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Prerequisites for Tutorial Exercises

Compilers and Libraries for your Compute Node

► CPU: GCC 4.7.2 (or newer) OR Intel 14 (or newer) OR Clang
3.5.2 (or newer)

► GPU: CUDA nvcc 6.5.14 (or newer) AND NVIDIA compute
capability 3.0 (or newer)

Install Kokkos and Exercises on your Compute Node

► Kokkos: github.com/kokkos/kokkos,
clone in ${ HOME}/kokkos

► Tutorial: github.com/kokkos/kokkos-tutorials/SC15 
makefiles look for ${HOME}/kokkos

Knowledge of C++: class constructors, member variables,

member functions, member operators, template arguments
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Tutorial Objectives

Understand Kokkos Programming Model Abstractions

What, how and why of performance portability

Productivity and hope for future-proofing
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► Productivity and hope for future-proofing

Part One:

► Simple data parallel computations

► Deciding where code is run and where data is placed
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Tutorial Objectives

Understand Kokkos Programming Model Abstractions

► What, how and why of performance portability

► Productivity and hope for future-proofing

Part One:

► Simple data parallel computations

► Deciding where code is run and where data is placed

Part Two:

► Managing data access pattens for performance portability

► Thread safety and thread scalability

► Thread-teams for maximizing parallelism
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Tutorial Takeaways

► High performance computers are increasingly heterogenous
MPI-only is no longer sufficient.

► For portability: OpenMP, OpenACC, ... or Kokkos.
► Only Kokkos obtains performant memory access patterns via

architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

► With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it's no more difficult than OpenMP.

► Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you're not missing out on advanced features.
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r
Kokkos and the HPC
La ndsca pe

Learning objectives:

► How Kokkos fits in the context of modern HPC.
► Kokkos scope, goals, and philosophy.
► Difference between Kokkos and #pragma methods.
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Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

Accelerator
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Many-core revolution (0)

Compute nodes will be heterogeneous in cores and memory:

Accelerator

Node

Many-core revolution: 20-year "just recompile free ride is over.

How much do l have to learn and change to use these nodes?
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Many-core revolution (1)

Key Considerations for GPUs: 

► GPUs support thousands of simultaneously-executing threads.
► You need 0(10,000) threads to use a GPU effectively.
► Cores are "simple" - no transistors are dedicated to branch

prediction, out of order execution, etc. Instead, more cores.

► Current GPUs can't performantly access CPU memory, you
have to move data

► GPU cores cannot run M Pi's heavy processes.
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Supporting multiple architectures (0)

Operating assumptions:

► Compute nodes have -50 complex cores, -5000 simple cores,
and heterogenous memory.

► Separate inter-node and intra-node programming models e.g.,
message passing + threading)
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Operating assumptions:

► Compute nodes have -50 complex cores, -5000 simple cores,
and heterogenous memory.

► Separate inter-node and intra-node programming models e.g.,
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Goal: run on multiple architectures.

Solutions:

► Maintain separate versions for each target architecture
(Xeon, Xeon Phi, GPU, GPU with NVLink, etc.)
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Operating assumptions:

► Compute nodes have -50 complex cores, -5000 simple cores,
and heterogenous memory.

► Separate inter-node and intra-node programming models e.g.,
message passing + threading)

Goal: run on multiple architectures.

Solutions:

► Maintain separate versions for cNach targct architccturc
(Xcon, Xcon Phi, GPU, GPU with NVLink, ctc.) 

► Use a language or a library that runs on multiple architectures
(e.g., OpenMP, OpenACC, OpenCL, Kokkos)

► Note: not all alternatives support heterogenous memory
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Supporting multiple architectures (1)

Important Point

There's a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)
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Important Point

There's a difference between portability and performance
portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:

► compiles and runs on multiple architectures,
► obtains performant memory access patterns across

architectures,

► can leverage architecture-specific features where possible.

Supercomputing'15, November 16, 2015 9/122



r

There's a difference between portability and performance
portability.

 J

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:

► compiles and runs on multiple architectures,
► obtains performant memory access patterns across

architectures,

► can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.
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r
Threaded (intra-node) data
parallelism

Learning objectives:

► Terminology of pattern, policy, and body.
► The data layout problem.
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Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?
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Opportunities for data parallelism

Loop bodies are prime candidates for data parallelism.

Test: Same answer if the loop iterates backwards? random order?

Examples:

► Thermodynamic quantities at quadrature points in FEA:
for (element = 0; element < numElements; ++element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementValues[element] = total;
}
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Concepts: Patterns, Policies, and Bodies

r 

for (element = 0; element < numElements; ++element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementvalues[element] = total;
}
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Concepts: Patterns, Policies, and Bodies

Pattern Pohcy
for (element = 0; element < numElements; ++element) {

-0
0
00

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementvalues[element] = total;
}

Terminology:

► Pattern: structure of the computations
for, reduction, scan, task-graph, ...

► Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

► Computational Body: code which performs each unit of
work; e.g., the loop body

The pattern and policy drive the computational body.
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r
Threading "Parallel for"

What if we want to thread the FEA algorithm?

for (element = 0; element < numElements; ++element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementValues[element] = total;
}
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Threading "Parallel for"

What if we want to thread the FEA algorithm?

#pragma omp parallel for

for (element = 0; element < numElements; ++element) {
total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementValues[element] = total;
}

(Change the execution policy from "serial" to "parallel.")
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Threading "Parallel for"

What if we want to thread the FEA algorithm?

#pragma omp parallel for

for (element = 0; element < numElements; ++element)
total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);
}

elementValues[element] = total;
}

(Change the execution policy from "serial" to "parallel.")

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel MIC and NVIDIA GPU and AMD Fusion and ...
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F
"Parallel for" on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...) private(...)

#pragma omp distribute

for (element = 0; element < numElements; ++element)

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);
elementValues[element] = total;

}
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F
"Parallel for" on a GPU via pragmas

Option 1: OpenMP 4.0

#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...) private(...)

#pragma omp distribute

for (element = 0; element < numElements; ++element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);
elementValues[element] = total;

}

Option 2: OpenACC 

#pragma acc parallel copy(...) num_gangs(...) vector_length(...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);
elementValues[element] = total;

}

Supercomputing'15, November 16, 2015 14/122



Portable, but not performance portable

A standard thread parallel programming model

may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?
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Portable, but not performance portable

A standard thread parallel programming model

may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation's
memory access pattern.
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Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element)
total = 0;

for (qp = 0; qp < numQPs; ++qp) {
for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + *

right[element * numQPs * vectorSize +

qp * vectorSize + i];
}

}

elementValues[element]
}

= total;

{
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Problem: memory access pattern

/11r

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];
}

}

elementValues[element] = total;
}

Memory access pattern problem: CPU data layout reduces GPU

performance by more than 10X.
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Problem: memory access pattern

#pragma something, opencl, etc.

for (element = 0; element < numElements; ++element)

total = 0;

for (qp = 0; qp < numQPs; ++qp)

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];
}

}

elementvalues[element] = total;
}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

or performance, the memory access pattern must depend on the
architecture.
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rHow does Kokkos address performance portability?

