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Prerequisites for Tutorial Exercises

Compilers and Libraries for your Compute Node
» CPU: GCC 4.7.2 (or newer) OR Intel 14 (or newer) OR Clang
3.5.2 (or newer)
» GPU: CUDA nvcc 6.5.14 (or newer) AND NVIDIA compute
capability 3.0 (or newer)
Install Kokkos and Exercises on your Compute Node

» Kokkos: github.com/kokkos/kokkos,
clone in ${ HOME?} /kokkos

» Tutorial: github.com /kokkos/kokkos-tutorials/SC15
makefiles look for ${ HOME?} /kokkos

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments
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Tutorial Objectives

Understand Kokkos Programming Model Abstractions
» What, how and why of performance portability

» Productivity and hope for future-proofing
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Tutorial Objectives

Understand Kokkos Programming Model Abstractions
» What, how and why of performance portability
» Productivity and hope for future-proofing

Part One:
» Simple data parallel computations

» Deciding where code is run and where data is placed
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Tutorial Objectives

Understand Kokkos Programming Model Abstractions
» What, how and why of performance portability
» Productivity and hope for future-proofing
Part One:
» Simple data parallel computations
» Deciding where code is run and where data is placed
Part Two:
» Managing data access pattens for performance portability
» Thread safety and thread scalability

» Thread-teams for maximizing parallelism
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Tutorial Takeaways

» High performance computers are increasingly heterogenous
MPIl-only is no longer sufficient.

> For portability: OpenMP, OpenACC, ... or Kokkos.

» Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.
i.e., not just portable, performance portable.

» With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it's no more difficult than OpenMP.
» Advanced performance-optimizing patterns are simpler

with Kokkos than with native versions.
i.e., you're not missing out on advanced features.
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Kokkos and the HPC
Landscape

Learning objectives:
» How Kokkos fits in the context of modern HPC.
» Kokkos scope, goals, and philosophy.

» Difference between Kokkos and #pragma methods.
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Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

On-Package
Memory

Network-on-Chip

soepoIY|

108UU00JBIU| [BUIBIXT
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Accelerator

On-Package
Memory
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Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

On-Package

108UU02JBI| [BUISIXT

Accelerator

On-Package

Many-core revolution: 20-year “just recompile” free ride is over.

How much do | have to learn and change to use these nodes?
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Many-core revolution (1)

Key Considerations for GPUs:

v

GPUs support thousands of simultaneously-executing threads.
You need 0(10,000) threads to use a GPU effectively.

Cores are “simple” - no transistors are dedicated to branch
prediction, out of order execution, etc. Instead, more cores.

v

v

v

Current GPUs can't performantly access CPU memory, you
have to move data

v

GPU cores cannot run MPVI’s heavy processes.
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Supporting multiple architectures (0)

Operating assumptions:

» Compute nodes have "50 complex cores, “5000 simple cores,
and heterogenous memory.

» Separate inter-node and intra-node programming models e.g.,
message passing + threading)
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Supporting multiple architectures (0)

Operating assumptions:

» Compute nodes have "50 complex cores, "5000 simple cores,
and heterogenous memory.

> Separate inter-node and intra-node programming models e.g.,
message passing + threading)
Goal: run on multiple architectures.

Solutions:

» Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)
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Supporting multiple architectures (0)

Operating assumptions:

» Compute nodes have "50 complex cores, "5000 simple cores,
and heterogenous memory.

» Separate inter-node and intra-node programming models e.g.,
message passing + threading)
Goal: run on multiple architectures.
Solutions:

» Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)

» Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

» Note: not all alternatives support heterogenous memory
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Supporting multiple architectures (0)

Operating assumptions:

» Compute nodes have "50 complex cores, "5000 simple cores,
and heterogenous memory.

» Separate inter-node and intra-node programming models e.g.,
message passing + threading)
Goal: run on multiple architectures.
Solutions:
» Maintai . : I b

» Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

» Note: not all alternatives support heterogenous memory
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Supporting multiple architectures (1)

Important Point

There's a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.
(e.g., locks on CPU won't scale to 100,000 threads on GPU)
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Supporting multiple architectures (1)

Important Point

There's a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)
Goal: write one implementation which:
» compiles and runs on multiple architectures,

> obtains performant memory access patterns across
architectures,

» can leverage architecture-specific features where possible.

Supercomputing'15, November 16, 2015




Supporting multiple architectures (1)

Important Point

There's a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.
(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:
» compiles and runs on multiple architectures,

> obtains performant memory access patterns across
architectures,

» can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.
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Threaded (intra-node) data
parallelism

Learning objectives:
» Terminology of pattern, policy, and body.
> The data layout problem.
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Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?
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Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?

Examples:
» Thermodynamic quantities at quadrature points in FEA:

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++qgp) {
total += dot(left[element][qp]l, right[element][qpl);
}
elementValues [element] = total;

}
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Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++gp) {
total += dot(left[element]l[qpl, right[element]l[qpl);
}

elementValues [element] = total;
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Concepts: Patterns, Policies, and Bodies

Policy

Pattern
for (element = 0; element < numElements; ++element) {
total = 0;

qp < num@Ps; ++gp) {

>, for (gqp = 0;
g total += dot(left[element][qpl, right[element]l[qpl);
o0
elementValues [element] = total;
}
Terminology:

» Pattern: structure of the computations
for, reduction, scan, task-graph, ...

» Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

» Computational Body: code which performs each unit of
work; e.g., the loop body
= The pattern and policy drive the computational body.
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1

Threading “Parallel for'

What if we want to thread the FEA algorithm?

for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gp < num@Ps; ++qp) {
total += dot(left[element][qpl, right[element][qpl);
¥
elementValues [element] = total;

}
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Threading “Parallel for”

What if we want to thread the FEA algorithm?

#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; qp < numQPs; ++gp) {
total += dot(left[element][qpl, right[element][qpl);
}

elementValues [element] = total;

(Change the execution policy from “serial” to “parallel.”)
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Threading “Parallel for”

What if we want to thread the FEA algorithm?

#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gqp < numQPs; ++qp) {
total += dot(left[element][qpl, right[element][qpl);
}
elementValues [element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...
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“Parallel for" on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map(...)

#pragma omp teams num_teams(...) num_threads(...) private(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for
for (gp = 0; qp < numQPs; ++qp)
total += dot(left[element]l[qpl, right[element][qpl);
elementValues [element] = total;

}
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“Parallel for" on a GPU via pragmas
Option 1: OpenMP 4.0

#pragma omp target data map(...)

#pragma omp teams num_teams (...) num_threads(...) private(...)
#pragma omp distribute
for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for
for (gp = 0; qp < numQPs; ++qp)
total += dot(left[element]l[qpl, right[element][qpl);
elementValues [element] = total;

}
Option 2: OpenACC

#pragma acc parallel copy(...) num_gangs(...) vector_length(...)
#pragma acc loop gang vector
for (element = 0; element < numElements; ++element) {
total = 0;
for (gp = 0; gp < numQPs; ++qgp)
total += dot(left[element][qpl, right[element][qpl);
elementValues[element] = total;

}
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Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?
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Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.
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Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; gp < numQPs; ++qp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left[element * numQPs * vectorSize +
qp * vectorSize + i] *

right [element * numQPs * vectorSize +
qp * vectorSize + i];

}

elementValues [element] = total;

Supercomputing'15, November 16, 2015




Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; qp < numQPs; ++qgp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left[element * numQPs * vectorSize +
gp * vectorSize + i] *
right [element * numQPs * vectorSize +
gp * vectorSize + il;
}
}
elementValues [element] = total;

i

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.
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Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {
total = 0;
for (qp = 0; qp < numQPs; ++qgp) {
for (i = 0; i < vectorSize; ++i) {
total +=

left[element * numQPs * vectorSize +
gp * vectorSize + i] *
right [element * numQPs * vectorSize +
gp * vectorSize + il;
}
}
elementValues [element] = total;

i

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance, the memory access pattern must depend on the
architecture.
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Kokkos overview

How does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.
» is a C4++ library, not a new language or language extension.
» supports clear, concise, thread-scalable parallel patterns.

