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Abstract—It is challenging to obtain scalable IIPC performance
on real applications, especially for data science applications with
irregular memory access and computation patterns. To drive co-
design efforts in architecture, system, and application design, we
are developing miniapps representative of data science workloads.
These in turn stress the state of the art in Graph BLAS-like
Graph Algorithm Building Blocks (GABB). In this work, we
outline a Graph BLAS-like, linear algebra based approach to
miniTri, one such miniapp. We describe a task-based prototype
implementation and give initial scalability results.

I. INTRODUCTION/BACKGROUND

A. miniTri: a Data Analytics Miniapp

Application proxies or miniapps are important driving forces
in the architecture-system-application co-design efforts that
attempt to ensure good performance for real applications
on modern processors and supercomputing systems. They
represent a compromise between the simplicity of kernel
benchmarks and the complexity of real applications. There
are many scientific computing miniapps in Mantevo [1], for
example, but few have been written with data science in
mind. The miniTri miniapp described below was conceived
in unpublished work at Sandia to help fill that gap. It will
become part of the Mantevo shortly.
HPC data analytics benchmarking applications have been

represented over the years by SSCA-2 [2] and Graph500 [3].
These similar benchmarks emphasize graph generation and
search. The miniTri miniapp is not based on neighbor set
expansion, and offers different challenges than traditional
graph search.
The kernel operation within the miniapp is triangle enu-

meration (not triangle counting). This can be approached
several fundamentally different ways, though describing them
all is beyond the scope of this paper. The authors of [4]
found triangle structure to be a key ingredient present in real
data, and [5] provides one of many examples leveraging this
structure to improve community detection.

Given a graph, let 47(4) be the number of triangles incident
on Vertex v (resp. Edge e). We also call these triangle degrees.
Such degrees can be computed by enumerating all triangles
in the graph. Such enumeration is usually practical because
the global numbers of triangles in large networks is still
asymptotically linear for realistic degree distributions [6],
despite their local structure. Storing all triangles, however,

might overwhelm memory. This last point is a key driver for
the fused operations described in Section III.
The objective of the miniTri miniapp is to tabulate "k-

counts" over all triangles in this graph. These are numbers
related to the largest clique that could contain a given triangle.
This k-count of a triangle t is defined to be:
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Note that any vertex of a k-clique will be incident on (k-21)
triangles of that clique, and that any edge will be incident on
k — 2 triangles of that clique. The argmax selects the largest
k satisfying these conditions. For example, in Figure 1, the
red triangle has k value five and the green triangle k value
three. The output of miniTri miniapp is a table of the k-count
frequencies. For example, the graph in Figure 1 will result in
the following table:

k 1 2 3 4 5
freq 0 0 2 0 10

In words, there are ten triangles with k-count five, and two
triangles with k-count three. This table gives us a bound on
the largest clique in the graph: it is the largest c such that at
least (31 triangles have k-count at least c. In this example, that
bound is five.
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Fig. 1. A graph with vertices and edges labeled with their triangle degrees,
and two of the triangles labeled with their k value.

The most obvious way to compute miniTri would be to

SAND2015-3893C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



perform two passes of triangle enumeration. The first pass
would compute tv and te values and the second pass would
compute k-counts. These passes are representative of many
variations of vertex and edge attribute update and retrieval
in social network analysis, where the attributes are related to
short cycles.

In this paper, we describe a linear algebra approach to
triangle enumeration as part of the larger miniapp, noting that
there are several completely different approaches. Our primary
contributions are:

. We describe new linear algebraic Graph Algorithm Build-
ing Blocks (GABBs) that express concisely not only
triangle enumeration, but the computation of all triangle
degrees 4, and te,

. We describe several challenges with implementing these
GABBs on HPC systems,

. We describe how task parallelism can be used to address
these challenges, and

. We apply these GABBs to implement miniTri and present
preliminary computational results.

