
Codesign at Sandia: LULESH and MiniAero
J. Cook, H.C. Edwards, D. Dinge, M. Glass, S.D. Hammond, R. Hoekstra, P.T. Lin, M. Rajan, C.R. Trott and C.T. Vaughan

[sdhammo l crtrott] @sandia.gov

Waal& elifig

Application Performance Team

Center for Computing Research

Sandia National Laboratories, NM, USA
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-7327PE

EXECUTIVE SUMMARY

Introduction

■ In order to have high performance of production codes on future ATS systems we will
need to add on-node parallelism

■ Current options include using OpenMP directives or writing directly to native
programming models like CUDA, pthreads etc

■ But .. we also want a single code base to work across machines to decrease
development costs and make debugging, maintenance easier etc

■ For C++ codes there is the possibility of using language features to provide an
abstraction of parallel kernels which can be made to run on multiple hardware types
efficiently

■ Code teams want to understand want the tradeoff is between a directives based
solution and the proposed C++ language abstractions (tradeoff in performance,
portability and programmer productivity)

Work Performed in this Milestone (Part 1)

■ Spirit of the milestone is to take one mini-app from another lab and
demonstrate that this can be used with our local (SNL) programming model

Kokkos

■ We took the LULESH hydrodynamics mini-app from LLNL and
rewrote/optimized it using a variety of programming models including
directives, Kokkos and the LLNL developed RAJA

■ Sandia was able to utilize the ASC Adv. Arch. Testbeds to show performance on
multi-core, many-core and GPU architectures

■ Evaluation of programmer productivity in terms of changes required to basic
serial source code to add parallelism

Work Performed in this Milestone (Part 2)

■ We were also required to analyze one of our own locally developed mini-apps
in Kokkos for performance and portability

■ Sandia was again able to show efficient execution using the MiniAero Kokkos
implementation on multi-core, many-core and GPU architectures

■ There are two basic algorithms in MiniAero (atomics and alternatively,

gather/sum). Our analysis shows no clear winner, best performance

dependent on architecture

■ Implies we may not always be able to have a single algorithm in a single source to run
everywhere

■ Used MiniAero to perform basic analysis for what we might get on the Trinity
Phase-1 Haswell partition and some limited analysis of Phase-ll KNL
vectorization

ASC L2 Tri-Lab Codesign Milestone for 2015

Level: 2 Fiscal Year: FY15 DOE Area/Campaign: ASC

Completion Date: 9/30/15

ASC nWBS Subprogram: ATDM, CSSE, IC

Participating Sites: LLNL, LANL, SNL

Participating Programs/Campaigns: ASC

Description: This milestone is a tri-lab deliverable supporting the ongoing co-design
efforts in the program (IC & CSSE) as well as the new ATDM activities. In FY14, a
milestone evaluating the performance and underlying bottlenecks of key proxy
applications on advanced architecture test-beds or AT systems was completed. In
addition, each lab has been developing and exploring promising new parallel
programming models that will provide abstractions for performance portability
especially at the node level. This milestone focuses on building upon tho
through a combination of intemal performance improvements, de .
abstractions, and extemal codesign influence.

Each lab will choose one or more proxy applications and refactor them through the use
of new programming models & tools, algorithms, or DSLs, resulting in either
demonstrable speedup, improved portability through abstractions, or as a stretch goal -
both. If only one proxy application is chosen, two or more refactored versions will be
provided. Improvements will be demonstrated across at least 2 advanced architectures
(testbed or ATS). Performance improvements will be relative to proxy apps and related
metrics gathered in the FY14 milestone. Programming abstraction demonstrations will
use at least one proxy app developed at another laboratory (in collaboration and
agreement with that lab) in order to demonstrate broad applicability across variable
programming styles.

Successful and unsuccessful attempts will be reported as lessons leamed. The tri-
co-design project will work closely with the *Forward vendors to make availab
studied proxy apps and related data (e.g. traces or simulator results) for ve •

Completion Criteria: This milestone will be completed when:

1. At least two proxy apps (or at least two implementations of one proxy app) from each lab
have demonstrated performance improvements or improved portability across two advanced
architectures.

2. A report has been completed by the 3 labs detailing lessons learned - both successes
and failures, in regards to performance and/or portability improvements.

3. The milestone team has communicated appropriate information including source
code, metrics, trace data, and simulator analysis for use in vendor-focused research.

Customer: ASC Application Code Teams

Milestone Certification Method:

A program review is conducted and its results are documented.

Professional documentation, such as a report or a set of viewgraphs with a written summary, is
prepared as a record of milestone completion.

