
PDE semiconductor
device simulation
G. Hennigan, J. Castro,

P.Lin, R. Pawlowski (SNL)

B
a
s
e
 c
ur
re
nt
 (
p
A
)

0

-2

-4

-6

No irradiation: IB = - 0.05 pA -

Experiment

Defect annealing

10-5 10-4 10-3 10-2

Time (s)

10-1 100

%JIM IUIU I atonal Lahorataties

oft Charon Drift-Diffusion Formulation
with Defects

Current
Conservation for e-

and h+

Defect Continuity

71 N) 7)

R (0,)71,) PT

1134(7) n'T 11,1
)

Electric potential V(E.V003))) (p(23)) 71,04 + 041

Recombination/
generation

source terms

Electron
emission/capture

2411

Rx

pft ,V70 D Vp

Include electron capture and hole capture by defect species
and reactions between various defect species

niSc-t70+11 +el DI: /

Cross section

I wi

Activation Energy

Sandia National Laboratories

oft Sensitivity Analysis of a Bipolar Junction
Transistor

• Bipolar Junction Transistor

• Pseudo 1D strip (9x0.1 micron)

• Full defect physics
• 126 parameters

E B C

.L
p h(

N

Sensitivities show dominant physics
time = 1.0e-03

>, 0.6

0.4

V) 0.2

a) 0

cai -0.2
iSs -0.4
co

-0.6

>, 0.6

'5 4 0 ._ •
cn 0.2 c
cl) 0

1:,5 -0.2

f3 -0.4
co -0.6

-lc I

10 20 30 40 50 60 70 80 90 100 110 120

time = 1.0

Art
m".

10 20 30 40 50 60 70 80 90 100 110 120
Parameter

Senpitivities computed at all times
x 10

-4-

' —Parameter 16
—Parameter 46

10
-6

10
-6

10
4

Time (s)
10 ' 1 0

1st-order Finite Difference Accuracy Comparison to FD:

,(Sensitivities at all time points
,(More accurate
,(More robust
,(14x faster!

BS

oft
Summary

• Derivatives are useful in many forms of
simulation and analysis
- Discuss more uses in Part 3

• Automatic differentiation provides a powerful
means for computing analytic derivatives in
simulation codes

• Sacado+templating provides an effective means
for implementing these ideas in large-scale C++
codes
- More on this in Parts 3 and 4

Sandia National Laboratories

AD Research

• Efficiently deploying AD in modern programming environments
— Expression templates for C++
— AD in interpreted languages (Matlab, Python, ...)

• Reducing overhead of reverse-mode AD

• AD in threaded-environments
— Automatically differentiating thread-parallel programs
— Exploiting thread parallelism within AD tools

• Finding most efficient way to differentiate a given program
— Column/row compression
— Cross-country elimination

• Efficiently evaluating higher derivatives

• Automatically detecting and exploiting sparsity in derivatives

Sandia National Laboratories

AD References
• Introduction to AD

— A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, SIAM, 2008.

— U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation,
SIAM, 2012.

• Transient sensitivity analysis
— Y. Cao, S. Li, L. Petzold, and R. Serban. "Adjoint sensitivity analysis for differential-algebraic equations: The

adjoint DAE system and its numerical solution." SIAM J Sci Comput, 24(3):1076-1089, 2003.
A. Hindmarsh„ P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. "Sundials: Suite of
nonlinear and differential/algebraic equation solvers." ACM Trans. Math. Softw. 31(3): 363-396, 2005.

• Sacado AD
— E. Phipps, R. Bartlett, D. Gay, and R. Hoekstra. "Large-Scale Transient Sensitivity Analysis of a Radiation-

Damaged Bipolar Junction Transistor via AD." Advances in Automatic Differentiation, C. Bischof, M. Bucker,
P. Hovland, U. Naumann, and J. Utke, eds., Lecture Notes in Computational Science and Engineering, 2008.

— E. Phipps and R. Pawlowski, "Efficient Expression Templates for Operator Overloading-based Automatic
Differentiation," in Recent Advances in Algorithmic Differentiation, S. Forth, P. Hovland, E. Phipps, J. Utke
and A. Walther, eds., Lecture Notes in Computational Science and Engineering, Springer, 2012.

• Use of templates for automatic differentiation in large-scale codes
— R. Pawlowski, E. Phipps, and A. Salinger, "Automating embedded analysis capabilities and managing

software complexity in multiphysics simulation part I: template-based generic programming," Journal of
Scientific Programming, vol. 20 (2), 2012.

— R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, "Automating embedded analysis
capabilities and managing software complexity in multiphysics simulation part II: application to partial
differential equations," Journal of Scientific Programming, vol. 20 (3), 2012.

• Using adjoints/derivatives in UQ
— J. Breidt, T. Butler, D. Estep. "A measure-theoretic computational method for inverse sensitivity problems I:

Basic Method and Analysis." SINUM, 49: 1836-1859, 2011.

Sandia National Laboratories

Auxiliary Slides

Sandia National Laboratories

24- ei•h Sacado AD Tools Perform Extremely Well

14.0
-a

o

Tu 8.0

E
6.0

c
o
*.G
co

0.0

0

CI

as

Original Sacado FAD

New Sacado FAD

Source Transformation

d•Hand-coded

0 20 40 60 80 100 120 140

Total Degrees-of-Freedom Per Element

• Simple set of representative PDEs
- Total degrees-of-freedom = number of nodes x number of PDEs for each element

• New expression-template implementations virtually eliminate all operator
overloading overhead
- Phipps & Pawlowski, 2012

• 2x cost relative to hand-coded, optimized Jacobian (very problem dependent)

Sandia National Laboratories

Stochastic Galerkin Methods and Software

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

Find u(0 such that f(u,) = 0, : f2 —> F C RM, density p

• (Generalized) Polynomial Chaos (PC, gPC) approximation (e.g., Xiu and Karniadakis,
2002):

u(0 reits(0=
P

i=0

uilPi (tPi/Pi) = /Pi(y)/Pj(Y)f)(Y)dY = (5ij (On

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N

k(Y) = (i)q-1(y 1) • • • Olt (MU) ki-F• • •-kkm- < N, k = 0, , P

— where
= r1 X • • • X Flu

p(y) = P1 (Y1) PM (yM)

(Oji Oik)i (Yi)Oiki (Yi)Pi(Yi)dYi = Ojik, (((Pja)2)i
r,

— (assuming independence)

(M N)!
 1
M!N!

Sandia National Lahoratoties

Stochastic sparsity

Stochastic Galerkin UQ Methods

• Stochastic Galerkin method (see Ghanem and Spanos, 1991):

P f
771(0 = IN T —x ft(tto, • . .

1
up) = f (fi(y), OPT (y)P(y)dy = 0,

(q) ri=0

i = 0 P• • •

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

fo

0 = F(U) =

fP

• Advantages:
— Often fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:
— Computing SG residual and Jacobian entries in large-scale, production simulation codes

— Solving resulting systems of equations efficiently, particularly for nonlinear problems

U

Uo

111

Up

OF

au

0°
500 1000 1500 2000

500

.../,

./. ,,,,,...../

1000

.s.
N

.,,s.

1500
• . .

1,,,

.. . .
2000

Spatial sparsity

Sandia National Laboratories

SG Jacobian

• Stochastic Galerkin Residual

11(0 = “Pi (0 —x fi(uo, . .. I UP) = f (14(y),OPi(y)i)(y)dy = 0, i = 13, ... , P
(14

1
I
) r

P

i=0

• Stochastic Galerkin Jacobian:

afi 1 r Of
(u(aui (lp i

D r au
y),

y)IN(y)//i(y)p(y)dy,

P

Zeit(°1° rrsd E Ak'tPkW' Ak = (01 ID fp Zil(y), y)1Pk(y)p(y)dy
k=0

afi P A (11,4).0k) OF P ,;\ (1PillY0k)
 R':--,' 1--ik > Gk 0 Ak, G k (i 1 J) - 2
atti k—O (q) au

k=0 etPi)

Sandia National Lahoratones

SG Linear Systems

• Stochastic Galerkin Newton linear systems:

AAU = —F >(E G k A k) (E ek 0 Auk)
k=0 k=0

P

k=0

kOfk, ek = E

• Solution methods:
— Form SG matrix directly (expensive)
— "Matrix-free" approach for iterative linear solvers (Pellissetti &
Ghanem, 2000):

Y = AX

i=o
ei yi = Gk kA)

k=0

P p

yi = AkæjCijk,
j=0 k=0

(j=0

Xj)

jtPk)
C%--Tijk = k(b13)

• Sparsity determined by triple product tensor
• Only requires operator-apply for each operator PCE coefficient
• Organize algorithm to minimize operator-vector applies

Sandia National Laboratories

SG Matrix-free Multiply Algorithm

P P

yi - E Akxiciik,
j=0 k=0

i = 0,...,P

for i = 0 to P do
yi = 0

end for
for k = 0 to P do
J = fj l Cijk ~ 0 for some il
U = {xj 1 j E J}
V = AkU
for j' = 0 to IJI do

j = J(ji)
I = fi l Cijk ~ 01
for i in I do

yi — yi + CijkUj,

end for
end for

end for
Sandia National Laboratories

1111111

Mb Stokhos: Trilinos Tools for Embedded
Stochastic Galerkin UQ Methods

• Eric Phipps (lead developer) with contributions by Chris Miller, Habib Najm, Bert
Debusschere, Omar Knio

• Tools for describing SG discretization
— Stochastic bases
— Quadrature rules
— Sparse triple-product tensor
— Tools for approximating nonlinear terms

• C++ operator overloading library for automatically evaluating SG residuals and
Jacobians

— Template-based generic programming: extend Sacado AD ideas to projections onto
orthogonal polynomials

— Replace low-level scalar type with orthogonal polynomial expansions
— Incorporate into code through C++ templates

• Tools forming and solving SG linear systems
— SG matrix operators
— Stochastic preconditioners
— Hooks to Trilinos parallel solvers and preconditioners

• Nonlinear SG application code interface
— Connect SG methods to nonlinear solvers, time integrators, optimizers, ...

• Embedded ensemble propagation for sampling-based UQ methods
— Propagate groups of samples using an ensemble scalar type
— Discuss this in part 4.

http://trilinos.org

Sandia National Laboratories

1-Dimensional Basis Polynomials

• Stokhos::OneDOrthogPolyBasis<ordinal_type, value_type>
— Abstract interface for orthogonal polynomials in one variable
— Evaluate, norms, Gauss points, ...

