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Abstract—Numerous applications focus on the analysis of
entities and the connections between them, and such data are
naturally represented as graphs. In particular, the detection of a
small subset of vertices with anomalous coordinated connectivity
is of broad interest, for problems such as detecting strange traffic
in a computer network or unknown communities in a social
network. Eigenspace analysis of large-scale graphs is useful for
dimensionality reduction of these large, noisy data sets into a
more tractable analysis problem. When performing this sort of
analysis across many parallel processes, the data partitioning
scheme may have a significant impact on the overall running
time. Previous work demonstrated that partitioning based on a
sampled subset of edges still yields a substantial improvement in
running time. In this work, we study this further, exploring how
different sampling strategies, graph community structure, and
the vertex degree distribution affect the partitioning quality. We
show that sampling is an effective technique when partitioning
for data analytics problems with community-like structure.

I. INTRODUCTION/BACKGROUND

A. Graph Analytics and Signal Processing for Graphs

Due to their utility in identifying subtle patterns of coordi-
nation, graph analytics have proven useful in several diverse
application areas. Graph analysis—analysis of entities and the
connections or interactions between them—has been used in
ISR (Intelligence, Surveillance, and Reconnaissance), where
graphs represent entities and relationships detected through
multiple sources), social networks (where graphs represent
relationships between individuals or document), and cyber
security (where graphs may represent communication patterns
of computers on a network). The objective of the graph
analysis in each of these applications is to find anomalous
subgraphs in the data, i.e., subsets of the entities with a
statistically unlikely connection pattern. The application of
graph analytics to these areas becomes harder as the patterns
of coordination grow more subtle and the background graph
grows larger and noisier.
A common way of representing a graph is using an adja-

cency matrix. For an unweighted graph G = (V, E), where V
is the set of vertices and E is the set of edges, an adjacency
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matrix A = faiil is 1 if there is an edge from vertex i to vertex
j (where the vertices are given arbitrary numeric labels) and
is 0 elsewhere. This matrix representation enables the use of
classical linear algebra tools for graph analysis.
A recent statistical framework has been developed for the

detection of subtle patterns in massive datasets as part of an
effort called Signal Processing for Graphs (SPG) [1]. The goal
of this project is to apply classical signal processing concepts
to graph data in order to find these anomalies. The detection
algorithms in the SPG framework are based on the concept of
a residual graph, which is formed by subtracting the expected
graph data from the observed graph data, using the graph's
matrix representation. The detection framework is designed to
detect coordinated deviations from the expected graph topol-
ogy (coordination in the residual graph). The SPG processing
chain has several stages including temporal integration (where
the graph is formed from multiple time steps), construction
of the expected topology graph, dimensionality reduction,
detection of anomalous subgraphs, and identification of those
anomalous subgraphs (assuming such a subgraph is detected).

Dimensionality reduction is a particularly important step in
the processing chain, as it makes the detection and identifi-
cation procedures feasible. Typically, this is done by decom-
posing the residual matrix through partial eigendecomposition
(although a singular value decomposition would work as well).
Although relatively strong signals can be detected with only
one eigenvector, the more powerful detection methods that
are needed to detect more subtle anomalies require hundreds
of eigenvectors. This dimensionality reduction step dominates
the computation in the graph analytic processing chain, with
the sparse matrix-dense vector kernel (SpMV) being the most
time consuming kernel. Thus, our efforts in this paper and
our prior work have been to improve the performance of this
dimensionality reduction step, focusing on speeding up the
solution of the eigensystem, Bx, = Aixi, where B = A—]E[A]
is the residual matrix.

B. Eigenspace Analysis of Large Networks

Computing extreme eigenvalues (and the associated eigen-
vectors) of matrices based on graphs is a fundamental problem
in a wide variety of application areas. Common methods
for community detection include eigenvector analysis of the
graph Laplacian [2] or the modularity matrix [3]. A common
measure of vertex importance is PageRank [4], which is based
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on the principal eigenvector of a modified adjacency matrix.
Eigenvector analysis is also frequently used in anomaly detec-
tion (e.g., [1]). In all of these applications, a sparse eigensolver
is required to efficiently perform the desired computation.