Each lab will choose one or more proxy applications

and refactor them through the use of new

programming models & tools, algorithms, or DSLs,

resulting in either demonstrable speedup, improved

portability through abstractions, or as a stretch goal

— both.

Completion Criteria: This milestone will be completed when:

• At least two proxy apps (or at least two implementations of

one proxy app) from each lab have demonstrated

performance improvements or improved portability across

two advanced architectures.

• A report has been completed by the 3 labs detailing lessons

learned - both successes and failures, in regards to

performance and/or portability improvements.

• The milestone team has communicated appropriate

information including source code, metrics, trace data, and

simulator analysis for use in vendor-focused research.

Path Forward

■ In FY16 we will be looking to use the lessons learned from FY15 to
begin supporting SIERRA code groups in preparation for Trinity

Phase-I and Phase-II

■ We will be providing best practices for the introduction of on-
node parallelism including OpenMP and Kokkos

■ We will be using the analysis and profiling technologies used from
the FY15 milestone to help provide insight into application
bottlenecks and areas of poor scalability

ASC L2 CODESIGN MILESTONE

REVIEW PRESENTATION

Overview of SNL

■ Part I: Performance, Portability and Productivity of C++

Abstractions for the LULESH mini-app

■ Overview of our porting activities

■ Comparison of performance on leading HPC architectures for OpenMP,

RAJA and LULESH

■ Evaluation of programmer effort required for OpenMP, RAJA and Kokkos

■ Part 11: Performance Analysis of MiniAero

■ Comparison of Scaling (MPI/OpenMP) for Haswell, BlueGene/Q, Knights

Corner and NVIDIA K80 GPUs

■ Initial expectations for codes on Trinity Phase-I and Phase-ll

■ Discussion

PORTING LULESH TO KOKKOS

[

Kokkos Programming Model

Parallel II

Execution/Dispatc

.

What
(For, Reduce, Scan)

Policies

How
(lterator)

ILpaces iii
Where

(Which Device)

go Views Al

Application Data

Management

Access

How
(Application Data) (Indexing/Atomics (Which Memory)

Streaming/Random)

li Spaces
Mk,

What Where

Separation and Abstraction of Concerns
Abstract Application Data and Computation

Kokkos Programming Model (Compute)

Parallel-For

Execution Pattern

Parallel
Execution/Dispatch

1
411

Patterns .
.1

What
(For, Reduce, Scan)

+

How
(lterator)

Where
(Which Device)

How are iterations

decomposed?

+ Run on ..

GPU? CPU? PIM?

Sensible defaults for many execution spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

Kokkos Programming Model (Data)

Index Mapping,

Containers

dmi
Application Data
Management

I View7111r Access 1.
How

(Application Data) (Indexing/Atomics (Which Memory)
Streaming/Random)

r Spaces

+

What Where

How should data be accessed?
Atomically? Streaming Stores?

Uncached loads?

+
Stored in..

HBM? DDR? NVM?

Sensible defaults for many memory spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

What Does Kokkos Run on Today?

Kokkos is running on every advanced
architecture test bed, prototype option on AMD systems

ASC Trinity Phase I — ATS1

0 Intel Xeon Haswell (Intel, GNU, LLVM)

ASC Trinity Phase II — ATS1

0 Intel Xeon Phi Knights Landing Emulator
(Intel)

ASC Sierra — ATS2

0 POWER8 (XL, GNU)

ED NVIDIA GPU (K20, K40, K80, NSDK-7.5)

ASC TLCC-2

0 Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

ASC Advanced Arch. Test Beds

0 AMD Kaveri APU (GNU-HSA)

0 ARM64 (GNU, LLVM)

0 Intel Xeon Phi Knights Corner (Intel)

0
= Kokkos Build Type in Release = Prototype/Research

Examining Porting Strategies for Code Teams

■ Very large proportion of ASC code at Sandia is MPI only
■ Implies a serial on-node model with limited thread safety applied

■ Starting point for this study is the serial version of LULESH

■ Taken from the OpenMP version but with all OpenMP pragmas, reductions

and specializations removed ("proxy" for "real" code)

■ Provide several implementations to evaluate metrics:
■ Kokkos: Minimal CPU, Minimal CPU with ref lambdas, Minimal GPU,

