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ABSTRACT
We consider techniques to improve the performance of paral-
lel sparse triangular solution on non-uniform memory archi-
tecture multicores by extending earlier coloring and level set
schemes for single-core multiprocessors. We develop STS-k,
where k represents a small number of transformations for
latency reduction from increased spatial and temporal lo-
cality of data accesses. We propose a graph model of data
reuse to inform the development of STS-k and to prove that
computing an optimal cost schedule is NP-complete. We
observe significant speed-ups with STS-3 on 32-core Intel
Westmere-EX and 24-core AMD ̀MagnyCours' processors.
Execution times are reduced on average by a factor of 6(In-
tel) and 4(AMD) for STS-3 with coloring compared to a ref-
erence implementation using level sets. Incremental gains
solely from the k level transformations in STS-k correspond
to reductions in execution times by factors of 1.4(Intel) and
1.5(AMD) relative to level sets and 2(Intel) and 2.2(AMD)
relative to coloring.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Sparse, structured, and very large systems (direct and itera-
tive methods); G.4 [Mathematical Software]: Efficiency
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1. INTRODUCTION
Sparse triangular solutions are required in many scien-

tific applications, and particularly when sparse linear sys-
tems are solved using a method such as preconditioned con-
jugate gradient. Parallel implementations of sparse trian-
gular solution tend to perform poorly for several reasons.
The dependencies arising from the sparsity structure can
reduce the number of tasks that can be computed in par-
allel. There are often significant overheads related to syn-
chronization after the completion of each set of indepen-
dent tasks. Furthermore, higher data access latencies can
degrade the efficiency of an implementation especially on
multicores with large core counts and non-uniform memory
architectures (NUMA). These factors present new opportu-
nities for speeding-up sparse triangular solution on NUMA
multicores [12]. An added benefit is that any performance
gains that can be achieved at a multicore node will also
increase efficiencies when larger problems are solved across
multiple multicore nodes of a high performance computing
cluster.
We consider sparse triangular solutions with a lower tri-

angular coefficient matrix L, i.e., solving for x in the system
L x x = b. We provide a new multilevel method that we call
STS-k, where k is a small integer that reflects the number
of transformations. These transformations lead to k-levels
of sub-structuring of the data with large independent sets
or packs of tasks that reuse components of the solution vec-
tor. These packs can be scheduled on a NUMA multicore to
promote reuse through temporal locality for enhanced levels
of performance from reduced latencies of data accesses.
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The remainder of this paper is organized as follows. Sec-
tion 2 contains a brief overview of parallel sparse triangu-
lar solution and prior related research. Section 3 contains
our main contributions. These include a Data Affinity and
Reuse (DAR) task graph model to study the complexity of
optimal scheduling schemes, to prove that computing the
schedule of minimum time is NP-complete, and to formulate
heuristics that inform the development of STS-k. Section 4
concerns an in-depth empirical evaluation of STS-k, with
k=3 on 1-32 cores of an Intel Westmere-EX processor and
on 1-24 cores of an AMD ̀MagnyCours' processor. Section 5
contains concluding remarks including directions for future
research.

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of sparse tri-

angular solution and review of related work.
Sparse Triangular Solution. Sparse triangular solution
concerns a linear system of equations of the form L x x = b,
where L is a sparse lower triangular matrix and b a vector.
Components of the solution vector x are computed using
elements of L and b. Observe that if the matrix L were
dense, then triangular solution would be inherently sequen-
tial in that the solution for component x, would depend on
all previous components, i.e., xi, , xj_1, and hence the
components have to be computed in order from the first to
the last one. The sparsity of L, i.e., the presence of zeroes,
removes this constraint although there will be dependencies
among groups of the solution vector components. These de-
pendencies need to be managed for effective parallelization
and to promote data reuse to reduce latencies of data ac-
cesses on NUMA multicores.
Related Research. There are two alternative techniques,
one based on coloring and the other on level sets, to com-
pute orderings that expose parallelism in sparse triangular
solution.
The earliest scheme, based on graph coloring, was pro-

posed by Schreiber and Tang [9] in the eighties to extract
parallelism in sparse triangular solution for efficient imple-
mentations on multiprocessors. Consider the graph of the
matrix A = L+ LT , G = (V, E) where each row/column in A
corresponds to a vertex in G and an edge exists between ver-
tex i and j if and only if A,3 O. Now G is colored, followed
by a reordering of the matrix L in which rows/columns in
each color are numbered contiguously, in some order of the
colors. This method is very effective in identifying large in-
dependent sets of tasks that can be processed in parallel to
calculate corresponding components of the solution vector.
In the nineties, a level set reordering was proposed by

