SAND2015- 7327PE

J. Cook, H.C. Edwards, D. Dinge, M. Glass, S.D. Hammond, R. Hoekstra, P.T. Lin, M. Rajan, C.R. Trott and C.T. Vaughan
[sdhammo | crtrott] @sandia.gov

Application Performance Team
Center for Computing Research

Sandia National Laboratories, NM, USA
. DERRTEINT OF
Om m Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

@
e

EXECUTIVE SUMMARY

Introduction ()

In order to have high performance of production codes on future ATS systems we will
need to add on-node parallelism

= Current options include using OpenMP directives or writing directly to native
programming models like CUDA, pthreads etc

= But.. we also want a single code base to work across machines to decrease
development costs and make debugging, maintenance easier etc

= For C++ codes there is the possibility of using language features to provide an
abstraction of parallel kernels which can be made to run on multiple hardware types
efficiently

= Code teams want to understand want the tradeoff is between a directives based
solution and the proposed C++ language abstractions (tradeoff in performance,
portability and programmer productivity)

Work Performed in this Milestone (Part 1) B

= Spirit of the milestone is to take one mini-app from another lab and
demonstrate that this can be used with our local (SNL) programming model
Kokkos

= We took the LULESH hydrodynamics mini-app from LLNL and
rewrote/optimized it using a variety of programming models including
directives, Kokkos and the LLNL developed RAJA

= Sandia was able to utilize the ASC Adv. Arch. Testbeds to show performance on
multi-core, many-core and GPU architectures

= Evaluation of programmer productivity in terms of changes required to basic
serial source code to add parallelism

Work Performed in this Milestone (Part 2) B

= We were also required to analyze one of our own locally developed mini-apps
in Kokkos for performance and portability

= Sandia was again able to show efficient execution using the MiniAero Kokkos
implementation on multi-core, many-core and GPU architectures

= There are two basic algorithms in MiniAero (atomics and alternatively,
gather/sum). Our analysis shows no clear winner, best performance
dependent on architecture

= Implies we may not always be able to have a single algorithm in a single source to run
everywhere

= Used MiniAero to perform basic analysis for what we might get on the Trinity
Phase-I Haswell partition and some limited analysis of Phase-Il KNL
vectorization

ASC L2 Tri-Lab Codesign Milestone for 2015 =

Level: 2 | Fiscal Year: FY15 | DOE Area/Campaign: ASC

Completion Date: 9/30/15]]]

ASC nWBS Subprogram: ATDM, CSSE, IC Each lab will choose one or more proxy applications
Participating Sites: LLNL, LANL, SNL and refactor them through the use of new

SARGCIPACINg EHgPNC CATpA gny S programming models & tools, algorithms, or DSLs,
Description: This milestone is a tri-lab deliverable supporting the ongoing co-design

efforts in the program (IC & CSSE) as well as the new ATDM activities. In FY 14, a reSUltlng in either demonstrable SpEEdup, Improved
milestone evaluating the performance and underlying bottlenecks of key proxy - o

applications on advanced architecture test-beds or AT systems was completed. In portabI/Ity through abStraCtlonS, orasa StretCh goal

addition, each lab has been developing and exploring promising new parallel

programming models that will provide abstractions for performance portability,
especially at the node level. This milestone focuses on building upon thos
through a combination of internal performance improvements, deg
abstractions, and external codesign influence.

/‘ — both.

Each lab will choose one or more proxy applications and refactor them through the use
of new programming models & tools, algorithms, or DSLs, resulting in either
demonstrable speedup, improved portability through abstractions, or as a stretch goal -
both. If only one proxy application is chosen, two or more refactored versions will be

provided. Improvements will be demonstrated across at least 2 advanced architectures . . a
(testbed or ATS). Performance improvements will be relative to proxy apps and related completlon crlterla J Th IS mi IEStone Wi ” be com p|Eted When .
metrics gathered in the FY 14 milestone. Programming abstraction demonstrations will > 0

use at least one proxy app developed at another laboratory (in collaboration and ¢ At leaSt two prOXy apps (OI’ at /eaSt two Implementatlons Of
agreement with that lab) in order to demonstrate broad applicability across variable one prOXy app) from eaCh Iab have demonstrated

programming styles.