Eigenspace analysis of extremely large graphs requires
parallel processing, and in this context significant complica-
tions arise. Partitioning data across several processes when
the data are in the form of a social or computer network
is a relatively new problem. Traditional matrix partitioning
algorithms have, for the most part, focused on and been most
effective for sparse matrices that have a regular structure (e.g.,
matrices derived from meshes). However, there has been recent
research focused on partitioning large networks—with com-
munity structure and skewed degree distributions, as in many
graphs of interest—to improve the time required to multiply a
sparse matrix by a dense vector (denoted SpMV), which is the
key kernel for a sparse eigensolver, often dominating the run
time of the solver. In this paper, we focus on sparse matrix
partitioning to optimize this SpMV operation.

C. Data Partitioning for Large, Scale-Free Graphs

Matrix partitioning for SpMV operations has traditionally
focused on 1D distributions, where a set of rows is assigned
to a process, although there has been more recent work on 2D
distributions (e.g., [5]). For problems with low data locality
(such as networks), a 1D distribution may require all processes
to communicate to each other. Yoo et al. showed that randomly
partitioning in two dimensions provides a substantial speedup
over 1D partitioning [6] for scale-free graphs when a 2D
block Cartesian structure is imposed that bounds the number of
messages communicated to at most 2(-VP — 1) instead of P-1
for 1D partitioning. Later, Boman et al. demonstrated that
using hypergraph partitioning to determine the 2D structure
provides an even better speedup in real-world graphs [7]. In
previous work, we explored several possible data partitioning
methods, evaluated on a high-performance supercomputer, in
the context of reducing the runtime of the dimensionality
reduction step of SPG [8]. While standard 1D partitioning
allows the computation of the principal eigenvector of the
residuals matrix of a 4-billion-vertex graph in approximately
5 minutes on 16384 cores, these 2D partitioning techniques
enable much more favorable scaling properties by limiting
the number of messages during inter-process communication.
Fig. 1 illustrates the benefit observed in [8] of 2D partitioning.
The figure shows the run time to find the first eigenvalue of a
223-vertex R-MAT matrix ( [9]) as we increase the number of
cores (strong scaling). In this plot, the performance difficulty
of solving this eigensystem when utilizing a simple 1D random
distribution (blue curve) is apparent. The scalability is clearly
limited and the run time actually increases for more than
1024 cores. These 2D methods, however, show the improved
scalability for two of these 2D distributions: one based on
a random partitioning of rows/columns with an imposed 2D
block Cartesian structure (2DR, red line, [6]) and one that
uses hypergraph partitioning instead of random assignment
of the rows/columns to improve the communication volume

(2DH, green line, [7]). It is important to note that one nice
property of the 2DH method is that the partitioning time is only
slightly greater than the partitioning time of 1D hypergraph
partitioning (2DH uses 1D hypergraph partitioning plus a
small amount of additional work). Using these 2D methods,
we are able to get more reasonable performance scaling and
find eigenvectors for very large power-law graphs.

1000.00

100.00

0 10.00
E

1.00

0.10

R-Mat, 223 vertices
Modularity Matrix

4

.01.1.D Random

.0M0.2D Random

.1112D Flypergraph

16 64 256 1024

Number of Cores

4096 16384

Fig. 1. Strong Scaling. Time (in seconds) to find one eigenvector when
using different data distributions: 1D random, 2D Cartesian random, and 2D
hypergraph random.

