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Motivation and Approach

Common Tests

@

Dynamic Consideration

Shock Wave Propagate

Shear Wave Propagate

Plastic Wave Propagate

Mechanical Resonance in
Specimen, Machine
is important
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Tests with constant cross-
head velocity stress the
same throughout the length
of the specimen

l|opow

—

= Desire improved understanding of high strain rate 1} L epvmw————.
106=" - Explosives
. . e T -Gasgun
response (to € ~ 1e7 s1) and variability. 105 | 2 Pk
D ic High
104 1 ayorani
103 ==" Hopkinson bar
=  Evaluate the roles of phase, structure, composition. o 107
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For progress on predictive modeling, see presentations today by
107 | - Conventional test
machines
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Viscoplastic response of
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== Tests at SNL
== Tests at LANL

Chart is from Meyers’ Dynamic Behavior of Materials
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Additive Manufacturing Processes D=
used in this Study

=  Three forms of AM Material

P.vg = 3-8 kW, 2.0 kW, 500 W (first two use a 4 mm spot)

Focused laser beam

Powder feed
= Relevant rates (for those interested in processing)

P.g=500W : 15g/min, 15ipm, 0.5 mm/layer

Layer Thickness

P..g=2.0kW : 20 g/min, 20 ipm, 0.89 mm/layer Scan direction (x)
P.g = 3.8 kW : 23 g/min, 25 ipm, 1.25 mm/layer ——

=  Micromelt 304L powder (Carpenter Powder Products)

=  Parallel build processes and cross hatch



Additive Manufacturing Processes ®
used in this Study

=  Three forms of AM Material
Z = “build” direction
P,y = 3.8 kW, 2.0 kW, 500 W (first two use a 4 mm spot) equivalentto laser vector

= Relevant rates (for those interested in processing)

P.g=500W : 15g/min, 15ipm, 0.5 mm/layer

Pog=2.0kW : 20 g/min, 20 ipm, 0.89 mm/layer

P.g = 3.8 kW : 23 g/min, 25 ipm, 1.25 mm/layer .
Cross hatch —m  \\hiwWaaiahi,
process N\
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Schematic raster fill patterns

=  Micromelt 304L powder (Carpenter Powder Products)

Sample Geometry

=  Parallel build processes and cross hatch
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The composition of the AM material ®
changes slightly, suggests vaporization.
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Results are referenced directly to measured composition
of starting 50-100 um powder from Carpenter Powder Products.




Phase of AM Material has been characterize@=-

3000
Grain size estimate
for austenite: >100 nm
E Ferrite/martensite
% grain size:
O 53 +18nm
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Each form has approximately 1-2% ferrite (verified by Ferritescope)




Large area views of microstructure of @
AM SS304L (3.8 kW)

= Electron backscatter diffraction maps of electropolished surfaces.
=  Example shown was built with parallel scan approach.

= Density has been confirmed at 99.85% FTD (Archimedes). For a more detailed understanding
of this material’s crystallographic

texture (before, during and after
deformation) see presentation today by
Ben Reedlunn (Modeling Ill @ 10:45)




Large area views of microstructure of
AM SS304L (2.0 kW) —¢

= Electron backscatter diffraction maps ¢
of electropolished surface. —
| . '
=  Example shown to write was built with a
cross hatch approach. =
¢
= Density has been confirmed at 99.8% FTD _
—
(Archimedes method).
t
G

6 mm wide by 10 mm high




Preparation of Mechanical Test Samples @i

=  Side by side comparison with wrought SS304L
=  Compression and tension samples

=  ASTM geometries chosen, when possible

= Edges of AM bars avoided

= Test samples removed by wire EDM, then machined

=  Tests probe variability from within one bar

Altogether approx. 1000 mechanical tests are planned (with many completed) to research variability.




Quasi-static tests to failure show @
differences in high power AM vs. wrought.

AM, 2kw  AM, 3.8 kW
in x direction

700, in z direction

Wrought, edge of bar
m— = Wrought, AM material behaves much like laser
\ center of bar welded 304L SS (acknowledge Jeff
Rodelas, SNL, for conversations).
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500
Higher yield stress could be due to

) . . .
o \ - grain size differences X
O 400 \ - fine dispersion of ferrite
é " - small substructure (dendritic cells)
n - oxide dispersions
8 300| /
| -
-
N .
We are also evaluating the effects of
2001 residual stress by testing additional
samples after heat treating.
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Microstructure of Different Material Forms @&

Wrought AM, 3.8 kW AM, 2.0 kW

Transverse

Ferrite
stringers

: i 218 &7 4 1 it Y.
From this, we do not expect Hall-Petch strengthening based on grain size.
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Transverse

Ferrite
stringers




Small ferrite islands could also be i
responsible for strengthening.

=  Small ferrite
= Average spacing =5 um
= Unlike stringers in wrought

= [|nitial BCC phase:
1.2% for Wrought and 2.3% for
AM/ 3.8 kW steel (ferritescope)
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Grain substructure could contribute to @&

strengthening.

7/3/2012

Subgrains

Intragrain misorientation
implies higher
geometrically - necessary
density of dislocations.



Neutron Diffraction at LANL is being used @&
to quantify differences in dislocation density
and how these change during deformation.

Wrought 304L Compression

250
 Diffraction linewidth (FWHM) is
increased with greater dislocation 200 —
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observed FWHMSs.
0 1 1 1 1 1 200
0o 2 -4 6 -8 -0 -12 el
: . . . Macroscopic Strain (% —s—FWHM_111_2
«  With FWHM increasing during P (%) = 150 —=—FuH20 2 | |
deformation, can expect dislocation = ——FWHM_311 2
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Evidence of oxide dispersions by SEM.