Kokkos is a productive, portable, performant, shared-memory
programming model.

► is a C++ library, not a new language or language extension.

► supports clear, concise, thread-scalable parallel patterns.
► lets you write algorithms once and run on many architectures

e.g. multi-core CPU, Nvidia GPGPU, Xeon Phi, ...

► minimizes the amount of architecture-specific
implementation details users must know.

► solves the data layout problem by using multi-dimensional
arrays with architecture-dependent layouts
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r
Data parallel patterns

Learning objectives:

► How computational bodies are passed to the Kokkos runtime.
► How work is mapped to cores.
► The difference between parallel_for and

parallel_reduce.

► Start parallelizing a simple example.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex) {

atomForces[atomIndex] = calculateForce(...data...);
}

Kokkos maps work to cores
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {

atomForces[atomIndex] = calculateForce(...data...);
}

Kokkos maps work to cores

► each iteration of a computational body is a unit of work.
► an iteration index identifies a particular unit of work.
► an iteration range identifies a total amount of work.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {

atomForces[atomIndex] = calculateForce(...data...);
}

Kokkos maps work to cores

► each iteration of a computational body is a unit of work.
► an iteration index identifies a particular unit of work.
► an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)

to Kokkos, Kokkos maps iteration indices to cores and then
runs the computational body on those cores.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

void operator()( a work assignment ) const

/* ... computational body ... */

};
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos;:parallel_for(numberofIterations, functor);
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos::parallel_for(numberOflterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator()(const s ze_t index) const

1
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos::parallel_for(numberoflterations, functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator()(const s ze_t index) const

1

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed

by the Kokkos runtime.
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Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex)

atomForces[atomIndex] = calculateForce(...data...);
}

{

struct AtomForceFunctor {

void operator()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(...data...);
}

}
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Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex)

atomForces[atomIndex] = calculateForce(...data...);
}

{

struct AtomForceFunctor {

void operator()(const size_t atomIndex) const {

atomForces[atomIndex] = calculateForce(...data...);
}

}

How does the body access the data?

!Important concept

A parallel functor body must have access to all the data it needs

through the functor's data members.
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Using Kokkos for data parallel patterns (5)

Putting it aIl together: the complete functor:

struct AtomForceFunctor
ForceType _atomForces;

AtomDataType _atomData;

void operator()(const size_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);
}

}
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Using Kokkos for data parallel patterns (5)

Putting it aIl together: the complete functor:

struct AtomForceFunctor
ForceType _atomForces;

AtomDataType _atomData;

void operator()(const size_t atomIndex) const

_atomForces[atomIndex] = calculateForce(_atomData);
}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex)f
atomForces[atomIndex] = calculateForce(data);

}
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Using Kokkos for data parallel patterns (5)

Putting it aIl together: the complete functor:

struct AtomForceFunctor
ForceType _atomForces;

AtomDataType _atomData;

void operator()(const size_t atomIndex) const

_atomForces[atomIndex] = calculateForce(_atomData);
}

}

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex)f
atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces, data);
for (atomIndex = 0; atomIndex < number0fAtoms; ++atomIndex)f

functor(atomIndex);
}
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Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;

AtomDataType _atomData;

AtomForceFunctor(atomForces, data) :

_atomForces(atomForces) _atomData(data) {}

void operator()(const size_t atomIndex) const

_atomForces[atomIndex] = calculateForce(_atomData);
}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces, data);

Kokkos::parallel_for(number0fAtoms, functor);
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Using Kokkos for data parallel patterns (7)

Functors are verbose C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos;:parallel_for(number0fAtoms,

[=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);
}

);
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Using Kokkos for data parallel patterns (7)

Functors are verbose C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos;:parallel_for(number0fAtoms

I [=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

1

);

A lambda is not magic, it is the compiler auto-generating a

functor for you.
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Using Kokkos for data parallel patterns (7)

Functors are verbose C++11 Lambda are concise

atomForces already exists

data already exists

Kokkos::parallel_for(number0fAtoms

I [=] (const size_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

1

A lambda is not magic, it is the compiler auto-generating a

functor for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value

C=]. Don't capture containers (e.g., std::vector) by value because
this copies the container's entire contents.

Supercomputing'15, November 16, 2015 25/122
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How does this compare to OpenMP?

parallel_for examples

for (size_t i = 0; i

/* loop body */
}

< N; ++i) {

#pragma omp parallel

for (size_t i = 0; i

for

< N; ++i) {

/* loop body */
}

parallel_for(N, [=]

/* loop body */

});

(const size_t i) {

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.
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Scalar integration (0)

Riemann-sum-style numerical integration:
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Y = function(x) dx
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Scalar integration (0)

Riemann-sum-style numerical integration:

upper

y function(x) dx
flower

4
2
o

-2
wikipedia

0 1

double totallntegral = 0;

for (size_t i = 0; i < number0fIntervals; ++i) {

const double x =

lower + (i/numberOflntervals) * (upper - lower);

const double thislntervalsContribution = function(x);

totallntegral += thisIntervalsContribution;

1
totallntegral *= dx;

2
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Scalar integration (0)

Riemann-sum-style numerical integration:

upper

y = function(x) dx
flower

4
2
0

-2 -1
wikipedia

72

0 1

double totallntegral = 0;

for (size_t i = 0; i < number0fIntervals; ++i) {

const double x =

kwer + (i/numberOflntervals) * (upper - lower);

const double thislntervalsContribution = function(x);

totallntegral += thisIntervalsContribution;
}

totallntegral *= dx;

How would we parallelize it?
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Scalar integration (0)

Riemann-sum-style numerical integration:

4
2

y = function(x) dx
flower

upper 72

-2 -1
wikipedia

0

Pattern?

double totallntegral = 0; Policy?
for (size_t i = 0; i < number0fIntervals; ++i) {

N.

o
CO

1 2

const double x =

lower + (i/numberOflntervals) * (upper - lower);

const double thislntervalsContribution = function(x);

totallntegral += thisIntervalsContribution;
}

totallntegral *= dx;

How would we parallelize it?
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Scalar integration (1)

An (incorrect) attempt:

double totallntegral = 0;

Kokkos::parallel_for(numberOflntervals,

[=] (const size_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totallntegral += function(x);},

);
totallntegral *= dx;

First problem: compiler error; cannot increment totallntegral

(lambdas capture by value and are treated as const!)
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalintal = 0;

double * totallntegralPointer = &totallntegral;

Kokkos::parallel_for(numberofIntervals,

[=] (const size_t index) {

const double x =

lower + (index/number0fIntervals) * (upper - lower);

*totallntegralPointer += function(x);},

);
totallntegral *= dx;
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalinte6,_al = 0;

double * totallntegralPointer = &totallntegral;

Kokkos::parallel_for(numberofIntervals,

[=] (const size_t index) {

const double x =

lower + (index/number0fIntervals) * (upper - lower);

*totallntegralPointer += function(x);},

);
totallntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load
1 increment load
2 write increment
3 write
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of

reduction
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of

reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of

reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+:finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue +=
}
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Scalar integration (3)

Root problem: we're using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+:finalReducedValue)

for (size_t i = 0; i < N; ++i) {

finalReducedValue +=
}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor, finalReducedValue);
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Scalar integration (4)

Example: Scalar integration 

ct
2
a)
O.