• General implementation provided by RecurrenceBasis

• Currently there are implementations for
— Hermite polynomials (Gaussian)

Legendre polynomials (Uniform)
• Gauss-Legendre quadrature points
• Clenshaw-Curtis quadrature points
• Gauss-Patterson quadrature points

— Jacobi polynomials

— Based on 3-term recurrence formula:

Ok+1(Y) = ''Yk-F1(0ky ak)(I)k(Y) Okcbk-1(y))

— Each implementation only needs to provide recurrence coefficients

f yq(y)p(y)dy
f (/),2,(y)p(y)dy

Ok =
f (y)P(y)dy

f 0/2,_1(y)p(y)dy'

13-y: = = 16'k = 1, k = 0, 1, 2, .

= k = 0, 1, 2, .

k = 1, ..

— General user-provided weight-function using the Discretized Stieltjes Procedure
(W. Gautschi, 2004) e.g., Rys polynomials for truncated Gaussian.

— Various approaches for defining new bases in terms of given PC expansions, e.g.,
Constantine et al, 2012.

Sandia National Laboratories

ift=i411A- Multi-Dimensional Basis Polynomials

• Stokhos::OrthogPolyBasis<ordinal_type, value_type>
— Abstract interface for orthogonal polynomials in multiple variables

— Similar to 1-D interface

• Primary implementation is CompletePolynomialBasis
— Total-order tensor product of 1-D orthogonal polynomials:

11,k (Y) = 1(yi) • . • Okvim (ym), + • • • + kM < N

— Provides methods for multi-variate indexing k (ki, . . . , kM)
using a "total order" ordering scheme

• TotalOrderBasis
— Similar to CompletePolynomialBasis but allows for different ordering
schemes

• Total order, lexicographic, Mortan-Z

— Lexicographic ordering yields more "compact" Cijk tensor, leading to
improved matrix-vector product performance in some cases

Sandia National Laboratories

i*4-1411- Multi-Dimensional Basis Polynomials

• TensorProductBasis
— Full tensor product

• SmolyakBasis
— Product basis built to be consistent with Smolyak sparse grid

— More on this later

• Several additional research-level bases used within various
dimension reduction approaches
— See, e.g., Constantine et al, 2012.

Sandia National Laboratories

imb
',%/m ruji. Multi-Dimensional Quadrature

• Stokhos::Quadrature<ordinal_type, value_type>
— Abstract interface for quadrature in multiple dimensions, e.g.,

Q

frf (01,i (y)p(y)dy k=0

— Implementations provide quadrature points, weights, and values of basis
functions at quadrature points

k f (yk)11,j(yk)

• TensorProductQuadrature
— Tensor product of 1-D gauss points

• SparseGridQuadrature
— Calls John Burkardt's (http://people.sc.fsu.edu/-jburkardt/) sparse-grid

package through Dakota
• Requires enabling TriKota package in Trilinos

• Unpack Dakota tarball in TriKota directory

— Can use any Stokhos basis using a kludgy interface

• SmolyakSparseGridQuadrature
— Limited implementation of Smolyak sparse grids directly within Stokhos

Sandia National Laboratories

imb
',%/m ruji. Sparse Triple Product Tensor

• Stokhos::Sparse3Tensor<ordinal_type, value_type>
Stores expectations of products of three basis functions

(i/Pi/Pj'IN) = '07.(Y)1Pi(Y)1Pk(Y)P(Y)dY

Stored in sparse format (Najm, Debusschere, Knio)

Entries computed via product basis leveraging tensor product
structure

New construction algorithm only iterates of non-zeros in final tensor,
based on non-zeros for sparse tensor from each 1-D basis
• Avoids PA3 algorithm

Sandia National Laboratories

Polynomial Approximation

• Stokhos::OrthogPolyApprox<ordinal_type, value_type>
— Stores coefficients of a scalar polynomial chaos expansion

u(y) opk(y)
k=0

— Provides several convenience routines for managing expansion
(evaluation, global indexing, (dimension, order) indexing, statistics, ...)

Sandia National Laboratories

2.42t Intrusive polynomial chaos through operator
overloading

f (u, = 01 '140 =
i=0

—> Fi(uo, . . . , up) = f My) ONO) p(y)dy = 0, i = 0, . . . , P
(IP r

• By orthogonality of the basis polynomials

ON/ 1P.i) = (PilPi) = 'IPi(Y)/Pi (Y)P(Y)dY =

• The Fi are just the firstP + 1 coefficients of the polynomial chaos
expansion 00

P71(2J)/ y) = FoN(Y)
i=0

• Basic idea is to compute such a truncated polynomial chaos
expansion for each intermediate operation in the calculation of f (u, y)

Given a(y) = b = bi/Pi(y) , find c(y) = coPi(y)
i=o i=o i=o

such that f (c(y) — 0(a(y), b(y)))zPi(y)P(y)dy = 0, i = 0, , P

• Implement rules in operator overloading library, similar to Sacado for
AD
- See Le Maitre and Knio, 2010. Sandia National Laboratories

SG Projections of Arithmetic Operations

• Addition/subtraction

• Multiplication

c = a ± b = ai bi

c = axb >2, = _d —> ek =

• Division

c = a / b
i 3

i 3

• (
a,b 3

IP k)

(01c)

= cibj(oopjok) = ak(012)
3

WV' Sandia National Laboratories

Projections of Transcendental Operations
e.g., c = exp(a)

• Taylor series approximations (Debusschere et al, UQ Toolkit)
n a k

k=0
k!

— Use arithmetic rules for evaluating Taylor polynomial
— Convergence can cause problems

• Time integration (Debusschere et al, UQ Toolkit)
du

u(x) = exp(x) is a solution to ODE = u
dx

— Translate this to an ODE on coefficients of c
— Call time integration package (e.g., CVODE)
— More accurate and robust, but more expensive
— Both approaches provided by Stokhos::ForUQTKOrthogPolyExpansion
— Requires the Fortran version of their UQ toolkit

• Quadrature
1

Ck = (Ipz) r exp(a(y))p(y)dy wtexp(a(M))
1=0

— l found to be more robust than Taylor series, more efficient than time integration
— Take advantage of sparse-grid technology
— Stokhos::QuadOrthogPolyExpansion

Sandia National Laboratories

Galerkin Expansion Classes and Scalar Types

• Stokhos::OrthogPolyExpansion<ordinal_type, value_type>

— Abstract interface for computing Galerkin PC expansion/projection for
each type of elementary operation (+, *, /, exp, log, sin, cos, ...), e.g.,

— One method for each elementary operation

— Coefficients stored in OrthogPolyApprox<> objects

• Stokhos::PCE::OrthogPoly<>, Stohos::ETPCE::OrthogPoly<>

— Stochastic Galerkin scalar types

— Internally store coefficients in OrthogPolyApprox<> objects

— Use OrthogPolyExpansion<> to implement overloaded operators

— "ET" version uses limited expression templates (addition, subtraction,
multiplication)
• For quadrature expansion approach, a more complete ET implementation

could be useful, but not implemented

Sandia National Laboratories

Simple PCE Example

Sandia National Laboratories

au.;
k=0

Solving Stochastic Problems

• Tools discussed so far provide means of
generating stochastic Galerkin residual &
Jacobian entries

= f 01)i(y) p(y)dy, (•) = f • p(yy)d
r

aFZ P
Jk(02031Pk), tik = (11-pz) fp:11f (ii(y),y)1Pk(y)10(y)dy

• To solve problems, we need

- Parallel data structures

- Solver algorithms

- Interfaces between solvers and application codes

Sandia National Laboratories

Parallel Linear Algebra

• Epetra: Trilinos Linear Algebra Services Package
Concrete data structures for distributing vectors and matrices across
parallel machine
Hard-coded to double precision floating point numbers and 32-bit integer
indexing (local & global)
• Thyra: Abstract interfaces to linear algebra
• Tpetra: Next-generation Epetra templated on scalar and ordinal types

Foundation for many solver/preconditioner packages
• Aztec00, Amesos, lfpack, ML,

— Often encapsulates Trilinos interface into application code

• Epetra_Map
— Describes layout of linear algebra objects across machine

• Epetra_Vector/Epetra_MultiVector
— Parallel distributed vector/multi-vector

• Epetra_CrsMatrix
— Parallel distributed sparse matrix format

• Epetra_Operator
— Abstract operator interface

• Stokhos parallel tools are currently built on Epetra
— Assume application code provides deterministic vectors/matrices through

Epetra objects
— On-going work to build on Tpetra (more on this in part 4).

Sandia National Laboratories

Vector/Matrix/Operator Polynomials

• Stokhos::VectorOrthogPoly<coeff_type>
- Analog of Stokhos::OrthogPolyApprox where coefficients

are vectors/matrices/operators instead of scalars

• SG residual polynomial:
- VectorOrthogPoly<Epetra_Vector>

P

F (y) =

k=0

- F_k = Epetra_Vector

Fk r f (u(y), y)11Pk(y cly) P(y)

• SG Jacobian matrix/operator polynomial:
- VectorOrthogPoly<Epetra_CrsMatrix>
- VectorOrthogPoly<Epetra_Operator>

(y) = k(y) tik = 1 f f (u(y) OP k(y) p(y)dy

K=0 (OD r

- J_k = Epetra_CrsMatrix or Epetra_Operator
Sandia National Laboratories

oft
rulpA. Product Vectors/Multi-Vectors

• EpetraExt::BlockVector, BlockMultiVector

- Map collection Epetra_Vectors/EpetraMultiVectors
(with same parallel distribution)_to a single product
vector F0

{F0, Fp} —> •
Fp

- Supports arbitrary parallel redistribution of
resulting block vector/multivector
• E.g., supports additional parallelism over blocks

- lsa Epetra_Vector/Epetra_MultiVector (inheritance)

- Allows easy construction of SG solution & residual
vector from VectorOrthogPoly coefficients

Sandia National Laboratories

oft
',%/m rulpA. Product Matrices

• EpetraExt: : BlockCrsMatrix

- Map collection of Epetra CRS matrices to a single
sparse CRS matrix

{Al • • • , ->

2000 4000 6000 8000 10000 12000
p=5, d=4, nz = 3017178

- Stokhos can do this, but it is expensive and
unnecessary (for iterative solvers)