Successful and unsuccessful attempts will be reported as lessons learned. The tri-
co-design project will work closely with the *Forward vendors to make availab,
studied proxy apps and related data (e.g. traces or simulator results) for vel

performance improvements or improved portability across
two advanced architectures.

Completion Criteria: This milestone will be completed when: % ° A report has been Comp/eted by the 3 Iabs detailing Iessons

1. At least two proxy apps (or at least two implementations of one proxy app) from each lab

have demonstrated performance improvements or improved portability across two advanced Iearned = bOl’h successes Clnd fCII/UI’eS, In f'egal‘ds tO
architectures. oy .
2. A report has been completed by the 3 labs detailing lessons learned - both successes performance an d/Or Portabl/lty Impro vements.
and failures, in regards to performance and/or portability improvements. § : :
3. The milestone team has communicated appropriate information including source * The ml/eStone team has Communlcated approprlate
code, metrics, trace data, and simulator analysis for use in vendor-focused research. information including source COde metriCS trace data and
7 7 7

Cust - ASC Application Code Te: . . o
oo o nsniiiidl i simulator analysis for use in vendor-focused research.

Milestone Certification Method:

A program review is conducted and its results are documented.

Professional documentation, such as a report or a set of viewgraphs with a written summary, is
prepared as a record of milestone completion.

Path Forward ()

= |n FY16 we will be looking to use the lessons learned from FY15 to
begin supporting SIERRA code groups in preparation for Trinity
Phase-l and Phase-II

= We will be providing best practices for the introduction of on-
node parallelism including OpenMP and Kokkos

= We will be using the analysis and profiling technologies used from
the FY15 milestone to help provide insight into application
bottlenecks and areas of poor scalability

=
L

ASC L2 CODESIGN MILESTONE
REVIEW PRESENTATION

Overview of SNL ()

= Part I: Performance, Portability and Productivity of C++
Abstractions for the LULESH mini-app
= Qverview of our porting activities

= Comparison of performance on leading HPC architectures for OpenMP,
RAJA and LULESH

= Evaluation of programmer effort required for OpenMP, RAJA and Kokkos

= Part Il: Performance Analysis of MiniAero

= Comparison of Scaling (MP1/OpenMP) for Haswell, BlueGene/Q, Knights
Corner and NVIDIA K80 GPUs

= |nitial expectations for codes on Trinity Phase-l and Phase-l|

= Discussion

PORTING LULESH TO KOKKOS

Kokkos Programming Model

74 N

Parallel Application Data

Execution/Dispatch

¢ § N ¢ | “

What How Where What How Where
(For, Reduce, Scan) (Iterator) (Which Device) (Application Data) (Indexing/Atomics (Which Memory)
Streaming/Random)

Management

Separation and Abstraction of Concerns
Abstract Application Data and Computation

Kokkos Programming Model (Compute) s
EIENE]
Execution/Dispatch
What How Where
(For, Reduce, Scan) (Iterator) (Which Device) ‘
Parallel-For N T N Run on ..
Execution Pattern GPU? CPU? PIM?
decomposed?

Sensible defaults for many execution spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

kk i del DE
Kokkos Programming Model (Data) =
Application Data
Management
What How Where
(Application Data) (Indexing/Atomics (Which Memory)
Streaming/Random) '
Index Mapping,| . | How should data be accessed? | Stored in..
Containers Atomically? Streaming Stores? HBM? DDR? NVM?
Uncached loads?

Sensible defaults for many memory spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

What Does Kokkos Run on Today?

