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X-rays generated from a nuclear detonation
drive a number of important effects
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Air chemistry is one of the main
focuses for System-Generated EMP
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• Gas pressures from p=0 to 1 atm inside the cavity
• Warm x-rays drive off photoelectrons which drive transient

currents inside a cavity
• Interaction of a high-energy electron beam with air is key

piece of the puzzle
• Photoemission process is also crucial.
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The NRL MCSwarm Monte-Carlo code is
developed to self-consistently model air-chemistry

and return current
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• The size of J p depends on the how quickly

plasma electrons can respond to the
rapidly rising electric field

• SGEMP magnitude depends on J net

• Coupling a gas-chemistry model to
electromagnetic PIC is a way to model
SGEMP

• MCSwarm is being rewritten in a

modular class-based style to make it

easier to couple with other codes (PIC)

— Sandia PIC codes EMPHASIS and

Quicksilver is first test case
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MCSwarm follows electrons in gas on a
collision by collision basis
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o Inelastic

• Collisions are kinetic and
nonlocal — important at low
pressure

— all collisions are with
unexcited neutral gas

• Elastic collisions

• Inelastic collisions

- N2 and 02 have many
rotational and vibrational
modes

— electronic excitations and
ionization

dissociation
Y3/2018



Sandia has funded the development
of MCSwarm
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• Rewrite MCSwarm in a modular class-based style to
make it easier to couple with other codes (PIC)

• Work with SNL and NRL to make MCSwarm open
source and available to the weapons effects
community

• Use MCSwarm coupled with EMPHASIS to continue
model validation with direct e-beam experiments

• Think about how to use direct electron beam
injection to complement integrated experiments

7/3/2018
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Future improvements

• Couple MCSwarm with other PIC codes (ICEPIC, LSP, etc)

• Continue validation effort with ongoing NRL experiments

• Improve MCSwarm algorithm to treat exponential
electron density growth without exponential growth in

particle number

• Use variance reduction techniques to increase
computational efficiency

• Add reverse reactions, superelastic collisions, other
processes and electron-electron collisions

• Continue with code validation

7/3/2018



This work builds on a history of
beam-gas-interaction studies at NRL
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• lon-focused electron beam transport in atmosphere for SDI in the 1980's

• SNL-supported measurements of ionization by ion beams in 1990's

• DTRA-supported measurements of ionization by electron beams in early
2000's

• AWE-supported studies for paraxial diode development (2004)

• Direct electron-beam injection into gas for gas-chemistry validation (2006-
2008)

— very attractive from cost considerations

— useful as a test bed for diagnostic development for integrated shots

— useful surrogate for integrated tests?

• Current AWE-funded program for large-area 1 MeV, 1 kA/cm2 electron

beam to test aeroshells



Cross sections
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Neutral N2 cross sections used in

MCSwarm
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All these reactions are important for accurate electron-

energy distribution function f(c) (eedf)
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Scattering angle is chosen by sampling an
approximate form for the differential cross section

• Cross section form is consistent 1-Born
approximation with a screened potential

da _450(e) (1-42) 

df2 4TC 4cosOY

• The screening parameter, 4, is chosen to match
measured momentum transfer cross section

a
l = f(1—coo))  1 
a0 dfl

(1-0 
(1+ On

1+ 

1+

27-c sin(0)d

• The chosen form also matches the 2nd moment!

\
62 = f P2(cose9)

}(1  da 
2ir sin WO

cro dfl0

3(1—V) 2In1+ 4
4 V _

10-12

10-
-

10-24 
lo-3

Below 1 keV = Phelps

Above 1 keV = Mayol

100 io3

e (eV)

106

A. Okhrimovskyy, A. Bogaerts, R. Gijbels, Electron anisotropic scattering in gases: a formula for Monte Carlo simulations, Phys.