Saltz [8] as a scheme to enable parallel sparse triangular
solution on multiprocessors. In this approach, a variant of
breadth-first search is performed on the graph of A = L
LT to identify a succession of vector solution components
that can be computed concurrently. Each level identified
in the search corresponds to a set of calculations that can
be performed in parallel after the previous levels have been
completed.
A parallel step in sparse triangular solution corresponds

to solving unknowns within the same color or same level,
concurrently. These parallel steps must be performed one
after the other because they depend on unknowns that were
computed in a preceding step, i.e., at a preceding color or
level. Consequently, their total number, which is equal to

the number of colors or levels, and the average number of
solution components per step provide a measure of avail-
able parallelism. The total number of these steps is also a
measure of the overheads of synchronization that must oc-
cur within an implementation of parallel sparse triangular
solution.
More recently, Naumov [6] developed a sparse triangular

solution scheme for Nvidia GPUs using the level set order-
ing to extract parallelism. We utilized the fact that graph
coloring is very effective in extracting large independent sets
of calculations to develop an alternate scheme for sparse tri-
angular solution on GPUs [11]. This scheme resulted in very
large factors of performance gains relative to the Nvidia im-
plementation based on level set ordering [6].
Wolf et al. [12] considered several factors influencing the

performance of sparse triangular solution on multicores to
conclude that the overheads of synchronization between par-
allel steps have the greatest effect on the performance of
sparse triangular solution. Earlier, we had proposed a mul-
tilevel compressed sparse row sub-structuring (CSR-k) as
an alternative to the traditional compressed sparse row for-
mat for sparse matrix calculations on NUMA multicores [4].
This sub-structuring of the sparse matrix seeks to mimic the
multiple levels of caches present in NUMA multicores to in-
crease locality of data accesses. Our evaluation for parallel
sparse matrix vector multiplication indicated significant per-
formance benefits largely as a consequence of higher cache
hit rates and an effective reduction in data access latencies.

In this paper, we adapt CSR-k, coloring and level-set ap-
proaches and develop a scheduling framework for efficient
parallel sparse triangular solution on NUMA multicores.

3. STS-k: A MULTILEVEL SPARSE
TRIANGULAR SOLUTION SCHEME
FOR NUMA MULTICORES

In this section, we develop STS-k, a multilevel scheme for
sparse triangular solution to achieve high performance on
NUMA multicores. The key idea is to restructure the tra-
ditional scheme to exploit the memory hierarchy of NUMA
multicores that affect data access latencies.
We develop STS-k as a specific composition of key tech-

niques. We first consider techniques to increase: (i) spatial
locality of memory accesses by grouping rows into super-
rows; and (ii) the size of independent sets of super-rows that
can be processed in parallel. Next, we develop a NUMA-
aware task graph model of calculations in an independent
set, or pack, and specify a scheduling problem, which we
show to be NP-complete. Then, we present a special case
of the scheduling problem and its heuristic solution. These
results inform a further level of sub-structuring to promote
data reuse through temporal locality of shared solution com-
ponents among tasks in a pack to yield STS-k. We expect
that STS-k will permit high levels of parallelism and spa-
tial and temporal locality of data accesses to significantly
speed-up sparse triangular solution on NUMA multicores.

3.1 Super-rows for Increasing Spatial Local-
ity in Data Accesses

In our previous work [4], we introduced CSR-k, a multi-
level compressed sparse row format for efficient sparse matrix-
vector multiplication, SpMV, on multicore processors. In
this scheme, k is an integer greater than 1 that represents
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Figure 1: A = L LT (left) and its graph G1 (middle) transformed into G2 (right) with super-rows through coarsening. A
vertex of G2 is formed by collapsing two connected vertices of G1.
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the number of well-differentiated levels in the memory hier-
archy of a multicore processor and it is used to repeatedly
(k — 1 times) group rows of the matrix into a format that in-
creased the spatial locality of access during SpMV. We now
adapt CSR-k to improve spatial locality in accesses to L and
x in sparse triangular solution.
CSR-k uses the graph form of a symmetric sparse ma-

trix; in sparse triangular solution we have only a sparse
lower triangular matrix L but we can construct an equivalent
symmetric matrix A = L LT and consider its undirected
graph G1 (see Figure 1 for an example). Consider a number
of rows of A that have in common one or more columns with
nonzeroes in them, or equivalently, their vertex counterparts
in G1 that are connected by many edges. The latter can be
agglomerated to form a super-vertex with the correspond-
ing rows in A forming a super-row. This agglomeration can
be formalized using graph coarsening or grouping together
continuous rows of A, if it is ordered using band-reducing
ordering, such as reverse Cuthill-McKee [1] (more details
can be found in [4]). The coarsened graph corresponding
to this grouping, whose vertices now represent super-rows,
is denoted by G2. For example, in Figure 1, each super-
row consists of two rows of A that share nonzeroes in a
column. In CSR-k this process is repeated k — 1 times to
get super-rows, super-super-rows and so on. Further, coars-
ening is performed in such a way to seek super-rows with
equal numbers of nonzeroes to enable equal work tasks.
When CSR-k is developed for performing parallel SpMV,

observe that there are no dependencies among tasks that op-
erate on super-rows. Instead, there are opportunities to ex-
ploit spatial locality in accessing the matrix, the vector and
potentially promoting reuse in the vector [4]. Consequently,
k could be selected and combined with certain data reorder-
ing and restructuring techniques purely to promote locality
at various levels of the NUMA cache hierarchy [4]. How-
ever, parallelism in sparse triangular solution is markedly
more limited and complex. Consequently, we recommend
keeping k to a very small value of 1 or 2 to increase spatial
locality to a certain extent while retaining a large fraction of
the fine-grained connectivity structure to extract parallelism
before additional locality enhancing techniques are applied.