B. Graph Algorithms and Linear Algebra Primitives

The success of BLAS and LAPACK for basic linear algebra,
combined with strong growth in the fields of graph mining
and data science, has led to a community-wide effort to
produce Graph Algorithm Building Blocks (GABBs). The
most visible outcome of this effort is the developing "Graph
BLAS" [7], which promotes linear algebraic building blocks.
There are at least three concrete implementations of Graph
BLAS: CombBLAS [8], D4M [9], and Graphulo. GABBs
within Graph BLAS libraries are designed to be abstract,
high-level constructs. They typically generalize traditional
matrix and vector operations. Two primary considerations are
conciseness and high-performance. Graph analysts who could
effectively use Graph BLAS to implement solutions would be
quite productive, and would benefit from decades of linear
algebra performance work.
The primary alternatives to Graph BLAS are the related

communities of high-performance generic graph libraries and
cloud-based graph libraries. The former class is represennted
by the Boost Graph Library (BGL) [10], MultiThreaded Graph
Library (MTGL) [11], and the Parallel Boost Graph Library
(PBGL) [12] and its underlying AM++ (active message)
layer [13] that enables asynchronous computation. These all
support the visitor pattern, allowing programmers to customize
vertex, edge, and structural access (for example, triangle
visitors for triangle enumeration) without re-implementing
any performance-tuned code. Cloud-based solutions such as
GraphLab [14] and PowerGraph [15] offer similar granularity
in their GABBs, which are typically vertex-centric API's. Such
low-level GABBs have, to date, been more flexible than Graph
BLAS in the sense that strange, unanticipated computations
are possible without redesigning components of the underlying
system. As a community, we have been working to bridge the
gap betweeen these low-level GABBs and the Graph BLAS.
This paper is part of that effort, as is [16]. The leap from

triangle counting to triangle enumeration GABBs in the latter
was encouraged by this author team.

Sandia is proposing miniTri as a representative of the
strange, unanticipated computations mentioned above. Social
network analsis gives rise to innumerable computations like
miniTri that might be based upon attributes like tv and te. We
believe, therefore, that miniTri will stress Graph BLAS in use-
ful ways. We show in this paper how to extend Graph BLAS
to accommodate miniTri concisely, increasing the flexibility
of the approach.
We believe that linear algebra based GABBs show great

promise, but we anticipate challenges ahead. Before they
become more mainstream, we believe that several advances
are necessary. These include GABB implementations that
allow the computations to proceed in highly asynchronous
and load-balanced manner, mechanisms for tolerating memory
latency, a mechanism for limiting the explosion of state (high
memory watermark), and a systematic approach for fusing
linear algebra operations. Azad, et al. [16] begin considering
the last point, but more generality is still required. In this paper
we propose an approach to address the first three requirements
and to mitigate the fourth to a lesser degree.

C. Task Parallelism

The importance of dynamic and adaptive task parallel
models is being driven by changes in system architecture. A
combination of homogeneous, heavy-weight compute cores,
relatively flat memory hierarchy, and compute-intensive bulk-
synchronous algorithms has favored static, balanced data
parallel models, exemplified by many MPI and OpenMP
applications. Such data parallel models minimize overheads
at the expense of flexibility. Unfortunately, the end of Den-
nard scaling, flatlining of clock rates, increasing node-level
parallelism, and decreasing memory per core all contribute to
radically different emerging node architectures. New architec-
tures will have many more lighter-weight compute cores and
extended multi-level memory hierarchies. Furthermore, part-
to-part performance variability will introduce heterogeneous
performance characteristics that will reduce the effectiveness
of bulk-synchronous algorithms and data parallel threading
models, increasing the need for more dynamic and adaptive
parallelism.

These new architectures provide advantages and disadvan-
tages for algorithm and application developers, especially in
the high-performance data analytics space. Increased node-
level parallelism can be used to tolerate high-latency oper-
ations to (different levels of) memory or over the network.
This has been demonstrated with the XMT line of massively-
multithreaded architectures [17]. However, this will require
programmers to express sufficient parallelism in their code and
the threading model to handle large numbers of potentially
short-lived threads. This increase in application parallelism
raises issues with scheduling work for locality, balancing
time-varying and data-driven workloads, and dynamically
managing precious resources (e.g., memory and network).
There are a variety of task parallel models and runtime



systems that support these requirements, such as Cilk [18],
OpenMP [19], Qthreads [20], High Performance ParalleX
(HPX) [21], Grappa [22], and even MPI+X [23], when X is
an on-node task parallel runtime. Our work leverages models
that support continuations (i.e., stopping and restarting tasks
across long-latency events). Our implementations have used
Qthreads and HPX.