> lets you write algorithms once and run on many architectures
e.g. multi-core CPU, Nvidia GPGPU, Xeon Phi, ...

» minimizes the amount of architecture-specific
implementation details users must know.

» solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts
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Data parallel patterns

Learning objectives:
» How computational bodies are passed to the Kokkos runtime.

v

How work is mapped to cores.

v

The difference between parallel for and
parallel_reduce.

Start parallelizing a simple example.

>
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to cores
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to cores
> each iteration of a computational body is a unit of work.
> an iteration index identifies a particular unit of work.

> an iteration range identifies a total amount of work.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

Kokkos maps work to cores
> each iteration of a computational body is a unit of work.
> an iteration index identifies a particular unit of work.

> an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C+—+.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C+—+.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

void operator () ( a work assignment ) const {
/% computational body ... */

3
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {
void operator () (const size_t index) const {...}

}
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;
Kokkos::parallel_for (numberOfIterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {
void operator () (const size_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.
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Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

struct AtomForceFunctor {

void operator () (const size_t atomIndex) const {
atomForces [atomIndex] = calculateForce(...data...);

}
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Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
atomForces [atomIndex] = calculateForce(...data...);

}

struct AtomForceFunctor {

void operator () (const size_t atomIndex) comnst {
atomForces [atomIndex] = calculateForce(...data...);

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor's data members.
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Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
void operator () (const size_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);

+
}
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Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
void operator () (const size_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);
}
+

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
atomForces [atomIndex] = calculateForce(data);

}

3
=
Q

wn
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Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;
void operator () (const size_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);
}
+

Q/ How would we reproduce serial execution with this functor?

| for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
'5 atomForces [atomIndex] = calculateForce(data);

wnl

B AtomForceFunctor functor (atomForces, data);

t for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
c functor (atomIndex);

S

[

Supercomputing'15, November 16, 2015




Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;

AtomForceFunctor (atomForces, data)
_atomForces (atomForces) atomData(data) {3

void operator () (const size_t atomIndex) const {
_atomForces [atomIndex] = calculateForce(_atomData);
}
}

2. Executing in parallel with Kokkos pattern:

AtomForceFunctor functor (atomForces, data);
Kokkos::parallel_for (numberOfAtoms, functor);
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Using Kokkos for data parallel patterns (7)

Functors are verbose = C++11 Lambda are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const size_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);
}
)
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Using Kokkos for data parallel patterns (7)

Functors are verbose = C++11 Lambda are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const size_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);

by

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.
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Using Kokkos for data parallel patterns (7)

Functors are verbose = C++11 Lambda are concise

atomForces already exists
data already exists
Kokkos::parallel_for (numberOfAtoms,
[=] (const size_t atomIndex) {
atomForces [atomIndex] = calculateForce(data);

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value
[=]. Don't capture containers (e.g., std::vector) by value because
this copies the container's entire contents.
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parallel_for examples

How does this compare to OpenMP?

parallel_for (N, [=] (const size_t i) {
/* loop body */
s

_‘_E for (size_t i = 0; i < N; ++i) {
B /* loop body */

21

Q.

E #pragma omp parallel for

c|for (size_t i = 0; i < N; ++i) {
g /* loop body */

ot

w

=]

X

R4

o

X

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.
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Scalar integration (0)

Riemann-sum-style numerical integration:
4

upper 2
y= / function(x) dx NEE=S [
I

ower

-2 -1 0 1 2

wikipedia
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Scalar integration (0)

Riemann-sum-style numerical integration:

upper 3
y= / function(x) dx NEE=S A
lower
-2 -1 0 1 2
wikipedia
double totallIntegral = O0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
const double x =
lower + (i/numberOfIntervals) * (upper - lower) ;
const double thisIntervalsContribution = function(x);

totalIntegral += thisIntervalsContribution;

I,

totalIntegral *= dx;
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Scalar integration (0)

Riemann-sum-style numerical integration:

upper fj M —
y = / function(x) dx NEE=S 4[]
lower
-2 -1 0 1 2
wikipedia
double totallntegral = O0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
const double x =
lower + (i/numberOfIntervals) * (upper - lower) ;
const double thisIntervalsContribution = function(x);

totalIntegral += thisIntervalsContribution;
}
totallntegral *= dx;

How would we parallelize it?
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Scalar integration (0)

Riemann-sum-style numerical integration:

upper g T
y:/ function(x) dx o |l S AN N
lower
- - 0 1 2
wikipedia

Pattern?

double totallntegral = 0; Policy?

for (size_t i = 0; i < numberOfIntervals; ++i) {

der const double x =

2 lower + (i/numberOflIntervals) * (upper - lower) ;

O const double thisIntervalsContribution = function(x) ;
- totallIntegral += thisIntervalsContribution;

}

totallIntegral *= dx;

How would we parallelize it?
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Scalar integration (1)

An (incorrect) attempt:

double totallntegral = 0;
Kokkos::parallel_for (numberOfIntervals,
[=] (const size_t index) {
const double x =
lower + (index/numberOfIntervals) * (upper - lower);
totalIntegral += function(x);},
)
totallntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totallntegral = 0;
double * totallntegralPointer = &totallntegral;
Kokkos::parallel_for (numberOfIntervals,
[=] (const size_t index) {
const double x =
lower + (index/numberOfIntervals) * (upper - lower);
*totalIntegralPointer += function(x);},
);
totallIntegral *= dx;
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totallntegral = 0;
double * totallntegralPointer = &totallntegral;
Kokkos::parallel_for (numberOfIntervals,

[=]

(const size_t

index) {

const double x =

lower + (index/numberOfIntervals) * (upper

lower) ;

*totalIntegralPointer +=

function (x);},

)3

totallIntegral *= dx;

Second problem: race condition

step | thread 0 | thread 1
0 load
1 increment load
2 write increment
3 write
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?

double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (size_t i = 0; i < N; ++i) {

finalReducedValue +=

}
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?

double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (size_t i = 0; i < N; ++i) {

finalReducedValue +=

}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce (N, functor, finalReducedValue);
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Scalar integration (4)

Example: Scalar integration

Q.| double totallIntegral = 0;

:E #pragma omp parallel for reduction(+:totallntegral)
5 for (size_t i = 0; i < numberOfIntervals; ++i) {

ol totallntegral += function(...);

O3

double totallntegral = 0;
parallel_reduce (numberOfIntervals,
[=] (const size_t i, double & valueToUpdate) {
valueToUpdate += function(...);
}’
totalIntegral);

Kokkos

» The operator takes two arguments: a work index and a value
to update.