Rev. E 65 (2002) 037402.
11



The screening parameter can be
determined from a sim le fit

0.5

-0.5

_1 L

4fit = 0.9952 * cos 1.4787  61 + 0.09954
a0

Exact

0.5 1 1.5 2

i/CY0

• The screening
parameter 4(c) can be
determined for any gas
from 61(c)/60(8)

• 4fit provides a good
approximation for and
greatly simplifies
inversion
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= 0.9952 * cos(1.4787 * 61 + 0.09554)
Go
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MCSwarm

Algorithm
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Collisions are modeled as a Poisson
rocess
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• Independent increments (the number of collisions in
different time intervals are independent of each
other)

• Stationary increments (the probability distribution of
the number of occurrences counted in any time
interval only depends on the length of the interval)

• The collision probability is given by Poisson
distribution

P(n, vAt) = e-vAt (vAt)n/n!

• No counted occurrences are simultaneous.
7/3/2018



MCSwarm assumes no more than

one collision in At
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• vmax = max(v(E))

• Errors occur if more
0.8

than one collision
occurs in At -.7,-.. 0.6

cl
• Errors are minimized >c-

by choosing vmaxAt al IEr_ 0.4

(error < 0.5%)

• Collisions are applied
if [1-P(0,vmaxAt)] < R
(R=random(0,1])

0.2

vmaxAt=0.1

0 I.

vmaxAt=1

2 3 4

n

5 6
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The null-collision method simplifies
the collision al orithm
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• A null collision is
introduced to make
collision frequency
independent of energy

• Collision type is chosen
by random number R

vilvmax< R < 1

Velas/Vmax < R < vilvmax

0 < R < Velas/Vmax

null event

inelastic event

elastic event
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Kinematics of the collision process

vf R 1C R•v,

• Rotate coordinate system so that z-axis
of the new coordinate system is aligned
with particle velocity

casOcos0 cosOsin0 —sin▪ 8
—;vi =R•vi = — sin0 cos0 0 •vi

sinOcos0 sinOsin0 cost9

• Sample differential cross section to get
scattered angle oc and rotate v'
according to

cos 19, cos - sin sin 19, cos

v = c • 17, = cos 19, sin 0, cos 0, sin 19, sin •
— sin 19, 0 cos 19,

• Rotate back into lab frame (R-1=RT)

v =f = f

7/3/2018



Sandia
National
Laboratories

Energy loss during collisions

• Elastic collisions with molecules of mass M at rest

( 2m
8f =8; /  (1—cosOC)

M i
• Inelastic collisions with bound electrons with threshold energy 8*

8f =8; —8*

• Energy is shared between primary (8) and secondary
electron (8sec) 1 in ionizing collisionstx - 

Ef — E i E ion E sec

E sec =B tan{R a tan
/ El — E *

B i}(B=15.6 eV for N2 and 12.2 for 02 and

R is a random number between 0 and 1)

tC.B. Opal, W.K. Peterson, E.C. Beaty, Measurements of secondary-electron spectra produced by electron impact ionization of a
number of simple gases, J. Chem. Phys. 55 (8) (1971) 4100-4106.



Between collisions, particles move
in electric and magnetic fields

4' 1 p ><b'
= e L + 

dt ymc i

• The Lorentz force equation is updated with a second-order
Boris pusher
Y Y 1 r Y 14 1

= e P+n+ 
2 

n-2 n+ 
2 

n -2
At 27 nMC i

Define ib)± and P by

P= k+i — dAt / 2 , p= k 1 + dAt / 2
2 2
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pmg•-=(p+p)xegAt/27nmc
The solution can be written as

p  2g 
P =P +P a with p=p+pxg,g=  egAt s =

27 n MC

, 

( 1+ b2 )
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Verification of
MCSwarm
algorithms
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MCSwarm reproduces the exact
solutions of Lewis for elastic scattering
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* H. W. Lewis, Multiple scattering in an infinite medium, Phys. Rev. 78 (1950 ), 529. 21