Sandia National Laboratories

SG Matrix Free Operator

• Stokhos::MatrixFreeEpetra0p

— Implements SG operator-vector apply using
formula

aFt P (a F

Jk 3/00 a U3 (.d au j
k=0

r`sdti

11 P

Jkvi (INIPJ'IN)
j =0 k=0

— Requires

• VectorOrthogPoly<Epetra_Operator>
(Epetra_Operator interface for each J_k)

• Sparse3Tensor

Sandia National Laboratories

SG Matrix-free Multiply Algorithm

P P

yi - E Akxiciik,
j=0 k=0

i = 0,...,P

for i = 0 to P do
yi = 0

end for
for k = 0 to P do
J = fj l Cijk ~ 0 for some il
U = {xj 1 j E J}
V = AkU
for j' = 0 to IJI do

j = J(ji)
I = fi l Cijk ~ 01
for i in I do

yi — yi + CijkUj,

end for
end for

end for
Sandia National Laboratories

AIL Preconditioning
• Stokhos::MeanEpetraOp

— Preconditioner for SG operator using a preconditioner for the mean block,
applied on the diagonal

—1T
P0-1 " 0 P

Po 0 • • •

Po • • •

0 0 • • •

— Simply an approximate block-diagonal preconditioner

Po

• Extensions of this to more complex block preconditioners:
— Jacobi (Stokhos::ApproxJacobiPreconditioner)
— Gauss-Seidel (Stokhos::ApproxGaussSeidelPreconditioner)
— Kronecker product (Stokhos::KroneckerProductPreconditioner) (E. Ullman, SISC,

2010)
— Schur-complement (Stokhos::ApproxSchurComplementPreconditioner)(

Sousedik et al, NLA, 2014)

• Each of these can use several Trilinos preconditioners to approximate inverse
of the blocks
— lfpack (incomplete LU/Cholesky, relaxation, polynomial, overlapping Schwarz)
— ML (algebraic multigrid)

• With these tools, we can support preconditioned iterative linear solvers
— E.g., GMRES and CG by Aztec00 and Belos Sandia National Laboratories

(Nonlinear) Application Code Interface

• Originally, each nonlinear analysis package had
its own application code interface

- Nonlinear solver, time integration, optimization,
stability analysis, ...

- Difficult for applications to support

- Reinventing the wheel for each new package

• ModelEvaluator

- Single interface for all analysis packages

- Application only needs to support one interface

- Concrete (EpetraExt - for applications) and
abstract (Thyra for abstract analysis packages)
versions

Sandia National Laboratories

EpetraExt::ModelEvaluator

• Interface to get residuals, Jacobians, etc...from an application code

• Single evalModel routine
— Often more efficient to evaluate quantities together instead of separate calls

• E.g., residual and Jacobian
— lnArgs and OutArgs store inputs and outputs

• lnArgs: Struct storing all the things the solution might depend on
— Solution vector x,
— Solution time derivative vector dx/dt
— Time t,
— Parameters p

• OutArgs: Struct storing all the things model can compute
Residual vector f
Transient Jacobian W = a*df/dx + b*df/(dx/dt),
Parameter derivatives df/dp,
Response functions g,

• How is this implemented?
— Application code specifies what lnArgs and what OutArgs it supports
— Application checks for those lnArgs and OutArgs, and computes whatever was requested

Sandia National Laboratories

Stochastic Galerkin ModelEvaluator Extensions

• For most InArgs and OutArgs, SG versions added
for stochastic Galerkin analog

- E.g., x_sg, f_sg, W_sg, p_sg,

- Each is a Stokhos::VectorOrthogPoly of
corresponding coefficient type
• VectorOrthogPoly<Epetra_Vector> for x_sg, f_sg,

• VectorOrthogPoly<Epetra_Operator> for W

• SG-enabled application just checks for these
InArgs and OutArgs and computes them based
on its implementation

- E.g., operator overloading, quadrature,

Sandia National Laboratories

Stokhos SG Model Evaluator

• Translates Stochastic Galerkin problem to a standard deterministic problem
— Converts SG in/out-args to standard (block) in/out args:

• IN_ARG_X_SG (VectorOrthogPoly<Epetra_Vector>) IN_ARG_X (Epetra_Vector)

71(0 = U =
i=0

up

U1

Up

• OUT ARG F SG (VectorOrthogPoly<Epetra_Vector>) OUT_ARG_F (Epetra_Vector)

P

= F =
i=o

fo
fi

fP

• OUT_ARG_W_SG (VectorOrthogPoly<Epetra_Operator>) OUT_ARG_W
(Epetra_Operator)

A(0 = A =
i=o

aF
au

P

Gk Ak

k= 0

Sandia National Laboratories

Stokhos SG ModelEvaluator

• SG ModelEvaluator can then be given to standard
solvers

- NOX (nonlinear solvers)

- Rythmos (time integration)

• • •

• Also provides interface for creating customized
preconditioners

• Encapsulated within Piro package

- More on this in Part 3.

Sandia National Laboratories

Simple Nonlinear Solver Examples

Sandia National Laboratories

oft
',%/m rulpA. Factories

• Stokhos employs the "factory" pattern for many of its objects
- Basis
- Quadrature
- Pseudospectral operators
- Galerkin operators
- Preconditioners

• • •

• These handle creating the object for you
- Insulate setup code from needing to know all possible options
- Easy to drive through ParameterList's

• Use extensively in Piro and Albany
- More on this in Part 3

Sandia National Laboratories

Advanced Topic: MatrixFreeEpetraOp
Implementation

Sandia National Laboratories

Advanced Topic: Preconditioner Implementations

Sandia National Laboratories

Advanced Topic: Preconditioner Factory

Sandia National Laboratories

Advanced Topic: Smolyak Basis and
Pseudospectral Operator

Sandia National Laboratories

Pseudospectral Approximations

• When approximating PCE coefficients numerically, must be careful to preserve discrete
orthogonality of the PCE basis

• First discovered with regards to sparse grid quadrature for pseudospectral approximations
— Constantine et al, CMAME, 2012

Later analyzed in Conrad and Marzouk, SISC, 2013.

— Must have

Q= f (01)i(Y)P(Y)dY eez-1 >2, tvkf (yk)1Pi(yk)
k=0

Q

E WON, (Yk*j (Yk) = 62j,
k=0

= 0,...,P

• If this is not true, this introduces 0(1) error into the approximated PCE coefficients
— Called aliasing error
— See Conrad & Marzouk

• Since a Gaussian quadrature rule with n+1 points exactly integrates polynomials of order
2*n+1, this is straightforward for
— 1-D Gaussian integration
— Full tensor product integration with Gaussian rules

• For sparse grids, this creates difficulty in matching sparse grid rule to PCE basis

Sandia National Laboratories

Smolyak Operator and Basis

• Remedied by using Smolyak formula directly as a pseudospectral
operator

• where

A(1C, M, G) = ckGil,i 0 • • • 0 Lit
kEK

wilf(y:)14(y1)
J=0 1=0

• The Smolyak basis is the set of multivariate polynomials where the
Smolyak operator preserves discrete orthogonality
— Stokhos::SmolyakBasis implements this

• Stokhos::SmolyakPseudospectralOperator implements the operator
— Can be used within operator overloading rules
(Stokhos::PseudospectralOrthogPolyExpansion)

• Can use quadrature directly when using
— Total order tensor product basis
— Sparse grid based on Gaussian abscissas with linear growth rule

Sandia National Laboratories

References

• Polynomial Chaos and Stochastic Galerkin
R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York, 1991.
M. Pellissetti and R. Ghanem, "Iterative solution of systems of linear equations arising in the context of stochastic finite
elements," Advances in Engineering Software, vol. 31, no. 8, 2000.
D. Xiu and G. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations", SISC, vol. 24, no. 2, 2002.
M. Reagan, H. Najm, R. Ghanem, O. Knio, "Uncertainty quantification in reacting-flow simulations through non-intrusive
spectral projection," Combustion and Flame, vol. 132, no. 3, 2003.
B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem, and O. L. Maitre. "Numerical challenges in the use of polynomial chaos
representations for stochastic processes." SlSC, 26(2): 698-719, 2004.
W. Gautschi, Orthogonal Polynomials, Oxford University Press, 2004.
O.P. Le Maitre and O.M. Knio, Spectral Methods for Uncertainty Quantification, Springer, 2010.
E. Ullmann, "A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations," SISC, Vol. 32, No. 2,
2010.
P. Constantine, M. Eldred, and E. Phipps, "Sparse Pseudospectral Approximation Method," CMAME, vol. 229-232, 2012.
P. Conrad and Y. Marzouk, "Adaptive Smolyak Pseudospectral Approximations," SISC, vol. 35, No. 6, 2013.
B. Sousedik, R. Ghanem, and E. Phipps, "Hierarchical Scur Complement Preconditioner for the Stochastic Galerkin Finite
Element Methods," NLA, Vol 21, No. 1, 2014.

• Template-based Generic Programming and UQ
R. Pawlowski, E. Phipps, and A. Salinger, "Automating embedded analysis capabilities and managing software complexity in
multiphysics simulation part I: template-based generic programming," Journal of Scientific Programming, vol. 20 (2), 2012.
R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, "Automating embedded analysis capabilities and
managing software complexity in multiphysics simulation part II: application to partial differential equations," Journal of
Scientific Programming, vol. 20 (3), 2012.

• Dimension reduction (defining new polynomial bases)
P. Constantine and E. Phipps, "A Lanczos Method For Approximating Composite Functions," Applied Mathematics and
Computation, vol. 218 (24), 2012.
P. Constantine, E. Phipps, and T. Wildey, "Efficient uncertainty propagation for network multiphysics systems," submitted to
International Journal for Numerical Methods in Engineering, 2013.