» The value to update is an thread-private value that is made
and used by Kokkos; it is not the final reduced value.
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Scalar integration (5)

Warning: Parallelism is NOT free
Dispatching (launching) parallel work has non-negligible cost.
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Scalar integration (5)

Warning: Parallelism is NOT free
Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = o + B*PN

» « = dispatch overhead
» [ = time for a unit of work

» N = number of units of work

v

P = available concurrency
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Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

BxN
P

Simplistic data-parallel performance model: Time = o +
» « = dispatch overhead
» [ = time for a unit of work
» N = number of units of work

» P = available concurrency

Speedup = P + (1 + g:ﬁ)

» Should have ax P < Bx N

» All runtimes strive to minimize launch overhead «

» Find more parallelism to increase N

» Merge (fuse) parallel operations to increase 3
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Scalar integration (

axP

Results: illustrates simple speedup model = P + (1 + G

Kokkos speedup over serial: Scalar Integration
1000
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Recurring Exercise: Inner Product

Exercise: Inner product < y, A% x >

- N
. N R M
(T =0

Details:
» yis Nx1, Ais NxM, x is Mx1

» We'll use this exercise throughout the tutorial
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Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp>
int main(int argc, char**x argv) {

/* ... do any necessary setup (e.g., initialize MPI) ... */
Kokkos::initialize (argc, argv);
/* ... do computations ... x/

Kokkos::finalize ();
return O;

(Optional) Command-line arguments:

total number of threads

(or threads within NUMA region)
—-—-kokkos—numa=INT number of NUMA regions
--kokkos-device=INT | device (GPU) ID to use

—--kokkos-threads=INT
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Exercise #1: logistics

Compiling for CPU

cd “/kokkos-tutorial/SC15/Exercises/01/

# gcc using OpenMP (default) and Serial back-ends

make -j 4 [KOKKOS_DEVICES=0penMP,Seriall

# Intel using OpenMP (default) and Serial back-ends

make -j 4 CXX=icpc [KOKKOS_DEVICES=0penMP, Seriall

# Intel using OpenMP for Xeon Phi Knights Cormner cross-compile
# For execution natively on the KNC. NOT for offload.

make -j CXX=icpc [KOKKOS_DEVICES=0penMP,Serial] KOKKOS_ARCH=KNC

Running on CPU with OpenMP back-end

# Set OpenMP affinity

export GOMP_CPU_AFFINITY=0-NumberOfCoresOnASingleSocket
# Print example command line options:

./exercise.host -h

# Run with defaults on CPU

./exercise.host
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Exercise #1: Inner Product, Flat Parallelism on the CPU

Details: y' ~ A x

>

>

Exercise: Inner product < y, A* x >

f‘

. N R M
(IIIIITIIID] =O

Location: ~/kokkos-tutorials/SC15/Exercises/01/

See
~/kokkos-tutorials/SC15/Exercises/HOW_TO_COMPILE_AND_RUN

Look for comments labeled with "EXERCISE”
Parallelize loops with parallel_for or parallel reduce

Use lambdas instead of functors for computational bodies.
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Exercise #1 results

<ylAx> Exercise 01

KNC: Xeon Phi 57 core; HSW: Dual Xeon Haswell 2x16 cores

200 I I I I I I I I T

| |mmKNC _
oo HSW

I
S
T
1

Bandwidth (GB/s)
=
(=]

| |
8 64 512 4K 32K 256K 2M 16M 128M
N
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General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant
Kokkos::parallel_reduce(numberUfIterations,
[=] (const size_t index,
ReductionType & valueToUpdate) {
valueToUpdate += // ... contribution for index
})

reducedValue);
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General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant
Kokkos::parallel_reduce(numberUfIterations,
[=] (const size_t index,
ReductionType & valueToUpdate) {
valueToUpdate += // ... contribution for index
})

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to
zero and is reduced with operator+=.
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General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant
Kokkos::parallel_reduce(numberUfIterations,
[=] (const size_t index,
ReductionType & valueToUpdate) {
valueToUpdate += // ... contribution for index
})

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to
zero and is reduced with operator+=.

For non-trival reductions you need to use a general reduction
functor.
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General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchlLocation = ...;
size_t index0fClosest = O0;
for (size_t i = 1; i < numberOfPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude (searchLocation - points[index0fClosest])) {
index0fClosest = i;

}

}
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General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchlLocation = ...;
size_t index0fClosest = O0;
for (size_t i = 1; i < numberOfPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude (searchLocation - points[index0fClosest])) {
index0fClosest = i;

}

}

» This isn’t possible with openmp's reduction clause
» Manual threading versions must avoid false sharing

» Parallel programming models should support robust,
arbitrary, performant reductions tuned to the architecture.
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General reductions (2)

General reductions:

What information must we provide to do a reduction?
» The type of the value to reduce (“value_type")
» How to combine (“join") two value_types

> How to initialize a value_type

struct ParallelFunctor {
typedef double value_type;
void operator () (const size_t index,
value_type & valueToUpdate) const {...}

void join(volatile value_type & destination,
const volatile value_type & source) const {...}

void init(value_type & initialValue) comnst {...}

}

Supercomputing'15, November 16, 2015




Advanced features we haven't covered

» Exclusive and inclusive prefix scan with the parallel_scan
pattern.

» Using tag dispatch interface to allow non-trivial functors to
have multiple “operator ()" functions.

» Directed acyclic graph (DAG) of tasks pattern (experimental).

» Concurrently executing parallel kernels on CPU and GPU
(experimental).

» Hierarchical parallelism with team policies, covered later.
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Section Summary

» Simple usage is similar to OpenMP, advanced features are
also straightforward

» Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

> A parallel computation is characterized by its pattern, policy,
space, and body.

» User provides computational bodies as functors or lambdas
which handle a single work item.
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Views

Learning objectives:
> Motivation behind the View abstraction.
> Key View concepts and template parameters.

> The View life cycle.
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Example: running daxpy on the GPU:

View motivation

double * x = new double[N]; // also y
parallel_for (N, [=] (const size_t i) {
y[il = a * x[i] + y[il;
1

Lambda

struct Functor {

s double *_x, *_y, a;
ﬁ void operator () (const size_t i) {
c _y[il = _a * _x[i] + _yl[il;
| ¥
L.
¥
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View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for (N, [=] (const size_t i) {
yl[il = a x x[i] + y[il;
B

Lambda

struct Functor {

s double *_x, *_y, a;
ﬁ void operator () (const size_t i) {
c _y[il = _a * _x[i] + _y[il;
| *
L.
¥

Problem: x and y reside in CPU memory.
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View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for (N, [=] (const size_t i) {
yl[il = a x x[i] + y[il;
B

Lambda

struct Functor {

s double *_x, *_y, a;
ﬁ void operator () (const size_t i) {
c _y[il = _a * _x[i] + _y[il;
| *
L.
¥

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to accelerator (GPU).

= Views
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View abstraction

> A lightweight C++ class with a pointer to array data and a
little meta-data,

» that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View<double ...> x(...), y(...);
...populate x, y...

parallel_for (N, [=] (const size_t i) {
// Views x and y are captured by value (copy)
y(i) = a * x(i) + y(i);
b
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View abstraction

> A lightweight C++ class with a pointer to array data and a
little meta-data,

» that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View<double ...> x(..

D, yGooo);
...populate x, y...

parallel_for (N, [=] (const size_t i) {

// Views x and y are captured by
y(i) = a * x(i) + y(i);
b

value (copy)

Important point

Views are like pointers so copy them.
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View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
» Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.
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View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
> Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View<double#***> data("label", NO, N1, N2); 3 run, O compile
View<double**[N2]> data("label", NO, N1); 2 run, 1 compile
View<double*[N1] [N2]> data("label", NO); 1 run, 2 compile
View<double [NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<doublex> c(b); What gets printed?
assignValueInView(c);

print a(0)
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView (c); 3.0

print a(0)
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Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

Exercise: Inner product < y, A% x >

~ ~
N M
(I =
Details: y' -~ A 3
> Location: ~/kokkos-tutorials/SC15/Exercises/02/
> Change data storage from arrays to Views.
> Use lambdas instead of functors for computational bodies.
> For now, this will only use the CPU.
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Advanced features we haven't covered

» Memory space in which view's data resides covered next.

> deep_copy view's data; covered later.
Note: Kokkos never hides a deep_copy of data.

» Layout of multidimensional array; covered later.
» Memory traits; covered later.

» Subview: Generating a view that is a “slice” of other
multidimensional array view; will not be covered today.
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Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

| 2

>

Heterogeneous nodes and the space abstractions.

How to control where parallel bodies are run, execution
space.

How to control where view data resides, memory space.

How to avoid illegal memory accesses and manage memory
movement.

The need for Kokkos: :initialize and finalize.

