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Change

The promise of metamaterials for (IR) applications was great:
• Wavefront control (Conformal optics, novel illuminators)

• Sub-X Field Concentration
• Absorption / Emission engineering

• "Flat" optics (thin, lightweight)
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Arbitrary s and µ Can be Achieved Also
With Dielectrics (low loss approach)

Electric

Magnetic dipole resonance: tailor µ
Electric dipole resonance: tailor e

THE ELECTRICAL CONSTANTS OF A MATERIAL LOAD]
SPHERICAL PARTICLES*

By L. LEWIN.t

(The paper was _first received 4th March, and in revised form 27th September. 1946.)
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Planar resonators on MA/ substrate
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• Strong coupling to
phonons, plasmons,
intersubband transitions

• Voltage tuning, tunable

filters
• Nonlinear optics

I 3D

Au SRRs on resist "cavities"
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>1 layer:
Incredibly difficult

Too lossy

Dielectric
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3D

multi-layers of Tellurium cubes?

Polynorbornene

BaF2

.-441
111:1-%.

>1 layer:

Incredibly difficult

• Optical magnetism

• Unidirectional scattering,

Huygens metasurfaces

• Nonlinear optics

Metasurfaces
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(for some applications, loss is a good thing)

Even for different shapes, many metallic resonators behave like LCR circuits (or "antennas")
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Chen, Nature 444, 597 (2006).

However: this approach
doesn't scale well to shorter
wavelengths

An Example at THz frequencies: Electrically

Switchable Metamaterials Using Damping
Split gap
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De•Jetion —1-
n-GaAs
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This works by increasing the
damping (e2).

0.36 THz,4x4 SLM

(With Rice Univ.)

Appl. Phys. Lett. 94, 213511
(2009)  ►

6 16 mm
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Other Tuning Mechanisms: Coupling

MM resonators create strong optical fields
that lead to strong coupling

Metal Metal

Variable 8

Su bstrate

-Th n 1"--

12.0R1

Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)

Nature Communications 4, (2013)lntersubband Transitions:
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--111.1, Strong Coupling to Inter-subband Transitions
in Quantum Wells

\
Alex Benz

•Scalable (far IR to near
IR), Mature, Versatile 

Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)
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Tunable by changin Ievels using an
electric field (volta e as)
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Strong Coupling Theory vs. Experiment

"Dogbone" resonators
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Rabi frequency depends on
simple parameters

Nature Communications 4, (2013)

Phys. Rev. B 89, 165133
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This is a "Single Resonator" Behavior
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Same Rabi splitting remains
down to a single resonator!

Nature communications 4, (2013)

Area of a resonator * carrier density '1.000-3000 electrons
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Resonant x(2) in a Three-Level System

A
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Ntli, 11,411 1,10i0IP

Salvo
Design of the x(2) and Resonators

Design: 10p.m 4 5p.m SHG

• InGaAs/AllnAs asymmetric system
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F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)

1'1250 nm/V - QWs

lOs of pm/V - LiNbO3

14

Resonators are designed to have

resonances at 30 & 60 THz (5&10um)
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SHG: Power and Frequency Dependence

Pump: CW CO2 laser
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• Saturation is still an issue
• Max. conversion efficiencies of few % are possible
• Added functionality is the advantage
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SHG Beam Manipulation

flipping induces lt phase shift
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Planar resonators on MA/ substrate
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• Strong coupling to
phonons, plasmons,
intersubband transitions

• Voltage tuning, tunable

filters
• Nonlinear optics

I 3D

Au SRRs on resist "cavities"
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>1 layer:
Incredibly difficult

Too lossy

Dielectric
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Tellurium cubes on BaF2
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3D

multi-layers of Tellurium cubes?

Polynorbornene

BaF2

>1 layer:

Incredibly difficult

• Optical magnetism

• Unidirectional scattering,

Huygens metasurfaces

• Nonlinear optics

Metasurfaces



7,:„.ti Creating a Magnetic Mirror from a Collection

of Magnetic Dipoles
A perfect magnetic conductor does not exist in nature

Array of magnetic dipoles

')*

—>">
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Because the magnetic dipole responds in phase with the electric field, this
represents an artificial magnetic conductor

We can create magnetic dipoles with Dielectric Resonators

E 
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Magnetic
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Proving Optical Magnetism:
Measure Absolute Phase of Reflected Wave
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Phase-locked Time Domain Spectroscopy

GaSe

OMM

Gold

(started by Daniel Bender)

Appl. Phys. Lett. 103, 181111 (2013)
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Fourier Transform of Experimental Results
(DI-Inc/al

180

-60
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Wavelength Gitn)

Absolute
phase

• Experimental Center @ 8.1 [Lin
• Experimental Center @ 8.8 p.m

FDTD simulation

• Phase difference between magnetic (~170 degrees)
and electric (10 degree) resonance is ~160 degrees
(close to TT)
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Optica, 1, 250 (2014)
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Shorter Wavelengths: Limitations of Si fo
Dielectric Metamaterials

• Challenging to realize real 3D metamaterials (multi-layers)
different etchant for Si and Si02

izaonics 
Realization of an all-dielectric zero-index
optical metamaterial
Parikshit Moitra' , Yuanrnu Yang', Zachary Anderson', Ivan I. Kravchenko', Dayrl P. Briggs'
and Jason Valentine'.