3.2 Identifying Large Packs or Sets of Inde-
pendent Super-rows for Parallel Process-
ing

Traditionally, methods such as level-set [6, 8] and color-
ing [9, 11] have been applied to G1 , the graph of Ai = L+LT
to identify independent sets of solution vector components
so that the associated tasks can be performed in parallel.
The number and sizes of such independent sets matter with
larger and fewer sets being more desirable. This is because
larger sets represent a greater degree of available parallelism.
Further, there are dependencies between these independent
sets in that they have to be computed one after the other
in order to ensure that components computed in earlier sets
are available for use in later sets; a smaller number of sets
leads to fewer synchronization points during sparse triangu-
lar solution. As discussed in Section 2, coloring is generally
superior to level-set in regard to these factors.
To identify independent set of super-rows and the sub-

sets of their solution vector components that can be com-
puted in parallel, either level-set or coloring can be applied
to G2. We expect that coloring will be more effective than
level-set in producing fewer and larger independent sets or
packs. Further, we expect that level-set may actually do
better when applied to G2 as opposed to G1 because G2
has fewer vertices leading to a fewer levels in level-set and
thus fewer independent sets representing larger amounts of
parallel work. To further accentuate this effect, we propose
that level-set be applied starting with a vertex of largest
degree. Assume that some n3 packs are obtained and that
they are denoted by Pk, k E 1, . , n3. Typically, tasks re-
lated to solving for unknowns in Pk will depend on solution
components from all previous packs P1, .. • , Pk-1. To in-
crease the level of reuse of solution components from earlier
independent sets, we propose ordering the independent sets
in increasing order of their sizes, i.e., find a permutation 7
such that 1P,r( 1 )1 < 1P,,(2)1 • • I P,r(n3) l. Figure 2 shows
G2 from the earlier example organized into independent sets
or packs after coloring.

3.3 NUMA-aware Scheduling of Packs for Uti-
lizing Temporal Locality of Data Accesses

Once packs and their ordering have been determined, their
constituent tasks can be processed in order from pack P1
through to Pn3. We now consider scheduling tasks in a pack
in order to utilize the sharing of specific solution components
from a previous pack among tasks in the current pack.

Without loss of generality, assume that a task corresponds
to a super-row and its associated solution components. Such



Figure 2: Independent sets or packs of rows obtained after
coloring of G1 (left) and packs of super-rows after coloring
of G2 of the example shown earlier in Figure 1. Observe the
differences including 3 colors for G1 versus 2 in G2.

a task would require arithmetic operations proportional to
the number of nonzeroes in the associated super-row. By
construction, each super-row was selected to have approxi-
mately the same number of non-zeroes and so the number of
arithmetic operations per task could be assumed to be equal
and of a certain value e. However, actual execution times
would depend on the cost of data accesses. One way to re-
duce latencies is by promoting reuse of solution components
from proximal caches in the NUMA sense. We now seek to
formalize these costs so we may study how tasks within a
pack may be scheduled in a NUMA-aware manner.
We formulate a data affinity and reuse, i.e., a DAR graph

of pack k, DAR(k) = (Vk, Ek), where Vk = {trn E Pk}, the
set of tasks in Pk. We denote the unknowns in a task tj by XI
and the set of unknowns on which the solution of xj depends
upon is denoted by DX1. Now, there is an edge between
tasks tj and tm, i.e., (tc, tr,) E Ek, if DX1 n DX77, O.
A DAR of a pack is shown in Figure 3. We want a sched-

ule of the tasks in a pack, i.e., tasks to cores mapping is
sought in order to balance the load across cores and to min-
imize data access costs based on a latency model that con-
cern NUMA-distances between cores. First, we show that
this scheduling problem is NP-complete even on a Uniform
Memory Access (UMA) architecture. After that we propose
a heuristic algorithm for this assignment problem which is
useful for a particular kind of DAR.

Pack 1 Pack 2

Figure 3: The construction of packs (left) and data affinity
and reuse (DAR) graph of tasks of the second pack of G2
(right) based on the example shown in Figure 2. Each task
corresponds to a super-row and two tasks are connected if
they need elements of x computed in the first pack.

To assess the complexity, we start by simplifying the cache-
model of the processor as much as possible while retaining
the combinatorial nature of the problem. It turns out that

we can consider a single level of cache with unlimited ca-
pacity. Roughly speaking, this would be similar to only
considering the (very large) L3 cache.

DEFINITION 1 (ONE-LEVEL PLATFORM). We suppose that
we have q processors that share a storage location of infinite
volume (called memory). There are q caches C1, , Cq such
that:
• Processor j can only read data stored in cache Cj at a

cost r.

• The cost to copy some unit of data from memory to
any cache is w.

• Each cache has art infinite volume.

DEFINITION 2 (IN-PACK). IN-PACK AFFINITY-AWARE AS-
SIGNMENT PROBLEM: We have a set of tasks (ti,. . . ,t7,) that
we want to schedule On q processors. We assume that the
tasks have equal execution time e. Let Ii be the set of data in-
puts necessary for the execution of ti. The IN-PACK problem
is to schedule the n tasks on q processors while minimizing
execution time.
In order to schedule the n tasks on the q processors, we

need to partition the tasks onto these processors. Let 7r
be a schedule: task ti is mapped onto processor 7r(ti). For
1 < j < q, let Vj = {i 7r(tj) = j} denote the indices of tasks
mapped onto processor j. The execution time of processor j
is the sum of:
• the cost of transferring required data inputs to its

cache:

w • UiEvi

• the time to execute the tasks:

e. IVA;

• the time to perform the required number of reads:

r • E
iEVj

Note that we have the sum of the cardinals E 1,1,1
rather than the cardinal of their union U Id (as for
the copy from memory to cache), because the input of
the ALU buffers must be reloaded for each task.