Where to use Kokkos annotation macros for portability.
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Execution spaces (0)

Thought experiment: Consider this code:

: MPI_Reduce (...);
2 FILE * file = fopen(...);
§ runANormalFunction(...data...);
Kokkos ::parallel_for (numberOfSomethings,
5 [=] (const size_t somethingIndex) {
5 const double y = ...;
"g // do something interesting
b }
)
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Execution spaces (0)

Thought experiment: Consider this code:

: MPI_Reduce (...);
2 FILE * file = fopen(...);
§ runANormalFunction(...data...);
Kokkos ::parallel_for (numberOfSomethings,
5 [=] (const size_t somethingIndex) {
5 const double y = ...;
"g // do something interesting
b }
)

» Where will section 1 be run? CPU? GPU?
» Where will section 2 be run? CPU? GPU?

» How do | control where code is executed?
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Execution spaces (0)

Thought experiment: Consider this code:

: MPI_Reduce (...);
2 FILE * file = fopen(...);
§ runANormalFunction(...data...);
Kokkos ::parallel_for (numberOfSomethings,
5 [=] (const size_t somethingIndex) {
5 const double y = ...;
*g . // do something interesting
wn

);

» Where will section 1 be run? CPU? GPU?
» Where will section 2 be run? CPU? GPU?

» How do | control where code is executed?

= Execution spaces

Supercomputing'15, November 16, 2015




Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism
(i.e., “place to run code”)

108UUODIBI| [BUISIXT

Execution spaces: Serial, Threads, OpenMP, Cuda, ...
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Execution spaces (2)

MPI_Reduce (...);

2 FILE * file = fopen(...);
T runANormalFunction(...data...);
Kokkos::parallel_for (numberOfSomethings,
° [=] (const size_t somethingIndex) {
?u const double y = ...;
& // do something interesting

D3

Supercomputing'15, November 16, 2015




Execution spaces (2)

MPI_Reduce (...);

2 FILE * file = fopen(...);
T runANormalFunction(...data...);
Kokkos::parallel_for (numberOfSomethings,
° [=] (const size_t somethingIndex) {
?u const double y = ...;
& // do something interesting

b
» Where will Host code be run? CPU? GPU?
= Always in the host process
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Execution spaces (2)

MPI_Reduce (...);

2 FILE * file = fopen(...);
T runANormalFunction(...data...);
Kokkos::parallel_for (numberOfSomethings,
o [=] (const size_t somethingIndex) {
?u const double y = ...;
& // do something interesting

b
» Where will Host code be run? CPU? GPU?
= Always in the host process

» Where will Parallel code be run? CPU? GPU?
= The default execution space
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Execution spaces (2)

MPI_Reduce (...);

2 FILE * file = fopen(...);
T runANormalFunction(...data...);
Kokkos::parallel_for (numberOfSomethings,
o [=] (const size_t somethingIndex) {
E const double y = ...;
& // do something interesting

VH
» Where will Host code be run? CPU? GPU?
= Always in the host process
» Where will Parallel code be run? CPU? GPU?
= The default execution space
» How do | control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.
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Custom

Default

Execution spaces (3)

Changing the parallel execution space:

parallel_for (
RangePolicy< ExecutionSpace >(0,numberOfIntervals),
[=] (const size_t i) {
/* ... body ... x/
3

parallel_for(
numberOfIntervals, // == RangePolicy<>(0,numberOfIntervals)

[=] (const size_t i) {
/X o os body a0 ®/
1
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Execution spaces (3)

Changing the parallel execution space:

parallel_for(
RangePolicy< ExecutionSpace >(0,numberOfIntervals),
[=] (const size_t i) {
/* ... body ... x/
3

Custom

parallel_for(

%g numberOfIntervals, // == RangePolicy<>(0,numberOfIntervals)
&8 [=] (comnst size_t i) {

|5} [ET T body S #/

Qo b;

Requirements for enabling execution spaces:
» Kokkos must be compiled with the execution spaces enabled.

» Execution spaces must be initialized (and finalized).
» Functions must be marked with a macro for non-CPU spaces.

Lambdas must be marked with a macro for non-CPU spaces

>
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Execution spaces (5)

Kokkos function and lambda portability annotation macros

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {

KOKKOS_INLINE_.FUNCTION

double helperFunction(const size_t s) const {...}

KOKKOS_INLINE_.FUNCTION

void operator()(const
helperFunction(index);

size_t index) const {

/* #if CPU—only x/

}
/* #if CPU4+Cuda x/

// Where kokkos defines:
#define KOKKOS_INLINE_.FUNCTION inline
_.device__. __host__

#define KOKKOS_INLINE_.FUNCTION inline
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Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {
KOKKOS_INLINE_.FUNCTION
double helperFunction(const size_t s) const {...}
KOKKOS_INLINE_.FUNCTION
void operator()(const size_t index) const {
helperFunction(index);

}

// Where kokkos defines:

#define KOKKOS_INLINE_LFUNCTION inline /* #if CPU-only x/
#define KOKKOS_INLINE_LFUNCTION inline __device-- __host__. /% #if CPU+Cuda =/

Lambda annotation with KOKKOS_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: parallel_for(numberOflterations ,
KOKKOSLAMBDA (const size_t index) {...});

// Where kokkos defines:
#define KOKKOS.LAMBDA [=] /% #if CPU—only x/
#define KOKKOSLAMBDA [=] __device_. /% #if CPU4+Cuda x*/
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data("data", size);
for (size_t i = 0; i < size; ++i) {
data(i) = ...read from file...

}
double sum = 0;

Kokkos::parallel_reduce(
RangePolicy<ExecutionSpace>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
Fs

sum) ;
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data("data", size);
for (size_t i = 0; i < size; ++i) {
data(i) = ...read from file...

}
double sum = 0;

Kokkos::parallel_reduce(
RangePolicy<ExecutionSpace>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
Fs

sum) ;

Question: Where is the data stored? GPU memory? CPU
memory? Both?
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data("data", size);
for (size_t i = 0; i < size; ++i) {
data(i) = ...read from file...

}
double sum = 0;

Kokkos::parallel_reduce(
RangePolicy<ExecutionSpace>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
Fs

sum) ;

Question: Where is the data stored? GPU memory? CPU
memory? Both?
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data("data", size);
for (size_t i = 0; i < size; ++i) {
data(i) = ...read from file...

}
double sum = 0;

Kokkos::parallel_reduce(
RangePolicy<ExecutionSpace>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
Fs

sum) ;

Question: Where is the data stored? GPU memory? CPU
memory? Both?

= Memory Spaces
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Memory spaces (0)

Memory space:
explicitly-manageable memory resource
(i.e., place to put data”)

On-Package

108UU02JB)U| [BUIBIXT

Accelerator

On-Package
Memory
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

» View<double***, MemorySpace> data(...);
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

Supercomputing'15, November 16, 2015




Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);
> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

» Each execution space has a default memory space, which is
used if Space provided is actually an execution space
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
» Each execution space has a default memory space, which is
used if Space provided is actually an execution space

> If no Space is provided, the view's data resides in the default
memory space of the default execution space.
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Example: HostSpace

View<doublex**, HostSpace> hostView(...);

Memory spaces (2)

CPU GPU
H PPl
dodd Lo iigaeaco
RAM metadata & NRAM
data
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Memory spaces (2)

Example: HostSpace

View<doublex**, HostSpace> hostView(...);
CPU GPU

RAM metadata & N RAM

data
Example: CudaSpace
View<doublex**, CudaSpace> view(...);
CPU GPU
[ ] [ |
RAM metadata RAM
= |

Supercomputing'15, November 16, 2015




Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating. Fancint ¢, Suias dou:

2. User instantiates a functor with views. parallel_for (N,
[=] (int i) {
3. User launches parallel sx:x: e E) = et
» Functor is copied to the device. P

» Kernel is run.
» Copy of functor on the device is released.

Note: no deep copies of array data are performed,;
views are like pointers.