Kokkos is running on every advanced
architecture test bed, prototype option on AMD systems

ASC Trinity Phase | — ATS1 ASC TLCC-2
0 Intel Xeon Haswell (Intel, GNU, LLVM) Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

ASC Trinity Phase Il - ATS1

Intel Xeon Phi Knights Landing Emulator ASC Advanced Arch. Test Beds
(Intel)

0 AMD Kaveri APU (GNU-HSA)

ASC Sierra — ATS2

0 ARM64 (GNU, LLVM)

° POWERS (XL, GNU) 0 Intel Xeon Phi Knights Corner (Intel)

o NVIDIA GPU (K20, K40, K80, NSDK-7.5)

0 = Kokkos Build Type in Release o = Prototype/Research

Examining Porting Strategies for Code Teams =

= Very large proportion of ASC code at Sandia is MPI only
= |mplies a serial on-node model with limited thread safety applied

= Starting point for this study is the serial version of LULESH

= Taken from the OpenMP version but with all OpenMP pragmas, reductions
and specializations removed (“proxy” for “real” code)

= Provide several implementations to evaluate metrics:
= Kokkos: Minimal CPU, Minimal CPU with ref lambdas, Minimal GPU,
Optimized-V1, Optimized-V2, Optimized-V3
= OpenMP: Original OpenMP from LLNL, Optimized OpenMP from SNL
= RAJA: RAJA-Basic and RAJA-Index-Set

Non Kokkos-Variants ()

= RAJA-Basic: code provided by Jeff Keasler and Rich Hornung from
LLNL, uses RAJA abstractions for parallel dispatch

= RAJA-IndexSet: code provided by Jeff Keasler and Rich Hornung
from LLNL, uses RAJA abstractions for data iteration

= OpenMP Original: NO-RAJA variant from LLNL

= OpenMP Minimal: a stripped down version using basic parallel-
for schemes and atomic operations developed from serial using
Intel AdvisorXE and InspectorXE (akin to developer using tools)

= OpenMP Optimized: Sandia optimized version which improves
vectorization and reduction performance

Optimized Kokkos Variants ()

= Kokkos-Minimal-CPU: developed by a physicist with limited
experience writing threaded code (our experiment for code we
would get from many code groups)

= Kokkos-Minimal-CPU-RL: basic port to Kokkos which utilizes
capture-by-reference lambdas to significantly decrease
programmer burden

= Kokkos-Minimal-GPU: extension of Kokkos-Minimal-CPU to work
on the GPU (mainly data structure const changes)

= Kokkos-Optimized-v1: eliminate buffer realloc; reduce register
pressure

= Kokkos-Optimized-v2: use Kokkos Views with Layout and Traits,
Hierarchical Parallelism

= Kokkos-Optimized-v3: kernel fusion

Swim Lanes for Code Teams (D

Trinity Trinity Sierra Cros q
Phasel Phase ll sroads

SaAI08lIg

Serial E
I=>

uonoensqy ++9

2016 2017 2018 2019 2020 2021

C++20 Language
Specification

| This is not an official Sandia position

Swim Lanes for Code Teams i

Trinity Trinity Sierra Crossroads
Phase | Phase Il

SaAI08lIg

. Serial
|=>—

uonoensqy ++9

o
0 i
1

2016 2017

2019
Initial Initial Optimized ATDM/
Ports Portable Portable Language
Versions Standards?

“Day One” Versions

C++20 Language
Specification

| This is not an official Sandia position

Swim Lanes for Code Teams (D

Trinity Trinity Sierra Crossroads
Phase | Phase Il

SaAI08lIg

. Serial
|=>—

'

!) i >

' L — e e i

' ' p
- N

I \ 0 iy - —e— e ——_———

— P - S >
0

uonoensqy ++9

2015 2016 2017 2019 2021
: Initial Initial Optimized ATDM/
[OpenwiP]
: Ports Portable Portable Language
.CUDA| | “Day One” Versions Versions Standards?
e T Parallel Optimized Many Task?
Parallel Dispatch + Dispatch + Data
Dispatch 1l Initial Data Structures Structures
=