Sandia National Laboratories

Stochastic Galerkin Research

• Efficiently evaluating PC coefficients for nonlinear,
transcendental operations

• Solvers and preconditioners

- Eliminate dependence on variance, polynomial order

- Multilevel solvers/preconditioners for PC system

• Transient problems

- instabilities, stiffness

• Multiphysics coupling

- Optimizing PC basis at physics/scale interfaces

Sandia National Laboratories

Auxiliary Slides

Sandia National Laboratories

Accuracy of Operator Overloading Approaches

Uniform U(-1,1) x
Mean

u = log

—AD Quad
AD Tay
AD int

—Global Quad

(1)1 + (ex)2

L

5 10 15 20 25 30
Order

Standard Deviation

0 5 10 15
Order

20 25 30

1 00

,61

it
1 0-5

&-= 10-10

10-15

Gaussian N(071) x
Mean

—Global Quad

5 10 15 20 25 30
Order

Standard Deviation

5 10 15 20 25
Order

All 3 AD approaches fail

• Operator overloading approach is usually accurate

• Truncation error can cause catastrophic failure

30

Sandia National lahoratodes

Embedded UQ Methods in Albany

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

Outline

• Supporting embedded algorithms in large-scale codes
— Templates
— Element-based codes and gather/scatter

• Albany
Component design
Piro
Heat equation example with sensitivities

• Albany-Dakota
Dakota
TriKota
NISP example
Regression-PCE w/gradients example
VPS w/gradients example

• Albany-Stokhos
— Kokkos and changes it required
— SGQuadModelEvaluator
— Stochastic Galerkin example with viz

• Albany internals
Phalanx
Gather/scatter
PDE terms
Parameters
Stochastic Galerkin preconditioners

Sandia National Laboratories

i*4-1411A- Challenges of embedded algorithms

• Many kinds of quantities required
— State and parameter derivatives
— Various forms of second derivatives
— Polynomial chaos expansions

• • •

• Incorporating these directly requires significant effort
— Time consuming, error prone
— Gets in the way of physics/model development

• Requires code developers to understand requirements of algorithmic
approaches
— Limits embedded algorithm R&D on complex problems

• Need a framework that
— Allows simulation code developers to focus on complex physics development
— Doesn't make them worry about advanced analysis
— Allows derivatives and other quantities to be easily extracted
— Is extensible to future embedded algorithm requirements

Sandia National Laboratories

A Solution Through Templates

• Recall C++ templates provide API for incorporating
automatic derivative calculations

• Benefits of templating
— Developers only develop, maintain, test one templated code
base

— Developers don't have to worry about what the scalar type really
is

— Easy to incorporate new scalar types

• Templates provide a deep interface into code
— Can use this interface for more than derivatives
— Any calculation that can be implemented in an operation-by-
operation fashion will work

— Extension to general scalar types we call template-based
generic programming

*Pawlowski et al, 2012 Sandia National Laboratories

A solution Through Templates

• Template-based generic programming
— Code developers write physics code templated on scalar type
— Operator overloading libraries provide tools to propagate needed
embedded quantities

— Libraries connect these quantities to embedded solver/analysis tools

• Plethora of scalar types enable many forms of embedded analysis
— Jacobians — forward mode AD
— Adjoints — forward or reverse mode AD
— Hessians — nested forward/reverse AD
— Spectral UQ methods — polynomial chaos expansions
— Sampling UQ methods — multi-point vector
— Epistemic UQ methods — intervals, fuzzy numbers

• Strategy:
— Template PDE residual evaluation on scalar type
— Instantiate template code on appropriate scalar type for each type of

analysis
— Connect to high-level analysis algorithm through an interface

Sandia National Laboratories

oft
I*4-1411- Differentiating Element-Based Codes

• Global residual computation (ignoring boundary computations):

f (x) = QT eki(Pix)
i=i

• Jacobian computation:

a f \N aeki
 22,c2TthiPil = DX Uxi

i=1

• Jacobian-transpose product computation:

N
Ta f - >2(c2iw)TJkiPiax j=1

• Hybrid symbolic/AD procedure

— Element-level derivatives computed via AD

— Exactly the same as how you would do this "manually"
— Avoids parallelization issues

xi =

Sandia National Laboratories

i*4-1411- Template-Specialized Gather/Scatter

• Structure generalizes to all scalar types:

- For each element:
• Extract local DOFs from global solution vector

• Initialize local DOF scalars based on scalar type

• Evaluate templated local element residual

• Extract data from local element residual scalars

• Scatter data into global data structures

• Encapsulate into templated gather-scatter
operations

— Partial template specialization of each gather-
scatter on relevant scalar type

Sandia National Laboratories

Templates Orthogonalize Physics and Embedded
Algorithm R&D

-

Nonlinear solver

Optimization

UQ

Error estimation

Stability Analysis

I

I

I

I

I

I

Application Interface

0

computeResidual()

Field Manager

Scatter (Extract)2-, DOF Manager

0 computeacobian()
PDE Terms

computeTangent() Discretization

Properties
0

computeHessian()
Cell Topology

computeAdjoint()

Source Terms Mesh

FE Interpolation
,Compute Derivs,

0,

computePCE()

► computeResponse()

MDArray

Get Coordinates

 11111. Gather (Seed
0 DOF Manager

Legend: Template Specializations for
► Global Data Structures Seed and Extract phases:

ZI Local Data Structures
Application
component/library Residual Hessian

Embedded Analysis
component/library

Jacobian Adjoint
Generic Template Type
used for Compute Phase <EvalT> Tangent PCE

Sandia National Laboratories

oft ;c Tools and techniques have been developed,
implemented in SNL Albara code

Sandia National Laboratories' Albany multiphysics code

2,654 commits 3 branches 0 releases 10 ,ntr

It branch: Insister - Albany / E

adding check tor quadratic Input mesh

lbaned authored 3 hours ago latest commit c96d76ef13

▪ doc Merge remote-tracking branch 'github/master' into fix_time

li examples

a day

Merge remote-tracking branch 'github/master' into fix_time a day ago

II project Continue adding nodal state field support. 4 months ago

▪ src adding check for quadratic input mesh 3 hours ago

E .gitignore Fix ETI issues uncovered by Intel compiler. 2 days ago

p ALBANY MASTER B... Albany development has moved to a git repository! 4 years ago

E CMakeLists.txt Merge remote-tracking branch 'github/master' into fix_time a day ago

E README.md Fix another typo. 11 days ago

license.txt Replace copyright banner with a short 2012 banner for Albany ... a year r.

README.md

Albany

Albany is an implicit, unstructured grid, finite element code for the solution and analysis of partial

differential equations.

Features

Analysis of complex multiphysics problems

https://github.com/gahansen/Albany

• Albany lead/PI: Andy Salinger (SNL)

• Hosts several application and algorithms R&D
efforts

Applications:
• Mechanics (LCM)
• Quantum Devices (QCAD)
• Ice Sheets (FELIX)
• Atmosphere Dynamics (Aeras)
• Particle-Continuum coupling (Peridigm)
• Additive Manufacturing

Algorithms:
• Adaptivity (PUMI)
• Embedded UQ (Equinox)
• Topological Optimization (ATO)
• Performance Portable FEM

(Kokkos, Intrepid2)
• Scalable Solvers (MueLu)
• Adjoint-Based Inversion
• UQ Workflow (QUEST)
• Goal-Oriented Adaptive Refinement
• Model Order Reduction (RAZOR)

• Incorporates many advanced analysis techniques

• Effective test-bed for developing stochastic
Galerkin algorithms and solvers

Sandia National Laboratories

11.1
f*•• r4,6-4

Ice Sheets

is a finite element code that
Li pports many kinds of physics

Quantum Devices

Computational Mechanics

Atmosphere Dynamics

Incompressible Flow

-lib

I tit to

Sandia National Laboratories

Analysis "lools

Optimization

UQ

Application

I
Solvers

Nonlinear

Transient

Linear Solve

I
Linear Solvers

Iterative

Multi-Level

Component-Based Application:
Libraries

Input Parser

Nonlinear
Model

Interfaces

Version C811"Pm

Build System

Regression Testing

_I ProblemDiscretization

Interoperability

Use Case

ManyCore Node 1

Node Kernels

Multi-Core

Accelerators

AD Seed/Extract

1r

PDE Atembly

Mesh Tools

Mesh Database

/\ 1 1

Mesh I/0

Load Balancing

Adaptivity

Field Manager 1

Discretization 1

PDE Tern

Sandia National Laboratories

R.O.M.E

 I
Piro Solver

NOX

Rythmos

LOCA

MOOCHO

Stokhos

t

Albany is built from Trilinos and
Dakota component libraries

Piro Analysis

Dakota

ROL

I

Model

Evaluator

Stratimikos

Aztec

Belos

Anasazi

ML/MueLu

Amesos

Ifpack

t

Exodus

Abstract Global

Discretization

k

Albany

"Application"

Abstract
Node

Pamgen
..............................„/

STK_IO

Hand-Coded:

d

STK Mesh

Abstract

Problem

PUMI

.1- Problem Factory

Phalanx Field Manager

Kokkos

Phalanx Evaluators
4.

Sacado AD

Stokhos UQ

nal lahoratoties

Piro: Parameters-In Responses-Out
• Recall ModelEvaluator interface from part 2 (steady-state for simplicity):

f (u, y) = 0, v(y) = h(u, y)
— Model inputs: solution vector u, parameters y
— Model outputs: residual vector f, response v, derivatives df/du, df/dy, dv/du, dv/dy,

• Given application ModelEvaluator, Piro creates a ModelEvaluator that "looks" like just a
mapping from parameters y to responses v (response-only ModelEvaluator):

v(y) = h(u(y), y) s.t. f(u(y), y) = 0

— Given parameters y, solve for u by through nonlinear solver
— Evaluate response v
— Compute response gradient via implicit function theorem:

av ah / Of-10f) ah avT a fT (a f -T ahT ahT
aY aU aU aY aY aY aY aU aU aY

• Internally Piro creates nonlinear solver (NOX) or time-integrator (Rythmos) to accomplish this
— Entirely ParameterList driven

• Additionally, Piro provides simple interface for various analysis methods that operate on a
response-only ModelEvaluator
— Optimization (Dakota, ROL, MOOCHO, ...)
— Sampling-based UQ (Dakota) and Stochastic Galerkin UQ (Stokhos)

Sandia National Laboratories

Albany heat-equation demo

• Input file

• Steady-state solve

• Visualization

• Sensitivities

Sandia National Laboratories

Research, development, & deployment of advanced
DAKONIfative algorithms for simulation-based assessment and

http://dakota.sandia.gov

model
arameters

_ design*

Dakota
sensitivity analysis

uncertainty quantification
optimization

parameter estimation

approximation/surrogate

response
metrics

•
•

Iterative systems analysis

Multilevel parallel computing

Simulation management

lmpact across a variety of DOE mission areas

Stockpile (NNSAASC)
Abnormal environments

Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF)
Wind turbines, nuclear reactors

*M. Eldred, B. Adams, et al (SNL)

Ice sheet modeling, CISM, CESM, ISSM
accumulation, temperature surface topography

surface velocity

calving law,

shelf geometry
melt/freeze distribution

geothermal flux

Schematit of einnvations, baundary condition; anci

flow law

'04/1 r4t441,,r4e sliding law
se iments

bed t000araohy
Reference height temperature

oft
',%/m ruji. TriKota and Albany

• TriKota package in Trilinos makes Dakota look like just
another Trilinos package
— Unpack Dakota tarball inside TriKota directory
— Add —D Trilinos_ENABLE_TriKota to Trilinos configure
— Builds Dakota as a library within Trilinos

• TriKota provides implementation of Dakota's embedded
application interface using a Piro response-only
ModelEvaluator
— "Dakota library mode"
— Piro can then call Dakota for any kind of Dakota UQ/Optimization

analysis

• Makes it simple to run Dakota analysis on Albany
— Just supply a Dakota input-file (no scripting necessary)
— Requires Albany to implement any pre/post-processing for

parameters/responses

Sandia National Laboratories

Albany-Dakota Examples

• NISP example

• Regression-PCE w/gradients example

Sandia National Laboratories

1E1

VPS: Voronoi Piecewise Surrogates

^~—'-' e".'.'"---°%"4 Given a d-dimensional pointset and function
evaluations pairs {xi, f(x)}, build a surrogate to estimate the function
elsewhere.