Supercomputing'15, November 16, 2015




Execution and Memory spaces (1)

Example: one view m m EerEaea s
Bt
View<int*, Cuda> dev; — — —— —— 7
parallel_for (N, RAM  dev metadata RAM
[=] Cint i) { =0
UL = oo ez
O
CPU GPU
e e T
dodo: ldddr EECECERaE
RAM dev metadata dev metadata RAM
T4 dev data
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Execution and Memory spaces (2)

Example: two views

View<int*, Cuda> dev;
View<intx*, Host> host;
parallel_for (N,
[=] (int i) {
dev (i) e
host (i) ey
1)

Supercomputing'15, November 16, 2015
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Execution and Memory spaces (2)

Example: two views

View<int*, Cuda> dev;
View<intx*, Host> host;
parallel_for (N,
[=] (int i) {
dev (i) s
hosti(i) o
1)
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Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1:

View<double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {
array(i) = ...read from file...

}

double sum = O0;

Kokkos::parallel_reduce (
RangePolicy< Cuda>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += array(index);
Fo

sum) ;
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Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1:

View<double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file... fault
}
double sum = O0;

Kokkos::parallel_reduce (
RangePolicy< Cuda>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += array(index);
Fo

sum) ;
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Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {
array(i) = ...read from file...

}

double sum = O0;

Kokkos::parallel_reduce (
RangePolicy< Cuda>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += array(index);
},

sum) ;

Supercomputing'15, November 16, 2015




Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {
array(i) = ...read from file...

}

double sum = O0;

Kokkos::parallel_reduce (
RangePolicy< Cuda>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += array(index); illegal access
},

sum) ;
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Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);
for (size_t i = 0; i < size; ++i) {
array(i) = ...read from file...
}
double sum = 0;

Kokkos::parallel_reduce (
RangePolicy< Cuda>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index); illegal access
},

sum) ;

» CudaUVMSpace

» CudaHostPinnedSpace

What's the solution?

> Mirroring
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CudaUVMSpace

View<doublex,

CudaUVMSpace> array

array = ...from file...
double sum = 0;
parallel_reduce (N,
[=] (int i,
double & d) {
d += array(i);
})

sum) ;

Execution and Memory spaces (5)

GPU

PEREoECE
W

array metadata

asay mﬁ

RAM

e array data

GPU

Ui i 15

mﬁ

W 4

array metadata RAM

array data

Cuda runtime automatically handles data movement,

at performance hit.
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CudaHostPinnedSpace

View<doublex*,
CudaHost ... > array;

array = ...from file...
double sum = 0;
parallel_reduce (N,

[=] (int i,

double & d) {
d += array(i);
¥y

sum) ;

Execution and Memory spaces (6)

CPU GPU
BB | | RENsREe
g g COfUoTon
RAM array metadata RAM
array data

CPU GPU
B | Siiseees
SRR | CEEE .
RAM array metadata array metadata RAM
array data I

Cuda runtime allows cuda-code access to CPU memory,

at a performance hit.
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Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.
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Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

typedef Kokkos::View<doublex**, Space> ViewType;
ViewType view(...);
ViewType:: HostMirror hostView =

Kokkos :: create_mirror_view (view);

CPU GPU

: 71 N
view RAM

host mirror

deep_copy
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Mirroring pattern

1. Create a view's array in some memory space.

typedef Kokkos::View<doublex, Space> ViewType;
ViewType view(...);
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Mirroring pattern

1. Create a view's array in some memory space.
typedef Kokkos::View<doublex, Space> ViewType;

ViewType view(...);
2. Create hostView, a mirror of the view's array residing in the

host memory space.

ViewType:: HostMirror hostView =
Kokkos :: create_mirror_view (view);
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Mirroring pattern

1. Create a view's array in some memory space.
typedef Kokkos::View<doublex, Space> ViewType;

ViewType view(...);
2. Create hostView, a mirror of the view's array residing in the

host memory space.

ViewType:: HostMirror hostView =
Kokkos :: create_mirror_view (view);

3. Populate hostView on the host (from file, etc.).

Supercomputing'15, November 16, 2015




Mirroring pattern

1. Create a view's array in some memory space.
typedef Kokkos::View<doublex, Space> ViewType;
ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.

ViewType:: HostMirror hostView =
Kokkos :: create_mirror_view (view);

Populate hostView on the host (from file, etc.).

Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);
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Mirroring pattern

1. Create a view's array in some memory space.
typedef Kokkos::View<doublex, Space> ViewType;

ViewType view(...);
2. Create hostView, a mirror of the view's array residing in the

host memory space.

ViewType:: HostMirror hostView =
Kokkos:: create_mirror_view (view) ;

Populate hostView on the host (from file, etc.).

Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);

5. Launch a kernel processing the view's array.
Kokkos::parallel_for(
RangePolicy< Space>(0, size),
KOKKOS_LAMBDA (...) { use and change view });
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Mirroring pattern

1. Create a view's array in some memory space.
typedef Kokkos::View<doublex, Space> ViewType;
ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.

ViewType:: HostMirror hostView =
Kokkos:: create_mirror_view (view) ;

Populate hostView on the host (from file, etc.).

Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);

5. Launch a kernel processing the view's array.
Kokkos::parallel_for(
RangePolicy< Space>(0, size),
KOKKOS_LAMBDA (...) { use and change view });
6. If needed, deep copy the view's updated array back to the

hostView's array to write file, etc.
Kokkos::deep_copy (hostView, view);
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View and Spaces Section Summary

» Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

» Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

» Heterogenous nodes have one or more memory spaces.

» Mirroring is used for performant access to views in host and
device memory.

» Heterogenous nodes have one or more execution spaces.

» You control where parallel code is run by a template

parameter on the execution policy, or by compile-time
selection of the default execution space.
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Managing memory access patterns
for performance portability

Learning objectives:
» How the View's Layout parameter controls data layout.
» How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data
» Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

> See a concrete example of the performance of various memory
configurations.
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Example: inner product (0)

Kokkos::parallel_reduce (

RangePolicy<ExecutionSpace>(0, N),

KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
double thisRowsSum = 0;
for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row, entry) * x(entry);

}
valueToUpdate += y(row) * thisRowsSum;

¥, result):

~ ~
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Example: inner product (0)

Kokkos::parallel_reduce (

RangePolicy<ExecutionSpace>(0, N),

KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
double thisRowsSum = 0;
for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row, entry) * x(entry);

}
valueToUpdate += y(row) * thisRowsSum;

¥, result):

~ ~

Y A X

How should A be laid out in memory?
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Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View<doublex***, Layout, Space> name(...);

Supercomputing'15, November 16, 2015




Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View<doublex***, Layout, Space> name(...);

> Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

» If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

» Layouts are extensible: "50 lines

> Advanced layouts: LayoutStride, LayoutTiled, ...
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Exercise #3: Inner Product, Flat Parallelism

Exercise: Inner product < y, A* x >

(| A
N R M
(IIIIIIIT0 =O
Details: y' A x o

|

>

Location: ~/kokkos-tutorials/SC15/Exercises/03/

Use lambdas instead of functors for computational bodies.
Replace ¢ ‘N’ in parallel dispatch with RangePolicy<Space>
Add Space to all Views and Layout to A

Experiment with the combinations of Space, Layout to view
performance
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Exercise #3: Inner Product, Flat Parallelism

<ylAx> Exercise 03 (Layout)

KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: Nvidia K40 GPU

200 I I I T I I T I I

== KNC Right
7 7 KNC Left e s

@@ HSW Right W i . 4
@ @ HSW Left /

A—A K40 Left
| | 4 K40 Right

—

W

(=]
T

Bandwidth (GB/s)
S
(=]

8 64 512 1K 32K 256K 2M 1M 128M
N
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Caching and coalescing (0)

Thread independence:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
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Caching and coalescing (0)

Thread independence:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

» CPU threads are independent.
i.e., threads may execute at any rate.
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Caching and coalescing (0)

Thread independence:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
» CPU threads are independent.
i.e., threads may execute at any rate.

» GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.
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Caching and coalescing (0)

Thread independence:

operator () (const size_t index, double & valueToUpdate) {
const double d = ata(index);

valueToUpdate += d;
¥

Question: once a thread reads d, does it need to wait?
» CPU threads are independent.
i.e., threads may execute at any rate.
» GPU threads are synchronized in groups (of 32).

i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads
before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

Supercomputing'15, November 16, 2015
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Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position i,
thread t's next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1's current access should be at position i+1.
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Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position i,
thread t's next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1's current access should be at position i+1.

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)
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Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position i,
thread t's next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1's current access should be at position i+1.

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).
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Mapping indices to cores (0)

Consider the array summation example:

View<doublex*, Space> data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
RangePolicy< Space>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
§

sum) ;

Question: is this cached (for OpenMP) and coalesced (for Cuda)?
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Mapping indices to cores (0)

Consider the array summation example:

View<doublex*, Space> data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
RangePolicy< Space>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
§

sum) ;
Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous: Strided:
0, 1, 2, ..., N/P 0, N/P, 2xN/P,
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Mapping indices to cores (0)

Consider the array summation example:

View<doublex*, Space> data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
RangePolicy< Space>(0, size),
KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
valueToUpdate += data(index);
§

sum) ;
Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous: Strided:
0, 1, 2, ..., N/P 0, N/P, 2xN/P,
CPU GPU
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Mapping indices to cores (1)

Iterating for the execution space:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += d;

}

As users we don't control how indices are mapped to threads, so
how do we achieve good memory access?
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Mapping indices to cores (1)

Iterating for the execution space:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += d;

}

As users we don't control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.
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Mapping indices to cores (1)

Iterating for the execution space:

operator () (const size_t index, double & valueToUpdate) {
const double d = _data(index);
valueToUpdate += 4d;

}

As users we don't control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

Important point

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight)

thread 0 reads

thread 1 reads
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight)

thread 0 reads

thread 1 reads

» HostSpace: cached (good)
» CudaSpace: uncoalesced (bad)
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Example: inner product (3)

Important point
Performance memory access is achieved by Kokkos mapping

parallel work indices and multidimensional array layout optimally

for the architecture.

Analysis: column-major (LayoutLeft)
thread 0 reads

thread 1 reads

Supercomputing'15, November 16, 2015




Example: inner product (3)

Important point
Performance memory access is achieved by Kokkos mapping

parallel work indices and multidimensional array layout optimally

for the architecture.

Analysis: column-major (LayoutLeft)
thread 0 reads

thread 1 reads

» HostSpace: uncached (bad)
» CudaSpace: coalesced (good)
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Example: inner product (4)

Analysis: Kokkos architecture-dependent

View<doublex**, ExecutionSpace> A(N, M);

parallel_for (RangePolicy< ExecutionSpace>(0, N),
thisRowsSum += A(j, i) * x(i);
thread 0 reads thread 0 reads
3 = 5
o o et bt A
] —F= ] T T
“ : == N i I R
- ‘___ == - T
g s kel
o = = o
0 — - 1]
I = - N [
5 = 8 G I
i)
(a) OpenMP (b) Cuda

» HostSpace: cached (good)
» CudaSpace: coalesced (good)
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Example: inner product (5)

Layout performance, revisited

<ylAx> Exercise 03 (Layout)

KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: Nvidia K40 GPU

200 T T T T T T T T T
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S0 51> 4K 32K 256K 2M 16M 128M
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Memory Access Pattern Summary

> Every View has a Layout set at compile-time through a
template parameter.

» LayoutRight and LayoutLeft are most common.

> Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

» Layouts are extensible and flexible.

» For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

» Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

> There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
= You'll need multiple versions of code or pay the
performance penalty.
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Thread safety and
atomic operations

Learning objectives:

> Understand that coordination techniques for low-count CPU
threading are not scalable.

» Understand how atomics can parallelize the scatter-add
pattern.

» Gain performance intuition for atomics on the CPU and
GPU, for different data types and contention rates.
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Examples: Histogram

Histogram kernel:

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);
++_histogram(bucketIndex);

IO

Comparative Histograms
15.0

125

10.0

Percent
~
o
L

-25

http: //www.farmaceuticas.com.br/tag/graficos/
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Examples: Histogram

Histogram kernel:

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {

const int value = ...;

const int bucketIndex = computeBucketIndex(value);
++_histogram(bucketIndex);

IO

Problem: Multiple threads may try to write to the same location.

Comparative Histograms
15.0

125

10.0

Percent
~
o
L

-25

http: //www.farmaceuticas.com.br/tag/graficos/
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Examples: Histogram

Histogram kernel:

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;

L]

const int bucketIndex = computeBucketIndex(value);
++_histogram(bucketIndex);
3

Problem: Multiple threads may try to write to the same location.

Solution strategies: S

» Locks 1251 ' il =

10.0 | | |

» Thread-private copies

754 | ] ‘

» Atomics 50 N | |

Percent

254

0.0 I

25 0.0 25 5.0 75

http://www.farmaceuticas.com.br/tag/graficos/
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Thread safety (0)

Thread safety solution: Locks

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;
const int bucketIndex = computeBucketIndex(value);
// LOCK the lock that protects bucket bucketIndex
++_histogram(bucketIndex);

// UNLOCK the lock that protects bucket bucketIndex
b
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Thread safety (0)

Thread safety solution: Locks

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;
const int bucketIndex = computeBucketIndex(value);
// LOCK the lock that protects bucket bucketIndex
++_histogram(bucketIndex);
// UNLOCK the lock that protects bucket bucketIndex

¥

Problem: contention is too high at O(10,000) threads.

Supercomputing'15, November 16, 2015




Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)
{

HistogramType thisThreadsHistogram(histogram.size())
#pragma omp for nowait

for each input {

const int value = ...;
const int bucketIndex = computeBucketIndex(value);
++thisThreadsHistogram (bucketIndex);
}
#pragma omp critical
for each bucket {
histogram[bucketIndex] += thisThreadsHistogram[bucketIndex];
}
¥
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Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)
{

HistogramType thisThreadsHistogram(histogram.size())
#pragma omp for nowait

for each input {

const int value = ...;
const int bucketIndex = computeBucketIndex(value);
++thisThreadsHistogram (bucketIndex);
}
#pragma omp critical
for each bucket {
histogram[bucketIndex] += thisThreadsHistogram[bucketIndex];
}
¥

Problems: insufficient memory for thisThreadsHistogram
ratio of parallel/serial work too low.
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Thread safety (2)

Thread safety solution: Atomics

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;
const int bucketIndex = computeBucketIndex(value);
Kokkos::atomic_add (& _histogram(bucketIndex), 1);
B
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Thread safety (2)

Thread safety solution: Atomics

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;
const int bucketIndex = computeBucketIndex(value);
Kokkos::atomic_add (& _histogram(bucketIndex), 1);
B

» Atomics are the only scalable solution to thread safety.
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Thread safety (2)

Thread safety solution: Atomics

parallel_for (N, KOKKOS_LAMBDA (const size_t index) {
const int value = ...;
const int bucketIndex = computeBucketIndex(value);
Kokkos::atomic_add (& _histogram(bucketIndex), 1);
B

» Atomics are the only scalable solution to thread safety.