This is not an offic-ial Sandia position

What are We Presenting? =

= |n an ideal world we would have all code ported with minimal

changes

= Very unlikely to happen for ASC codes, complicated, legacy algorithms,
years of engineering

= So what can we hope for?
= Progression of modifications to the code to get them ready for NGP

= |nitial ports require less modification to get code up and running but don’t
give top performance

= Slowly evolve code/data-structures to give better cross-platform
performance

= Sandia ASC L2 results show what we might be able to expect in a
small case study using LULESH
= We think there is a similar story for Kokkos and RAJA

Evaluating Performance Across Architectures

PERFORMANCE PORTABILITY OF
LULESH VERSIONS

ASC Arch. Test Bed Systems Used For Testing @&

= Shepard Intel Haswell
= Dual-socket, 16-cores/socket, 2 x 256-bit FP-FMA SIMD/core, SMT-2
= 128GB RAM/socket
= Intel 15.2.164 Compiler with OpenMPI 1.8.X

= Compton Intel Sandy Bridge and Knights Corner
= Dual-socket 8-cores/socket, 2x256-bit FP SIMD/core, SMT-2
= 32GB RAM/socket
* |ntel 15.2.164 Compiler with OpenMPI 1.8.X (Sandy Bridge)
= 57-core KNC-CO, 1.1GHz, 6GB/RAM
= Intel 15.2.164 Compiler with Intel MPI 4.1.036 (KNC)

ASC Arch. Test Bed Systems Used For Testing @&

= White POWERS
= Dual-socket, Dual-NUMA/socket POWERS, 3.4GHz
= 5-cores/NUMA = 10 cores/socket = 20 cores/node, SMT-8/core
= 128GB RAM/NUMA =512GB/node
= GNU 4.9.2 with OpenMPI 1.8.X
= |BM XL 13.1.2 with OpenMPI 1.8.X

= Hammer APM ARM-64/v8
= Single socket/node, 8-cores/node, 2.4GHz
= 32GB RAM/socket
= GNU 4.9.2 with OpenMPI 1.8.X

ASC Arch. Test Bed Systems Used For Testing @&

= Shannon Intel Sandy Bridge + NVIDIA Kepler K40/80
= Dual-socket, 8-cores/socket Sandy Bridge = 16 cores/node
= 32GB RAM/socket
= NVIDIA Kepler K40 per socket
= NVIDIA CUDA 7.5 SDK
= GNU 4.7.2 with OpenMPI 1.8.X (compiled with CUDA support)

Optimization Notice ()

= Where possible we have selected architecture appropriate optimization flags
to improve performance
= Kokkos — baked into the Kokkos Makefile system

= RAJA - baked into RAJA Makefile system and RAJA header files for alignment,
vectorization width etc (header additions are annoying)

= Results are the harmonic mean of LLNL-coded “Figure of Merit” (FOM) from a
minimum 10 runs, max, min etc are all recorded

= Error bars are typically very small (1-3%) so are not included in plots for brevity

= All configurations used optimized (per platform) MPI process pinning, thread
affinities and job configurations
= Lots of research at Sandia using Mantevo over last four years to understand these issues
= An on-going process but can give >2X performance difference

Performance Portability Metrics il

LULESH Figure of Merit Results (Problem 45)
higer M HSW1x16 O HSW 1x32 @ P8 1x40 XL EMKNC1x224 OARM64 1x8 BNV K40

is
Better

10000

Performance Portability Metrics il

LULESH Figure of Merit Results (Problem 60)
Hgner M HSW 1x16 T HSW 1x32 mP8 1x40 XL M KNC 1x224 O ARMG64 1x8 B NV K40

IS

Better 1 4000
12000
10000
8000
6000
4000
2000

FOM (Z/s)