The 2DH method, in particular, scales well and is effective
in reducing the runtime of the dimensionality reduction step.
However, the challenge with the 2DH method is that it is
relatively expensive to compute the distribution due to the
expense of the hypergraph partitioning step, and it may not be
possible to amortize this cost over enough SpMV operations.
For instance, for an 8 million row R-MAT problem, approx-
imately 40,000 SpMV operations are required to amortize
the additional cost of calculating the 2DH distribution and
yield a net improvement over the 2DR distribution (as shown
in Fig. 2). Since we typically need at most a few thousand
SpMV operations in our eigensolver, the partition must either
(1) be useful for multiple time steps in a dynamic graph,
or (2) be computable from a sampled graph which will take
much less time, in order for the method to be computationally
useful. In previous work, partitioning for dynamic graphs was
explored and partitioning with sampling was introduced [8],
in an effort to improve the intercept point in Fig. 2 and more
easily amortize this computational expense.

In this paper, we focus on partitioning with sampling in
order to enable the connectivity-based partitioning methods
such as hypergraph partitioning more feasible for very large
scale-free graphs. The remainder of this paper is organized as
follows. In Section II, we describe the methodology used in
our partitioning with sampling techniques and show some pre-
liminary results. In Section III, we further explore sampling,
applying several different sampling methods to improve the
2D hypergraph partitioning of three simple graph models, in
an attempt to better understand why sampling and partitioning
works. In Section IV, we explore the effect that graph struc-
ture has on partitioning and sampling. Section V provides a
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Fig. 2. Challenge with hypergraph partitioning. Time (in s) to partition once
and compute multiple SpMV operations.

summary and discussion.

II. PARTITIONING AND S AMPLING

Our previous study on the partitioning of dynamic graphs
suggested to us that it might be possible to partition a
simplified graph problem (one where edges have been re-
moved) without significant loss of partitioning quality (i.e., 400

without significant increase in SpMV execution time). Fig. 3
'r 300outlines our partitioning with sampling methodology. We first

sample the edges of the input graph G = (V, E) at rate
a to obtain a new graph G = (V, E'), where E' c E

and = For the results in this section, we use
simply uniform random sampling but in the subsequent section
we explore more complicated sampling techniques. Next, we
partition this significantly smaller graph G' and apply this
partition to the original graph. The desired outcome is that
G' is significantly less expensive to partition than G without
a significant loss in the partitioning quality.

actor network graph, hollywood-2009 [11], we see a great
decrease in partitioning time when partitioning graphs that are
formed by uniformly sampling the edges of the original graph
(Fig. 4) with no significant increase in execution time of the
resulting SpMV operation (Fig. 5) when these partitions are
applied to the original graph. Revisiting the tradeoff between
partitioning time and partitioning quality (SpMV runtime), we
see that sampling can greatly reduce the number of SpMV
operations needed to amortize the high partitioning time of
the 2D hypergraph methods. For the hollwood-2009 graph,
we see that applying a sampling rate of 0.1 can effectively
reduce the number of SpMV operations needed to amortize the
hypergraph partitioning methods by a factor of ten, making the
2DH method much more attractive. In this paper we investigate
sampling techniques with respect to different graph features,
to determine where this is an effective technique.
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Fig. 3. Partitioning and sampling.

In preliminary results, this technique of partitioning a sam-
pled graph has been very effective for several network graphs.
Here and in subsequent results, we quantify partitioning qual-
ity as the time to compute a SpMV operation for a partitioned
matrix. This SpMV operation was performed with the Epetra
library, part of the Trilinos project [10]. All results here and
in subsequent sections were generated on the NERSC Hopper
supercomputer.
We found that-in a real, observed network- partitioning

the graph based on a sample does not severely impact the
running time of the SpMV. Using the hollywood movie
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Fig. 4. Partitioning of sampled graph. Partitioning time in seconds for
hollywood-2009 graph with the edges of the graph being sampled uniformly
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III. DIFFERENT SAMPLING STRATEGIES FOR NETWORK