Finally, the execution time of a schedule is:

tiEVj iEVj

The decision problem associated to IN-PACK is to determine
whether their exists a schedule of given length K .

THEOREM 1. The IN-PACK problem is NP-complete even
when r = e = 0, i.e., when accounting only for memory to
cache transfers.

PROOF. The IN-PACK problem clearly belongs to NP. To
show the completeness, we use a reduction from 3-PARTITION.
Consider an arbitrary instance Z. of 3-PARTITION: given an
integer B and 3n integers al , , a3„, (for all i, B< ai <
can we partition the 3n integers into n triplets, each of
sum B? We can assume that E3n1 ai = nB, otherwise
21 has no solution. The 3-PARTITION problem is NP-hard
in the strong sense [3], which implies that we can encode all
integers (al, ..., a3,2, B) in unary.
We build the following instance 22 of IN-PACK:

(max w • u iil + e • MI +r ' E lid . (i)
I< j<q



• There are q = n processors;

• There are Bn ta.sks (t1, , tsn);

• There are Bn data inputs X = (xi, ... ,xsn);

• The dependence graph has 3n connected components
(intuitively, one for each a.,). Each task in a connected
component has two data inputs, as shown in Figure 4.
Formally, let A, = then for j E {1, , ai},
the inputs of task tA,,+3 are

= {x,4.,+3,XA,+(3 mod a,)+1}•

• Finally, we take r = 0 and e = 0 and ask whether there
exists a schedule of execution time at most K = wB.

XAi+1

XAi +2

XAi+3

XAi+4

Figure 4: Input dependencies for the tasks (left) and its
DAR graph (right). There are 3n such connected compo-
nents.

Clearly, 12 has a size polynomial in the size of Z. when
Zl is written in unary. With r = e = 0, minimizing the
execution time becomes the problem of minimizing:

max U Iz 1<j<q. 
(2)

zEv
In the following, we let Ti tAi-Fai be the set

of the a, tasks in the connected component corresponding
to ai. By construction,

U Ij = {XJ14+1, • • • (3)

tjETI

Furthermore, let i i', then

u /3) n u =0.,tiE tj ETir

We now prove that Zl has a solution if and only if 12
does. Assume first that Zl has a solution. For each triplet
of the n triplets (ai, aj, ak) of /1, we schedule Tz, Tj and Tk

(4)

Pack
X1

X2

X3

X4

Xn

Xn+1

Figure 5: The dependency graph for a pack where ti only
shares input with ti_i and ti±i (left), and its DAR graph
(right).

on a single processor. According to Equations (3) and (4),
then the number of data inputs to copy on the cache on this
processor is then equal to a.„ aj ak = B. Hence this
schedule has an execution time of wB. Hence a solution
to 12.
Assume now that 12 has a solution. Since the execution

time is wB, there are at most B data input copied on each
cache. Furthermore, because we have to copy all data in-
put at least once, there are exactly B data input copied on
each cache. Finally, no data input is copied on two different
caches, otherwise we would copy at least nB +1 data inputs,
which would make at best an execution time of w ni3-E1 .
Let us now show that for each set of tasks Tzj all the tasks

of T, are scheduled on the same processor. By contradiction,
assume that there exists j < j' such that tA,+3,tA,+3, E Tz,
and 7(tA,+3) 7r(tA,+3,). Then we have two successive
tasks between tA„k, and tA,,+3, that are not mapped onto
the same processor. Formally, there exists jm,„, > j such
that

7(tA„Ej) = -1) 7r(tA,+3,,m,) = 7r(tA,+3,)•

Then xA,±3,r, 1 is an input common to both tasks tA,+3,„,,,-
and tA,+,rni„, hence it has to be copied on both processors
7(tA,+,) and (t A,+3,), which contradicts the fact that each
input is copied at most once.

This shows that each connected component of the task
graph is mapped onto a single processor. Now each processor
has execution time at most wB, hence it can be assigned
at most three such connected components, because of the
condition B< a2 < B for all i. Finally, since the total
number of writes is nB, each processor has execution time
exactly wB, and this gives a solution to Z. 0