II. LINEAR ALGEBRA BASED MINITRI

A. Algorithm

Our graph analytics miniapp miniTri (presented in subsec-
tion I-A) can be formulated in terms of linear algebra in a
Graph BLAS-like manner as seen in Figure 2. In the first
significant step of this algorithm (line 3), the triangles in
this graph are enumerated using an overloaded sparse matrix-
matrix multiplication operation (SpGEMM) of the graph ad-
jacency matrix (A) and graph incidence matrix (B). The
multiplication is overloaded such that C(i, j) = (i, x, y) iff
A(i, x) = A(i, y) = 1 and B(x, j) = B(y, j) = 1 (by
construction B(*, j) = 0 for other elements in this column).
Otherwise, C(i, j) = O. The intuition behind this operation is
that each row x in the adjacency matrix implicitly stores all
graph wedges (triplets of vertices vi-x-v3 connected by a path
of length two) with midpoint x and vi,v3 being all pairs of
the nonzeros column numbers in row x. By multiplying those
pairs by columns of the incidence matrix, we are attempting to
find edges that connect the endpoint of the wedges, and thus
complete the triangle. When successful (the two row numbers
of nonzeros in B(* , j) correspond to column numbers in row
A(i, *)), the triangle is completed. It is important to note that
this operation enumerates each triangle three times (C = LB
where L is the lower triangle portion of A would enumerate
each triangle once) and similar linear algebra formulations of
triangle enumeration have been proposed [16]. However, this
formulation (by construction) enumerates each triangle once
for each vertex (rows in C) and each edge (columns in C),
which greatly simplifies the triangle vertex and edge degree
computations. The overcounting of triangle attributes such as
k-counts can be addressed by multiplying the counts by one-
third.

1: procedure MINITRI(A, B)
2:

3: C = A • B > Enumerate triangles
4: tv = C • 1 > Calculate triangle vertex degree
5: te = CT • 1 > Calculate triangle edge degree
6: for all t = C(i, j) do Compute k for triangles
7: k1 = arg maxk {min,Et t,(v) > (kV)
8: k2 = arg maxdmineEt te(e) > k — 2}
9: k = min(ki, k2)

Iccrits(k) = Iccnts (k) + A
11: end for
12: end procedure

kcnts 0

Fig. 2. Linear Algebra Formulation of miniTri.

Next, we calculate the vertex and edge triangle degrees
by multiplying matrix C (which contains the triangles) and
CT , respectively, by vectors of ones (lines 4 and 5). This
is equivalent to counting the number of nonzeros in each
row to obtain the triangle vertex degrees and the number of
nonzeros in each column to obtain the triangle edge degrees.
As previously explained, each triangle is represented in C once
for each edge and each vertex, which is why these row and
column nonzeros counts correspond to the triangle vertex and
edge degrees Finally, we loop over each triangle (three times)
stored in C and compute its k value using the triangle vertex
and edge degrees. We tabulate the counts of the k values
with A (A to account for the overcounting) being added to
a particular k value's tally each time that triangle C(i, j) has
that k value.

For simplicity, we have presented this algorithm at an
abstract level, leaving out many implementation details. It is
important to note that this algorithm can be implemented with
standard linear algebra data structures (with integer elements).

B. Worked Example

In this subsection, we walk through an example (graph
shown in Fig. 3(a)) to better illustrate this linear algebra based
algorithm. The adjacency matrix A and incidence matrix B for
this graph are:
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A = 0 0 1 1 ,B= 0 0 1 1 0 0
0 1 1 0 1 0 0 0 1 1 1

\ 1 1 1 0 \ 1 1 1 0 0 1

Fig. 3. (a) Undirected graph, G. (b) Wedges in G that contain 4 as midpoint:
2-4-3 (blue), 2-4-5 (green), 3-4-5(red).

Let us look at row 4 of the adjacency matrix. Row 4 has
nonzeros in columns 2,3,5, which implicitly corresponds to
the wedges: 2-4-3, 2-4-5, and 3-4-5 (see Fig. 3(b)).

Fig. 4. Triangle vertex and edge degrees for G.