GRAPHS

In this section, we explore three different sampling tech-
niques and their application to three different simple graph
models. The first method is to sample graph edges in a
uniformly random manner. The second method is to sample a
graph edge with a probability proportional to degrees of the
vertices contained by the edge (edges incident to high degree
vertices are more likely to be chosen for the sampled graph).
The final method is to sample a graph edge with a probability
inversely proportional to degrees of its vertices (edges incident
to high degree vertices are less likely to be chosen for the
sampled graph).
We applied these three different sampling techniques to

three simple graph models: the Erdös—Rényi model (where
the edges are randomly chosen), the Chung-Lu model (where
edges are randomly chosen to fit a specified degree distri-
bution), and the stochastic block model (which approximates
community structure in blocks by randomly choosing edges
that connect two vertices within a block at a higher probability
that edges that connect vertices in different blocks). The graph
instances of each of these three models were built to have 220

vertices and an average vertex degree of 32. For the Chung-Lu
model, we sampled a beta distribution (a=2, b=5) in order to
obtain the vertex degrees. A weight for each vertex is drawn
from the beta distribution, and the probability of an edge
between two vertices is defined by the product of their weights.
Thus, the expected degree of a vertex is proportional to its
weight (and, in fact, is equal to its weight times the sum of
the weights over all vertices). The stochastic blockmodel was
created with 32 communities of equal size, and probabilities
within and between communities were set such that a vertex
has an expected degree of 30 within its community and 2
outside of its community. The subsequent figures show the
time to compute a 2DH partitioning with a particular sampling
method for several different sampling rates and the resulting
SpMV time relative to a 2DR partitioning.

Figure 7 shows the results of the three different sampling
techniques for the Erdös—Rényi graph. As expected, sampling
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Fig. 7. Erdos-Rényi model. Time to partition the sparse matrix using 2DH
with sampling (top) and time to perform the resulting SpMV operation relative
to the resulting 2DR SpMV operation (bottom).

more sparsely greatly decreases the partitioning time (a de-
crease of up to 19 times). However, the hypergraph partitioning
method does not improve the partitioning quality relative to the
random method and produces significantly worse partitioning
for most sampling rates. Since there is no inherently good
partition for an Erd6s—Rényi graph, any cut determined by
the 2DH method will be based on pure happenstance, and
sampling may cause good partitions to be missed.

In Figure 8, we see the results of the three different sampling
techniques when used to partition the Chung-Lu graph. Again,
we see a significant (up to a factor of 18) decrease in
partitioning time for the 2DH as we sample the edges less
frequently (lower a). In terms of partitioning quality, the
2DH method with sampling produces mixed results. Uniform
random and inverse degree sampling with 2DH partitioning
produces partitions of worse quality and similar quality to
2DR, respectively. However, sampling proportionally to the
vertex degrees produces partitions with 2DH significantly
better than 2DR. Here, the skewed degree distribution creates
some structure that can still be exploited within the sample.

In Figure 9, we see the results of the three different
sampling techniques when used to partition the stochastic
block model graph. Again, we see a significant (up to a
factor of 11) decrease in partitioning time for the 2DH as
we sample the edges less frequently (lower a). In terms of
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the resulting 2DR SpMV operation (bottom).

partitioning quality, 2DH partitioning seems to be better for
most of the sampling rates with all methods. Sampling does
not significantly alter the partition quality at the sampling rates
from a = 1/2 to a = 1/8. However, the quality does decrease
significantly for a = 1/16 and a = 1/32 (except for the
proportional degree sampling) before surprisingly improving
again at a = 64. In general, the sampling methods yield
similar quality partitions with the degree and inverse-degree
based methods being slightly better than uniform random.