A heuristic algorithm for the In-Pack problem.
Fortunately, some task graphs are easier to schedule. Con-

sider the task graph represented in Figure 5, where we have
a long suite of tasks in a pack each with two inputs. We
discuss in the next subsection when this structure arises in
sparse triangular solution. In the IN-PACK task graph on
the right of the figure, there is an edge between t, and t,±1
if they reuse data to solve for the unknowns in these tasks.
This reuse is due to temporal locality of x during concurrent
execution of the tasks. Note that this graph corresponds to
one connected component in Figure 4 but without the back-
ward edge (and n tasks instead of a,). We will use this
simple task graph in Section 4. Simply assume that n is a
multiple of q, n = mq. Then the static scheduling algorithm
that assigns blocks of m tasks to processors is optimal: it
has an execution time w • (m + 1) e • m r • (2m), and



each of these terms is optimal. However, the model does
not account for variability across processor speeds, a phe-
nomenon to be expected in practice, and we transform the
stator algorithm above into a dynamic heuristic as follows:
To complete the tasks at the earliest, assign the available
processors c1, c2, . , cq to the tasks ti , t2, , tq. At some
point the tasks ti, t2, . . . , tk would be completed. Assign the
next task tk+1 to processor c3 if it is free. This assignment
ensures sharing of x in L3 between tasks tk and tk+1.
Other scheduling techniques to enhance temporal locality

could be envisioned, and we leave them for future work.
In Section 4, we perform an experimental evaluation of the
STS-k algorithm.

3.4 STS-k: A k-level Sub-structuring of Sparse
Lxx=b for Spatial and Temporal Locality
of Data Accesses

We now propose a heuristic STS-k, that is informed by the
algorithm to utilize temporal locality in the In-Pack assign-
ment problem when its DAR is a line as shown in Figure 5.
STS-k involves a further restructuring of super-rows in a
pack so that its DAR will contain the line graph form.

Starting with the ordering across independent sets pro-
posed earlier, namely a permutation 7r in increasing order
of pack size, consider a specific Pk and its DAR(k). Let
Lkxk = bk — L" X" correspond to the calculations across
all tasks in Pk. The xk are calculated using Lk and bk after
previously computed components x*3 and their correspond-
ing elements in L, namely L" , are removed. Observe that

DAR(k) does not correspond to the graph of Ak = Lk +LkT

Instead it corresponds to the graph G(Ak) where Aka 0 if

and only if L„ 0 and Li3 0, j < i, l, i.e., two rows share
a solution component from a previous pack correspond-

ing to elements in L" . The matrix Ak need not be formed
at all. However, observe that if A were to be tri-diagonal

then G(Ak) would indeed be a line graph. Similarly, if Ak
could be put in a sparse band-reduced form, then its corre-

sponding G(Ak) would contain a line graph. We therefore

reorder DAR(k), and hence G(Ak) using Reverse Cuthill-
McKee [1]. Following that, we permute Lk according to this
ordering. Other bandwidth reducing ordering schemes can

also be used to reorder Ak , we consider them in our future
work.
The ordering across and within packs of the super-rows

and their constituent rows, gives a 3-level sub-structure that
LsTs—kwe denote a *XSTS—k = bsTs—k..s For a small sparse

matrix from a fluid dynamics application L is shown with
coloring (9 colors), and restructured L with STS-3 (4 colors)
in Figure 6. Consider the last pack in each case; observe how
the off-diagonal parts of our STS-k formulation are struc-
tured whereas these areas are disordered for the traditional
scheme. These substructures in STS-k reflect the line graph
form that is present in the reuse of solution components from
previous packs.
The 3-level structure in STS-k maps very simply to the

traditional compressed sparse row representation of sparse
triangular solution formulation as shown in Algorithm 1 by
using two additional sets of indices. An array index3 of size
713, the number of packs, points to the first super-row of
each pack. Similarly, index2 array indicates the first row of
each super-row. These two arrays in addition to the tradi-
tional compressed sparse row format arrays, namely indexi,

subscript1, and valueL complete the 3-level representa-
tion. Observe that the storage format is similar to what
was developed earlier for parallel sparse matrix vector mul-
tiplication [4]. However, it differs in how it was specifically
derived to expose parallelism and locality of data accesses
for sparse triangular solution. These attributes derive in
part from the original sparsity structure of L and addition-
ally from the effect of orderings across and within packs for
spatial and temporal locality.
Thus far we have developed STS-k for k=3. However,

depending on how many distinct levels there may be in a
given NUMA multicore, additional groupings of super-rows
into tasks could be considered for exposing locality in ways
that could be potentially utilized for higher levels of sharing
in the memory subsystem.
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Figure 6: L is shown with coloring (top) and STS-k (bot-
tom); the two biggest packs are are enclosed in boxes along
the diagonal. Observe the sub-structures that are revealed
in STS-k that correspond to reuse of solution components
among tasks in each pack.

4. EXPERIMENTAL RESULTS
In this section, we empirically evaluate the performance

of STS-3 including comparisons with reference implemen-
tations with either level-set or coloring orderings. After a
brief description of our evaluation approach, we consider the
following. We first seek to characterize the levels of paral-
lelism that are exposed when coloring or level-set orderings
are applied to either the original matrix or its CSR-2 repre-
sentation in STS-k. Next, we consider the incremental im-
pact on performance solely from the k-level sub-structuring
in STS-k for either ordering schemes. Finally, we consider
how effective STS-k is in speeding-up the largest pack by
increasing the locality of data accesses for its tasks.



Algorithm 1 STS-k with k=3 for sparse L x x = b; the
packs form the highest level of agglomeration at k = 3, fol-
lowed by super-rows k = 2, and rows in the traditional com-
pressed sparse row format k = 1, for a natural OpenMP
implementation.