Optimized-V1, Optimized-V2, Optimized-V3

■ OpenMP: Original OpenMP from LLNL, Optimized OpenMP from SNL

■ RAJA: RAJA-Basic and RAJA-Index-Set

Non Kokkos-Variants

■ RAJA-Basic: code provided by Jeff Keasler and Rich Hornung from

LLNL, uses RAJA abstractions for parallel dispatch

■ RAJA-IndexSet: code provided by Jeff Keasler and Rich Hornung

from LLNL, uses RAJA abstractions for data iteration

■ OpenMP Original: NO-RAJA variant from LLNL

■ OpenMP Minimal: a stripped down version using basic parallel-

for schemes and atomic operations developed from serial using

Intel AdvisorXE and InspectorXE (akin to developer using tools)

■ OpenMP Optimized: Sandia optimized version which improves

vectorization and reduction performance

Optimized Kokkos Variants

■ Kokkos-Minimal-CPU: developed by a physicist with limited
experience writing threaded code (our experiment for code we
would get from many code groups)

■ Kokkos-Minimal-CPU-RL: basic port to Kokkos which utilizes
capture-by-reference lambdas to significantly decrease
programmer burden

■ Kokkos-Minimal-GPU: extension of Kokkos-Minimal-CPU to work
on the GPU (mainly data structure const changes)

■ Kokkos-Optimized-vl: eliminate buffer realloc; reduce register
pressure

■ Kokkos-Optimized-v2: use Kokkos Views with Layout and Traits,
Hierarchical Parallelism

■ Kokkos-Optimized-v3: kernel fusion

Swim Lanes for Code Teams

1 Serial

2015

OpenMP

I3UDA

Trinity
Phase!

*
OpenMP

Tri n ity
Phase!!

Kokkos Min. CPU X

Optimized OpenMP

Sierra

*

Kokkos Min. CPU

Crossroads

RAg

Kokkos Min. GPU

RAJA Optimized CPU-1

IC++20 Language
Specification

2016 2017 2018

1K-Opt 11

RAJA GPU/Optimized GPUI

2019 2020

*

2021

This is not an official Sandia position

Swim Lanes for Code Teams

1 Serial

2015

OpenMP

I3UDA

Trinity
Phase!

Trinity
Phase!!

kkos Min. CPU

RAJA

X

Optimized OpenMP

Kokkos Min. CPU

Sierra

Kokkos Min. GPU

RAJA Optimized CPU1

1K-Opt 2

Crossroads

- - - "11111

K-Opt 3

RAJA GPU/Optimized GPU

2016

Initial
Ports

"Day One"

IC++20 Language
Specification

2017 2018

Initial
Portable
Versions

*

2019 2020 2021

Optimized
Portable
Versions

►

►

ATDM/
Language
Standards?

smm

This is not an official Sandia position

Swim Lanes for Code Teams

1 Serial

2015

OpenMP

I3UDA

Trinity
Phase!

Kc

Trinity
Phase!!

kkos Min. CPU X

Optimized OpenMP

1Kokkos Min. CPU

RAJA

Sierra

Kokkos Min. GPU

RAJA Optimized CPU1

IC++20 Languag
Specification

2016 2017

1K-Opt 2 K-Opt 3

RAJA GPU/Optimized GPU

Crossroads

*

J

2018

Initial
Ports

"Day One"

Initial
Portable
Versions

Initial
Parallel
Dispatch

Parallel
Dispatch +

Initial Data Structures

2019 2020 2021

Optimized
Portable
Versions

Optimized
Dispatch + Data

Structures

ATDM/
Language
Standards?

Many Task?

This is not an official Sandia position 7

What are We Presenting?

■ In an ideal world we would have all code ported with minimal
cha nges

■ Very unlikely to happen for ASC codes, complicated, legacy algorithms,
years of engineering

■ So what can we hope for?
■ Progression of modifications to the code to get them ready for NGP

■ Initial ports require less modification to get code up and running but don't
give top performance

■ Slowly evolve code/data-structures to give better cross-platform
performance

■ Sandia ASC L2 results show what we might be able to expect in a
small case study using LULESH

■ We think there is a similar story for Kokkos and RAJA

Evaluating Performance Across Architectures

PERFORMANCE PORTABILITY OF

LULESH VERSIONS

ASC Arch. Test Bed Systems Used For Testing

■ Shepard Intel Haswell

■ Dual-socket, 16-cores/socket, 2 x 256-bit FP-FMA SIMD/core, SMT-2

■ 128GB RAM/socket

■ Intel 15.2.164 Compiler with OpenMPl 1.8.X

■ Compton Intel Sandy Bridge and Knights Corner

■ Dual-socket 8-cores/socket, 2x256-bit FP SIMD/core, SMT-2

■ 32GB RAM/socket

■ Intel 15.2.164 Compiler with OpenMPl 1.8.X (Sandy Bridge)