IV. EFFECTS OF GRAPH STRUCTURE ON PARTITIONING

AND SAMPLING

In this section, we explore the effect of community structure
and degree distribution on partitioning and sampling in an
attempt to further understand how this structure affects both
the partitioning time and the partitioning quality [12].
We use R-MAT graphs with different parameters to simulate

community structure in a graph. In particular, we generated R-
MAT graphs with 220 vertices and an average degree of 100
with the parameters a, b = c = (0.75 — a)/2, d = 0.25,
where a was set to 0.25, 0.375, 0.5, and 0.625. Setting
a = 0.25, the result will be an Erd6s—Rényi graph, where
all edges occur with equal probability (similar but more dense
than the graph in the previous section). As a increases, the
condition number of the probability matrix decreases, and the
community structure in the graph increases as the two halves

interact less. The matrices were partitioned with the random
2D method (2DR) and the hypergraph method (2DH). For the
hypergraph method, we sampled a = 1/2' of the edges at
random for 0 < i < 10.

Results are shown in Fig. 10. As expected, the partitioning
time of the 2DH method is significantly reduced in all cases as
the proportion of edges sampled decreases. The 2DH method
reduces the SpMV runtime over the 2DR method in most
cases for the values of a corresponding to more community
structure (0.5 and 0.625), with at most a slight increase in
runtime for a < 0.5. When the matrix is more similar to an
Erd6s—Rényi graph (like in Fig. 7), 2DH partitioning never
significantly helps. This makes intuitive sense: Since there is
no structure to the graph, partitioning randomly should provide
about the same performance as looking for ideal cuts. One
surprising aspect of the results is that, for the cases with more
community structure, performance actually improves when
the data were sampled. This may be an artifact of the R-
MAT generator. It could be that, when there are fewer edges,
the weak community structure of the R-MAT graph is more
apparent, and as more edges between the two halves (and
their recursive counterparts) are added, the heuristic used for
partitioning method becomes less effective. This would imply
that 2DH provides an advantage for SpMV, that is better
revealed in the sparsified graph.
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V. SUMMARY/CONCLUSIONS

A key kernel in graph analytics is to solve very large
eigensystems as part of dimensionality reduction. In order to
solve these eigensystems efficiently, a good partitioning of the
matrix is necessary. 2D distributions have been shown to be
superior to their 1D counterparts (bounding the number of
communication messages), with the 2DH method producing
particularly high quality partitions. Unfortunately, this 2D
hypergraph partitioning method is significantly more expensive
than the random partitioning methods and this additional cost
can be hard to amortize when solving an eigensystem resulting
from a given graph. However, we have shown that is often
possible to sample the graph, producing a reduced order
approximate graph that can can be partitioned significantly
faster with little reduction in partition quality.

In this paper, we explored three different random sampling
techniques: uniform, degree-based, and inverse degree-based
sampling. We applied these techniques to three simple graph
models: Erd6s—Rényi, Chung-Lu, and stochastic block model.
In general, the degree-based and inverse degree-based methods
performed better than the uniform method, with the exception
of the random Erd6s—Rényi graph. The 2D hypergraph method
with sampling outperformed the 2D random method for the
Chung-Lu and stochastic block model, but not for the random
Erd6s—Rényi graph. This make sense since the Chung-Lu and
stochastic block models have some sparsity structure that the
hypergraph based method may be able to use in order to
improve upon a random structure. The significant improvement

in running time with the stochastic blockmodel also suggests
that community structure is the dominating driver of difficulty
when partitioning to perform distributed SpMV operations.
We also used R-MAT matrices to explore to effect that

community-like structure might have on partitioning and sam-
pling, altering the R-MAT parameters to obtain a spectrum of
the community-like structure. Again, with these experiments,
we saw that those graphs with more structure led to significant
better quality with the hypergraph partitioning in comparison
to the random partitioning. For these graphs with significant
community structure, sampling did not greatly reduce the par-
titioning quality until we sampled very sparsely (partitioning
1/256 of the edges).

In future work, experiments will also use the Block Two-
level Er6s—Rényi (BTER) generator [13], which more accu-
rately models community structure. The R-MAT generator was
used here for the sake of continuity with earlier work and since
there is no publicly available parallel BTER generator.
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