» Locks or data replication are strongly discouraged.
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Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator () (const unsigned int intervallndex,
double & valueToUpdate) const {
double contribution = function(...);
valueToUpdate += contribution;

}
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Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator () (const unsigned int intervallndex,
double & valueToUpdate) const {
double contribution = function(...);
valueToUpdate += contribution;

}

Idea: what if we instead do this with parallel for and atomics?

operator () (const unsigned int intervallndex) comnst {
const double contribution = function(...);
Kokkos:: atomic_add (&globalSum, contribution);

}

How much of a performance penalty is incurred?
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Performance of atomics (1)

Two costs: (independent) work and coordination.

parallel_reduce (numberOfIntervals,
KOKKOS_LAMBDA (const unsigned int intervallndex,
double & valueToUpdate) {
valueToUpdate += function(...);
}, totallntegral);
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Performance of atomics (1)

Two costs: (independent) work and coordination.

parallel_reduce (numberOfIntervals,
KOKKOS_LAMBDA (const unsigned int intervallndex,
double & valueToUpdate) {
valueToUpdate += function(...);
}, totallntegral);

Experimental setup

operator () (const unsigned int index) const {
Kokkos::atomic_add (&globalSums [index % atomicStride], 1);
}

» This is the most extreme case: all coordination and no work.

» Contention is captured by the atomicStride.
atomicStride — 1 = Scalar integration
atomicStride — large = Independent
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Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

Note: log scale
log10(speedup over independent) [-]

log1l0(contention) [-]
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Atomics performance: 1 million adds, no work per kernel

Performance of atomics (2)

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows

Note: log scale

log10(speedup over independent) [-]

No penalty for low contention |

e Highpenalty for

cuda double
cuda size_t
cuda float
cuda unsigned
omp double
omp size_t
omp float
omp unsigned
phi double
phi size_t

phi float

phi unsigned

high contention

I | 1
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log1l0(contention) [-]
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Performance of atomics (3)

Atomics performance: 1 million adds, some work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 2 pows
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Performance of atomics (4)

Atomics performance: 1 million adds, lots of work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 5 pows

No penalty for any contention
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Advanced features

Atomics on arbitrary types:

> Atomic operations work if the corresponding operator exists
, i.e., atomic_add works on any data type with “+".

» Atomic exchange works on any data type.

// Assign *dest to val, return former value of *dest
template<typename T>

T atomic_exchange(T * dest, T val);

// 1f xdest == comp then assign xdest to val

// Return true if succeeds.

template<typename T>

bool atomic_compare_exchange_strong(T * dest, T comp, T val);
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Memory traits

View memory traits:

> Beyond a Layout and Space, Views can have memory traits.

» Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic
memory trait:

View<double**, Layout, Space,
MemoryTraits<Atomic> > forces(...);
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Memory traits

View memory traits:

> Beyond a Layout and Space, Views can have memory traits.

» Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic
memory trait:

View<double**, Layout, Space,
MemoryTraits<Atomic> > forces(...);

Many memory traits exist or are experimental, including Read,
Write, ReadWrite, ReadOnce (non-temporal), Contiguous, and
RandomAccess.
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RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.
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RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

How to access texture memory via CUDA:
cudaResourceDesc resDesc;

memset (&¥resDesc, 0, sizeof (resDesc));

resDesc.resType = cudaResourceTypelinear;
resDesc.res.linear.devPtr = buffer;
resDesc.res.linear.desc.f = cudaChannelFormatKindFloat;
resDesc.res.linear.desc.x = 32; // bits per channel
resDesc.res.linear.sizeInBytes = N*sizeof (float);

cudaTextureDesc texDesc;
memset (&texDesc, 0, sizeof (texDesc));

texDesc.readMode = cudaReadModeElementType;

cudaTextureObject_t tex=0;
cudaCreateTextureObject (¥tex, &resDesc, &texDesc, NULL);
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RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random
access, originally designed for textures.

How to access texture memory via CUDA:
cudaResourceDesc resDesc;

memset (&¥resDesc, 0, sizeof (resDesc));

resDesc.resType = cudaResourceTypelinear;
resDesc.res.linear.devPtr = buffer;
resDesc.res.linear.desc.f cudaChannelFormatKindFloat;
resDesc.res.linear.desc.x 32; // bits per channel
resDesc.res.linear.sizeInBytes = N*sizeof (float);

L

cudaTextureDesc texDesc;
memset (¥texDesc, 0, sizeof (texDesc));
texDesc.readMode = cudaReadModeElementType;

cudaTextureObject_t tex=0;
cudaCreateTextureObject (¥tex, &resDesc, &texDesc, NULL);

How to access texture memory via Kokkos:
View< const doublex**, Layout, Space,
MemoryTraits<RandomAccess> > name (...);
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Section Summary

> Atomics are the only thread-scalable solution to thread safety.
» Locks or data replication are strongly discouraged
» Atomic performance depends on ratio of independent work
and atomic operations.
» With more work, there is a lower performance penalty, because
of increased opportunity to interleave work and atomic.
» The Atomic memory trait can be used to make all accesses
to a view atomic.
> The cost of atomics can be negligible:
» CPU ideal: contiguous access, integer types
» GPU ideal: scattered access, 32-bit types
» Many programs with the scatter-add pattern can be
thread-scalably parallelized using atomics without much
modification.
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Hierarchical parallelism

Finding and exploiting more parallelism in your computations.

Learning objectives:

» Similarities and differences between outer and inner levels of
parallelism

» Thread teams (league of teams of threads)

» Performance improvement with well-coordinated teams
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const int row, double & valueToUpdate) {

}s

double thisRowsSum = O0;
for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}
valueToUpdate += y(row) * thisRowsSum;
result); thread 0
r
&
N

TIII] | theead
[
||
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}
valueToUpdate += y(row) * thisRowsSum;
}, result); thread 0
. i 4 /
Problem: What if we don’t have
enough rows to saturate the GPU? A‘\
/

TIIT] | theead
[
||
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}
valueToUpdate += y(row) * thisRowsSum;
}, result); thread 0
. i 4 /
Problem: What if we don’t have
enough rows to saturate the GPU? A‘\
/

Solutions? .
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[
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = O0;
for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}
valueToUpdate += y(row) * thisRowsSum;
}, result); thread 0
. i 4 /
Problem: What if we don’t have
enough rows to saturate the GPU? A‘\
/

Solutions? .

» Atomics j:l:l:l:l i threadl ][
[ |

» Thread teams L 1]
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Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for (N,
KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);
const int col = extractCol(index);
atomic_add (&result, A(row,col) * x(col));
1
thread 0
ra

1

1]
|
|
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Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for (N,
KOKKOS_LAMBDA (const size_t index) {

const int row = extractRow(index);
const int col = extractCol(index);
atomic_add (&result, A(row,col) * x(col));
1
thread 0
ra

Problem: Poor performance

l E:D | thread
|

1

1]
|
|

103/122
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Example: inner product (2)

Doing each individual row with atomics is like doing scalar
integration with atomics.

Instead, you could envision doing a large number of
parallel_reduce kernels.

for each row
Functor functor(row, ...);
parallel_reduce (M, functor);

}
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Example: inner product (2)

Doing each individual row with atomics is like doing scalar
integration with atomics.

Instead, you could envision doing a large number of
parallel_reduce kernels.

for each row
Functor functor(row, ...);
parallel_reduce (M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.
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Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.
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Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams of M threads.
2. Each thread performs one entry in the row.
3. The threads within teams perform a reduction.
4 team 0, thread 0

. The thread teams perform a reduction.

rd

team 0| P [

4

/

]:D:_team 0, thread 3
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Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce(
team_policy (N, Kokkos::AUTO),
KOKKOS_LAMBDA (member_type & teamMember, double & update) {
int row = teamMember.league_rank();
double thisRowsSum = O0;
parallel_reduce (TeamThreadRange (teamMember , M),
[=] (int col, double & innerUpdate) {
innerUpdate += A(row , col) * x(col);
}, thisRowsSum);
if (teamMember.team_rank() == 0) {
update += y(row) * thisRowsSum;
}
¥, result):;

The performance and flexibility of teams is naturally and
concisely expressed under the Kokkos model.

Let's walk through how we got to this final answer.
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TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:
We specify a total amount of work.

// total work = N
parallel_for (
RangePolicy<ExecutionSpace>(0,N), functor);
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TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:
We specify a total amount of work.