■ 57-core KNC-CO, 1.1GHz, 6GB/RAM

■ Intel 15.2.164 Compiler with Intel MPI 4.1.036 (KNC)

ASC Arch. Test Bed Systems Used For Testing

■ White POWER8

■ Dual-socket, Dual-NUMA/socket POWER8, 3.4GHz

■ 5-cores/NUMA = 10 cores/socket = 20 cores/node, SMT-8/core

■ 128GB RAM/NUMA = 512GB/node

■ GNU 4.9.2 with OpenMPl 1.8.X

■ IBM XL 13.1.2 with OpenMPl 1.8.X

■ Hammer APM ARM-64/v8

■ Single socket/node, 8-cores/node, 2.4GHz

■ 32GB RAM/socket

■ GNU 4.9.2 with OpenMPl 1.8.X

ASC Arch. Test Bed Systems Used For Testing

■ Shannon Intel Sandy Bridge + NVIDIA Kepler K40/80

■ Dual-socket, 8-cores/socket Sandy Bridge = 16 cores/node

■ 32GB RAM/socket

■ NVIDIA Kepler K40 per socket

■ NVIDIA CUDA 7.5 SDK

■ GNU 4.7.2 with OpenMPl 1.8.X (compiled with CUDA support)

Optimization Notice

■ Where possible we have selected architecture appropriate optimization flags
to improve performance

■ Kokkos — baked into the Kokkos Makefile system

■ RAJA — baked into RAJA Makefile system and RAJA header files for alignment,

vectorization width etc (header additions are annoying)

■ Results are the harmonic mean of LLNL-coded "Figure of Merit" (FOM) from a
minimum 10 runs, max, min etc are all recorded

■ Error bars are typically very small (1-3%) so are not included in plots for brevity

■ All configurations used optimized (per platform) MPI process pinning, thread
affinities and job configurations

■ Lots of research at Sandia using Mantevo over last four years to understand these issues

■ An on-going process but can give >2X performance difference

Performance Portability Metrics

Higher
is

Better

—

2

LULESH Figure of Merit Results (Problem 45)

• HSW ixi6 O HSW1x32 O P8 1x4o XL O KNC 1)(224 O ARM64 1x8 O NV K4o

10000

8000

6000

4000

2000 t

1 0 6

P?,, 'R _ ÷ ti,̀" <z)̀ <0 \/ ,1\ 1/ ',)<z--)c., ,c.)c.
4
 • •<\ - /6,•''' \c, C> (i \)/ Oq Oq oq6\ 6\ t \?, \\L_ \k• c

dc oq e o o C., \k-= \k" \k-=.(z, 4_ .k-- \k• 42 4.0 ,k_co

ed> '?' .R.-\?'
,ks

C\ •<1, \c\
ez oq)‹c\ e

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics

Higher
is

Better

LULESH Figure of Merit Results (Problem 60)

• HSW 1x16 0 HSW 1x32 0 P8 1x40 XL 0 KNC 1x224 0 ARM64 1x8 0 NV K40

ir IA n _,
.

,,i 4z 4z ,i,c, , ,RJ ,R\) .(z/ \,'• ,c1,1/ ,c2,
0 Ci \)' e 09 09•\`, ei(\ e,(N `b P * \L= C ,#0.* 09 09 „,,.. <zy- .60 .60 \Lf ,64:. - ,68V ,68V

R z6 i <Z
...o

<\, \((\
ez

•c• . e e09

14000

12000

10000

8000

6000

4000

2000

0i

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics

Higher
is

LULESH Figure of Merit Results (Problem 60)

• HSW 1x16 0 HSW 1x32 0 P8 1x40 XL 0 KNC 1x224 0 ARM64 1x8 0 NV K40

Better 14000

12000

10000
'7.7
N

II 1 1 II
...,

8000

,,
tr.

6000

4000

2000

Initial ports of code will give similar results to

OpenMP, +/- 10-15%. Seems to be down to different

optimization strategies in the compiler.

i
11

n i

\ <2 <2 •c`' 'c, J \) .(z./ \,', 11. 11,
\\'''' .(.*\ .R9). \c$' 8' 0 \)' 9 '9\ .4

&\% 09.ZI 0.9/ O's n* &L" C _'•()
i Po i ,0

Sc. c N6-- N6 \ \L f ‘ 60 N 66 ‘' .. N606 \' ..

z6 1o
•c` •<\, \((\

0.9e1 *cc\ e
09
'

•

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics

Higher
is

Better

LULESH Figure of Merit Results (Problem 60)