The time-dependent eedf approaches
the 2-term steady state solution
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• Initial condition is the
distribution of
secondaries created
by 100 eV beam of
electrons

• The time-dependent
eedf provides the
time-dependent
transport coefficients

0,6

0.5

0.1

0
0.01

1 Td = 2.7x104 V/(m-atm)=35 V/(m-Torr)

E/N=200 Td

two-term
steady-state r
solution f

0.1 1 10

E (eV)

100 1000
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The time-dependent eedf approaches
the 2-term steady state solution
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• Initial condition is the
distribution of
secondaries created
by 100 eV beam of
electrons

• The time-dependent
eedf provides the
time-dependent
transport coefficients

0,6

0.5

0.1

0

1 Td = 2.7x104 V/(m-atm)=35 V/(m-Torr)

E/N=200 Td

0.01

two-term

steady-state r
solution

r

0.1

J
J

1 10

E (eV)

p*t=0.1 atm

100 1000

ps
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The time-dependent eedf approaches
the 2-term steady state solution
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• Initial condition is the 0 6

distribution of E/N=200 Td

1 Td = 2.7x104 V/(m-atm)=35 V/(m-Torr)

0.5

secondaries created
1

by 100 eV beam of 5 0.4 1cD
1 Ielectrons > f Icu

• The time-dependent
eedf provides the
time-dependent
transport coefficients

::::
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,,-co
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0
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ri,
two-term I Ii i ,

I J 1
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t
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r i
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The time-dependent eedf approaches
the 2-term steady state solution
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• Initial condition is the
distribution of
secondaries created
by 100 eV beam of
electrons

• The time-dependent
eedf provides the
time-dependent
transport coefficients

0,6

0.5

0.4
a)

a)
0.3

w
zg-w

0.2

0.1

0
0.01

1 Td = 2.7x104 V/(m-atm)=35 V/(m-Torr)

E/N=200 Td

two-term
steady-state
solution

0.1 1 10

E (eV)

p*t=10 atm-

100 1000
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The time-dependent eedf approaches
the 2-term steady state solution
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• Initial condition is the
distribution of
secondaries created
by 100 eV beam of
electrons

• The time-dependent
eedf provides the
time-dependent
transport coefficients
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MCSwarm moments cif t in good agreement
with two-term solution for low values of E/N

E

Drift velocity along E-field

0.01 0.1 1

p*t (atm-ns)

10 100

CL)

A
w
v

10

Average energy

MCSwarm I/
Two-term

E/N = 1000 Td

E/N = 500 Td

E/N = 200 Td

E/N = 100 Td

E/N = 50 Td

E/N = 10 Td

10 3 0.01 0.1 1

p*t (atm-ns)

10 100

Ionization rate

0.01 0.1 1

p*t (atm-ns)

10 100

• MCSwarm more accurate than two term code because it
includes the ffects of higher-order terms

• Velocity along E-field equilibrates quickly while average energy
and energy-dependent ionization rate take longer

*Two-term solutions from Bolsig+ is downloadable from http://www.bolsig.laplace.univ-tlse.fr/download.php



Elastic collisions dominate momentum
transfer while inelastic collisions dominate

ener loss
Collision frequencies (left) and energy equilibration rates (right) averaged over the eedf

aor aoi

1 10 100 1000

E/N (Td)

10-
10  

1

Inelastic

Excitation

Ionization

Vibrational

Elastic

10 100 1000

E/N (Td)

104

• Large gains in computational speed could be achieved if elastic collisions
could be sampled less frequently
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(From T.D. Pointon, 2014 Gaseous electronics conf.)

A test problem illustrates some basic features
of cavity SGEMP Is MCSwarm used for these computations?

How can you tell its doing a good job?