• Free carrier absorption of Silicon (long electron lifetime)

• Silicon is centrosymmetric 4 NO second order nonlinearity

• Inefficient light emission (hard to incorporate active media)

Direct bandgap semiconductors: III-V
(A1GaAs, InGaAs, GaAs)
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Fabrication of Al(In)GaAs Based Dielectric MM

Etch Mask

Epitaxially grown:
MBE, MOCVD

Dry Etching

1.00011"÷

AlGaAs

GaAs
Substrate

GaAs

A1203

Oxidation

n-3.5

n 1.6

Sandia VCSEL: IEEE JSTQE, 3, 916 (1997)

Low refractive index
surrounding hig index

medium is needed!
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GaAs Dielectric Resonators (1 layer)

• Extremely low loss below
bandgap

14)
• Crystalline
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Optical Nonlinearities in Dielectric Metasurfaces
Third harmonic wavelength (nm)

350 400 450

(With ANU & Moscow State)

Nano Letters (2015)

No
rm
al
iz
ed
 T
H
G
 s
ig

na
l 

150

100

50

0  

(a)

Sandia
National
Laboratories

1.25

1.00 Z

0.75 °4

0.5

. (5.•,
—.. • ••• . 11 .1. . 

1.0 1.1 1.2 1.3

Fundamental wavelength (um)

0
1.4

— Electric dipole

- — Magnetic dipole

Non-centrosymmetric materials are
needed for second harmonic generation

Wavelength (um)

(b)
6

4

2

  0
1.3 1.4

(•
un
 •
c
p
e
)
l
u
a
w
o
w
 a
lo

d!
G 



Sandia

Nonlinear Harmonic Generation using 111-v National
Laboratories

Metasurfaces
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Second Harmonic— Pump Wavelength

Dependence

(preliminary 
result6
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• Strong pump wavelength dependence—resonant enhancement
• @ same pump wavelength—different diameter resonators show

different SHG efficiency
• More work is under way
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Complete 2rr phase range in transmission
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Multilayer Dielectric Metamaterials:

Example, Femtosecond Pulse Compression
Huygens sources radiate unidirectional as superposition of electric and
magnoi-ir rlinndnc

Single layer is not enough to
generate sufficient phase
difference within the

spectrum of femtosecond
pulses.

Huygens Metasurface
1,000

Resonance overlap: X„,i

Experirnent
- - - - Simulation

We need multiple

layers!
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Chirped Input pulse
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(2015)
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Multilayer 111-v Dielectric Metamaterials

Epitaxially grown multi-layer
GaAs/A1GaAs

Etch Mask

Oxidation

GaAs
Substrate

GaAs El A1GaAs

rtch Mask

GaAs
Substrate

Alpy
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Predictions.... Thoughts...

•Voltage tunable metasurfaces will be incorporated with
III-V devices and will enable next generation of focal
plane arrays

•Work in nonlinear metasurfaces will increase:
opportunities in quantum information science, etc.

•Advances in low-loss dielectric metasurfaces could
enable practical optical devices in most of the IR (phase
plates, holographic elements, etc)

• New types of III-V devices that combine dielectric
metasurfaces and III-V optoelectronics?



Sandia
National
Laboratories

Acknowledgments

Current Postdocs: Salvo Campione, Omri Wolf, Sheng Liu

Departed Postdocs: Alex Benz, Young-Chul Jun, James Ginn, Alon Gabbay,
Brandon Passmore, Daniel Bender

CINT + Sandia: John Reno, Mike Sinclair, lnes Montano, John Klem, Eric
Shaner, Mike Wanke, Joel Wendt, Paul Clem, Jon lhlefeld, Bruce Burckel,
Jason Domingues, Andy Allerman, Jon Wierer,  

ANU: Y. Kivshar, I. Staude, M. Decker, D. Neshev, ....

Lomonosov Moscow State: M. Shcherbakov,...

8
 U.S. DEPARTMENT OF Office of
ENERGY Science

30
30



THAT CONCLUDE5
714.10-HOUR PRE5ENTA-
TION_ ANY QUESTIONS?

DID 'YOU 'INTEND THE
PRESENTATION TO BE
INCOMPREHEN5I BLE,
OR DO 'YOU HAVE SOC'Y'liE
SOR.T OF RAR -POWER-
POINT • DISAIMLITY?
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I ARE THERE
i Awe QUESTIONS.
.1'. ABOUT THE
: CONTENT?
a
.

I

THERE WAS
CONTENT?
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