0
_se
_se
0
N,!

double totallntegral = 0;

#pragma omp parallel for reduction(+:totallntegral)

for (size_t i = 0; i < number0fIntervals; ++i) {

totallntegral += function(...);
}

double totallntegral = 0;

parallel_reduce(number0fIntervals,

[=] (const size_t i, double & valueToUpdate)

valueToUpdate += function(...);
},

totalIntegral);

{

► The operator takes two arguments: a work index and a value
to update.

► The value to update is an thread-private value that is made
and used by Kokkos; it is not the final reduced value.
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Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.
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Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = + 13*N

► a = dispatch overhead
= time for a unit of work

► N = number of units of work
► P = available concurrency
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Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = a + 13p*A1

► a = dispatch overhead
• = time for a unit of work

► N = number of units of work
► P = available concurrency

Speedup = P ± (1+ (4)

► Should have a * P 13 * N

► All runtimes strive to minimize launch overhead a
► Find more parallelism to increase N
► Merge (fuse) parallel operations to increase 0
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Scalar integration (6)

Results: illustrates simple speedup model = P (1 +
s
p
e
e
d
u
p
 o
ve

r 
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Kokkos speedup over serial: Scalar Integration

Kokkos Cuda
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Native OpenMP
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Recurring Exercise: Inner Product

Exercise: Inner product < y, A* x >
e-

4 N
TY ' A x

-,
IM

Details:

1. y is Nxl, A is NxM, x is Mxl

. We'll use this exercise throughout the tutorial

= 1E1
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Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp>

int main(int argc, char** argv) {

/* ... do any necessary setup (e.g., initialize MPI)

Kokkos::initialize(argc, argv);

/* ... do computations ... */
Kokkos::finalize();

return 0;

(Optional) Command-line arguments:

* /

--kokkos—threads=INT
total number of threads
(or threads within NUMA region)

--kokkos—numa=INT number of NUMA regions
--kokkos—device=INT device (GPU) ID to use
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Exercise #1: logistics

Compiling for CPU

cd -/kokkos-tutorial/SC15/Exercises/01/

# gcc using OpenMP (default) and Serial back-ends

make -j 4 [KOKKOS_DEVICES=OpenMP,Serial]

# Intel using OpenMP (default) and Serial back-ends

make -j 4 CXX=icpc [KOKKOS_DEVICES=OpenMP,Serial]

# Intel using OpenMP for Xeon Phi Knights Corner cross-compile

# For execution natively on the KNC. NOT for offload.

make -j CXX=icpc [KOKKOS_DEVICES=OpenMP,Serial] KOKKOS_ARCH=KNC

Running on CPU with OpenMP back-end

# Set OpenMP affinity

export GOMP_CPU_AFFINITY=O-NumberOfCoresOnASingleSocket

# Print example command line options:

./exercise.host -h

# Run with defaults on CPU

./exercise.host
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Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y, A * x >

N

I I I I I I I I I I I = ❑

Details: yT
A

0- Location: -/kokkos-tutorials/SC15/Exercises/01/

10 See
-/kokkos-tutorials/SC15/Exercises/HOW_TO_COMPILE_AND_RUN

10 Look for comments labeled with "EXERCISE"

► Parallelize loops with parallel_f or or parallel_reduce

1, Use lambdas instead of functors for computational bodies.

• • • • • •
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200

Exercise #1 results

<ylAx> Exercise 01
KNC: Xeon Phi 57 core; HSW: Dual Xeon Haswell 2x16 cores

150 -
MI

-'-' 100

pq 50 -

N-N KNC
0-0 HSW

64 512 4K 32K 256K 2M 16M 128M
N
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General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos;:parallel_reduce(numberofIterations,

[=] (const size_t index,

ReductionType & valueToUpdate) {

valueToUpdate += // .., contribution for index
},

reducedValue);

Supercomputing'15, November 16, 2015



General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos::parallel_reduce(numberofIterations,

[=] (const size_t index,

ReductionType & valueToUpdate) {

valueToUpdate += // .., contribution for index
},

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to

zero and is reduced with operator+=.
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General reductions (0)

Review: Simple parallel reduce using a lambda:

ReductionType reducedValue; // initial value irrelevant

Kokkos::parallel_reduce(numberofIterations,

[=] (const size_t index,

ReductionType & valueToUpdate) {

valueToUpdate += // .., contribution for index
},

reducedValue);

Limitation of using defaults: the reduced value is (re-)initialized to

zero and is reduced with operator+=.

For non-trival reductions you need to use a general reduction
functor.
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General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchLocation = ...;

size_t index0fClosest = 0;

for (size_t i = 1; i < number0fPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude(searchLocation - points[indexOfClosest])) {

indexOfClosest = i;
}

}
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General reductions (1)

How do you do arbitrary reductions?

Example: finding index of closest point

Point searchLocation = ...;

size_t index0fClosest = 0;

for (size_t i = 1; i < number0fPoints; ++i) {

if (magnitude(searchLocation - points[i]) <

magnitude(searchLocation - points[index0fClosest])) {

index0fClosest = i;
}

}

► This isn't possible with openmp's reduction clause
► Manual threading versions must avoid false sharing
► Parallel programming models should support robust,

arbitrary, performant reductions tuned to the architecture.
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General reductions (2)

General reductions:

What information must we provide to do a reduction?

► The type of the value to reduce ("value_type")

► How to combine ("join") two value_types

► How to initialize a value_type

struct ParallelFunctor {

typedef double value_type;

void operator()(const size_t index,

value_type & valueToUpdate) const

void join(volatile value_type & destination,

const volatile value_type & source) const

void init(value_type & initialValue) const
}
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Advanced features we haven't covered 

► Exclusive and inclusive prefix scan with the parallel_scan
pattern.

► Using tag dispatch interface to allow non-trivial functors to
have multiple "operator 0" functions.

► Directed acyclic graph (DAG) of tasks pattern (experimental).
► Concurrently executing parallel kernels on CPU and GPU

(experimental).

► Hierarchical parallelism with team policies, covered later.
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r
► Simple usage is similar to OpenMP, advanced features are

also straightforward

► Three common data-parallel patterns are parallel_for,
parallel_reduce, and parallel_scan.

► A parallel computation is characterized by its pattern, policy,
space, and body.