• HSW 1x16 0 HSW 1x32 0 P8 1x40 XL 0 KNC 1x224 0 ARM64 1x8 0 NV K40

14000

12000 Kokkos implementations deliver consistent

performance across all architectures
10000 1
8000

1

I
6000

-
I

4000
I

2000

0i w

I

I
l
•
i¡cl , 1

•
•

.,1 4z 4z `-' 4i,̀ .R\) .R\) .(z/ \•'' \:;'• ,c2''t. \`' 0 Ci \) 9 9 9ei.(\ e `b * \L= c PPP0- 09 09 ,,, ,60 N.$) , \._ _.
R e,6 i ''Z

P SL-
---8 •L - -cs * S) NO)

e .<\, \(''d'z' e ,\.c\09

,
/

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics

Higher
is

Better

LULESH Figure of Merit Results (Problem 60)

• HSW 1)(16 0 HSW 1)(32 0 P8 1)(40 XL 0 KNC 1)(224

14000

12000

10000
0
i;i- 8000

SMT on Haswell doesn't seem to improve performance,

generally good on POWER and KNC

0 ARM64 1x8 0 NV K4o

IIM -

4000 I- -

2000 1

I

I
1 1-

T

I
I

I

A
— I

1--

I

I t !

I

I
I
I
I m n 1 t

_

6000 i----% _ — — -. — — , 1— — ,

2 1 1- i
i

1 1

o l..1 II...! ...• l..11—l...1
 -

Pt• 4-> se, Q
• (., ,c. \) <0 ,(z.. -7 n, ,',P))

\

.A..<\ e,<\ 6' tq> \z-\ \k.C> \k'C' <z\)/ dCZ 0.4c e

° e O<Z 4° 4° \k_ -' ,_&L. 48k= 4,(;"
sz,> ''. <Z.3. <Z- ,k_o

e "I, • ,cc`
e o.)? 1

Results by Dennis Dinge, Christian Trott and Si Hammond

Thoughts and Experiences
It Sell do

• These problem sizes are small relative to some of the systems
• 0(100) - 0(200) MB in problem size
• POWER8 — very large memory, large caches (particularly L4)

• GPU — needs more parallelism

• We are trying to capture performance effects based on feedback
from LULESH developers
• But larger problems help our optimizations even more

• Not necessarily demonstrating the best potential FOM
performance
• Can get up to 2X these FOM figures from our implementations

Kernel Analysis for Kokkos Applications

■ Consistent profiling across architectures is hard
■ Vtune does not like to profile deep in OpenMP hierarchies which are

enclosed in headers

■ Nsight manages OK

■ Not clear that tools understand C++ abstraction layers

■ KokkosP Profiling Layer

■ Recent addition to Kokkos, option to always compile in

■ Tools dynamically loaded, can be stacked, lightweight

■ Expose calling structure of kernels and devices to profiler

■ Better context awareness of what execution is being requested

■ Still very early prototype but shows some promise

KokkosP Kernel Comparison of Kokkos Opt 1

Haswell 1x16 S-45 1=1000

■ CalcFBHourglassForceForElems

A

❑ CalcKinematicsForElems

■ _INTERNAL9 julesh_cc_bde2

d54a::CalcHourglassControl For

Elems(Domain&

❑ IntegratestressForElemsA

❑ EvalEOSForElemsA

❑ CalcMonotonicQGradientsForE

lems

❑ CalcMonotonicQRegionForEle

ms

❑ CalcFBHourglassForceForElems

B

■ EvalEOSForElemsB

POWER8 1x40 S=45 1=1000

■ CalcFBHourglassForceForElems

A

■ CalcHourglassControlForElems

(Domain&

❑ CalcKinematicsForElems

❑ IntegratestressForElemsA

❑ EvalEOSForElemsA

❑ EvalEOSForElemsB

❑ CalcMonotonicQGradientsForE

lems

■ CalcMonotonicQRegionForEle

ms

■ EvalEOSForElemsC

■ EvalEOSForElemsD

■ CalcPressureForElemsB

See similar breakdown across architectures but we can profile them all using one tool

Evaluating Effort to Develop Versions using

Performance Portable C++ Abstraction Layers

PROGRAMMER PRODUCTIVITY OF

LULESH VERSIONS

How do we calculate "productivity"?