Performance Portability Metrics @

LULESH Figure of Merit Results (Problem 60)
Hgner M HSW 1x16 T HSW 1x32 mP8 1x40 XL M KNC 1x224 O ARMG64 1x8 B NV K40

IS

Better 14000

12000 - Initial ports of code will give similar results to
OpenMP, +/- 10-15%. Seems to be down to different
10000 - optimization strategies in the compiler.
8000

6000 = B
4000
2000

FOM (Z/s)

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics @

Higher
is
Better

FOM (Z/s)

14000
12000
10000
8000
6000
4000
2000

LULESH Figure of Merit Results (Problem 60)
W HSW 1x16 mHSW 1x32 EP8 1x40 XL W KNC 1x224 O ARM64 1x8 B NV K40

Kokkos implementations deliver consistent A
performance across all architectures :
1 |
I a :
|
- | I
o i |
1 - |
1 |
|
: i
L ' l
T II\ T l—l T]
& & & g & & §F & &
< Q N O @)

Results by Dennis Dinge, Christian Trott and Si Hammond

Performance Portability Metrics @

LULESH Figure of Merit Results (Problem 60)
B HSW1x16 O HSW 1x32 E P8 1x40 XL B KNC1x224 O ARM64 1x8 HE NV K40

Higher
is
Better

14000

SMT on Haswell doesn’t seem to improve performance,

12000
generally good on POWER and KNC

10000 -
8000
6000
4000

FOM (Z/s)

o= = ity

2000

o
_I-

Results by Dennis Dinge, Christian Trott and Si Hammond

Thoughts and Experiences () e,

= These problem sizes are small relative to some of the systems
= (O(100) — O(200) MB in problem size
= POWERS8 — very large memory, large caches (particularly L4)
= GPU - needs more parallelism

= We are trying to capture performance effects based on feedback
from LULESH developers

= But larger problems help our optimizations even more

= Not necessarily demonstrating the best potential FOM
performance

= Can get up to 2X these FOM figures from our implementations

Kernel Analysis for Kokkos Applications B

= Consistent profiling across architectures is hard

= Vtune does not like to profile deep in OpenMP hierarchies which are
enclosed in headers

= Nsight manages OK
= Not clear that tools understand C++ abstraction layers

= KokkosP Profiling Layer
= Recent addition to Kokkos, option to always compile in
= Tools dynamically loaded, can be stacked, lightweight
= Expose calling structure of kernels and devices to profiler
= Better context awareness of what execution is being requested
= Still very early prototype but shows some promise

KokkosP Kernel Comparison

Haswell 1x16 S=45 1=1000

B CalcFBHourglassForceForElems
A

O CalcKinematicsForElems

B _INTERNAL_9_lulesh_cc_bde2
d54a::CalcHourglassControlFor
Elems(Domain&

DO IntegrateStressForElemsA

O EvalEOSForElemsA

O CalcMonotonicQGradientsForE
lems

@ CalcMonotonicQRegionForEle
ms

@ CalcFBHourglassForceForElems
B

W EvalEOSForElemsB

of Kokkos Opt 1 =

POWERS 1x40 $=45 1=1000

B CalcFBHourglassForceForElems
A

B CalcHourglassControlForElems
(Domain&

O CalcKinematicsForElems

DO IntegrateStressForElemsA

O EvalEOSForElemsA

O EvalEOSForElemsB

@ CalcMonotonicQGradientsForE

lems

@ CalcMonotonicQRegionForEle
ms

W EvalEOSForElemsC

W EvalEOSForElemsD

[CalcPressureForElemsB

See similar breakdown across architectures but we can profile them all using one tool

Evaluating Effort to Develop Versions using
Performance Portable C++ Abstraction Layers

PROGRAMMER PRODUCTIVITY OF
LULESH VERSIONS

How do we calculate “productivity”? D=

= With great difficulty — lots of discussion in the community about what
this really means