• 2D, N2-filled box

— Gap in x: d = 4 cm
— Width in y: w = 6 cm, went = 3 cm

• W0 = 20 kV mono-energetic beam

— emitted normal to box wall

Otherwise, why not move all to extras.
If MCSwarm 1W-VatOTNaePainton a bullet
on VG 6 antmoye thea all to eqra anyway.

• Space-charge limited current for these

parameters: Jsl L- 1.9 Aicm2
1/2

— I
4ED

-
2e TT E: - i+ ci

9 (d/2)2 2rns.eup r;2

• Actually inject 10 Aicm2 5Jsi

• Current diagnostics

— l ln, I mid, l out B-dots at y-max wall

— le current into the x-rnax wall

TDP GEC-2014: 11/14 17

3 cm

•

N2 gas fill

 ̀  20 kV
 •
  ▪ electron
 0- beam

4 cm

6 cm
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47/ - (From T.D. Pointon, 2014 Gaseous electronics conf.)

In vacuum, there are virtual cathode
oscillations of the beam

100

50

-50

-100

Electron phasespace: t = 10 ns

1 2
x (cm)

3 4

1.5

1.0

0 . 0

- 0 5

-1.0  

1
2 4 6 8

Timo (ns)

• No steady-state solution: way above the space-charge limit

— Prirnary oscillation frequency is 2.5 GHz (nominal transit time = 0.49 ns)

• About 10% of the emitted current is transmitted across the gap

TDP GEC-2014 1 1/14 18

4 1

10
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(From T.D. Pointon, 2014 Gaseous electronics conf.)

The transmitted beam current increases with
pressure up to P -- 1 Torr

3

2

--E--
O .,;,. :7_ ;-•  - . ' F 1-;-. • • - .1:. •
' 1.iii......; ...__:: '' - •....____.‘ >-. ,  - - - i••••.-- :4 7-c--r ,-0......-4.7e..,=t-r--....,.•4—,7,t zie-L4- 1.

, -.A..`r_.,:tiii.Z4N
. ..-'' -c-...—,--5ivp. ,f.. . :'.4 e: g .44. ,•rpFkip. Pr. •;., 74

• • . / --"1: 44.  _ __„,-:"7"flt"."-•: 1 -V '-r„.-----4,1
!tin t.P. 41^.1 :17,:g...4....4.7_,.

0
 'a- F. ,_. _ _ .. 1-. ii • f.!...-'1, ,;.,7,77 a....,rrr7: TA
c., a.aft......... -_,_401M. - 1.411"!.  -0.5 : - - .

0 1 2 3 4 0
x (cm)

Beam Electrons: t 10 ns
_ I

r •

• %0 • • . .• 
P , • • ••• * • *

1

lout/

50 rnTorr
100 mTorr
200 riTorr
500 rnTorr

2 4 6 8 10
Time (ns)

• As the pressure increases:

— Tirne required to build up a space-charge neutralizing plasrna decreases

— Amplitude of virtual cathode oscillations decrease

• Small fraction of the electrons are scattered to y = ymax wall

TDP: GEC-2014: 11/14 19
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(From T.D. Pointon, 2014 Gaseous electronics conf.)

The transmitted beam current decreases with
pressure above P 1 Torr

3

2

1

0

Electrons: P = 20 Torr. t = 10 ns

1 2
x (cm)

3 4

1.2

0.8

0.4

0.0

-0.4
0 2 4 6

Time (ns)

• Scattering of the beam electrons now dominates

— An increasing fraction of the electrons hit the y = ymax wall

TDP GEC-2014: 11/14 20

8 1 0
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Experiments
and code
validation
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Today's x-ray simulators do not produce
the correct x-ray environment
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• Z and NIF are powerful x-ray sources but produce
maximum cy 13 keV photons (i.e. the spectrum is
4-oo soft)

• Bremsstrahlung sources such as the high-fidelity reflex
triode produce the right energy photons but fluences are
several orders of magnitude below threat lever

• Investments in x-ray simulator R&D is continuing to
improve simulator fidelity but that progress will take
time and money