1: INPUT: index3, index2
2: INPUT: indexi, subscript1, valueL, x, b
3: for i3 = 1 to n3 do
4: #pragma omp parallel for schedule(runtime,

chunk)
5: for i2 = index3[i3] to index3[i3 + 1] — 1 do
6: for il = index2 [i2] to index2[i2 1] — 1 do
7: temp_val = 0
8: for j = indexi [4] to indexi[ii + 1] — 2 do
9: temp_val+ = valueL[j] * x[subscript1 [j]]
10: end for
11: x[ii] = (b[ii] — temp_val)lvalL[indexi[ii + 1] — 1]
12: end for
13: end for
14: end for

4.1 Test Environment and Approach
Matrix Test Suite. Our test suite consists of the lower tri-
angular parts of 12 sparse symmetric matrices selected from
the University of Florida Sparse Matrix Collection [2]. These
are listed in Table 1 with the number of rows n ranging from
0.9 to 50.9 million, non-zeros (nnz) in the range 31.0 to 225.4
million and row densities (nnz/n) in the range 3.1 to 44.63.

Matrix n nnz nnz/n
G1: ldoor 952,203 42,493,817 44.63
D1: rgg_n_2_21_s0 2,097,152 31,073,142 14.82
S1: nlpkkt160 8,345,600 225,422,112 27.01
D2: delaunay_n23 8,388,608 58,720,176 7.00
D3: roacLcentral 14,081,816 47,948,642 3.41
D4: hugetrace-00020 16,002,413 64,000,039 4.00
D5: delaunay_n24 16,777,216 117,440,418 7.00
D6: hugebubbles-00000 18,318,143 73,258,305 4.00
D7: hugebubbles-00010 19,458,087 77,817,615 4.00
D8: hugebubbles-00020 21,198,119 84,778,477 4.00
D9: roacLusa 23,947,347 81,655,971 3.41
D10: europe_osm 50,912,018 159,021,338 3.12

Table 1: Test suite of matrices with dimension n, the number
of non-zeroes nnz, and the average row densities nnz In.

Multicore Architectures. We perform tests on an Intel and
on an AMD multicore node. The Intel node contains 4 Intel
Xeon E7-8837 chips each containing 8 cores connected via
QPI (Westmere-EX microarchitecture). The memory hier-
archy of the system consists of L1, L2, L3 cache and 512
GB of DRAM. Each core has private 64 KB L1 and 256
KB L2 caches with access latencies of 4 and 10 cycles re-
spectively [5]. The 24 MB L3 cache is shared among all 8
cores and it shows NUMA effects with latencies that can
vary from 38 to 170 cycles depending on location. Further-
more, the memory access latencies are 175-290 cycles [5].
We denote this node by Intel in the rest of the paper.
The AMD node consists of 2 twelve-core AMD ̀Magny-

Cour& processors [7]. The memory subsystem of this pro-
cessor has L1, L2, L3 cache and 64 GB of DRAM. Each core
has private 64 KB L1 and 512 KB L2 cache and a 6 MB L3
cache is shared among 6 cores. This processor is denoted by
AMD in the rest of the paper.

The value of k in STS-k is determined as follows. One
value of k is reserved for set of independent tasks, i.e., at
the pack level. The value of k-1 depends on a particular
architecture and the number of distinct levels of caches with
well-differentiated latencies from NUMA effects. In our test
systems, L1 and L2 are private with relatively low latencies
while L3 is shared with a large variation in latencies, leading
to k-1=2, with third value indicating pack level grouping. So
we choose k = 3 and evaluate the performance of STS-3 on
both Intel and AMD processors. In practice, the sensitivity
of performance to the value of k could be tested by trying
+/-1 values. Additionally, to correspond to bigger L2 cache
on AMD, super-rows are consisted of 320 rows of G1 while
super-rows have 80 rows of G1 on Intel.
Sparse Triangular Solution Schemes. We consider sparse
triangular solution using the compressed sparse row format
(CSR) with either level-set or coloring orderings as the refer-
ence schemes for comparisons. These are labeled as CSR-LS
and CSR-COL in the remainder of this paper. Our STS-k
formulation with k = 3 and coloring is denoted by STS-3 or
equivalently CSR-3-COL. Its alternative formulation with
level-set ordering is indicated as CSR-3-LS.

Degree of Parallelism
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* *
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• CSR-3-LS
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* STS-3
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Solution Cornponents per Pack

Figure 7: Each point represents observed values of the two
measures of parallelism, the number of packs and the umber
of solution components per pack, for one of four methods on
a matrix. Observe that across all matrices in the test suite,
clusters for level-set (with the pair CSR-LS and CSR-3-LS)
and coloring with the pair (CSR-COL and CSR-3-COL) are
very well separated. Further, their centroids clearly show
coloring to be vastly superior (note the log scale).