► User provides computational bodies as functors or lambdas
which handle a single work item.
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Views

Learning objectives:

► Motivation behind the View abstraction.
► Key View concepts and template parameters.
► The View life cycle.
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rExample: running daxpy on the GPU:

-o

ea

Z5
4a

=
u-

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];
1);

struct Functor {

double *_x, *_y, a;

void operator()(const size_t {

_y [i] = _a * _x [i] + _y[i];
}

};
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r

-

i---Example: running daxpy on the GPU:

o

ea

MN •

double * x = new double[N]; // also y

parallel_for(N, [=] (const size_t i) {

y[i] = a * x[i] + y[i];

1);

struct Functor {

Illouble *_x, *_y, a;

void operator()(const size_t i) {

III _y[i] = _a * _x[i] + _y[i];

Problem: x and y reside in CPU memory.
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o

u

u_

Example: running daxpy on the GPU: 

double * x = new double [N] ; // also y
parallel_f or (N, [=] (const size_t i) {

y [i] = a * x Li] + y[i];
I);

struct Functor {

double *_x , *_y , a;

void operator () ( const size_t i) {

_y [i] = _a * _x[i] + -3T[i];
}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)

which can be communicated to accelerator (GPU).

Views
Supercomputing'15, November 16, 2015 45/122



Views (0)

View abstraction

► A lightweight C++ class with a pointer to array data and a
little meta-data,

► that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View<double ...> x(...), y(...);

...populate x, y...

parallel_for(N, [=] (const size_t i) {
// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

I);
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Views (0)

View abstraction

► A lightweight C++ class with a pointer to array data and a
little meta-data,

► that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View<double ...> x(...), y(...);

...populate x, y...

parallel_for(N, [=] (const size_t i) {
// Views x and y are captured by value (copy)

y(i) = a * x(i) + y(i);

I);

Important point

Views are like pointers so copy them.
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View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.

► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.
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View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.
► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.

Example:

View<double***> data("label", NO, N1, N2); 3 run, 0 compile

View<double**[N2]> data("label", NO, N1); 2 run, 1 compile

View<double*EN1IIN2> data("label", NO); 1 run, 2 compile

View<double[NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

Supercomputing'15, November 16, 2015 47/122



rView life cycle:

► Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

► Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

► Reference counting is used for automatic deallocation.
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rView life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c);

print a(0)
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rView life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c); 3.0
print a(0)
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Exercise #2: inner Product, Flat Parallelism on the CPU, with Views

Exercise: Inner product < y, A * x >
es-

Details:

4 
N

I I I I I I I I I I I

T

y A

= ❑

P. Location: -/kokkos-tutorials/SC15/Exercises/02/

0- Change data storage from arrays to Views.

1, Use lambdas instead of functors for computational bodies.

0- For now, this will only use the CPU.
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Advanced features we haven't covered 

► Memory space in which view's data resides covered next.
► deep_copy view's data; covered later.

Note: Kokkos never hides a deep_copy of data.

► Layout of multidimensional array; covered later.
► Memory traits; covered later.
► Subview: Generating a view that is a "slice" of other

multidimensional array view; will not be covered today.
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Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

► Heterogeneous nodes and the space abstractions.
► How to control where parallel bodies are run, execution

space.

► How to control where view data resides, memory space.
► How to avoid illegal memory accesses and manage memory

movement.

►

► Where to use Kokkos annotation macros for portability.
The need for Kokkos: :initialize and finalize.
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Thought experiment: Consider this code:

o

Kokkos::parallel_for(numberOfsomethings,
(NI [=] (const size_t somethinglndex) {

o

Execution spaces (0)

MPI_Reduce(...);

FILE * file = fopen(...);

runANormalFunction(...data...);

const double y = ...;

// do something interesting
}

) ;
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Thought experiment: Consider this code:

0

u

Kokkos::parallel_for(numberofsomethings,
c\I [=] (const size_t somethingIndex) {

o

0

Execution spaces (0)

MPI_Reduce(...);

FILE * file = fopen(...);

runANormalFunction(...data...);

const double y = ...;

// do something interesting
}

) ;

► Where will section 1 be run? CPU? GPU?
► Where will section 2 be run? CPU? GPU?
► How do l control where code is executed?
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Thought experiment: Consider this code:

0

u

Kokkos::parallel_for(numberofsomethings,
c\I [=] (const size_t somethingIndex) {

o

0

Execution spaces (0)

MPI_Reduce(...);

FILE * file = fopen(...);

runANormalFunction(...data...);

const double y = ...;

// do something interesting
}

) ;

► Where will section 1 be run? CPU? GPU?
► Where will section 2 be run? CPU? GPU?
► How do l control where code is executed?

—> Execution spaces
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., "place to run code")

m

3

Execution spaces: Serial, Threads, OpenMP, Cuda,
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o

Execution spaces (2)

MPI_Reduce(...);
FILE * file = fopen(...);

runANormalFunction(...data...);

Kokkos::parallel_for(numberOfsomethings,

Tu [=] (const size_t somethingIndex) {

11111 const double y = ...;

// do something interesting
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o
I

Execution spaces (2)

MPI_Reduce(...);
FILE * file = fopen(...);

runANormalFunction(...data...);

Kokkos;:parallel_for(numberofsomethings,

Tu [=] (const size_t somethingIndex) {

1111 const double y = ...;

// do something interesting
}

);

Where will code be run? CPU? GPU?

Always in the host process
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o

Execution spaces (2)

MPI_Reduce(...);
FILE * file = fopen(...);

runANormalFunction(...data...);

Kokkos;:parallel_for(numberofsomethings,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting
}

) ;

► Where will Host code be run? CPU? GPU?
Always in the host process

► Where will Parallel code be run? CPU? GPU?
The default execution space
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o

Execution spaces (2)

MPI_Reduce(...);
FILE * file = fopen(...);

runANormalFunction(...data...);

Kokkos;:parallel_for(numberofsomethings,

[=] (const size_t somethingIndex) {

const double y = ...;

// do something interesting
}

) ;

► Where will Host code be run? CPU? GPU?
Always in the host process

► Where will Parallel code be run? CPU? GPU?
The default execution space

► How do l control where the Parallel body is executed?