• Integrated cavity SGEMP experiments on Z and NIF are
expensive and involve a complex array of physics
phenomena that make the results difficult to unravel

7/3/2018



We are addressing an important
part of the SGEMP problem
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. Gas Chemistry
— Direct e-beam injection into gas for gas-chemistry code

validation (variation with pressure, e-beam energy, and
current density)

• Electron-surface interactions
— lons sputtering from surfaces can greatly affect net current

— Outgassing and plasma formation

— Electron backscattering

• Photon-surface interactions
— Photoelectron production

7/3/2018



Small facilities havE produced threat-level e-
beams for validating gas-chemistry
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70-kV beam into test cell for SGEMP
Anode foil Pressure foil
Al-Kapton-Al Al-Kapton-Al

Foils are
1.23e-3 g/cm2 each

Vacuum

Velvet cathode
3.5-cm diam

< Diode I,V

• 3 year experimental program 2005-8
— 70 kV, 1-4 kA, 70 ns, 10-300 A/cm2

— Versatile, very high shot rate

• A pulser could be built to tailor to
specific threat spectrum

7 or 10-mm gap

Return rods (6)
(3/16" diam on 7" diam)

<  10.3 cm

O

5.8 cm

0.9 cm

Gas

Scene beam paths

Collector
current (2)

Image plate
(some shots)

Graphite collector
(16.2 cm diam)



The NRL data has shown that MCSwarm is
not good for high ionization fractions
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• Swarm approximation is
not good for high current
density because the gas is
no longer weakly ionized

• The ffects of electron-
electron collisions and
reverse reactions become
important at large ne/Ngas

• High current density data
shows the need for a more
complex gas chemistry
model (Justin)
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Small facilities produce threat-level e-
beams for validating gas-chemistry
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200-kV beam into space chamber

• A feasibility study was completed in 2014 with additional funds in 2015

— 200 kV, 6 kA, 70 ns, 10's A/cm2

— Beam injected into 0.1 Torr air along 200-G axial field for 7 meters

— Beam 1 meter from wall in main chamber



Experiments shows useful data can be
obtained from direct electron beam injection

into NRL space chamber
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• Good propagation observed over 7 meters

• Ample light for spectroscopic measurements

• Beam and plasma are far from boundaries

PMT signals in large chamber, 465 cm from injection
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Improvements

to MCSwarm
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Limitations of and improvements to
the MCSwarm code
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• Particle count increases exponentially. Limit the number of particles

produced.

• Errors introduced when vAt > 0.1. Multiple-scattering distributions can
relax this restraint.

• Ionization rate determined by electrons in the tail of the distribution
where there are relatively few particles. Bias the eedf to produce more
particles in the tail.

• Develop a time-dependent 2-term solution to the Boltzmann equation.
Benchmarking for MCSwarm and other applications (Justin)

• Inner-shell ionizations not included. Could be a large energy sink for beam
electrons (K-shell binding energy-400 eV) — Auger electrons are a source
of high-energy (-400 eV) secondaries
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The particle count increases
exponentially for large electric field
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• Emphasis and Quicksilver have
implemented an adaptive particle
management algorithm to deal
with this problem

• When particle count gets too
large the particles are reweighted
so that as many moments of the
distribution as possible are
preserved

• An alternate method follows
exponential growth without an
increase in particle count

N
u
m
b
e
r
 o
f 
pa

rt
ic

le
s 
(x
10
3)
 

0.01 0.1

p*t (atm-ns)

1 10
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Particle merging introduces
undesired changes in the eedf
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• The merging technique
tends to cool the
distribution

• Changes in the eedf above
10 eV have a profound
affect on the ionization rate

• Need to take another look
at particle management

0.2

o.1

0.0

0-2 1 0-1

(From T.D. Pointon,

2014 Gaseous electronics conf.)

Energy distribution: t = 5 ns

- Base
Merge

LQinel

..-......-.. 41411111111111111111111111Y 
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_ 10
4