= Qur approach:
1. Remove all comments from the code
2. Utilize the clang-format LLVM tool with “Google” code option
3. Compare the number of sites using Apple’s FileMerge tool
4. Compare the lines added/removed using diff -b —w <paths>

= Not perfect and we have hand modified code of all versions to bring the
counts more into line (and to be fair wherever possible)

= Point is to show approximate level of programmer effort not be
precisely quantitative because coding style largely down to individual

http://clang.llvm.org/docs/ClangFormat.html
-

Count of Sites at Which Changes are Made =

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower W Main Code @ Header 0OTotal

IS

Better 350
300 s

g
N
U1
o

|

|
|

T

T

T

I

200 i I-
150 3

Sites of Change

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are Made BE

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower 0 Main Code O Header B Total
is

Better 350

w
(®)
o

|
|
|

N

Ul

o
|

N
o
o
|
|
|
I

Sites of Change
O
o

Count of Sites at Which Changes are Made b=

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower 0 Main Code O Header B Total
is

Better 350 ‘

300 Kokkos and RAJA variants are similar

N N

o wui

o (@]
| |

150 -

Sites of Change

100 __

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes () =

Source Code Lines Added/Removed and Total vs. MPI-Only

B Main Code Added B Main Code Removed
Lower B Main Code Delta O Header Added
Be'tster 800 0 Header Removed I Header Delta

Lines of Code

Source Code Line Changes

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added O Main Code Removed
Lower B Main Code Delta O Header Added
Ben 800 O Header Removed @ Header Delta
etter
/00)) - _
C++ Abstraction Layers have approximately similar _
600 | numbers of lines changed to the original OpenMP .
f o
_g 500 | code from LLNL B
3 _
< 400 - . - u
o300 I I
§ 3
= 200
100
O | ; [; (| ' T
100 I\’b\ KQ \Q &.\b ,é}' <)\‘> \} N\ \,\ xq’ xa)
B N N & ° N’ & 9 N oN <
o OQQ, OQQ, ?fb N8 & \L_.ae (9 & e) \{_,O
] > v < A3 o % © NAS
N G ¢ <& ©
QQS\ \Q\@ .6'\\’\/
N\
O Y OQ&

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

Lower
is 800
Better
700
600
v
5 500 -
3 5
S 400
o
o 300
.E
]

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added
B Main Code Delta

O Header Removed

O Main Code Removed
O Header Added
O Header Delta

C++ Abstraction Layers have approximately similar
numbers of lines changed to the original OpenMP
code from LLNL

=) [}

«C Q’}' \\)

s\ 6\\ Ve O ’ ’
R AN S , NN R R
\s > S & /& ¥ ¢ W
F & v Ty e

Naive port to Kokkos uses slightly more changes than
Is needed by capture-by-reference lambdas

Results by Dennis Dinge, Christian Trott and Si Hammond

Programmer Development Time () e,

Initial Kokkos-CPU port by Dennis took a few months
= No threading/OpenMP/Kokkos experience for code development
= |Lots of correctness and performance issues came up
= |nitial experience with programmer tools and profilers

= Kokkos optimized implementations
= O(few weeks) of Christian’s time (“Kokkos-expert”)

= OpenMP initial and optimized implementations
= O(few days - week) of Si’s time written on a plane

= These are not significant amounts of FTE but the code is small in comparison to
production settings (but code groups are larger and better resourced)

= Difficult (impossible?) to do a deep quantitative comparison

What can we take away? -

= C++ abstraction layers are using similar numbers of changes in
code (both code sites and SLOC-delta) to directives

= Perhaps to be expected given implementation strategy is similar
in unoptimized variants of the code

= This is a good thing for developers — hard work is in developing the parallel
algorithm, not in how it is expressed in source code

= Looking at changing roughly 15% of the code to get initial parallel
versions in this example

= Warning: example is friendly to parallelism because of its heritage

= Do we need directives in application code at all?