The reference implementations, namely CSR-LS and CSR-
COL, tend to be far more sensitive to the initial ordering of
the matrix than STS-k. They typically perform best when
the matrix is presented in the Reverse Cuthill-McKee [1],
i.e., RCM, ordering. We therefore use the RCM ordered
matrix as the input to all schemes including STS-k. Fur-
thermore, for all schemes, following the application of either
level-set or coloring, the packs are arranged in increasing or-
der of their sizes and the rows within packs are renumbered
contiguously. Level-set orderings are constructed starting
with a vertex of largest degree, because we have observed
this leads to fewer and larger packs. Consequently, they pro-
vide near best case instances for comparisons with coloring
in regard to effectiveness in extracting parallelism. Colorings
were obtained using the Boost library [10]. These steps en-
sure that differences between the two pairs, CSR-3-LS and
CSR-LS, and CSR-3-COL (or STS-3) and CSR-COL, are
removed except when that are by design.
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Figure 8: The percentage of total work in the 5 largest packs
with mean value shown as lines. Observe that CSR-COL
and STS-3 (CSR-3-COL) in the largest 5 packs contain over
90% of total work, where as in CSR-3-LS and CSR-LS the
largest 5 packs contain less than 5% of total work.

All methods were compiled using Intel's icc 15.0.0 (Intel)
and 15.0.1 (AMD) with -03 optimization. We use Intel's
OpenMP 4.0 with thread affinity set via KMP_AFFINITY
= compact, and with KMPJABRARY = throughput. Tests
with CSR-COL and CSR-LS used scheduling with
OMP_SCHEDULE = dynamic, 32 because they resulted in
the best performance. For similar reasons, tests with STS-
3 (CSR-3-COL) and CSR-3-LS used OMP_SCHEDULE =
guided, 1. We consider execution time in seconds measured
as the average of 10 sparse triangular solution repeats. Over-
heads of pre-processing for all schemes are ignored. This is
an accepted approach because such systems are solved for
large sequences of right-hand side vectors within an appli-
cation with the pre-processing costs getting amortized over
all these repetitions.

4.2 Effectiveness Level-Set and Coloring Or-
derings in Extracting Parallelism

We would like to consider how effective level-set and color-
ing orderings are in regard to exposing parallelism. Figure 7
shows how the four methods cluster over all 12 matrices
along two key dimensions, namely the number of packs and
the number of solution components that are calculated on
average per pack. The clustering indicates that coloring is
significantly more effective than level-set at exposing paral-
lelism; the number of packs using level-set are larger while
their sizes are larger using coloring, both by several orders of
magnitude (note log scale). Furthermore, applying CSR-3,
as we propose for the STS-3 formulation, causes small de-
creases in the number of packs with slight increases in their
sizes. This is evident from the positioning of the cluster cen-
troids for CSR-3-COL (STS-3) and CSR-3-LS slightly below
and to the left of those for CSR-COL and CSR-LS respec-
tively.
The total work in sparse triangular solution is propor-

tional to the number of nonzeroes, where work is a fused
multiple-add instruction. The percentage of this total work
contained in a few of the largest packs is another measure of
the degree of parallelism. This mea.sure is particularly im-
portant because it reflects how latencies could be masked by
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Figure 9: Parallel speedup of STS-3, CSR-COL and CSR-
3-LS compared to CSR-LS on 16 cores Intel (top) and 12
cores AMD (bottom). The horizontal lines show the mean
speed up for the entire test suite.

parallelism subject to bandwidth constraints (Little's Law).
Additionally, when the total work is scattered across many
packs, synchronization costs between packs can be substan-
tial, degrading performance. The percentage of parallel work
in the 5 largest packs is shown in Figure 8 further substan-
tiating coloring to be the ordering of choice.
The measures of parallelism that we have reported thus

far in Figures 7 and 8, are independent of the multicore
architecture. Although they predict a sizable gap in perfor-
mance between schemes that use level-set versus coloring,
hardware and OpenMP attributes will likely modify the ac-
tual gaps that will be presented in terms of execution times.
We consider this aspect next.
Let T(mat, method, q) indicate the execution time for a

matrix mat, with q cores, and method as one of STS-3, CSR-
3-LS, CSR-LS and CSR-COL. To compare across both color-
ing and level-set orderings, we use CSR-LS as the reference
method relative to which we report performance measures.
We define parallel speedup for a specific method and matrix
mat on q cores as:

T(mat, CSR-LS, 1) 

T(mat, method, q) •

The parallel speedup factors are shown in Figure 9 for 16
cores on Intel and 12 cores on AMD processors; geomet-
ric means are shown as horizontal lines. Key observations
include the following:

• STS-k or equivalently CSR-3-COL is readily the best
with a factor 6 (Intel) and 4 (AMD) improvement rel-
ative to the reference CSR-LS implementation. CSR-
COL which also uses coloring is next in rank for In-
tel and CSR-3-LS is next in rank for AMD. However,
there is a big gap in performance of CSR-3-COL and
CSR-COL which is not apparent from the data in Fig-
ures 7 and 8. The fact that STS-k outperforms CSR-
COL significantly is largely a consequence of the k-
level subs-structuring and its effect in decreasing data
access latencies.

• Interestingly, despite the very large gap in the lev-
els of parallelism between CSR-COL and CSR-3-LS as



shown in Figures 7 and 8, their parallel speed-up val-
ues are very close, with mean values of approximately
2.85 (Intel) and 1.8 (AMD) relative to the reference
CSR-LS implementation. This is largely a result of
the effect of the k-level sub-structuring that we have
proposed which reduces the latencies of data access
times.
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Figure 10: Relative speedup of STS-3 compared to coloring
on Intel (top) and AMD (bottom). The horizontal line shows
the mean speedup of STS-3.