Consider the given points as implicit Voronoi
seeas. For each cell, find the polynomial coefficients that fits
the function value at the cell seed and minimizes the error at
the neighbors in the Least Square sense.

• Only needs neighbors, not Voronoi edges.

• No explicit Voronoi Tessellation construction (no curse of dimensionality).

• Varies from local (only direct neighbors used) to global (extended
neighbors).

• Better error performance compared to the global Gaussian Process
Surrogate.

• A surrogate evaluation = polynomial evaluation (cheap).

• All polynomial coefficients are calculated once (less computational cost).

Sandia National Laboratories

VPS with derivatives information

Given a d—dimensional pointset {xi}, function
evaluations {f(x)}, as well as gradients, and Hessians, build a surrogate to
estimate the function elsewhere.

VPR R^Iiifinn' Consider the given points as rnolicit Voronoi seeds. For each cell, use
the function evals, gradients, and hessians to approximate the constant, linear, and
quadratic coefficients of the surrogate polynomial, in a Taylor series context. lf a
higher order polynomial is needed, use _east Squares to solve a regression problems
for the remaining polynomial coefficients.

lst order VPS — 121 points 2nd order VPS — 121 points

Least Squares Regression Least Squares Regression

1st order VPS — 121 points 2nd order VPS — 121 points

w/ Gradient info w/ Gradient and Hessian

Albany VPS example

Sandia National Laboratories

Stochastic Galerkin UQ in Albany

Navier-Stokes

x velocity standard deviation
0.1 0.2

mir
0

1 H

0.2256

• Incompressible flow past a cylinder
— Uncertain viscosity field
— Standard deviation of x-velocity field

Mechanics

von Mises

4.132e+05

14.CCOe+053.603e-1-05

3.200e+05

2.801e+ 05

von Mises

(31 .91e+0404

2.CCOe+04

11.0O3e+04
1.247e+ 01

Displacement (Mean) Displacement (Std. Dev.)

• Neo-Hookean nonlinear elasticity
— Uncertain Young's Modulus field

Thermal-Electrostatics

• Sliding electromagnetic contact
— Uncertain electrical conductivity
— Standard deviation of maximum

temperature

KO Sandia National Laboratories

Pseudospectral SG Residual/Jacobian Evaluation

• PCE scalar type (from part 1) incorporated into Albany for SG residual/Jacobian evaluation

• Currently this is disabled due to Kokkos transition
Kokkos is a performance portability Iibrary for next-generation multicore CPU, GPU, Xeon Phi
architectures

— Internal PDE evaluation code being converted to use Kokkos for thread parallelism (more on
this later)

— Kokkos data structures currently don't support PCE scalar type used in Albany
— This will be fixed in the future

• However Albany also supports a semi-intrusive pseudospectral evaluation of SG residual
and Jacobian via (sparse-grid) quadrature:

Ft = f(fi(y), y*i(y)f)(y)dy
r

P

kf (fi(yk), yljOi(yk)
k=0

• Implemented by Stokhos::SGQuadModelEvaluator
— Computes X_SG, W_SG, OutArgs by sampling given (deterministic) ModelEvaluator

Evaluate X_SG, P_SG at each quadrature point, evaluate model, sum results into SG OutArg
Provides SG capabilities to any ModelEvaluator
Incorporated into Piro

• In the future will also support
— SPAM approach
— Applying quadrature/SPAM at element-level (for better cache performance)

Sandia National Laboratories

Albany-Stokhos Examples

• SG example

• Viz. of mean/variance

• Preconditioners

Sandia National Laboratories

Lightweight DAG-based Expression Evaluation
with Phalanx (R. Pawlowski)

• Albany leverages Phalanx (R.
Pawlowski) for evaluating PDE terms

• Decompose a complex model into a
graph of simple kernels (functors)

• Supports rapid development, separation
of concerns and extensibility.

• A node in the graph evaluates one or
more fields:
— Declare fields to evaluate

— Declare dependent fields

— Function to perform evaluation

• Separation of data (Fields) and kernels
(Expressions) that operate on the data
— Fields are accessed via multidimensional array

interface

MI Odl Ill Id Ild LIU! Id I LdUUI d WI WS

Navier-Stokes Example

Afq

E E RPCpv • VT - OIT q • V CbT] Wq[il =

e=1 y=1

Ne Nq

— [pv • V + : V (c/4e k)] NIA = 0
e=1 g=1

N N q

E- • vopwq[il
e=1 (1=1

tional Laboratories

Albany source-code deep-dive

• Heat equation evaluator setup

• Diffusion coefficient

• Source term

• Gather/scatter

• Parameters

• SG Preconditioners

Sandia National Laboratories

--" References
• Use of templates for automatic differentiation in large-scale codes

— R. Pawlowski, E. Phipps, and A. Salinger, "Automating embedded analysis capabilities
and managing software complexity in multiphysics simulation part I: template-based
generic programming," Journal of Scientific Programming, vol. 20 (2), 2012.

— R. Pawlowski, E. Phipps, A. Salinger, S. Owen, C. Siefert, and M. Staten, "Automating
embedded analysis capabilities and managing software complexity in multiphysics
simulation part II: application to partial differential equations," Journal of Scientific
Programming, vol. 20 (3), 2012.

• Phalanx
— P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, "Graph-Based Software Design for

Managing Complexity and Enabling Concurrency in Multiphysics PDE Software," ACM
Transactions on Mathematical Software, Vol. 39, No. 1 (2012).

• Dakota/UQ
— A. Rushdi, L. Swiler, S. Mitchell, and M. Ebeida, "VPS: Voronoi Piecewise Surrogates

for High-Dimensional Data Fitting," to be submitted to SIAM/ASA Journal on
Uncertainty Quantification.

— B.M. Adams, L.E. Bauman, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, P.D.
Hough, K.T. Hu, J.D. Jakeman, L.P. Swiler„ J.A. Stephens, D.M. Vigil, and T.M.
Wildey, "Dakota, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis," Version 6.2 user's manual. Sand Report SAND2014-4633, Sandia National
Laboratories, May 2014, updated 2015.

Sandia National Laboratories

Auxiliary Slides

Sandia National Laboratories

ElasticityResid Evaluator

template<typename EvalT, typename Traits>

void ElasticityResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset)
{

for (std::size_t cell=0; cell < workset.numCells; ++cell) {

for (std::size_t node=0; node < numNodes; ++node) {

for (std::size_t dim=0; dim<numDims; dim++) Residual(cell,node,dim)=0.0;

for (std: : size t qp=0; qp < numQPs; ++qp) {

for (std::size_t i=0; i<numDims; i++) {

for (std::size_t dim=0; dim<numDims; dim++) {

Residual(cell,node,i)

+= Stress(cell, qp, i, dim) * wGradBF(cell, node, qp, dim);

if (workset.transientTerms && enableTransient)

for (std::size t cell=0; cell < workset.numCells; ++cell)

for (std::size t node=0; node < numNodes; ++node) {

for (std::size_t qp=0; qp < numQPs; ++qp) {

for (std::size t i=0; i<numDims; i++) {

Residual(cell,node,i)

+= uDotDot(cell, qp, i) * wBF(cell, node, qp);

}

{

ON Sandia National Laboratories

1111111

Template-Based Generic Programming:
"Ili- Codes are born ready for embedded algorithms

Field Manager

Scatter (Extract)
L L L L L L

PDE Terms

Properties

Source Terms
A

TE Interpolation\

Compute Denys}

Get Coordinates
•

 ► Gather (Seed)

L
L

Legend:

 0- Global Data Structures

Local Data Structures

Generic Template Type
used for Compute Phase

<EvalT>

Template Specializations for
Seed and Extract phases:

Residual
Jacobian

Tangent
Hessian

Adjoint
PCE
Shape Opt,

Sandia National Laboratories

ElasticityResid Evaluator

template<typename EvalT, typename Traits>

void ElasticityResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset)
{

for (std::size_t cell=0; cell < workset.numCells; ++cell) {

for (std::size_t node=0; node < numNodes; ++node) {

for (std::size_t dim=0; dim<numDims; dim++) Residual(cell,node,dim)=0.0;

for (std: : size t qp=0; qp < numQPs; ++qp) {

for (std::size_t i=0; i<numDims; i++) {

for (std::size_t dim=0; dim<numDims; dim++) {

Residual(cell,node,i)

+= Stress(cell, qp, i, dim) * wGradBF(cell, node, qp, dim);

if (workset.transientTerms && enableTransient)

for (std::size t cell=0; cell < workset.numCells; ++cell)

for (std::size t node=0; node < numNodes; ++node) {

for (std::size_t qp=0; qp < numQPs; ++qp) {

for (std::size t i=0; i<numDims; i++) {

Residual(cell,node,i)

+= uDotDot(cell, qp, i) * wBF(cell, node, qp);

}

{

PHX::MDField<EvalT::ScalarT,Cell,QuadPoint,Dim,Dim> Stress; Sandia National Laboratories

Conversion of a finite element kernel to
'14-411W Kokkos programming model for portable

node-level parallelism
template<typename EvalT>

Void VecGrad<EvalT>::evaluateFields()

{

// Outer loop over a Workset of Elements

for(int cell = 0; cell < NumCells; cell++) {

for(int qp = 0; qp < numQPs; qp++) {

for(int i = 0; i < numVecs; i++){

for(int dim = 0; dim < numDims; dim++){

for(int nd = 0; nd < numNodes; nd++){

vecGrad[cell] [qp] [i] [dim] +=

vec[cell][nd][i]

* basisGrads[cell][nd][qp][dim];

}

}

}

}

J // loop

}

Refactoring follows simple recipe:

• Outer loop moved to parallel_for (int)

• Inner kernel moved to operator (int) functor

• Arrays a[i] [j] converted to Kokkos::Views a(i,j)

template<typename EvalT>

void VecGrad<EvalT>::evaluateFields()

{

// Outer loop over a Workset of Elements

Kokkos::parallel_for (NumCells, *this);

}

**

template<typename EvalT>

KOKKOS_INLINE_FUNCTION

void VecGrad<EvalT>:: operator 0

(const int cell) const

{

for(int qp = 0; qp < numQPs; qp++) {

for(int i = 0; i < numVecs; i++){

for(int dim = 0; dim < numDims; dim++){

for(int nd = 0; nd < numNodes; nd++){

vecGrad(cell, qp, i, dim) +=

vec(cell, nd, i)

* basisGrads(cell, nd, qp, dim);

}
}

}

}

}

CISandia National Laboratories

MIS
'fterm vdlek.