Changing the default execution space (at compilation),

or specifying an execution space in the policy.
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Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy< ExecutionSpace >(0,number0fIntervals),
[=] (const size_t i)

11 ... body ... */
1);

a

parallel_for (

number0fIntervals // == RangePolicy<>(0,number0fIntervals)
=

,

4
L=7 (const size_t i)

/* ... body ... */G)

1);
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o

r.n

u

Execution spaces (3)

Changing the parallel execution space:

parallel_for(

RangePolicy< ExecutionSpace >(0,number0fIntervals),

[=] (const size_t i) {

/* ... body ... */

});

parallel_for(

number0fIntervals, // == RangePolicy<>(0,number0fIntervals)

[=] (const size_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
► Kokkos must be compiled with the execution spaces enabled.
► Execution spaces must be initialized (and finalized).
► Functions must be marked with a macro for non-CPU spaces.
► Lambdas must be marked with a macro for non-CPU spaces.
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Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction(const size_t s) const
KOKKOS_INLINE_FUNCTION
void operator 0(const size_t index) const {

helperFunction (index);

// Where kokkos defines:
#defi ne KOKKOS_INLINE_FUNCTION inline /* #if CPU—only */
#define KOKKOS_INLINE_FUNCTION inline __device host /* #i f CPU+Cuda */
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Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction (const s ze_t s) const
KOKKOS_INLINE_FUNCTION
void operator 0( const size_t index) const {

helperFunction ( index );

// Where kokkos defines :
#d efi n e KOKKOS_INLINE_FUNCTION inline /* #i f CPU—only */
#d efi n e KOKKOS_INLINE_FUNCTION inline __device host /* #i f CPU+Cuda */

Lambda annotation with KOKKos_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: para I lel_for ( number0fIterations ,
KOKKOS_LAMBDA ( const size_t index ) { —});

// Where kokkos defines :
#define KOKKOS_LAMBDA [=] /* #if CPU—only */
#define KOKKOS_LAMBDA [=] __d evice__ /* #if CPU+Cuda */
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Memory Space Motivation

!IFF

Memory space motivating example: summing an array

View<double*> data("data", size);
for (size_t i = 0; i < size; ++i) {

data(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

Rangepolicy<ExecutionSpace>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += data(index);
},

sum);
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data(ndata", size);

for (size_t i = 0; i < size; ++i) {

data(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy<ExecutionSpace>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += data(index);
},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data(ndata", size);
for (size_t i = 0; i < size; ++i) {

data(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy<ExecutionSpace>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += data(index);
},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?
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Memory Space Motivation

Memory space motivating example: summing an array

View<double*> data(ndata", size);
for (size_t i = 0; i < size; ++i) {

data(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy<ExecutionSpace>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += data(index);
},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

Memory Spaces
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Memory spaces (0)

Memory space:

explicitly-manageable memory resource
(i.e., "place to put data")

m

3

o
o
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.  1
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Memory spaces (1)

Important concept: Memory spaces )Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ) ;

Supercomputing'15, November 16, 2015



Memory spaces (1)

Important concept: Memory spaces )Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
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Memory spaces (1)

Important concept: Memory spaces )Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space
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Memory spaces (1)

Important concept: Memory spaces )Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;
► Available memory spaces:

HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space

► If no Space is provided, the view's data resides in the default
memory space of the default execution space.
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Example: HostSpace

View<double**, HostSpace> hostview(...);
CPU GPU

Memory spaces (2)

11111111
cr:91:iro • am

metadata

data
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Memory spaces (2)

Example: HostSpace

View<double**, HostSpace> hostView(...);

CPU GPU

rrrr
rrrr

rrrr
rrrr

me tada ta

data

1111111111111111111

Example: CudaSpace

View<double**, CudaSpace> view(...);
CPU GPU

1111E11
11111111

irrr
1:111111
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Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with views.

3. User launches parallel_***:

► Functor is copied to the device.
► Kernel is run.
► Copy of functor on the device is released.

View<int*, Cuda> dev;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.
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Example: one view

View< int*, Cuda> dev ;

parallel_f or (N,

[=] (int i)

dev (i) = • • • ;

1);

CPU

Execution and Memory spaces (1)

GPU

•

•■• •
CANN
TANNIC

RAM dev metadata

MUM

dev data

RAM

CPU GPU

MINN
 OMMII■• ••
11111112
11111111

RAM metadata dev metadata RAM'
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Example: two views

View<int*, Cuda> dev;

View<int*, Host> host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;
host(i) = ...;

});

Supercomputing'15, November 16, 2015
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Execution and Memory spaces (2)

GPU
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Example: two views

View<int*, Cuda> dev;

View<int*, Host> host;

parallel_for(N,

[=] (int i) {

dev(i) = ...;

host(i) = ...;

}) ;

CPU

Execution and Memory spaces (2)

GPU

norsi.
ronr. 12111111

1:11111:
BOSOM
MUM

RAM dev metadata

host metadata

host datasjIll

RAM

dev data

CPU

MEM.

■ M • •
• • • ■
• • • •

GPU

RAM metadata

host metadata

DR.
,st datal

host metadata RAM
dev metadata

dev data
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Execution and Memory spaces (3)

Example (redux): summing an array with the GPU 

(failed) Attempt 1:

View<double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file...

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Cuda>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index);
},

sum);
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Execution and Memory spaces (3)

Example (redux): summing an array with the GPU 

(failed) Attempt 1:

View<double*, CudaSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file.=
}

f ault

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Cuda>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index);
},

sum);
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Execution and Memory spaces (4)

Example (redux): summing an array with the GPU 

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Cuda>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index);
},

sum);

Supercomputing'15, November 16, 2015 65 122



Execution and Memory spaces (4)

Example (redux): summing an array with the GPU 

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Cuda>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index); 1111 illegal access
},
sum);
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Execution and Memory spaces (4)

Example (redux): summing an array with the GPU 

(failed) Attempt 2:

View<double*, HostSpace> array("array", size);

for (size_t i = 0; i < size; ++i) {

array(i) = ...read from file...
}

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Cuda>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {

valueToUpdate += array(index); 1111 illegal access
1,
sum);

What's the solution?
► CudaUVMSpace
0- CudaHostPinnedSpace

0- Mirroring
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CudaUVMSpace 

View<double*,

CudaUVMSpace> array

array = ...from file...

double sum = 0;

parallel_reduce(N,

[=] (int i,

double & d) {
d += array(i);

sum);

Execution and Memory spaces (5)

CPU

MM..

• • • •

111:1:12
111111111

GPU

RAM

 array dataarray data

CPU

• • ■ •

■ • • •
111:1111
1:1:1:1:

RAM

GPU

RAM

d.
0

1111111111111
.1111111111M
array metadata RAM

array data

Cuda runtime automatically handles data movement,
at performance hit.
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CudaHostPinnedSpace

View<double*,

CudaHost...> array;
array = ...from file...

double sum = 0;

parallel_reduce(N,

[=] (int i,

double & d)

d += array(i);

1,
sum);

CPU

Execution and Memory spaces (6)

GPU

Mass fGGG
11111111

 A
RAM array metadata

array data

RAM

CPU

rrrr
11111111

anor.sumo

GPU 

MONION

RAM metadata

daaa 

array matadata RAM

Cuda runtime allows cuda-code access to CPU memory,
at a performance hit.
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Views, Spaces, and Mirrors

rlmportant concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.
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Views, Spaces, and Mirrors

rlmportant concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
'memory spaces.