// total work = N
parallel_for (
RangePolicy<ExecutionSpace>(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:
We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize
parallel_for (
TeamPolicy<ExecutionSpace >(number0OfTeams, teamSize), functor)
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TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

typedef typename TeamPolicy<ExecSpace>::member_type member_type;

void operator () (const member_type & teamMember) {
// Which team am | on?

const unsigned int leagueRank = teamMember.league_rank();
// Which thread am | on this team?
const unsigned int teamRank = teamMember.team_rank();

}
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TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

typedef typename TeamPolicy<ExecSpace>::member_type member_type;

void operator () (const member_type & teamMember) {
// Which team am | on?

const unsigned int leagueRank = teamMember.league_rank();
// Which thread am | on this team?
const unsigned int teamRank = teamMember.team_rank () ;

There may be more (or fewer) team members than pieces of your
algorithm's work per team
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TeamThreadRange (0)

First attempt at inner product exercise:

operator () (const member_type & teamMember ) {
const unsigned int row = teamMember.league_rank();
const unsigned int col = teamMember.team_rank();
atomic_add (&result,y(row) * A(row,col) * x(entry));

}
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TeamThreadRange (0)

First attempt at inner product exercise:

operator () (const member_type & teamMember ) {

const unsigned int row = teamMember.league_rank();
const unsigned int col = teamMember.team_rank();
atomic_add (&result,y(row) * A(row,col) * x(entry));

}

» When team size # number of columns, how are units of work
mapped to team’s member threads? Is the mapping
architecture-dependent?

> atomic_add performs badly under high contention, how can
team’s member threads performantly cooperate for a nested
reduction?
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TeamThreadRange (1)

We shouldn't be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
¥) s
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;

}
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TeamThreadRange (1)

We shouldn't be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
¥) s
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;

}

If this were a parallel execution,
we'd use Kokkos: :parallel reduce.
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TeamThreadRange (1)

We shouldn't be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
¥) s
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;

}

If this were a parallel execution,
we'd use Kokkos: :parallel reduce.

Key idea: this is a parallel execution.
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TeamThreadRange (1)

We shouldn't be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {
const int row = teamMember.league_rank();
double thisRowsSum;
‘“‘do a reduction’’(‘‘over M columns’’,
[=] (const int col) {
thisRowsSum += A(row,col) * x(col);
¥) s
if (teamMember.team_rank () == 0) {
update += (row) * thisRowsSum;
}
}

If this were a parallel execution,
we'd use Kokkos: :parallel reduce.

Key idea: this is a parallel execution.

= Nested parallel patterns

Supercomputing'15, November 16, 2015 110/122




TeamThreadRange (2)

TeamThreadRange:

operator () (const member_type & teamMember, double & update ) {

const int row = teamMember.league_rank();
double thisRowsSum;
parallel_reduce (TeamThreadRange (teamMember , M),
[=] (const int col, double & rowUpdate ) {
rowUpdate += A(row, col) * x(col);
}, thisRowsSum );
if (teamMember.team_rank() == 0) {
update += y(row) * thisRowsSum;

}
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TeamThreadRange (2)

TeamThreadRange:

operator () (const member_type & teamMember , double & update ) {

const int row = teamMember.league_rank();
double thisRowsSum;
parallel_reduce (TeamThreadRange (teamMember , M),

[=] (const int col, double & rowUpdate ) {

rowUpdate += A(row, col) * x(col);

}, thisRowsSum );
if (teamMember.team_rank() == 0) {

update += y(row) * thisRowsSum;

}

» The mapping of work indices to threads is
architecture-dependent.

» The amount of work given to the TeamThreadRange need not
be a multiple of the team size.

> Intra-team reduction handled for you.
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Nested parallelism

Anatomy of nested parallelism:

parallel_outer (
TeamPolicy <ExecutionSpace >(numberOfTeams, teamSize),
KOKKOS_LAMBDA (const member_type & teamMember [, ...J) {
/* beginning of outer body */
parallel_inner (
TeamThreadRange (teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch/[, ...]) {
/* inner body */
B, wonidds
/* end of outer body */
Ll I D

> parallel outer and parallel_inner may be any
combination of for, reduce, or scan.

» The inner lambda may capture by reference, but
capture-by-value is recommended.

> The policy of the inner lambda is always a TeamThreadRange.

» TeamThreadRange cannot be nested.
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0fTeams, Kokkos::AUTO),
/* functor */);
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0fTeams, Kokkos::AUTO),
/* functor */);

NVIDIA GPU:

» Special hardware available for coordination within a team.
» Within a team 32 threads (warp) execute “lock step.”

» Maximum team size: 1024; Recommended team size: 256
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(
TeamPolicy<ExecutionSpace >(number0fTeams, Kokkos::AUTO),
/* functor */);

NVIDIA GPU:

» Special hardware available for coordination within a team.
» Within a team 32 threads (warp) execute “lock step.”

» Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi:

» Recommended team size: # hyperthreads per core

» Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing
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Exercise #4: Inner Product, Hierarchical Parallelism

Exercise: Inner product < y, A x >

~ ~

. N R M
(Il =0

Details: yT ~ A x

v

Location: ~/kokkos-tutorials/SC15/Exercises/03/

v

Use lambdas instead of functors for computational bodies.

v

Replace RangePolicy<Space> with TeamPolicy<Space>

v

Experiment with the combinations of Layout, Space, N to view
performance

» Hint: what should the layout of A be?
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Exercise #4: Inner Product, Hierarchical Parallelism

<ylAx> Exercise 04 (Layouts/Teams)

KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: NVIDIA K40 GPU
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Shared memory

Learning objectives:

» Understand how shared memory can reduce global memory
accesses

> Recognize when to use shared memory

> Understand how to use shared memory and why barriers are
necessary
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Shared memory (0)

Each team has access to a “scratch pad”.

global memory

shared memory

N g

“scratch pad” ||
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Shared memory (1)

Shared memory (scratch pad) details:
» Accessing data is shared memory is (usually) much faster
than global memory.

» GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

» CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

> Roughly, it's like a user-managed L1 cache.
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Shared memory (1)

Shared memory (scratch pad) details:
» Accessing data is shared memory is (usually) much faster
than global memory.

» GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

» CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

> Roughly, it's like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it's
better to load the data into shared memory and read from there.
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Shared memory example: finite difference

Main idea: Load global data into shared memory and reuse

operator () (member_type teamMember) const {
// Declare team-shared tile of memory

View< double*x**
, execution_space::scratch_memory_space
> tile( teamMember.team_shared(), ... );

// copy subgrid data into tile

teamMember.team_barrier ();

// Compute stencil using tile

}
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Advanced features we haven't covered

» There is a third level in the hierarchy below
TeamThreadRange: ThreadVectorRange

» Just like for TeamThreadRange, you can perform
parallel_for, parallel_reduce, or parallel_scan.
» Important for full performance of Xeon Phi and GPUs
> Restricting execution to a single member:
PerTeam: one thread per team
PerThread: one vector lane per thread

> Multiple shared views can be made in shared memory.
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Section Summary

» Hierarchical work can be parallelized via hierarchical
parallelism.

> Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

» Team “worksets" are processed by a team in nested
parallel_for (or reduce or scan) calls with a
TeamThreadRange policy.

» Teams can be used to reduce contention for global resources
even in “flat” algorithms.

» Teams have access to “scratch pad” shared memory.
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Tutorial Takeaways

» High performance computers are increasingly heterogenous
MPIl-only is no longer sufficient.

> For portability: OpenMP, OpenACC, ... or Kokkos.

» Only Kokkos obtains performant memory access patterns via
architecture-aware arrays and work mapping.
i.e., not just portable, performance portable.

» With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it's no more difficult than OpenMP.
» Advanced performance-optimizing patterns are simpler

with Kokkos than with native versions.
i.e., you're not missing out on advanced features.
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