Multiplying A and B together to form C, we get an enumer-



ation of the triangles:

/ 0
0

C = 0
0

\ 0

\
0 (2, 4, 5)
0 (3, 4, 5)

(4, 2, 5) (4, 3, 5) 0 0 0
0 (5, 3, 4) (5, 2, 4) 0

Multiplying row 4 of the adjacency matrix by the columns
in the incidence matrix, we find that edge 2-5 (column 2 in
B) completes the 2-4-5 wedge to form the (2,4,5) triangle
and edge 3-5 (column 3 in B) completes the 2-3-5 wedge to
form the (3,4,5) triangle (dotted lines in Fig. 3(b) correspond
to these edges). In the next step, we multiply C and CT by
vectors of ones to obtain the triangle vertex and edge degrees:

tv = C • 1 = ( 0 1 1 2 2 )7'

te = CT • 1 = ( O 1 1 1 1 2 )T

We see that these match the degree labels (green
for vertex and edge degrees, respectively) on Fig. 4.
we calculate the k values for each triangle in C and
the counts of each value.

and red
Finally,
tabulate

C. Challenges with Linear Algebra Based Approach

This approach is quite concise, as we can express most of
the miniTri miniapp in three lines of code (lines 3-5 in Fig. 2).
However, there are still several challenges related to parallel
computation. In particular, the use of conventional, bulk-
synchronous parallel computation would fundamentally limit
performance in irregular computations. Fig. 5 shows a basic
outline of such a conventional data parallel approach, where
typically the graph data and work is divided up into a number
of parts equal (or similar to) the number of processing cores.
Barriers halt progress between each pair of linear algebra
kernels, leading cores to suffer from starvation and become
idle during irregular computation. Load-balancing is a well-
known problem in graph computations, whether implemented
with linear algebraic GABBs or not.
For multithreaded data parallel approaches, work stealing

can help within kernels but not between kernels. It is possible
to remove global barriers from these approaches, but not
without significant effort and complication of the library APIs.

C=A•B

= C.1

= CT.1

I= core 1

core 2

=I core 3

core 4

=55= MEE= ME= ME= Global barrier

K-nnunt*:= =2= MEM =IEM 

Fig. 5. Data flow of linear algebra based implementation on miniTri using
traditional data parallel paradigms.

One additional serious difficulty for applying high-level
linear algebra based approaches to data-centric analytics is

that completely storing an intermediate result such as C may
overwhelm memory, and may not even be necessary. The
miniTri computation, for example, does not require storing all
triangles. During enumeration, a triangle can be seen once and
discarded after tv and te updates are completed. The difficulty
is that linear algebra based implementations with traditional
parallel paradigms would do just that (in Fig 2, every triangle
would be stored three times when the C matrix is constmcted),
severely limiting the size of solvable problems.

III. TASK PARALLELISM AND LINEAR ALGEBRA MINITRI

A. Task Parallel Approach

Task parallelism can be used in a linear algebra based
approach to address the difficulties outlined in the previous
section. Our proposed approach should yield significantly
better performance (e.g., through latency hiding) and allow
us to solve larger problems (by using resource-constrained
scheduling of tasks to mitigate the explosion of state intrinsic
to complex analytics such as triangle enumeration).

Fig. 6 shows a simplified example of this task-parallel
approach to a linear algebra-based miniTri. A key aspect of
this approach is the overdecomposition of each linear algebra
kernel into many light-weight tasks such that for sufficiently
large graphs the number of tasks is much greater than the
number of computational cores that we are targeting. This
overdecomposition allows the scheduler flexibility to address
starvation and hide high remote memory latency by switching
out tasks that are waiting for memory or I0 requests. This
approach also provides load-balancing support by allowing
work to be moved from busy cores to idle cores. Although
there is overhead for switching tasks, schedulers currently
can be effective with this approach for medium grain tasks
on shared memory regions. It is likely that schedulers will
continue to improve performance (especially with assistance in
hardware) for finer grain tasks and over multiple shared mem-
ory localities. Instead of explicitly specifying communication
as in an MPI+X approach, dependences between the tasks are
specified, which leads to a more natural expression of the data-
centric computations. These dependencies are represented in
Fig. 6 as the arrows between tasks (only a small number of
dependencies are shown here for visual clarity).

C=A•B

tv = C.1

te = CT.1

K-count

Fig. 6. Illustrative example of task parallel approach to linear algebra based
miniTri. Arrows represent dependencies between tasks.

I= core 1

=I core 2

core 3

I= core 4

Another key aspect of task parallelism is that there are
no global barriers in this approach to the miniTri miniapp.