Mirroring schematic

typedef Kokkos::View<double**, Space> ViewType;

ViewType view(...);
ViewType::Hosthiirror hostView =

Kokkos::create_mirror_view(view);

CPU GPU

11111:11
1:1111111

host  mirror 
view

11111111111111111

 ,.>RAm

data

deeo CODV
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F
Mirr.rin• .. -rn

Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;

ViewType view(...);
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Mirr.rin• .. -rn

Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);

Create hostView, a mirror of the view's array residing in the

host memory space.
ViewType::HostMirror hostView =

Kokkos;:create_mirror_view(view);
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r Mirr.rin• .. -rn

1. Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.
ViewType : : HostMirror hostView

Kokkos:: create_mirror_view (view);

3. Populate hostView on the host (from file, etc.).
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r Mirr.rin• .. -rn

1. Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;

ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.
ViewType : : HostMirror hostView

Kokkos:: create_mirror_view (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);
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r Mirr.rin• .. -rn

1. Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;

ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.
ViewType : : HostMirror hostView

Kokkos:: create_mirror_view (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);

5. Launch a kernel processing the view's array.
Kokkos::parallel_for(

RangePolicy< Space>(0, size),

KOKKOS_LAMBDA (...) { use and change view });
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r Mirr.rin• .. -rn

1. Create a view's array in some memory space.
typedef Kokkos::View<double*, Space> ViewType;

ViewType view(...);

2. Create hostView, a mirror of the view's array residing in the

host memory space.
ViewType : : HostMirror hostView

Kokkos:: create_mirror_view (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView's array to view's array.
Kokkos::deep_copy(view, hostView);

5. Launch a kernel processing the view's array.
Kokkos::parallel_for(

RangePolicy< Space>(0, size),

KOKKOS_LAMBDA (...) { use and change view ) ;

6. lf needed, deep copy the view's updated array back to the

hostView's array to write file, etc.
Kokkos::deep_copy(hostView, view);
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View and Spaces Section Summary

► Data is stored in Views that are "pointers" to
multi-dimensional arrays residing in memory spaces.

► Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

► Heterogenous nodes have one or more memory spaces.
► Mirroring is used for performant access to views in host and

device memory.

► Heterogenous nodes have one or more execution spaces.
► You control where parallel code is run by a template

parameter on the execution policy, or by compile-time
selection of the default execution space.
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Managing memory access patterns
for performance portability

Learning objectives:

► How the View's Layout parameter controls data layout.
► How memory access patterns result from Kokkos mapping

parallel work indices and layout of multidimensional array data

► Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

► See a concrete example of the performance of various memory
configurations.
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Example: inner product (0)

Kokkos::parallel_reduce(

Rangepolicy<ExecutionSpace>(0, N),

KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row, entry) * x(entry);
}

valueToUpdate += y(row) * thisRowsSum;

}, result);

N
I I I I I I I
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Example: inner product (0)

Kokkos::parallel_reduce(

Rangepolicy<ExecutionSpace>(0, N),

KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row, entry) * x(entry);
}

valueToUpdate += y(row) * thisRowsSum;

}, result);

N
I I I I I I I

Y1 A

How should A be laid out in memory?
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rmportant concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View<double***, Layout, Space> name(...);
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rm portant concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View<double** Layout, Space> name(...);

► Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

► If no layout specified, default for that memory space is used.

LayoutLeft for CudaSpace, LayoutRight for HostSpace.

► Layouts are extensible: -50 lines
► Advanced layouts: LayoutStride, LayoutTiled, ...
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Exercise #3: inner Product, Flat Parallelism

Exercise: Inner product < y, A * x >

Details:

N
11111111111

Y
T

A x

= ❑

► Location: -/kokkos-tutorials/SC15/Exercises/03/

I,- Use lambdas instead of functors for computational bodies.

► Replace "N" in parallel dispatch with RangePolicy<Space>

1, Add Space to all Views and Layout to A

► Experiment with the combinations of Space, Layout to view
performance
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200

Exercise #3: inner Product, Flat Parallelism

<ylAx> Exercise 03 (Layout)
KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: Nvidia K40 GPU

m—m KNC Right
0 KNC Left
0-0 HSW Right
0 -0 HSW Left
A—A K40 Left
0 0 K40 Right

Why?
0 Z -93- Z-0- 41-.6 

8 64 512 4K 32K 256K 2M 16M 128M
N
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Caching and coalescing (0)

Thread independence:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

Question: once a thread reads d, does it need to wait?
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Caching and coalescing (0)

Thread independence:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

Question: once a thread reads d, does it need to wait?

► CPU threads are independent.
i.e., threads may execute at any rate.
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Caching and coalescing (0)

Thread independence:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

Question: once a thread reads d, does it need to wait?

► CPU threads are independent.
i.e., threads may execute at any rate.

► GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.
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Caching and coalescing (0)

Thread independence:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

Question: once a thread reads d, does it need to wait?

► CPU threads are independent.
i.e., threads may execute at any rate.

► GPU threads are synchronized in groups (of 32).
i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads

before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?
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Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

o H
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Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:
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GPUs: many (synchronized) cores with a shared cache:
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Caching and coalescing (2)

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position
thread t's next access should be at position i+1.

Coalescing: if thread t's current access is at position
thread t+1's current access should be at position i+1.
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Caching and coalescing (2)

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position
thread t's next access should be at position i+1.

Coalescing: if thread t's current access is at position
thread t+1's current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)
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Caching and coalescing (2)

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t's current access is at position
thread t's next access should be at position i+1.

Coalescing: if thread t's current access is at position
thread t+1's current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace greatly reduces performance
(more than 10X)

Note: uncoalesced read-only, random access in CudaSpace is okay
through Kokkos const RandomAccess views (more later).
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Mapping indices to cores (0)

Consider the array summation example:

View<double*, Space> data("datan, size);

...populate data...

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Space>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate)

valueToUpdate += data(index);
},
sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

{
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Mapping indices to cores (0)

Consider the array summation example:

View<double*, Space> data("datan, size);

...populate data...

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Space>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate)

valueToUpdate += data(index);
}

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous: Strided:

{
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Mapping indices to cores (0)

Consider the array summation example:

View<double*, Space> data("datan, size);

...populate data...

double sum = 0;

Kokkos::parallel_reduce(

RangePolicy< Space>(0, size),

KOKKOS_LAMBDA (const size_t index, double & valueToUpdate)

valueToUpdate += data(index);
},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous: Strided:

0, 1, 2, ... , N/P 0, N/P, 2*N/P, .

CPU GPU
Why?

{
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Mapping indices to cores (1)

Iterating for the execution space:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

As users we don't control how indices are mapped to threads, so

how do we achieve good memory access?
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Mapping indices to cores (1)

Iterating for the execution space:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);

valueToUpdate += d;
}

As users we don't control how indices are mapped to threads, so
how do we achieve good memory access?

Important point 

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.
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Mapping indices to cores (1)

Iterating for the execution space:

operator()(const size_t index, double & valueToUpdate) {

const double d = _data(index);
valueToUpdate += d;

}

As users we don't control how indices are mapped to threads, so
how do we achieve good memory access?