&
L

ANALYSIS OF MINIAERO

MiniAero Overview Libores

= QOriginally written by Ken Franko (now at Google)
= Added to Mantevo suite in 2014

= Designed for exploration of Kokkos programming model
= Not to be used as a proxy for production algorithms
= Did not have an “original” OpenMP or serial implementation

= Different options for threaded algorithm to aggregate values onto
the mesh
= Use of atomics operations
= Use of gather/sum

MiniAero Scaling Analysis on Trinity Test MachiB&s.

Strong Scaling MiniAero Results for Mutrino
lower —*—OpenMP-1 -=-OpenMP-2 -+OpenMP-4 --OpenMP-8 =+OpenMP-16

is

Better 10000

Approximately 10% performance
difference by switching from MPI to

VS
4 1000 OpenMP (not all k'ernels are fully
c parallelized)
o}
v}
A
~ 100
v
E
)
5
& 10
1 | | |
32 128 512 2048

Processor Cores Utilized

MiniAero Scaling Analysis on Trinity Test MachiB&s.

Weak Scaling MiniAero Results for Mutrino

Fater ——OpenMP-1 -=OpenMP-2 -+OpenMP-4 --OpenMP-8 =+OpenMP-16

is

Better 3000
_ 2500
wn
C:
S 2000
W
A
p 1500 Approximately 20% performance
-_g 1000 difference by switching from MPI to
S OpenMP (not all kernels are fully
= 500 parallelized)
O I I |
32 128 512 2048

Processor Cores Utilized

MiniAero Scaling Analysis on BlueGene/Q =

Weak Scaling MiniAero Results for BlueGene/Q

Eiatier ——MPI-Only Atomics -~ MPI Only Gather Sum
Better —+MPI| + OMP-64 Atomics ==MPI + OMP64 Gather Sum
500
450
_8 400 Y —== e
9 300 S
% 250 —
.g 200 '/4 ——
e 150 _
£ 100 Poor atomics performance on BG/Q (not optimized in
50 Kokkos). MPI only up to 20% faster than threaded
0] i | | I | |
1 4 16 64 256 1024 4096

BG/Q Nodes Utilized | mp| = Nodes * 64 ranks, MPI +
OpenMP Ranks = Nodes

=
[“

MiniAero Scaling on GPU Clusters

Weak Scaling MiniAero Results for K80 GPU Cluster

Elafier ——Atomics -#-Gather Sum
is
Better
160
—i
140 —— —
% 0 -
g 120
il —
;‘d 100 o— —— $— e
— 80
£
‘= 60 Good atomics performance on GPUs
c ’
E 40 means we don’t see the same results
20 at BG/Q.
0] I I |
1 2 4 8

GPU Cards Utilized

MiniAero Scaling on KNC Clusters il

Weak Scaling MiniAero Results for Compton KNC Cluster

Flatter ——Atomics -#-Gather Sum
Beltster
700
600
%T — — -
c 500 —— ——
o - o ——
2 400
p —
SE’ 300
= Closer performance with atomics and
c 200 ..
2 gather-sum on KNC. Poor scaling is
100 due to very slow intercard MPI
0] I I I | |
1 2 4 8 16 32

224 OpenMP threads per card (= 1 MPI rank)

KNC Cards Utilized

Emulation and Instruction Analysis for KNL @i

Instruction Breakdown by Vector Width for MiniAero
W Scalar EAVX128 MMAVX256 BAVX512

100%

80% -

60% -

40% -

20% -

Percentage of Instructions Executed

0% -

SNB HSW KNL

= Covers all instructions executed (dynamic stream) including move
operations and register clears

MiniAero Summary ()

= Question as to whether exactly the same algorithm will run on all
architectures well — atomics vs. gather-scatter

= Open question which requires further research

= May not be able to find a single source which always runs truly well
everywhere
= |s not intrinsic to Kokkos, the same issue is true for OpenMP, RAJA etc