Sacado/Stokhos- and Kokkos-
-ification of FE assembly

typedef Kokkos::OpenMP ExecutionSpace;

//typedef Kokkos::CUDA ExecutionSpace;

//typedef Kokkos::Serial ExecutionSpace

template<typename ScalarT>

vectorGrad<ScalarT>::vectorGrad()

{

Kokkos::View<ScalarT****, ExecutionSpace> vecGrad(numCells, numQP, numVec, numDim);

}
**

template<typename ScalarT>

void vectorGrad<ScalarT>::evaluateFields()

{
Kokkos::parallel_for<ExecutionSpace> (numCells, *this);

}

**

template<typename ScalarT>

KOKKOS INLINE FUNCTION

void vectorGrad<ScalarT>:: operator() (const int cel...) const

{

for (int cell = 0; cell < numCells; cell++)

for (int qp = 0; qp < numQP; qp++) {

for (int dim = 0; dim < numVec; dim++) {

for (int i = 0; i < numDim; i++) {

for (int nd = 0; nd < numNode; nd++) {

vecGrad(, qp, dim, i) += val(, nd, dim) * basisGrad(nd, qp, i);

Sandia National Laboratories
133

Uncertainty Quantification for Next-
Generation Architectures

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

1111111 Computer Architectures Are Changing24- AL Dramatically

• Historically (super)computers have gotten
faster by
— Increasing clock frequency
— Adding more compute nodes that

communicate through an interconnect

• Power requirements make this approach
untenable for future performance increases

• Instead performance increases are now
achieved through increases in node-level
fine-grained parallelism
— Many, many threads executing

simultaneously
— Memory access, arithmetic on wide vectors
— Complex memory hierarchies that require

processing units to share data

180

10

1970

Int& CPU Tre s
(sources: Wiki'pedia, ubitun)

1:6

MO

••

*

• •

■

Pentium

■

•

1978 1980 1988 1990 1998

• TrIPSMOR (00))
•aock speed mom

• POwte (W)

• PtrfiaCck IILPO

2000 2008 2010

Herb Sutter, "The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in

Software", Dr. Dobb's Journal

Sandia National Laboratories

_ Emerging Architectures Motivate New
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

model
arameters

Dakota
sensitivity analysis

uncertainty quantification 4—

optimization
parameter estimation

response
metrics

• approximation/surrogate •

• Increasing UQ performance will require
— Speeding-up each sample evaluation, and/or
— Evaluating more samples in parallel

http://dakota.sandia.gov

• Many important scientific simulations will struggle with upcoming architectures
— Irregular memory access patterns (e.g., indirect accesses resulting in long latencies)
— Inconsistent vectorization (e.g., complex loop structures with variable trip-count)
— Poor scalability to high thread-counts (e.g., poor cache reuse results in ineffective hardware threading)

• Investigate improving performance and scalability through embedded UQ approaches that
propagate some UQ information at lowest levels of simulation
— Improve memory access patterns and cache reuse
— Expose new dimensions of structured fine-grained parallelism
— Reduce aggregate communication

Sandia National Laboratories

Sparse CRS-Format Matrix-Vector Product

11 CRS Matrix for an arbitrary floating-point type T

template <typename T>

struct CrsMatrix {

int num_rows; // number of rows in matrix

int num_entries; // number of nonzeros in matrix

int *row_map; // starting index of each row, [0,num_rows+1)

int *col_entry; // column indices for each nonzero, [0,num_entries)

T *values; // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

}

}
y[row] = sum;

Laboratories

• PDE:

Simultaneous ensemble propagation

f (u, y) = 0

• Propagating m samples — block diagonal (nonlinear) system:
m aF m

0 T 0 fF(U,Y) = 0, U = yd eiOui, Y = Yd ejOyi, F = 12 ei0f(ui, Yi), au =
yd

eie
auij=1i= 1 i= 1 i= 1

1U ZU

0 500 1000 1500 2000
0

...

500— i7 .„.......... . k of

. . \
1000

,:\
,if,

'
/\

, . .
1500 ,...-

..'". e‘

r+.

. . .

2000— , 1 ...Zy • .
ler...

— Spatial DOFs for each sample stored consecutively

m m

I
U.S. DEPARTMENT OF office of

ENERGY Science
I

Irto Sandia National Laboratories

Ensemble Matrix-Vector Product
---SW.e,

11 Ensemble matrix-vector product

template <typename T, int m>

void ensembie_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

}

}

}
y[row + e*A.num_rows] = sum;

upj Sandia National Lahoratocies

Simultaneous ensemble propagation

• Commute Kronecker products:

Fc(Ue, Ye) = 0, =
m

i=1

ui0ei,

0
0 500 1000 1500 2000

-..., ,
... ...

500- 7 .,‹ . k "

\ •

1000— 4,4
f„•,,,

' /

•
\

• . o

1500-

e‘.

'...

2000- 1 I
•N •

VLF.

171

i=1

yjOei,

m

i=1

aF,
au,

- m sample values for each DOF stored consecutively

rn, f
 Oeiei
ai=1 ui

U.S. DEPARTMENT OF

ENERGY science
Office of Erikbox, hill' Sandia National Laboratories

Commuted, Ensemble Matrix-Vector Product
11 Ensemble matrix-vector product using commuted layout

template <typename T, int m>

void ensemble_commuted_crs_mat_vec(consl CrsMatrix<T>& A,

for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum[m];

for (int e=0; e < m; ++e)

sum[e] = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];

}

}

}

}
for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];

x, T *y) {

• Automatically reuse non-sample dependent data
• Sparse access latency amortized across ensemble
• Communication latency amortized across ensemble
• Math on ensemble naturally maps to vector arithmetic Sandia National Laboratories

C++ Ensemble Scalar Type
/1 Ensemble scalar type

template <typename U, int m>

struct Ensemble {

U val[m];

Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }

Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];

return *this;

}

Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];

return *this;

}

};

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;

for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];

return c;

}

upj Sandia National Laboratories

Ensemble Matrix-Vector Product Through
24-40k Operator Overloading

• Original matrix-vector product routine, instantiated with T =
Ensemble<double,m> scalar type:

// Serial Crs matrix-vector product for arbitrary floating-point type T

template <typename T>

void crs_mat_vec(const CrsMatrix<T>& A, const T*x, T *y) {

for (int row=0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];

const int entry_end = A.row_map[row+1];

T sum = 0.0;

for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];

sum += A.values[entry] * x[col];

}

}

}
y[row] = sum;

Sandia National Laboratories

oft Ensemble Scalar Type Provided by
Stokhos

• Currently called Sacado::MP::Vector
— Uses expression templates to fuse loops

d =axb+c={al xb1 +c1,...,ani xbm -Fcm}
— Very similar implementation as Sacado AD data types

http://trilinos.org

• Enabled in simulation codes through template-based generic programming
— Template C++ code on scalar type

— Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
— Specializes Kokkos data-structures, execution policies to map vectorization parallelism
across ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
— Exploits templating on scalar type

— Krylov solvers (Belos)
— Algebraic multigrid preconditioners (MueLu)

— Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(lfpack2)

— Sparse-direct solvers (Amesos2)
Sandia National Laboratories

MP::Vector Example

Sandia National Laboratories

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations
— Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, ...)
— LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type

http://trilinos.org

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 3ratories

Kokkos Integration

• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
— UQ dimension is always contiguous, regardless of layout

• Facilitates
— Fine-grained parallelism over UQ dimension
— Efficient allocation and initialization
— Specialization of kernels
— Transfering data between host and device and MPI communication

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view("v", 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view("v", 10);

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to
achieve performance

Sandia National Laboratories

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia's templated C++ library for distributed
memory (MPI) sparse linear algebra

Epetra but templated
• Scalar, local-ordinal, global ordinal, node

Builds distributed memory linear algebra on top of Kokkos
library
Distributed memory vectors, multi-vectors, and sparse
matrices
Data distribution maps and communication operations
Fundamental computations: axpy, dot, norm, matrix-vector
multiply, ...
Templated on "scalar" type: float, double, automatic
differentiation, polynomial chaos, ensembles, ...