Important point 

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

I Important point

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight) 
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Example: inner product (2)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: row-major (LayoutRight) 

thread 0 reads

9:1
to

ro

HostSpace: cached (good)

CudaSpace: uncoalesced (bad)
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Example: inner product (3)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: column-major (LayoutLeft) 

Ntkiread 0 reads

I I I
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Example: inner product (3)

Important point

Performance memory access is achieved by Kokkos mapping
parallel work indices and multidimensional array layout optimally
for the architecture.

Analysis: column-major (LayoutLeft)

thread 0 reads

e

ro
0

'0

0

HostSpace: uncached (bad)

CudaSpace: coalesced (good)
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Example: inner product (4)

Analysis: Kokkos architecture-dependent

View<double**, ExecutionSpace> A(N, M);
parallel_for(RangePolicy< ExecutionSpace>(0, N),

thisRowsSum += A(j, i) * x(i);

x\thread

4/

ro
0
0

0 reads

(a) OpenMP

► HostSpace: cached (good)
CudaSpace: coalesced (good)

Supercomputing'15, November 16, 2015

t
h
r
e
a
d
 
1
 
r
e
a
d
s
 

thread 0 reads

(b) Cuda

84/122



Layout performance, revisited 

200

Example: inner product (5)

<ylAx> Exercise 03 (Layout)
KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: Nvidia K40 GPU

N—N KNC Right
KNC Left

0-0 HSW Right
HSW Left

A—A K40 Left
4 -4 K40 Right

coalesced.4-4,. A—p, ,4,-, 41-4

1/'\21" 
i
i

i i
, cached ,

,t v
0. /4-22-E-T-2-12-43-'16-Y

64 512 4K 32K 256K 2M 16M 128M
N
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Memory Access Pattern Summary

► Every View has a Layout set at compile-time through a
template parameter.

► LayoutRight and LayoutLeft are most common.

► Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

► Layouts are extensible and flexible.

► For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

► Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

► There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.

You'll need multiple versions of code or pay the

performance penalty.
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Thread safety and
atomic operations
Learning objectives:

► Understand that coordination techniques for low-count CPU
threading are not scalable.

► Understand how atomics can parallelize the scatter-add
pattern.

► Gain performance intuition for atomics on the CPU and
GPU, for different data types and contention rates.
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!IFF
Histogram kernel:

Examples: Histogram

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

++_histogram(bucketlndex);

});

Comparative Histograms
15.0-

175-

2 5 -

0.0 T •
0.0 5.0 7.5

http://www.farmaceuticas.com.br/tarr/graficos/
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Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

++_histogram(bucketlndex);

});

Problem: Multiple threads may try to write to the same location.

http://www.farmaceu icas com.br/tag/graficos
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Examples: Histogram

Histogram kernel:

parallel_for(N, KOKKOS_LAMBDA(const size_t index)

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

++_histogram(bucketIndex);

1) ;

Problem: Multiple threads may try to write to the same location.

Solution strategies:

► Locks
► Thread-private copies
► Atomics

http://www.farmaceuticas.corn.br/tag/graficos
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Thread safety (0)

Thread safety solution: Locks

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

// LOCK the lock that protects bucket bucketlndex

++_histogram(bucketlndex);

// UNLOCK the lock that protects bucket bucketlndex

});
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Thread safety (0)

Thread safety solution: Locks

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

// LOCK the lock that protects bucket bucketlndex

++_histogram(bucketlndex);

// UNLOCK the lock that protects bucket bucketlndex

});

Problem: contention is too high at 0(10,000) threads.
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Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)
{

HistogramType thisThreadsHistogram(histogram.size())
#pragma omp for nowait

for each input

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

++thisThreadsHistogram(bucketlndex);
}

#pragma omp critical

for each bucket

histogram[bucketlndex] += thisThreadsHistogram[bucketlndex];
}

}
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Thread safety (1)

Thread safety solution: Thread-private copies

#pragma omp parallel shared(histogram)
{

HistogramType thisThreadsHistogram(histogram.size())
#pragma omp for nowait

for each input

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

++thisThreadsHistogram(bucketlndex);
}

#pragma omp critical

for each bucket

histogram[bucketlndex] += thisThreadsHistogram[bucketlndex];
}

}

Problems: insufficient memory for thisThreadsHistogram
ratio of parallel/serial work too low.
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Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

Kokkos::atomic_add(8c_histogram(bucketIndex), 1);

1);
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Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketlndex(value);

Kokkos::atomic_add(8c_histogram(bucketIndex), 1);

});

► Atomics are the only scalable solution to thread safety.
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Thread safety (2)

Thread safety solution: Atomics

parallel_for(N, KOKKOS_LAMBDA(const size_t index) {

const int value = ...;

const int bucketlndex = computeBucketIndex(value);

Kokkos::atomic_add(&_histogram(bucketlndex), 1);

1);

► Atomics are the only scalable solution to thread safety.
► Locks or data replication are strongly discouraged.
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Performance of atomics (0)

How expensive are atomics? 

Thought experiment: scalar integration

operator()(const unsigned int intervallndex,

double & valueToUpdate) const {

double contribution = function(...);

valueToUpdate += contribution;
}
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Performance of atomics (0)

How expensive are atomics?

Thought experiment: scalar integration

operator()(const unsigned int intervalIndex,

double & valueToUpdate) const {

double contribution = function(...);

valueToUpdate += contribution;
}

Idea: what if we instead do this with parallel_for and atomics?

operator()(const unsigned int intervallndex) const {

const double contribution = function(...);

Kokkos::atornic_add(&globalsum, contribution);
}

How much of a performance penalty is incurred?
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Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(number0fIntervals,

KOKKOS_LAMBDA (const unsigned int intervallndex,

double & valueToUpdate) {

valueToUpdate += function(...);

}, totallntegral);
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Performance of atomics (1)

Two costs: (independent) work and coordination.
parallel_reduce(number0fIntervals,

KOKKOS_LAMBDA (const unsigned int intervallndex,

double & valueToUpdate) {

valueToUpdate += function(...);

}, totallntegral);

Experimental setup

operator()(const unsigned int index) const {

Kokkos::atomic_add(&globalSums[index % atomicStride], 1);
}

► This is the most extreme case: all coordination and no work.
► Contention is captured by the atomicStride.

atomicStride 1 Scalar integration

atomicStride —> large Independent
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Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows
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Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 0 pows
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Performance of atomics (3)

Atomics performance: 1 million adds, some work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 2 pows
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Performance of atomics (4)

Atomics performance: 1 million adds, Iots of work per kernel

Slowdown from atomics: Summary for 1 million adds, mod, 5 pows
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Advanced features

Atomics on arbitrary types:

► Atomic operations work if the corresponding operator exists
, i.e., atomic_add works on any data type with "-F".