= Continues to reinforce why we need codesign and research into our code
performance

= Clearly still need to look at poor vectorization levels for Trinity machines

CONCLUSIONS AND DISCUSSION

Summary

= Showed performance and portability of two Kokkos mini-app
implementations across ASC Advanced Architecture Test Beds

= Strong performance across architectures for LULESH

= Often as strong or stronger than equivalent OpenMP code

= |nitial expectations for use of Haswell, POWER and GPU systems

= Knights Landing still remains an unknown due to significant changes over
Knights Corner cards

= Evaluated programmer productivity for LULESH

= C++ abstraction layers are approximately equivalent to well optimized
OpenMP code in sites of code change and number of source lines

Feedback to Vendors/Community () i

Kokkos is now on github.com (fully open source and free for everyone)
" Full public release of the most up to date development branches
= Strong engagement with NVIDIA, AMD and IBM, initial engagement with Intel

= Feedback to IBM and Cray on compiler issues, during this L2 both now compile miniapps
successfully

= Now has initial support for Knights Landing compile path

= Implementations using Kokkos will be available for the community in Mantevo
release for SC15

= Poster submitted to SC15 covering OpenMP and Kokkos studies (no RAJA)

= C(Clearly still a need in some areas for better optimization support in compilers

= See very varied inlining, optimization, vectorization etc. More time and more focus by
the labs will help

= Committed to C++ abstraction layer support in development of ATS3 RFP

Productivity M=

= Productivity in Kokkos in some ways has always been behind portability and
performance

= We needed to learn the best approach before we could work out how to enhance
programmer productivity

= Have learned a lot through discussions with RAJA team on why this is important and
through our own application work on LAMMPS, Trilinos, Albany, SIERRA etc

= Have a much stronger story in productivity on the parallel execution/dispatch
= This codesign study has helped inform us further

= Kokkos has strong story for data management
= |nitial work on efficient parallel STL-like containers

= Qur experience is 90% of the work is in making the algorithm parallel and optimizing
the data structures not in the specific way its written

Kokkos in the Community

= Published a Kokkos Programming Guide in 2015
= Based on lots of feedback from community
= Covers general concepts and themes of Kokkos

= Kokkos Training Material

= 200 tutorial slide deck
= Multiple examples with varying levels of complexity

= Kokkos Tutorial at Sandia in September

= Qver 80 registered attendees
= Will work on multi-core, many-core and GPU Sandia test beds

= Tutorial at ACM/IEEE Supercomputing in November 2015

Acknowledgments

Application Performance Team at Sandia
= Dave Resnick, Jim Thomkins, Sue Phelps

= ASC Advanced Architecture Test Beds at Sandia

® Project Management and System Administration Team
= Jim Brandt, Ann Gentile, Victor Kuhns, Nate Gauntt, Jason Repik, T.J. Lee, Jim Laros, Sue Kelly

= SIERRA Code Teams for inputs (-SM, -SD and -TF)

= Mike Glass, Mike Tupek, Kendall Pierson, Nate Crane, Mark Mereweather, Travis Fisher &
many others

= Kokkos Development Team
= Carter Edwards, Mark Hoemmen, Dan Sunderland, Irina Dimenshenko & others

= ASC L2 Review Committee

= Jeff Keasler, lan Karlin and Rich Hornung (LLNL) for inputs on RAJA, LULESH and
general programming model discussion

= We have learned a great deal from you folks

@
e

BACKUP SLIDES

MiniAero Thread Scaling on Cray XC30 il

Thread Scaling per MPI Rank on Volta XC30

=¢=1 Node +m=2 Nodes =#=4 Nodes -m=8 Nodes -i~16 Nodes =@=32 Nodes

Lower
is

Better 7000
See better performance from threads as we strong scale out to
. 6000 l\ more nodes (smaller problem per node)
(7]
2 5000
o
0
v 4000
)
E
[
)
=
o
n

Cores per MPI Rank