■ Higher level solver libraries built on Tpetra
— Preconditioned iterative algorithms (Belos)
— Incomplete factorization preconditioners (lfpack2, ShyLU)
— Multigrid solvers (MueLu)
— All templated on the scalar type

http://trilinos.org

*M. Heroux, M. Hoemmen, et al (SNL)

Sandia National Laboratories

11Mb _
f*••I'a.m Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

—V • (11/(x, y)Vu) u2 0

— 3-D, linear FEM discretization
— lx1x1 cube, unstructured mesh
— KL truncation of exponential random field model for diffusion coefficient
— Trilinos-couplings package

• Hybrid MPI+X parallelism
- Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
- Graph construction
- PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
- CG iterative solver (Belos package)
- Smoothed Aggregation AMG preconditioning (MueLu)

http://trilinos.org

• Supports embedded ensemble propagation via Stokhos through entire assembly and
solve
- Samples generated via Smolyak sparse grids

Sandia National Laboratories

Ensemble PDE Matrix/RHS Assembly Speed-Up

6

5

0-4
_
cu 3
aJ
0_
im 2

1

Matrix/RHS Assembly
(1 MPI Rank, 64x64x64 Spatial Mesh)

0

4 8 12 16 20 24 28 32

Ensemble Size

Sandy Bridge

(1 NUMA, 16 threads)

Blue Gene/Q
(64 threads)

Cray XK7

(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator

(240 Threads)

Speed-Up =

• Speed-up results from
— Reuse of mesh,

discretization data
structures

— Replacement of
sparse gather with
contiguous load
Perfect vectorization
of math

Ensemble size x Time for single sample

Time for ensemble

Sandia National Laboratories

Ensemble Sparse Matrix-Vector Product
Speed-Up

Matrix-Vector Product
(1 MPI Rank, 64x64x64 Spatial Mesh)

0

4 8 12 16 20 24 28 32

Ensemble Size

Sandy Bridge

(1 NUMA, 16 threads)

Blue Gene/Q

(64 threads)

Cray XK7

(1 NUMA, 8 threads)

NVIDIA K80 GPU

Xeon Phi Accelerator
(240 threads)

Speed-Up =

• Speed-up results from
— Reuse of matrix

graph (20%)
— Replacement of

sparse gather with
contiguous load

— Perfect vectorization
of multiply-add

Ensemble size x Time for single sample

Time for ensemble

Sandia National Laboratories

Interprocessor Halo Exchange

25

20

o_
15

ICYL 10

0

Halo Exchange -- Blue Gene/Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

4 8 12 16 20 24 28 32

Ensemble Size

-0-64 Nodes

-0-128 Nodes

256 Nodes

512 Nodes

-0-Fit

25

20

o_
15

ICYL 10

0

Halo Exchange -- Cray XK7
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

4 8 12 16 20 24 28 32

Ensemble Size

64 Nodes

128 Nodes

256 Nodes

Nodes

-**1024 Nodes

-0-Fit

Tirne ti a + bm

Ensemble size x Time for single sample
Speed-Up =

Time for ensemble
m(a b)

• Speed-up results from reduced
a + bm aggregate communication latency

— Fewer, larger MPI messages
— Communication volume is the same

Sandia National Laboratories

1101111111111MIN

I.
AIL AMG Preconditioned CG Solve

11.0
10.0
9.0

ci 8.0
3 7.0
al 6.0
a 5.0

4.0 i Ca:diOgi

3.0 sz

212.0 g giri
1.1 23 21

1.0

1 4 16 64 256 1024

Compute Nodes

Multigrid Preconditioned CG Solve
(64x64x64 Mesh/Node, Ensemble Size = 32)

Ra

-•-Sandy Bridge

Gene/Q

Cray XK7

NVIDIA K80 GPU

Xeon Phi Accelerator

Speed-Up =

• Smoothed-
aggregation algebraic
multigrid
preconditioning
(MueLu)
— Chebyshev
smoothers
Sparse-direct coarse-
grid solver
(Amesos2/Basker)
Multi-jagged parallel
repartioning (Zoltan2)

Ensemble size x Time for single sample

Time for ensemble
Sandia National Laboratories

FENL Ensemble UQ Example

Sandia National Laboratories

IME
oft Ensemble Propagation for More Challenging
fika.m Problems

• Assurning number of CG iterations doesn't vary
significantly from sample to sample
- True for problems with tame diffusion coefficient on

regular meshes
- Implies number of CG iterations for ensemble does not

increase

• For general problems, number of iterations will
increase for ensemble system
- Spectrum of ensemble matrix must spread out
- Need to group samples to group matrices with similar
spectra

• Note: Do not require smoothness (of matrix, RHS,
solution) between samples!

Sandia National Laboratories

f•••I'a.m AIL Summary

• Embedded sampling approach improves aggregate UQ
performance by
— Eliminating sparse memory accesses
— Amortizing communication/access latency
— Perfect fine-grained vector/Cuda-thread parallelism

• Embedded sampling approach does not
— Substantially change floating-point operation to memory
access ratios

— Increase cache reuse
— Reduce communication volume

• To achieve this, we need some form of compression of
stochastic information
— Trade reduced stochastic DOFs for increased FLOPs

Sandia National Laboratories

LABORATORY DIRECTED RESEARCH & DEVELOP, T

Embedded Stochastic Galerkin UQ Methods

• Stochastic Galerkin method (Ghanem and many, many others...):

1140 = fi(uo, • • • • up) = I f y)1Pi(y) p(y)dy = = 0, . . . , P
(q) ri=0

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

F(U) = 0, U ei ui,
i=i i=i

OF P (1PilPj1Pk)
Gk Ak, j) — C23k

k=0
— 2

aU (1Pi)

ei fi

OU 500 1000 1500 2000

500 7

1000-

/

•
•

1500
. •

2000 •;..V •
Vie

Stochastic sparsity Spatial sparsity
• Many fewer stochastic degrees-of-freedom for comparable level of accuracy:

1 4 5 1 6 7

3 20 39 3 56 153

5 56 151 5 252 933

7 120 407 7 792 3697

9 220 871 9 2002 11581

Sandia National Laboratories

Commuted SG Structure for Emerg
Architectures

ing

• DOF layout can be reorganized in similar manner to embedded sampling:
- Store PC coefficients for each spatial DOF consecutively

P
Atracl = Gk Ak

k=0

Stochastic sparsity

0°,
500 1000 1500 2000

/500 7 .‹..

N.

A
1000 % ,

e \

1500

: '4,::•\

2000 .Z.v •
,---

Spatial sparsity

Acorn =
P

Ak Gk

k=0

00
500 1000 1500 2000

J

\

500

1000

7

•

.........../

N.,

''

•

s't

,

e

1500 '

es, . . \ „.... \

2000 .4. N ! •
VT,

Spatial sparsity Stochastic sparsity

• Implemented in same manner as embedded sample propagation
- Scalars replace by PC coefficient arrays
- Apply operator overloading approach from part 2 to linear algebra
- Stokhos::OrthogPoly<Epetra_CrsMatrix> replaced Tpetra::CrsMatrix<

Sacado::UQ::PCE<>,...>
- Approach implemented within Stokhos package

KO Sandia National Laboratories

wlio.Commuted SG Matrix-Vector Multiply

ye0717, = ACOM,xCOM,
yi ei = Ak Gk)

i=0 k=0 j=0

ej)

• Two level algorithm

— Outer: sparse (CRS) matrix-vector multiply algorithm

— inner: sparse stochastic Galerkin product

tst A (l) ={m I Ao(1177-1) 0 01 Nc(i) = {(j,k) C(i, j, k) 01

stochastic
basis

stochastic stochastic triple
basis basis product

= A(k,l m)x(j, m)C (i, j, k)

mek.tA(l) (j,k)ENc(i)

FEM FEM bases
basis sum

FEM FEM
basis basis

Sandia National Laboratories

oft
ZIparse Matrix-Vector Product*

Intel Sandy Bridge CPU

(n=262k, 8 threads)

25

20
LI

/5_,rt.n
rya--

a
E

0
Commuted
(N=3)

15
o_

I Commuted

-1 10 (N=5)

Scalar Mat-
5 Vec

0

0 200 400 600

Stochastic Discretization Size P

200

175

150

v, 125

no- 100

u_zi 75

50

25

0

Nvidia Kepler K80 GPU

(n=32k)

Commuted

(N=3)

Commuted

(N=5)

Scalar Mat-
Vec

200 400 600

Stochastic Discretization Size P

12

10

8

6 gi

4

2

0

Blue Gene Q CPU
(n=32k, 64 threads)

Commuted

(N=3)

Commuted

(N=5)

Scalar Mat-

Vec

0 200 400 600

Stochastic Discretization Size P

50

40

v. 30
0.

2 20
6 -L

10

0

0 200 400 600

Xeon Phi 7120P Accelerator

(n=32k, 240 threads)

,t-

- Commuted
(N=3)

Commuted

(N=5)

Scalar Mat-
Vec

Stochastic Discretization Size P

10

8

vi 6
o_

SI 4
L6-

2

0

0 200 400 600

Stochastic Discretization Size P

AMD Interlagos CPU

(n=32k, 8 threads)

Commuted
(N=3)

Commuted

(N=5)

Scalar Mat-

Vec

• Increased throughput
arises from substantial
reuse within PCE multiply

*Phipps, Edwards, Hu and Ostien, International Journal of Computer Mathematics, 2013. Sandia National Laboratories

i*-4-1411A- Performance driven by C(i,j,k) tensor

y (i, = >2d A(k,l, m)x(j , in)C (i, j, k)

mEN A (1) (j,k) ENG' (i)

• Precompute and store C

• Given I,m, load A(:,l,m), y(:,l),
x(:,m) into cache

• Iterate over non-zero C(i,j,k)
entries

• Sparse accesses of A, x, but in
fast cache
- Very fast for GPU

• Lots of reuse of A, x entries
— Effectiveness determined by

ordering of nonzeros in C(i,j,k)

• Can load A, x for multiple values
of I,m to reduce reads of C

Sandia National Laboratories

oft
ift=ve--' Traded one bandwidth limit for another

• NVIDIA GPU, Intel
accelerator
— Performance no longer

driven by bandwidth of
reading matrix, vector
entries

— Instead limited by bandwidth
of reading sparse tensor

• Can we remedy this?
— Generate C(i,j,k) entries on-

the-fly
— Possible for general PC

discretizations, but difficult
to do efficiently

— Might be possible for
quadratic basis

iiiimagartarg

11111*-"m"meAgaf rAwaraitaawaedreeeeAr.ArmAr
Ar

 Ag.rr

r r

V014‘‘ r‘‘e" A.4 FPOP

 OW
IWO°, z

,,,,,rzz/Z~MeOWIle° 0 010,10 ,,
IO, e"W ,
0,00,60,,,,
////V,14

..m.aa,AZ/
, 10,10/

/V

11

OP_ Sandia National Laboratories

ift=i411-- Stochastic Galerkin Preconditioning

• Preconditioning stochastic Galerkin system is a significant challenge

• Common approach is mean-based preconditioning:

(ACOM)-1

m

—
cfmln = Mo IP, Mo re"-d' AO

1
ea

• Applying mean preconditioner in commuted layout is very efficient:

yeom = ivi-comxeom
mean

P

i=13

yi ei = (M0 0 1-p)(j=o

P

[yo, • • • y_P] = Mo [xo • • • x/3]

— Matrix-times-multivector with row-wise layout
— Vectorize over multivector columns
— Reuse of matrix/graph entries

• Applying preconditioner is often dominant cost

ei)