■ With great difficulty — lots of discussion in the community about what
this really means

■ Our approach:

1. Remove all comments from the code

2. Utilize the clang-format LLVM tool with "Google" code option

3. Compare the number of sites using Apple's FileMerge tool

4. Compare the lines added/removed using diff —b —w <paths>

■ Not perfect and we have hand modified code of all versions to bring the
counts more into line (and to be fair wherever possible)

■ Point is to show approximate level of programmer effort not be
precisely quantitative because coding style largely down to individual

http://clang.11vm.org/docs/ClangFormathtml

Count of Sites at Which Changes are Made

Lower
is

Better 350

300

ft 250c
co
-c 200o

Sites at Which Changes are Made vs. MPI-Only LULESH

I

• Main Code 0 Header 0 Total

i
.c•

<2
Oc 09e) 609

e

,z. z

09
e.(\ \cc\• •.c• S

09'c

\ •R .cz
de 4\
.\-̀ 0

1
c,'''

e-,,tb.
'''

Q. *
st- ,6°.(z,--

1 1
\---,cisJ0<2

r
<2J <2' N ,,,I, ,2)

\v
(Ji

-C3 \LP ,60 (51Q''c \PQ,60 ,60
`6°

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are Made

Lower
is

Better 350

300

14 250
ro
-c 200k.)

0 150

0:1)+a 100

5o

o

Sites at Which Changes are Made vs. MPI-Only LULESH

0 Main Code 0 Header O Total

\ 'c2 <2 ,c, \) \) \, \ -1,e, <2 <2 <2.- ,: ,;'))d> < ,\\\ 4,. c' \c, C.> C., (1\)"\ v e,- <2)/ 0.4c (P (),
Os 0.(2 (5(26\ P)‘Z's 4.o\t- , k 9\ k \ k . '` , ...0\ k = * .8 k = * 3 t- =

<2 P- <2-
'' ct- ,k.$)

.<\ • cC\ • '1,, ... ecp ,v 0.c

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are Made

Lower
is

Better 350

300

ta 250

ro
-c 200

0 150

Sites at Which Changes are Made vs. MPI-Only LULESH

0 Main Code 0 Header O Total

Kokkos and RAJA variants are similar

100

5o

. ••

•

0 • .. ,•¡
 %

• .. /4
\ 'CZ _)c.. \) \) \, \ ,, '1,

'\'Z>
e,.c\ e,•c• ,b/b.

4-' v & __ t_C, \)' CP ,CP-- OKZ
r_e, Q .cZ .R.- ,c ,c?)

,C), >.- \Z- ,k— ,k--°' o o o)'' ,c\;, 6 N.L= •t--= \L-=
Q CP CP ‘Zs <Z- N.L=

'Z'' 6 S'.- ,k_s)
.c• • cc- \ -1,e'eizi i ,"e

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

Lower
is

Better

Li
ne

s
of

 C
o
d
e

800

700

600

500

400

300

200

100

0

-100

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added
• Main Code Delta
O Header Removed

O Main Code Removed
O Header Added
O Header Delta

\

_
—M

.(z
 1 1 tik—,

<2 ib. c.1,`' J J S'' ,c,'" ,(17 ,2)c,*(1 \, <2 Q(" \Ys• KN 'Rib.
Oc \k-' *

09'4 e, \L= \L= <2 \ip(i \ip9-
09z ‘,.- <,y,- .60 .60

4\ ,,,.\69 tz,6' St- ,6° $9 ,--9. ,--9.Q

(59
e \cc\. c. \cc.<1'

09'c

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

Lower
is

Better
800

700

6o o

-a
a)
500

4_‘") 400
o
a)
300

200

100

0

-100

oQ

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added
• Main Code Delta
O Header Removed

O Main Code Removed
O Header Added
O Header Delta

C++ Abstraction Layers have approximately similar

numbers of lines changed to the original OpenMP

code from LLNL

■
• _tc2 „\)

• K\ \c,¢, <2 ,c;1'
•c• e5" dcz eNk= Nk=e e \k= \k=4.0

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

Lower
is

Better
800

700

600

0

a)
-0 500

4_‘') 400
o
0 300
a)

n
c
200

100

0

-100

Source Code Lines Added/Removed and Total vs. MPI-Only

El Main Code Added
• Main Code Delta
El Header Removed

El Main Code Removed
El Header Added
III Header Delta

C++ Abstraction Layers have approximately similar

numbers of lines changed to the original OpenMP

code from LLNL

I-I

\0
o
.(

oq'2'
-

OQ'z' ,.>`?'
tz>.\ ,6. c-

-cc` 17-
• :‹ ,„cc

oci

ii
*. c c

\-\`
c,. `' ;\ .‹, K\ c)'" (Oc

,t•
 ,c'l' Ic?)
' e CjCZ

\kr \kr \kr
49

*p *..0

Naïve port to Kokkos uses slightly more changes than

Is needed by capture-by-reference lambdas

Results by Dennis Dinge, Christian Trott and Si Hammond

Programmer Development Time

■ Initial Kokkos-CPU port by Dennis took a few months

■ No threading/OpenMP/Kokkos experience for code development

■ Lots of correctness and performance issues came up

■ Initial experience with programmer tools and profilers

■ Kokkos optimized implementations

■ O(few weeks) of Christian's time ("Kokkos-expert")

■ OpenMP initial and optimized implementations

■ O(few days - week) of Si's time written on a plane

■ These are not significant amounts of FTE but the code is small in comparison to

production settings (but code groups are larger and better resourced)

■ Difficult (impossible?) to do a deep quantitative comparison

What can we take away?