4

4

5

..... ;
• ..o

101 10

This difference

Is troublesome
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Exponential increase in the number
of particles can be alleviated
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• The Boltzmann equation with ionizing collisions in an electric
field causes the eedf (f) to grow exponentially
— MCSwarm is based on f which causes particle number to increase

exponentially

af p af g of ri.ri+ V • 0 + • -pi = L i
at ak av

• Multiply Boltzmann equation by e-v*t and define F= e-v*tf

0F p 0F p 0F r 1
+V• 0+0•-i)=C[Fj-v*FC1F]

at ak av
— A Monte Carlo code based on the Boltzmann equation for F would not

cause the particle number to increase exponentially

— The Monte-Carlo representation for CIF]= C[F]- v*F is to remove a
particle for F and replace it with one from C[F] at the frequency v*
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A Monte-Carlo representation of F preserves
moments and particle number

• At every ionizing collision add a secondary particle
according to the differential ionization cross section
cyjes,$) and then remove a random particle from the
existing particles and replace it with the newly created
secondary.

• The number of simulation particles remains constant but
their weights increase exponentially

• Moments are preserved

fg(s)f de fg(s)F de
Kg)= -

f f de f F de
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The new algorithm avoids exponential
growth and agrees with MCSwarm
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• This is a factor of >1000 speedup for large E/N
• An algorithm for applying this to a list of unequally

weighted particles is needed for coupling with PIC



The time evolution of the eedf's for the

two models are in good agreement
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Energy splitting can put more particles
in the tail of the eedf
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• Energy splitting and Russian
roulette is a method of biasing
Monte-Carlo calculations so
that more particles are in the
tail

• As electrons gain energy they
split into multiple particles
with reduced weight

• As electrons lose energy they
are removed from the
simulation by Russian roulette.
Surviving electrons are given a
larger weight
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Recall that the number of elastic
collisions dominates at low-energy
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• MCSwarm spends 10-
100 times more time
sampling elastic
collisions

• Big reduction in run
time could be realized if
elastic and inelastic
collisions are sampled
at the same rate

10
-2

109

log

r

Elasric

Rotational

0.1 1 10 100
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Big reductions in run time if elastic
scattering could be done less frequently

• This require a multiple scattering distribution which can be
written as the sum over the number of collisions
f (s,12,At) = [p(N =0,vdt)F0(12)+ p(N =1,vdt)F1(12)+ p(N =2,vdt)F2(12)+...]

, e-vAt ( vdt )k
= La Fk ([2)

k k!
— the Fk are the angular distributions after exactly k scattering events

• MCSwarm keeps only k=0 and k=1 terms of this expansion

f(E, SI, At) e' [e-vAtF0 (Q) + vAt e-vAtF/ (Q)]

Fo (Q) = 6(1 — cosO)/ 2TE , F1(Q) =  
1 du

'770 d SII- MCSwarm

• Relaxing restrictions of vAt requires terms k2 in the
expansion
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National
Laboratories
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The Fk(Q) can be calculated by repeated
application of the scattering matrix
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• The results of applying the scattering matrix k times can be
written as

Pfv =R, •v,

f
v
P c f

kf (C1C2C3•••Ck)•Vf -..ik •v 
P 

vkf = Ri-1 SkRi •vi

• The distributions Fk can be built by calculating the multiple
scattering matrices, Sk, with many different random number
sequences and constructing histograms
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Multiple scattering distributions for
N2 gas for c 10 eV

/  (i- 4,2<) 
2 (1- 4k142

Fkfit (19 =

'7'
1 0.40

2 0.12

5 0.0

• Fk is isotropic for k>5
• Figuring out how to

implement this for non-
zero E and B fields still

needs to be figured out

- a

1

0.1
1 0.5 0
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8=10 eV
Fk(j-t)