Sandia National Lahoratoties

immarm.
um

Mean Matrix-Vector Multiply

Intel Sandy Bridge CPU

(n=262k, 8 threads)

50

40 11.1.
Commuted

30
o_

ri 101
Scalar Mat-

o 20 Vec

10

0

0 200 400 600

Stochastic Discretization Size P

Blue Gene Q CPU

(n=32k, 64 threads)

8

7

6 Ls,2 6-1. iha Commuted

5

rz Scalar Mat-
4

2 3 _ Vec

2

1

0

0 200 400 600

Stochastic Discretization Size P

Nvidia Kepler K80 GPU

(n=32k)

80
101

70 M

60

,„ 50

40 61

LL 30 "

20 fly=

10 rz
0

Commuted

Scalar Mat-
Vec

0 200 400 600

Stochastic Discretization Size P

v,
o

AMD Interlagos CPU

(n=32k, 8 threads)

12

10

8

6

4 1-11-1 1-1

2

0

Commuted

Scalar Mat-
Vec

0 200 400 600

Stochastic Discretization Size P

Xeon Phi 7120P Accelerator

(n=32k, 240 threads)

70

60 -a-Commuted
50 rij

o_
40 -E-Scalar Mat-

2 30 „ Vec

r5 20

10 r—r-nh, h, 1-1

0

0 200 400 600

Stochastic Discretization Size P

Sandia National Laboratories

AMG Preconditioned CG Solve

Stochastic Galerkin CG-AMG Solve Speed-Up
Over Non-intrusive Polynomial Chaos Sampling

64x64x64 Mesh/Node, M = 5, N = 3

11.0
Titan CPU

9.0
cr.
7 0

-a
a)

0-
a)

5.0 Blue Gene Q

CPU
3.0 1• 1; U

Nvidia K80 GPU
iiiEZZZ 1

1.0 EL-la 11

1 4 16 64 256 1024

Sandy Bridge

CPU

Compute Nodes

• Speed-up arises
from:
— Increased floating-

point throughput
— Reduced

preconditioner
applies

— Reduced
aggregate
communication
volume

Sandia National Laboratories

"II Embedded Ensemble Scalar Type for PDE
11M1

law " As sembl y"

• Operator overloading approach meant to mitigate challenges with SG
PDE residual/Jacobian assembly

• Difficult in multicore environment
— Wide range in UQ problem dimension suggests "dynamic" memory

allocation approach
— But new/delete, malloc/free introduces global thread synchronization cost
— Very large overhead

• For general nonlinear problems, found a "pseudospectral" approach
most-effective:

= f(fi(y), OPi(y)f)(y)dy wkf(ft(Yk), Yk)'/Pi(Yk)
k-O

— Sparse-grid quadrature on residual/Jacobian (either Iocal element or global)
— Requires only two additional assembly kernels: PCE evaluation and

quadrature
— Use ensemble scalar type for evaluating residual/Jacobian at multiple

quadrature points simultaneously

Sandia National Laboratories

FENL PCE UQ Example

Sandia National Laboratories

Concluding Remarks

• Investigated reordering of UQ algorithms to propagate some UQ
information at lowest levels
— Trade coarse-grained for fine-grained UQ parallelism
— Alleviate burden of deterministic simulation code from exploiting all fine-

grained parallelism

• Propagating ensembles of samples at lowest level of simulation leads
to improved aggregate UQ performance
— Eliminate sparse memory accesses
— Amortize communication/access latency
— Perfect fine-grained vector/Cuda-thread parallelism

• Embedded stochastic Galerkin additionally
— Introduces more cache reuse
— Reduction in communication volume
— At the expense of increased mat-vec FLOPs (which eventually dominate)

• Applying technique through C++ templates greatly facilitates
implementation

Sandia National Laboratories

Challenges/Future Work

• Ensemble approach:
— Effective grouping of samples in ensembles for non-
smooth, less-smooth problems

— Dealing with code divergence (e.g., conditionals)

• Stochastic Galerkin approach
— Partitioning/adapting PC basis to improve scalability,
reduce memory burden
• Low-order spectral DG over random variable space
• Building PC basis within Voronoi cells

— Ordering of Cijk tensor, generating on-the-fly to eliminate
bandwidth limitations

— Improved pseudospectral assembly kernels
• Incorporating SPAM/Smolyak

— Commuted-layout preconditioning kernels

Sandia National Laboratories

References

• UQ for multicore architectures
— E. Phipps, H.C. Edwards, J. Hu, and J. Ostien, "Exploring emerging manycore

architectures for uncertainty quantification through embedded stochastic Galerkin
methods," IJCM, vol. 91, no. 4, 2013.

— E. Phipps, H.C. Edwards, J. Hu, "Exploring Heterogeneous Multicore Architectures
for Advanced Embedded Uncertainty Quantification," Sandia Technical Report,
SAND2014-17875, Sandia National Laboratories, 2014.

— E. Phipps, M. D'Elia, H.C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanaickam,
"Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures,"
to be submitted to ACM TOMS, 2015 (preprint available on request).

• Next-generation Trilinos packages
— H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish, "Manycore

performance-portability: Kokkos multidimensional array library," Scientific
Programming, vol. 20, 2012.

— C. G. Baker and M. A. Heroux, "Tpetra, and the use of generic programming in
scientific computing," Scientific Programming, vol. 20, 2012.

— H. C. Edwards, C. R. Trott, and D. Sunderland, "Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns," Journal of
Parallel and Distributed Computing, vol. 74, 2014.

— P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps, A.
Prokopenko, S. Rajamanickam, C. Siefert, and S. Kennon, "Towards extreme-scale
simulations with second-generation Trilinos," Parallel Processing Letters, 2014.

Sandia National Laboratories

Extra Slides

Sandia National Laboratories

Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

Find u(0 such that f(u,)= 0, : SZ —> F C RM, density p

• (Global) Polynomial Chaos approximation:

u(0 erdd =
P

i=0

i/Pi(e), ON'tP3) = 1Pi(y)1P3 (y)p(y)dy = 623 (1P,2)

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

ui = Op
1
i2 jr it(01Pi(y)P(y)dy e'ad

1 Q
wkukIPi(e), f(uk, Yk) =

(q) k=0

0

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions

Sandia National Laboratories

SG Method Performs Well Over Moderate Range
of Stochastic Problem Size

1.5

1.2

Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos

Sampling (n=32k, N=3, Sandy Bridge CPU)

3 5 7 9 11 13 15

Stochastic Dimension

1.6

0.4

0.0

Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos

Sampling (n=32k, M=5, N=3, Sandy Bridge CPU)

1.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Random Field Coefficient of Variation

2.0

0.5

0.0

Stochastic Galerkin PCG Solve Speed-Up
Over Non-intrusive Polynomial Chaos

Sampling (n=32k, M=5, Sandy Bridge CPU)

2 3 4

Polynomial Order

5

• Speed-up in time-to-solution of SG
method compared to non-intrusive
sampling
- Smolyak sparse-grids for building

PC basis
- Gaussian abscissas
- Comparable accuracy between SG

solution and NISP solution

• Increased floating-point throughput
(mat-vec, prec-vec) + reduced prec
applies (P/Q) offset by increased
FLOPs in mat-vec

Sandia National Laboratories

Stochastic Galerkin Assembly

25.0

c 20.0

0 15.0

t 10.0

5.0

0.0

Stochastic Galerkin Pseudospectral
Assembly Slow-Down Over Non-intrusive

Polynomial Chaos Sampling
(n=32k, N=3, Sandy Bridge CPU)

3 5 7 9 11 13 15

Stochastic Dimension

Sandia National Laboratories

Sandia's History

"Exceptional service in the national interest"

Me peit•J1C

was.. Iwo 1•Cd.

amar

I lacrced that the Steete Irmo Centlar.en Lraaat•

4.4t t•At tau Acta lelprea• l•teeateela• aenet ,m-Leaet

trn itr*:::ae or the :antis 1-aharateqr k A.euzaeraw, a,m tore..

at• Mintier, ride i. • vitla wow,. •Aemiv

y• ve •we lapcet•ea• mat or,cyr w 14. er

• +xi eY.C.1 Law •-••• ton p7,143./14 Le.7112.10fil dire*.

14.•

ber.thst after yec E.n bond env WALL frl• tlM

WANS..I.11 .1.11. el. la raelale

ta L• IA•Jtaba tele tidal. 3 ay ey•lalep WO OM in icacrtaatty

ee e.4.e .r.c. teevcred

I as aritLaa • stallear ra.• !Ina La Cr. C. I. texiclre,

Ilery stecoraly yurIc

ar. Wray 4 •Laleed
hemtema,
Unteleist T•lerh-••••• "/...tedee. CePeath.
105 Brelenay.
aq. Tule 7. Id • Y.

fill Sandia National Laboratories

Sandia "Who We Are" movie

Sandia National Laboratories

NIS
'gifts rr-

Albuquerque, ri

Kauai, Hawaii

w Mexico

,

Pantex, Texas

Sandia's Sites

Las Vegas, Nevada

IL/11Updll, IVCvdUd

Livern re, California

WIPP, New Mexico

Sandia National Laboratories

The Evolution of Our Mission

1960s
Development
engineering

1950s
Production

engineering and
manufacturing
engineering

% FUNDING

1910s
Multiprogram
laboratory

1980s
Research,

development and
production

1990s 200es
Post-Cold War Expanded national

transition security role

UM 'Lir -3' 1
•

0%

oft
What we do

(Some of)

Ea11 tbalo

iliew
Parallel Visualization iApplication

oft
Department 1441 Mission

In partnership with others, we strive to transform
computational simulation through the integration
of new optimization, UQ, and discretization
technologies into traditional engineering design
and analyses.

NI) Sandia National Laboratories

oft
',%/m rulpA. 1441 R&D Focus Areas

• Uncertainty Quantification & Sensitivity Analysis
— Methods for parameter and model UQ
— Numerical uncertainty/verification
— Reduced-order models/surrogates

• HPC Algorithms (Architecture Aware)
— Inverse methods
— Numerical PDE solution and multiphysics coupling
— Mathematical and numerical analysis

• HPC Applications
— v&v methodologies

• Optimization
— Design optimization
— Design of physical/computational experiments

Sandia National Laboratories

Annual Statistics

— 14 projects
— 4 workshops
— 102 additional visitors from 67 institutions
— 37 summer students
— 3 sabbaticals

73% of 1400' s math and computer science hires in 2005-
2007 had prior contact through CSRI collaborations

aim

