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Metamaterials

http://www.multitel.be/newsletter/mn72005/image
s/nI3_Metamaterials_type1.jpg

Change

The promise of metamaterials for (IR) applications was great:
* Wavefront control (Conformal optics, novel illuminators)

e Sub-A Field Concentration

* Absorption / Emission engineering

* “Flat” optics (thin, lightweight)



Arbitrary € and pu Can be Achieved Also ) .
With Dielectrics (low loss approach)
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Planar resonators on llI-V substrate

Tellurium cubes on BaF2 multi-layers of Tellurium cubes?

H

HHHHH

>1 layer:

>1 layer: Incredibly difficult
Incredibly difficult l
Too lossy ?
e Strong coupling to e Optical magnetism
phonons, plasmons, * Unidirectional scattering,
intersubband transitions Huygens metasurfaces
* Voltage tuning, tunable * Nonlinear optics
filters
* Nonlinear optics
Metasurfaces
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2D Metamaterials (“Metasurfaces”) i,
(for some applications, loss is a good thing)

Even for different shapes, many metallic resonators behave like LCR circuits (or “antennas”)
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The spectral response is very sensitive to the dielectric
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Chen, Nature 444, 597 (2006).

However: this approach
doesn’t scale well to shorter
wavelengths

An Example at THz frequencies: Electrically @V
Switchable Metamaterials Using Damping

Split gap

This works

0.36 THz,4x4 SLM

(With Rice Univ.)

Appl. Phys. Lett. 94, 213511
(2009)
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Other Tuning Mechanisms: Coupling

MM resonators create strong optical fields
that lead to strong coupling
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Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
[ Intersubband Transitions:]Nature Communications 4, (2013)
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<P Strong Coupling to Inter-subband Transitions
in Quantum Wells

\
4 \

Alex Benz
*Scalable (far IR to near |
IR), Mature, Versatile
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Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)
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Nature Communications 4, (2013) Bare cavity resonance (THz)

Phys. Rev. B 89, 165133 9
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From Mid-IR to Near IR

GaN QWs (vnearr IR)

InGaAs QWs (mid IR)
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Same Rabi splitting remains
down to a single resonator!

Nature communications 4, (2013)

Area of a resonator * carrier density ~1000-3000 electrons
1171



Frequency (THz)
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Resonant x2) in a Three-Level System

“cavities”
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Design of the %% and Resonators

|

Design: 10pm = 5um SHG Resonators are designed to have
* InGaAs/AllnAs asymmetric system  resonances at 30 & 60 THz (5&10um)
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F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)
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APL 104, 131104 (2014)
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SHG: Power and Frequency Dependence

Pump: CW CO, laser max efficiency: ~2.3 mW/W?
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Lee et al. Nature 511, 65-69 (2014).
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flipping induces it phase shift

P
Period determines
angular separation

SHG Beam Manipulation
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Planar resonators on llI-V substrate

Tellurium cubes on BaF2 multi-layers of Tellurium cubes?

H

HHHHH

>1 layer:

>1 layer: Incredibly difficult
Incredibly difficult l
Too lossy ?
e Strong coupling to e Optical magnetism
phonons, plasmons, * Unidirectional scattering,
intersubband transitions Huygens metasurfaces
* Voltage tuning, tunable * Nonlinear optics
filters
* Nonlinear optics
Metasurfaces
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Creating a Magnetic Mirror from a Collection
of Magnetic Dipoles

A perfect magnetic conductor does not exist in nature

Array of magnetic dipoles
—>> —3% —>>
—>> —3> —>>
—> —2> —3>

Because the magnetic dipole responds in phase with the electric field, this
represents an artificial magnetic conductor

We can create magnetic dipoles with Dielectric Resonators

E Magnetic

18
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) Proving Optical Magnetism:
Measure Abhsolute Phase of Reflected Wave
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Fourier Transform of Experimental Results
IDhacal

180

Absolute

9
o

(o))
=
1

@ Experimental Center (@ 8.1 um

Phase Difference (Degree)

0 =
@  Experimental Center @ 8.8 um
FDTD simulation
_60 | 1 1 1 1 |
6.8 7.2 7.6 8.0 8.4 8.8 9.2

Wavelength (um)

* Phase difference between magnetic (~170 degrees)
and electric (10 degree) resonance is ~160 degrees
(close to TT)

Optica, 1, 250 (2014)
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Shorter Wavelengths: Limitations of Si for@
Dielectric Metamaterials

e Challenging to realize real 3D metamaterials (multi-layers)—
different etchant for Si and SiO2

namre )
photonics

Realization of an all-dielectric zero-index
optical metamaterial

* Free carrier absorption of Silicon (long electron lifetime)
e Silicon is centrosymmetric = NO second order nonlinearity
e Inefficient light emission (hard to incorporate active media)

Direct bandgap semiconductors: 111I-V
(AlGaAs, InGaAs, GaAs)
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Fabrication of Al(In)GaAs Based Dielectric MM

Epitaxially grown:
MBE, MOCVD Low refractive index
- surrounding hig index
Dry Etching medium is needed!

GaAs
Substrate

Oxidation

n~3.5
n~1.6

ALO,

Sandia VCSEL: IEEE JSTQE, 3, 916 (1997)
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(With ANU & Moscow State)

Non-centrosymmetric materials are
needed for second harmonic generation

Nano Letters (2015)

Third harmonic wavelength (nm)
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\““’ Optical Nonlinearities in Dielectric Metasurfaces
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Nonlinear Harmonic Generation using IlI-V @i,

Metasurfaces
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Second Harmonic— Pump Wavelength

Dependence
SHG wavelength (nm)
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e Strong pump wavelength dependence—resonant enhancement
e @ same pump wavelength—different diameter resonators show

different SHG efficiency

 More work is under way
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Multilayer Dielectric Metamaterials:

Example, Femtosecond Pulse Compression
Huygens sources radiate unidirectional as superposition of electric and

magnnﬁr rlir\nln.c Resonance overlap: ,,, ~ A,
i k Experiment|
Single layer is not enough to ) ——_Simuiafon
generate sufficient phase th
difference within the 20 .
spectrum of femtosecond = We need multiple
pulses. layers!
Huygens Metasurface |
Complete 21 phase range in transmission Wl 1’208\,3\,6;9,.,9;;-;4&2%) b
. € 2000 ! ; O SR
sl e
f E—» —~ g ; tosecond
Chirped pulse Compressed ey 502 plll € .
a V1 L/ NSeompression
Wavelomgih (om) ime ()

“High-Efficiency Dielectric Huygens’ Surfaces”, Advanced optical materials, 3, 813
(2015)
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Multilayer IlI-V Dielectric Metamaterials
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Predictions.... Thoughts...

e \/oltage tunable metasurfaces will be incorporated with
l1I-V devices and will enable next generation of focal
plane arrays

e Work in nonlinear metasurfaces will increase:
opportunities in quantum information science, etc.

e Advances in low-loss dielectric metasurfaces could
enable practical optical devices in most of the IR (phase
plates, holographic elements, etc)

e New types of llI-V devices that combine dielectric
metasurfaces and llI-V optoelectronics?
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