Fkfit (I-1) - - -

-0.5 -1
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Current status of MCSwarm

• A stand-alone, parallel, class-based Python version now exists (Richardson
and Swanekamp)

• A class-based C" version is currently being tested — loosely based on the
Python version (Richardson)

— Improving the computational efficiency (i.e. H. Sugawara, et al., J. Comput.
Phys. 223 (2007) 298)

• We are working with Sandia and NRL to obtain permissions to release both
the Python and C" the codes as open source (Swanekamp and
Richardson)

• An earlier Fortran version exists but has not had any new updates since
—2010

• More validation work will proceed in FY15 as funding permits

• Experiments on both Gamble II and the NRL space chamber began in FY 14
and will continue in FY15 — a golden opportunity for code verification

• A NIF SGEMP shot was taken in FY14 and another is planned in FY15
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The chemistry becomes more complex
as the ionization fraction increases
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ne/N2

10-5

in-3

10-1

1

Thermal Excitation: N2 + e N2i + e • Weakly ionized, swarm
11M

Avalanche Breakdown: N2 + e N2+ + 2e • Exponential Growth in ne

Energy exchange between
excited states:

Ionization from excited state:

Electron-Electron collisions:

Dissociative Recombination:

N2J + e N;k + e • Some decay rates
very long (metastable)

N2i + e N2+ + 2e • Lowers ionization threshold

e+ee+e
N2+ + e 2N

• Hotter Maxwellian eedf

Electron-lon collisions: N2+ + e N2+ + e
Ki+
1\1 1\1

• Changes Momentum
transfer kVDI

• Multiply-ionized plasmaIonization of atomic gas: N + e NI++ 2e

A code that includes these processes and has been implemented in
LSP will be discussed by Justin Angus in the next talk
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Neutral N2 cross sections used in the
MCSwarm avalanche model
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All these reactions are important for accurate electron-
energy distribution function f(E) (eedf)
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Neutral N 2 cross sections used in the
MCSwarm avalanche model
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All these reactions are important for accurate electron-
energy distribution function f(E) (eedf)
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Neutral N2 cross sections used in the
MCSwarm avalanche model
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All these reactions are important for accurate electron-
energy distribution function f(E) (eedf)

10-14
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Neutral N2 cross sections used in the
MCSwarm avalanche model

Sandia
National
Laboratories

All these reactions are important for accurate electron-
energy distribution function f(E) (eedf)

aNA Elastic(1)

onization(2
- e+N2—>2e+N2

10-
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The eedf's of two models are in good
agreement
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The eedf's of two models are in good
agreement
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The eedf's of two models are in good
agreement
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One way to implement this in PIC

Ionizing collision

occurs here
new particle • When an ionizing collision occurs

in a cell a new particle is created

0
0 0

, o
0

oo 0

0 ° 00
0 0 0

o o
0

0
o
0
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One way to implement this in PIC

A particle in the cell
is chosen at random
for deletion

new particle

0

0
0 o

0 0 000 0

o ° o°
0 0 0

0

0
0

0

• When an ionizing collision occurs
in a cell a new particle is created

• One of the existing particles in the
cell is chosen at random for
deletion
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One way to implement this in PIC

new particle

o
o

o o

o o 00 0

o
o o

o

o
o
o

o

• When an ionizing collision occurs
in a cell a new particle is created

• One of the existing particles in the
cell is chosen at random for
deletion

• The newly created particle is
swapped for the deleted one
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One way to implement this in PIC

Increase particle

weights

G o
o

o 
o 
0 o
0 )11 0

0 0 oo o 0

0 0 00
0 0 o

• When an ionizing collision occurs
in a cell a new particle is created

• One of the existing particles in the
cell is chosen at random for
deletion

• The newly created particle is
swapped for the deleted one

• Weights of existing particles is
increased by (N+1)/N (equally
weighted particles)
— Particle weights increase with each

ionizing collision not particle
number
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