■ C++ abstraction layers are using similar numbers of changes in
code (both code sites and SLOC-delta) to directives

■ Perhaps to be expected given implementation strategy is similar
in unoptimized variants of the code

■ This is a good thing for developers — hard work is in developing the parallel
algorithm, not in how it is expressed in source code

■ Looking at changing roughly 15% of the code to get initial parallel
versions in this example

■ Warning: example is friendly to parallelism because of its heritage

■ Do we need directives in application code at all?

ANALYSIS OF MINIAERO

MiniAero Overview

■ Originally written by Ken Franko (now at Google)
■ Added to Mantevo suite in 2014

■ Designed for exploration of Kokkos programming model
■ Not to be used as a proxy for production algorithms

■ Did not have an "original" OpenMP or serial implementation

■ Different options for threaded algorithm to aggregate values onto
the mesh

■ Use of atomics operations

■ Use of gather/sum

MiniAero Scaling Analysis on Trinity Test Machin sae

Lower
is

Better

R
u
n
t
i
m
e
 (
S
e
c
o
n
d
s
)

Strong Scaling MiniAero Results for Mutrino

OpenMP-1 OpenMP-2 -A-OpenMP-4 OpenMP-8 OpenMP-16

10000

1000

100

10

1

32

Approximately 10% performance
difference by switching from MPI to
OpenMP (not all kernels are fully

parallelized)

128 512

Processor Cores Utilized

2048

Results by Jeanine Cook and Courtenay Vaughan

MiniAero Scaling Analysis on Trinity Test Machina.

Flatter
is

Better

Weak Scaling MiniAero Results for Mutrino

OpenMP-1 OpenMP-2 —A—OpenMP-4 OpenMP-8 OpenMP-16

3000

2500 , - - .
0
- D
c0 2000
o
a)
vi
•-., 1500
a)
E
'47, 1000cm
cc

500

o

3 2

Approximately 20% performance

difference by switching from MPI to

OpenMP (not all kernels are fully

parallelized)

128 512

Processor Cores Utilized

2 0 4 8

Results by Jeanine Cook and Courtenay Vaughan

MiniAero Scaling Analysis on BlueGene/Q

Flatter
is

Better

500

450
400

0 c 35o
300

`L-= 250
E 200
47,c 150

cc 100

50

0

Weak Scaling MiniAero Results for BlueGene/Q

MPI-Only Atomics MPI Only Gather Sum

—A—MPI + OMP-64 Atomics MPI + OMP64 Gather Sum

Sandia
National
laboratories

Poor atomics performance on BG/Q (not optimized in

Kokkos). MPI only up to 20% faster than threaded

1 4 16 64 256 1024 4096

BG/Q Nodes Utilized MPI = Nodes * 64 ranks, MPI +

OpenMP Ranks = Nodes

Results by Paul Lin

MiniAero Scaling on GPU Clusters

Flatter
is

Better

160

140

73 120

0
u 100

8o
cu
E 6o
47,

40

20

o

Weak Scaling MiniAero Results for K8o GPU Cluster

Atomics ,-Gather Sum

1

Santia
Natkinal
laboratories

Good atomics performance on GPUs

means we don't see the same results

at BG/Q.

2 4

GPU Cards Utilized

8

Results by Paul Lin

MiniAero Scaling on KNC Clusters

Flatter
is

Better

700

600
0
-c3
o
c 500
0
vio 400

(I) 300
E
47,
c 200
m
cC

100

0

Weak Scaling MiniAero Results for Compton KNC Cluster

Atomics Gather Sum

1 2

224 OpenMP threads per card (= 1 MPI rank)

Closer performance with atomics and

gather-sum on KNC. Poor scaling is

due to very slow intercard MPI

4 8

KNC Cards Utilized

16 32

Results by Paul Lin

Emulation and Instruction Analysis for KNL
In

st
ru

ct
io

ns
 E
xe
cu
te
d

100%

80%

60%

40%

0%

Instruction Breakdown by Vector Width for MiniAero

O Scalar 0 AVX128 0 AVX256 0 AVX512

1

_A
SNB

1

HSW KNL

• Covers all instructions executed (dynamic stream) including move
operations and register clears