* Oxides are indentified by SEM.

« Initial look shows larger avg.
spacing than ferrite in the AM
material.

« We speculate that it should have a
role but this role is diminished
compared with other microstructural
effects.




Differences in yield strength vary with ()
strain rate.

1000

1 500 s
= Hopkinson tests (compression and tension) at g 0]
high strain rate show that LENS high-laser- g 600 AM
power SS304L is stronger with wrought. i ~="Wrought, longitudinal
B | 7~ Wrought, transverse
® |ncrease in strength is reduced (compared to £
wrought) when tested at increasingly high oo
strain rates.
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Differences in yield strength vary with ()
strain rate.

600
¢ Tension, Wrought (Transverse)

¢ Compression, Wrought (Transverse
A Tension, Wrought (Longitudinal)

A Compression, Wrought (Longitud)

Yield Stress (MPa)
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High strain rate impact experiments have
been completed.

Utilizes Sandia’s DICE/Veloce laboratory (J. Wise) AM or Wrought
SS304L
* Reverse Ballistic Impact Tests o o
y . . rojectile
- LENS or wrought SS304L impacting LiF, Al,O;, PMMA
atv =80, 200, 350 m/s (up to 60 kbar) EMMA- NS AR
- uniaxial strain test
- determines Hugoniot stress-strain relationship Al,04

* Forward Ballistic Impact Tests

- Sapphire impacting LENS (x and y), wrought SS304L
- Speeds of 80, 200, 350 m/s (up to 60 kbar)
- Hugoniot elastic limit (HEL) determination

Projectile i
« Forward Ballistic: Spall Strength Tests

- Sapphire impacting LENS (x and y), wrought SS304L
- Speeds to be determined

AlLO,

Wrought
SS304L

AM x oriented face
SS304L

AM y oriented face
SS304L




Impact-Surface Motion. @

Shots SS304L-2G15 (0.200 km/s) and W'ﬂl@ &@ 198 kmis):
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Reverse Ballistic Tests: 0
Hugoniot Results for AM (3.8 kW) Stainless.
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Forward Ballistic Tests : Although variable, e
the Hugoniot Elastic Limit of AM material
exceeds that of wrought.

Shots SS304L-7G15 & 8G15: VISAR Data (Sapphire Window)
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Spall Tests: Spall strengths of AM steel 0
significantly exceed that of wrought.

Shots SS304L-10G15,11G15,12G15: Free-Surface VISAR Data
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Summary of Mechanical Test Results @

¢ Quasi-static testing (3.8 kW, 2.0 kW AM stainless steel 304L):

> Increased yield strength in AM compared to wrought.

¢ Dynamic testing (3.8 kW, 2.0 kW AM stainless steel 304L):
> Detectable, small differences in yield strength.

¢ Reverse-ballistic testing (3.8 kW AM stainless steel 304L):

> Hugoniot EOS data for Z-cut AM samples closely matches current and archival LANL
results for conventionally wrought 304L stainless steel.

o Forward-ballistic testing (3.8 kW AM stainless steel 304L):

> Hugoniot Elastic Limit (HEL) for X-cut and Z-cut AM material exhibits test-to-
test/sample-to-sample variability, ranging from ~0.5 to 1.2 GPa, compared to a value of
~0.4 to 0.5 GPa for the conventional material.

> Spall strength of X-cut (3.27 — 3.36 GPa) and Z-cut (3.71 — 3.91 GPa) AM material
significantly exceeds that of conventional material (2.63 — 2.88 GPa).



Reverse ballistic experiments (detailed). @

Projectile Triple-Sample Support Ring
Nosepiece (6061-T6 Al)
(GOBTTEAY Sapphire Window
______ /[ (19-mm thk x 24-mm dia)
Not Shown: LiF Window 1 | [ T0VISAR
(19-mm thk x 24-mm dia) I
—— — e — From Laser
—
[ ——ToVISAR
_____ PMMA Window
(25.4-mm thk x 24-mm dia)
304L Stainless Steel Impactor

(1.5-mm thk x 57-mm dia) “—— - Velocity/Tilt Pin

Section A-A

AM304L (Wise) 25




Forward ballistic experiments (detailed). @&

Projectile Triple-Sample Support Ring
Nosepiece (6061-T6 Al)
(6061-TE A Sapphire Window,
l 304L Wrought Sample
| : 3 places (19-mm thk x
(1.5-mm thk x 24-mm dia) | — == )
¥ 24-mm dia)
Not shown: //_____' To VISAR
304L LENS Sample, x-cut
(1.5-mm thk x 24-mm dia)
—— — 1 = From Laser
|
\>
304L LENS Sample, z-cut—"|L__ To¥leAR
M (1.5-mm thk x 24-mm dia)
L Sapphire Impactor \ o
(4.12-mm thk x 57-mm dia) —— - Velocity/Tilt Pin

Section A-A

AM304L (Wise) 26




Spall test configuration (detailed). @

Projectile Triple-Sample Support Ring
Nosepiece (6061-T6 Al)
(6061-T6 Al)

l 304L Wrought Sample

y (2.0-mm thk x 24-mm dia)| —===

—| Not shown: ’ To VISAR
304L LENS Sample, x-cut

(2.0-mm thk x 24-mm dia) 1’

-~ - From Laser
|| 304L LENS Sample, z-cut—"___ — To VISAR
1 P (2.0-mm thk x 24-mm dia)
Sapphire Impactor \ o
(2.45-mm thk x 57-mm dia) —— - Velocity/Tilt Pin
Section A-A

AM304L (Wise) 27




