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Introduction

The injection of CO2 underground may shift the chemical interaction of
minerals and the pore fluid far from equilibrium. Field and laboratory
experiments have shown that this shift will situationally facilitate mineral
dissolution and reprecipitation of load carrying mineral phases and affect
the long term mechanical stability of the host formation [Lu et al., 2012;
Carroll et al., 2011; Carroll et al., 2013; Major et al., 2014].
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Fig.l. Schematic of how
mineral dissolution by CO2-
brine mixture could cause
formation compaction.
[Railsback, 2006]

Degradation of mechanical properties can facilitate reservoir
compaction caprock bending above dissolving reservoir zones [Kim &
Santamarina, 2014].

Micromechanical tests are well suited to identifying properties of rock
samples altered through easy-to-perform autoclave reactions that result in
a limited skin depth of chemical alteration.
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Fig.2. (Left) Schematics of a typical autoclave reactor for CO2-brine on rock reaction.
(Right) Comparison between traditional core-scale test and indentation & scratch tests
on CO2-reacted rock samples. (Below) Labeled picture of experimental setup
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Objectives

• Quantify variation of elastic and strength mechanical parameters of
silicic and carbonate reservoir rocks exposed to CO2-water mixtures.

• Identify time scales associated to chemo-mechanical couplings
through experimental results and geochemical modeling.

• Determine constitutive parameters from time-dependent experimental
data to couple with geomechanical reservoir simulation.

• Validate micromechanical tests as screening tools to evaluate the
alteration of mechanical properties of reservoir rocks under geological
CO2 storage conditions.
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Fig.5. (A) Rock samples taken from Crystal Geyser site, Utah.
(B) A polished, epoxy-casted rock specimen with scratches.

Method Micro Indentation Tes

A pyramid-shaped Berkovich indenter penetrates the specimen,
inducing plastic and elastic deformation, from which mechanical properties
of the material can be determined.

Indentation Hardness (H):
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Pmax: Maximum applied
load

Ac: Contact area

Er: Reduced elastic modulus
Ei: Indenter elastic modulus
vi: Indenter Poisson's ratio

S: Elastic unloading stiffness

Fig.3. (Top) Indentation load displacement data showing important
parameters. Measurements are taken on the unloading cycle [Oliver
and Pharr 2004]. (Right) Diagram of penetrating indentation stylus.
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To facilitate brevity and clarity, only representative images of Entrada
sandstone test results are shown. See handout for complete results.
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Fig.7. (Top) Indentation normal load versus depth for a single representative pair of
unaltered and geologically CO2-altered Entrada sandstone indentations. Average
indentation hardness (bottom left) and mean Young's modulus (bottom right) calculated
for both Entrada sandstone and Summerville siltstone, CO2-unaltered and altered,
respectively. Error bars represent 95% confidence intervals. 5 indentations were
performed for each type of sample.

Methods - Micro Scratch T

Scratches are made on the sample with a sphero-conical stylus which
is drawn at a constant speed across the sample, under a constant normal
load.

front view
Cone angle = 120°

Stylus radius = 200

Fracture Toughness (KJ:
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Variables:

• FT: Horizontal force

• Fv: Vertical force (constant)

• p: Stylus perimeter
• A : Projected horizontal load

bearing contact area

• k: Geometric constant
• w: Scratch width

Fig.4. (Top) Diagram of scratch test
showing translation direction. (Middle)
Side view and (Bottom) front view of
loaded axisymmetric stylus with relevant
parameters. [Akono et al., 2012,
ASTM G171]
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Fig.6. (Top) Stereoscopic images of scratches. White arrows indicate direction of travel.
Bluelred arrows indicate scratches plots correspond to. Yellow arrows indicate
potentially damaged areas not included in width measurements. (Bottom) Frictional
force versus scratch position. Normal force was applied at constant 20 N.

Altered

v
 Unaltered

2.5

The fracture toughness (Mode II) values from scratching are
systematically higher than values obtained by Major et al., 2014 using a
double torsion test (Mode I), though both result sets show decreasing
trends.
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Fig.7. Average fracture toughness (left) and mean scratch hardness (right) calculated
for both Entrada sandstone and Summerville siltstone, CO2-unaltered and altered,
respectively. Error bars represent 95% confidence intervals.
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Sandia National Laboratories

The Geochemist's Work Bench (GWB)
Path of Reaction Modeling (Bethke, 1998),
is used to predict the changes in
mineralogical composition in Entrada
sandstone during its alteration by 002-
charged brine.

CO2-rich brine
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Fig.8. Numerical model: alteration of Entrada
sandstone by CO2-charged brine. Hematite
dissolution (top), and siderite and dolomite
precipitation (bottom) are predicted.
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Table 1. Input for the path of
reaction models: initial
composition of Entrada sandstone
brine, and amounts of reacting
carbon dioxide and methane.

Input

pH
Eh
Na+
K+
mg++

Ca++
Fe++

HCO3-
SO4--
Si02(aq)

8.1
0
24200 mg/1
1 mg/1
315 mg/1
1455 mg/1
1 mg/1
37950 mg/1
762.5 mg/1
3250 mg/1
Equilibrium with quartz
Reactants

30 mmol of CO2(aq)
5 mmol of CH4(aq)

Table 2. Input for the path of
reaction models: mineral
assemblage, reactive surface
areas, and kinetic rate constants.

Mineral Specific

surface area,

Cm 

Kinetic rate

constant

log (mol, cm2 sec)
Quartz

K-feldspar

Hematite

Calcite

10
10
10
10

-16
-15
-14
-8

The initial brine composition
is based on the compilation of
ground-water chemistry for the
Green River Formation (Wanty
et al., 1991). This brine was
reacted with CO2 and CH4, and
minerals quartz, K-feldspar,
calcite, and hematite. The
concentrations of CO2 and CH4
in the reactive fluid are chosen
based on Wigley et al., 2012.

Conclusions • uture Work

• Long term exposure of Crystal Geyser rocks to reactive CO2-water
mixtures resulted in mechanical degradation as shown by significant
decreases in hardness and fracture toughness.

• We will assess rock-water-0O2 reaction kinetics and rock mechanical
degradation through scratch and indentation experiments and reaction
modeling on rocks altered via autoclave over laboratory time scales.

• Fracture property trends determined from scratch tests validate previous
mechanical testing performed on same source rock samples.

• Microscratch tests may have further applications in geomaterials across
the meso- and microscale, e.g. capturing down well mechanical property
variation.
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