Instead, there are fine-grain synchronization points based on
the dependencies of the tasks. This allows progress to be made
across the linear algebra kernel boundaries, allowing tasks in
subsequent kernels to run (or even complete) before all of
the tasks in the earlier kernels complete. This should help the
performance for the miniTri miniapp and should be even more
significant for larger graph applications that have numerous
parallel sparse linear algebra kernels.
The lack of global barriers in this approach also allows us

to address the severe size limitation that this Graph BLAS-
like linear algebra approach imposes on the miniTri miniapp
when implemented in a data parallel manner. The key is to use
resource-constrained schedulers that prioritize tasks in order to
optimize memory management. In the context of miniTri, tasks
that compute the triangle degrees and k-count are prioritized
over the triangle enumeration tasks. This leads to sets of the
triangles being enumerated (blocks of C being computed) in
order to fulfill the dependencies of the the computation of
blocks of elements in tt, and te, which are needed to compute
k. Once these k are computed the corresponding triangles
can then be freed from C. Through this tight coordination
between the linear algebra kernels and dynamic, adaptive
runtime system capabilities for resource-constrained problems,
we can enable effective resource management that allows us
to execute miniTri on much larger graphs (with the memory
footprint being closer to the size of the graph than to the
enumerated set of triangles). In general, this task parallel
approach enables Graph BLAS-like building blocks to obtain
both more flexibility and scalable performance.

B. Preliminary Results

The focus of this work has been on the formulation of an
efficient linear algebra based approach to miniTri, and we have
developed several implementations of this approach, including
a serial reference implementation, an OpenMP multi-threaded
implementation, and an MPI based implementation. In addi-
tion to these baseline implementations, we have implemented
two task-parallel variants of the linear algebra based approach:
one HPX-based implementation and one Kokkos [24] and
Qthreads based implementation. Our current implementations
exploit task parallelism (as previously described) but do not
yet include the advanced resource management for optimizing
memory usage.

Figs. 7 and 8 show some preliminary numerical ex-
periments, comparing our HPX-based implementation (using
HPX version 0.9.10) of miniTri with a baseline data paral-
lel OpenMP implementation for the SNAP/soc-sign-epinions
graph (131k vertices, 841k edges) obtained from the University
of Florida Matrix Collection [25]. The implementations were
compiled using gcc version 4.8.3, and the experiments were
run on a 16 core single shared memory node (dual processor
Intel Xeon E5-2630, @2.40GHz). In general, our task parallel
approach to miniTri shows slight improvement over the data
parallel approach. Both approaches show significantly less
than ideal speedup for 8 and 16 threads, with the task parallel
approach showing slightly better speedup for 16 threads than

the data parallel approach. We saw no improvement when
running on 32 threads.

16

8

4

2

miniTri Runtime

1 2 4

d Threads

OpenMP

tHPX

Fig. 7. miniTri runtime for HPX and OpenMP linear algebra based
implementations.

2

miniTri Speedup

4

# Threads

16

OpenMP

• eh • Linear

Fig. 8. miniTri speedup for HPX and OpenMP linear algebra based
implementations.

IV. SUMMARY/CONCLUSIONS

Linear algebra based building blocks such as those proposed
by the Graph BLAS forum show great promise to become a
useful standard for developing high performing data analytics
applications. In this paper, we presented such a linear algebra-
based approach to miniTri, a data analytics miniapp that has
been developed as part of the Mantevo project with application
to network analysis.

There are several parallel performance challenges related
to this approach, including load imbalance and high remote
memory access costs, both which can greatly decrease the
parallel efficiency especially when multiple kernels are strung
together to form applications. An equally serious challenge
is the explosion of state, which can occur when using these
linear algebra constructs in graph computations and greatly
limit the size of the solvable problems as we saw with the
triangle portion of miniTri. Although low-level graph analysis
building blocks can address this problem by explicitly fusing
several kernels and operating on a small portion of the graph



(thus constraining the memory usage), this is more difficult to
accomplish with the high-level linear algebra building blocks,
at least with conventional parallel programming paradigms.

In this paper, we proposed a task-based parallel approach to
address these problems. By overdecomposing the problem into
many tasks and replacing global barriers between kernels with
finer grain synchronization points, better load-balance for these
very irregular computations can be achieved and the latency for
expensive remote memory accesses can be hidden. Removal
of global barriers between the linear algebra kernels allows
us significantly more flexibility in regards to what tasks can
be scheduled. By prioritizing tasks that have the capability to
free memory, we see a path forward through task parallelism
to address the problem size limit that is imposed by traditional
programming paradigms. This added flexibility should allow
users to solve larger problems with this linear algebra based
framework. The hope is that with the added flexibility and
performance provided by this approach will help Graph BLAS
become an extremely productive tool for graph analysts.
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