4.3 Performance: Evaluating Incremental Im-
pacts from k-Level Sub-Structuring

We now seek to evaluate the incremental impacts on par-
allel performance solely from the k-level sub-structuring in
STS-k. We focus on the performance of CSR-3-COL relative
to CSR-COL and CSR-3-LS relative to CSR-LS. We define
relative speedup for coloring orderings as:

relative speedup(coloring) = 
T(mat, CSR-COL, q) 

T(mat, STS-3, q)

note that STS-3 is equivalent to CSR-3-COL.
The relative speedup for level-set orderings is defined as:

T(mat, CSR-LS, q) 
relative speedup(level-set) —

T(mat, CSR-3-LS, q)

A value greater than 1 of relative speedup indicates the fac-
tor by which the k-level scheme outperforms the reference
method. Figure 10 indicates that our k-level sub-structuring
is indeed beneficial on 16 cores of Intel with a factor of 2.2
and on 12 cores of AMD with a factor of 2.19 improvement
on average over all matrices when applied with coloring.
Similarly, Figure 11 shows that our k-level sub-structuring
is beneficial with level-set ordering, with a factor of 1.4 and
1.5 improvement on average on Intel and AMD respectively.
We next consider the relative speedup measured using the

total time over all the matrices in the test suite. We denote
the sum of execution time over all matrices for a method
on q core as T(*, method, q), where q ranging from 1-32 on
Intel and 1-24 on AMD. Using total execution time, relative
speedup for coloring is defined as:

T(*, CSR-COL, q) 

T(*,STS-3,q)
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Figure 11: Relative speedup of CSR-3-LS compared to CSR-
LS on Intel (top) and on AMD (bottom). The horizontal line
shows the mean speedup of CSR-3-LS.
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COL for the whole test suite on 1-32 cores of Intel (top)
and 1-24 cores of AMD (bottom). The horizontal line shows
mean value for 8-32 cores (Intel) and 6-24 cores (AMD).

and relative speedup for level-set ordering is defined as:

T(*, CSR-LS, q) 

T(*, CSR-3-LS, q)•

Figures 12 and 13 show the factors by which our k-level
structuring scheme outperforms the reference methods on all
the core counts and over the whole test suite. We observe
that k-level structuring outperforms by a factor of 2 with
coloring and a factor of 1.4 for level-set on 8 — 32 cores of
Intel. The k-level structuring also outperforms by a factor
of 2.2 with coloring and 1.5 with level-set on 6 — 24 cores of
AMD. These results show that our k-level sub-structuring
is indeed very effective and can reduce execution times by
one-third to one-half.

4.4 Effects of Enhanced Levels of Locality on
Execution Times of Largest Pack with Col-
oring

Our findings thus far confirm the superiority of coloring
over level-set orderings and demonstrate substantial perfor-
mance gains from the k-level sub-structuring. In particular,
we would like to assess to what extent the latter contribute
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towards enhanced levels of spatial and temporal locality in
processing a pack. To measure this we will need to remove
other factors such as synchronization costs between packs
that can be significant as observed by Wolf et. al [12]. Ad-
ditionally, we need to account for the fact that there is not a
one-to-one correspondence between packs for a given matrix
with CSR-COL and CSR-3-COL.
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Figure 14: Relative speedup of STS-3 compared to CSR-
COL for processing one solution component on Intel (top)
and on AMD (bottom). The horizontal line shows the mean
value of STS-3.

Let t(method, q) denote the execution time for the largest
pack P* for a given method on q cores scaled by its number
of unknowns (solution components). We define the parallel
speedup per unknown as the ratio:

t(CSR-COL, q) 

t(STS-3, q)

The parallel speedup per unknown on 16 cores of Intel and
12 cores of AMD is shown in Figure 14. Observe that on
average, this measure is high at 1.75 on Intel and 2.12 on
AMD across all the matrices in the test suite. Thus the
performance gain of STS-k is due to our STS-k formulation.

5. CONCLUSIONS
We have developed a multilevel sub-structured formula-

tion of sparse triangular solution to increase locality of data
accesses and thus reduce effective access latencies in NUMA
multicores. Our data affinity and reuse graph model of the
underlying computations informs how packs of independent
tasks may be scheduled for enhanced levels of reuse from
temporal locality of accesses. The observed performance
gains are both promising and significant.
We plan to consider more complex NUMA systems where

STS-k with values of k greater than 3 may be appropriate.
Such formulations could potentially be obtained through fur-
ther groupings of super-rows based on dependencies before
coloring orderings are applied or after they are applied to
define tasks in terms of collections of super-rows.
We expect to study the problem of NUMA-aware sched-

ules when data affinity and reuse graphs are constructed to
span more than one pack. While optimal versions will likely
be NP-complete, heuristic approaches and special cases of
graphs can inform alternate sub-structuring schemes that
could reduce synchronization overheads and increase local-
ity.

Current trends in microprocessor architecture indicate in-
creasing core counts with complex NUMA hierarchies. These
NUMA effects are expected to become more pronounced
when network-on-chip (NoC) architectures are considered.
In this context, we see potential for further performance
benefits through schemes for parallel sparse computations
such as the ones we have developed, with multiple levels of
sub-structuring for enhancing locality of accesses and the ex-
plicit consideration of data reuse for the scheduling of tasks.
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