MiniAero Summary

■ Question as to whether exactly the same algorithm will run on all
architectures well — atomics vs. gather-scatter

■ Open question which requires further research

■ May not be able to find a single source which always runs truly well
everywhere

■ Is not intrinsic to Kokkos, the same issue is true for OpenMP, RAJA etc

■ Continues to reinforce why we need codesign and research into our code
performance

■ Clearly still need to look at poor vectorization levels for Trinity machines

CONCLUSIONS AND DISCUSSION

Summary

■ Showed performance and portability of two Kokkos mini-app

implementations across ASC Advanced Architecture Test Beds

■ Strong performance across architectures for LULESH

■ Often as strong or stronger than equivalent OpenMP code

■ Initial expectations for use of Haswell, POWER and GPU systems

■ Knights Landing still remains an unknown due to significant changes over

Knights Corner cards

■ Evaluated programmer productivity for LULESH

■ C++ abstraction layers are approximately equivalent to well optimized

OpenMP code in sites of code change and number of source lines

Feedback to Vendors/Community

■ Kokkos is now on github.com (fully open source and free for everyone)

■ Full public release of the most up to date development branches

■ Strong engagement with NVIDIA, AMD and IBM, initial engagement with Intel

■ Feedback to IBM and Cray on compiler issues, during this L2 both now compile miniapps
successfully

■ Now has initial support for Knights Landing compile path

■ Implementations using Kokkos will be available for the community in Mantevo
release for SC15

■ Poster submitted to SC15 covering OpenMP and Kokkos studies (no RAJA)

■ Clearly still a need in some areas for better optimization support in compilers

■ See very varied inlining, optimization, vectorization etc. More time and more focus by
the labs will help

■ Committed to C++ abstraction layer support in development of ATS3 RFP

Productivity

■ Productivity in Kokkos in some ways has always been behind portability and

performance

■ We needed to learn the best approach before we could work out how to enhance
programmer productivity

■ Have learned a lot through discussions with RAJA team on why this is important and

through our own application work on LAMMPS, Trilinos, Albany, SIERRA etc

■ Have a much stronger story in productivity on the parallel execution/dispatch

■ This codesign study has helped inform us further

■ Kokkos has strong story for data management

■ Initial work on efficient parallel STL-like containers

■ Our experience is 90% of the work is in making the algorithm parallel and optimizing

the data structures not in the specific way its written

Kokkos in the Community

■ Published a Kokkos Programming Guide in 2015

■ Based on lots of feedback from community

■ Covers general concepts and themes of Kokkos

■ Kokkos Training Material

■ 200 tutorial slide deck

■ Multiple examples with varying levels of complexity

■ Kokkos Tutorial at Sandia in September

■ Over 80 registered attendees

■ Will work on multi-core, many-core and GPU Sandia test beds

■ Tutorial at ACM/IEEE Supercomputing in November 2015

Acknowledgments

■ Application Performance Team at Sandia
■ Dave Resnick, Jim Thomkins, Sue Phelps

■ ASC Advanced Architecture Test Beds at Sandia
■ Project Management and System Administration Team

■ Jim Brandt, Ann Gentile, Victor Kuhns, Nate Gauntt, Jason Repik, T.J. Lee, Jim Laros, Sue Kelly

■ SIERRA Code Teams for inputs (-SM, -SD and -TF)
■ Mike Glass, Mike Tupek, Kendall Pierson, Nate Crane, Mark Mereweather, Travis Fisher &

many others

■ Kokkos Development Team
■ Carter Edwards, Mark Hoemmen, Dan Sunderland, Irina Dimenshenko & others

■ ASC L2 Review Committee

■ Jeff Keasler, Ian Karlin and Rich Hornung (LLNL) for inputs on RAJA, LULESH and
general programming model discussion

■ We have learned a great deal from you folks

BACKUP SLIDES

MiniAero Thread Scaling on Cray XC30

-1 Node
Lower

is
Better 7000

6000
77)
-o
c 5000
ou
(3)" 4000

':' 3000
1= IL__
c> 2000
ocn
1000

0

1

Thread Scaling per MPI Rank on Volta XC30

2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

See better performance from threads as we strong scale out to
more nodes (smaller problem per node)

2 4

Cores per MPI Rank

-41.............

8 16

Results by Jeanine Cook and Courtenay Vaughan