► Atomic exchange works on any data type.
// Assign *dest to val, return former value of *dest

template<typename T>

T atomic_exchange(T * dest, T val);

// If *dest == comp then assign *dest to val

// Return true if succeeds.

template<typename T>

bool atomic_compare_exchange_strong(T * dest, T comp, T val);
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View memory traits:

► Beyond a Layout and Space, Views can have memory traits.
► Memory traits either provide convenience or allow for certain

hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic
memory trait:

View<double**, Layout, Space,

MemoryTraits<Atomic> > forces ( . . . ) ;
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Memory traits

View memory traits:

► Beyond a Layout and Space, Views can have memory traits.

► Memory traits either provide convenience or allow for certain
hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic

memory trait:

View<double**, Layout, Space,

MemoryTraits<Atomic> > forces ( . . • ) ;

Many memory traits exist or are experimental, including Read,

Write, ReadWrite, ReadOnce (non-temporal), Contiguous, and

RandomAccess .

Supercomputing'15, November 16, 2015 98/122



RandomAccess memory trait

r Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random

access, originally designed for textures.
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RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random

access, originally designed for textures.

How to access texture memory via CUDA:
cudaResourceDesc resDesc;

memsetaresDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeLinear;

resDesc.res.linear.devPtr = buffer;

resDesc.res.linear.desc.f = cudaChannelFormatKindFloat;

resDesc.res.linear.desc.x = 32; // bits per channel

resDesc.res.linear.sizeInBytes = N*sizeof(float);

cudaTextureDesc texDesc;

memsetatezDesc, 0, sizeof(texDesc));

terDesc.readMode = cudaReadModeElementType;

cudaTextureDbject_t tex=0;

cudaCreateTextureDbjectatex, &resDesc, gtezDesc, NULL);
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RandomAccess memory trait

Example: RandomAccess memory trait:

On GPUs, there is a special pathway for fast read-only, random

access, originally designed for textures.

How to access texture memory via CUDA:
cudaResourceDesc resDesc;

memsetaresDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeLinear;

resDesc.res.linear.devPtr = buffer;

resDesc.res.linear.desc.f = cudaChannelFormatKindFloat;

resDesc.res.linear.desc.x = 32; // bits per channel

resDesc.res.linear.sizelnBytes = N*sizeof(float);

cudaTextureDesc texDesc;

memsetatexDesc, 0, sizeof(texDesc));

terDesc.readMode = cudaReadModeElementType;

cudaTextureDbject_t tex=0;

cudaCreateTextureObjectatex, &resDesc, gtezDesc, NULL);

How to access texture memory via Kokkos:
View< const double***, Layout , Space ,

MemoryTraits<RandomAccess> > name ( . . • ) ;
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r ► Atomics are the only thread-scalable solution to thread safety.
► Locks or data replication are strongly discouraged

► Atomic performance depends on ratio of independent work
and atomic operations.

► With more work, there is a lower performance penalty, because
of increased opportunity to interleave work and atomic.

► The Atomic memory trait can be used to make all accesses
to a view atomic.

► The cost of atomics can be negligible:
► CPU ideal: contiguous access, integer types
► GPU ideal: scattered access, 32-bit types

► Many programs with the scatter-add pattern can be
thread-scalably parallelized using atomics without much
modification.
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Idierarchical parallelism
Finding and exploiting more parallelism in your computations.

Learning objectives:

► Similarities and differences between outer and inner levels of
parallelism

► Thread teams (league of teams of threads)
► Performance improvement with well-coordinated teams

Supercomputing'15, November 16, 2015 101/122



Example: inner product (0)

(Flat parallel) Kernel:

Kokkos::parallel_reduce(N,

KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result); thread 0
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos;:parallel_reduce(N,

KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don't have

enough rows to saturate the GPU?

thread 0
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos;:parallel_reduce(N,

KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don't have

enough rows to saturate the GPU?

Solutions?

thread 0
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Example: inner product (0)

(Flat parallel) Kernel:

Kokkos;:parallel_reduce(N,

KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {
thisRowsSum += A(row,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don't have

enough rows to saturate the GPU?

Solutions?

Atomics

Thread teams

thread 0
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Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for(N,

KOKKOS_LAMBDA (const size_t index)

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add(&result, A(row,col) * x(col));

1); thread 0
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Example: inner product (1)

Atomics kernel:

Kokkos::parallel_for(N,

KOKKOS_LAMBDA (const size_t index)

const int row = extractRow(index);

const int col = extractCol(index);

atomic_add(&result, A(row,col) * x(col));

1);

Problem: Poor performance

thread 0
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Example: inner product (2)

Doing each individual row with atomics is like doing scalar

integration with atomics.

Instead, you could envision doing a large number of

parallel_reduce kernels.

for each row

Functor functor(row, ...);

parallel_reduce(M, functor);
}
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Example: inner product (2)

Doing each individual row with atomics is like doing scalar

integration with atomics.

Instead, you could envision doing a large number of

parallel_reduce kernels.

for each row

Functor functor(row, ...);

parallel_reduce(M, functor);
}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.
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Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.
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Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:

1. Do one parallel launch of N teams of M threads.

2. Each thread performs one entry in the row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction. 
team 0 , thread o
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Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce(

team_policy(N, Kokkos::AUTO),

KOKKOS_LAMBDA (member_type & teamMember, double & update) {

int row = teamMember.league_rank();
double thisRowsSum = 0;

parallel_reduce(TeamThreadRange(teamMember, M),

[=] (int col, double & innerUpdate)

innerUpdate += A(row , col) * x(col);
}, thisRowsSum):

if (teamMember.team_rank() == 0) {

update += y(row) * thisRowsSum;
}

}, result);

The performance and flexibility of teams is naturally and

concisely expressed under the Kokkos model.

Let's walk through how we got to this final answer.
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TeamPolicy (0)

Important point

Using teams is changing the execution policy.

"Flat parallelism" uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for(

RangePolicy<Executionspace>(0,N), functor);

Supercomputing'15, November 16, 2015 107/122



TeamPolicy (0)

Important point

Using teams is changing the execution policy.

"Flat parallelism" uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for(

RangePolicy<ExecutionSpace>(0,N), functor);

"Hierarchical parallelism" uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for(

TeamPolicy<ExecutionSpace>(numberOfTeams, teamSize), functor)
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TeamPolicy (1)

typedef typename TeamPolicy<ExecSpace>::member_type member_type;

void operator()(const member_type & teamMember) {

// Which team am I on?

const unsigned int leagueRank teamMember.league_rank();
// Which thread am I on this team?

const unsigned int teamRank teamMember.team_rank();

}
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TeamPolicy (1)

typedef typename TeamPolicy<ExecSpace>::member_type member_type;

void operator()(const member_type & teamMember) {

// Which team am I on?

const unsigned int leagueRank teamMember.league_rank();
// Which thread am I on this team?

const unsigned int teamRank teamMember.team_rank();

}

VVarning

There may be more (or fewer) team members than pieces of your
algorithm's work per team
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TeamThr eadRange (0)

First attempt at inner product exercise:

operator() (const member_type & teamMember ) {
const unsigned int row = teamMember.league_rank();

const unsigned int col = teamMember.team_rank();

atomic_add(&result,y(row) * A(row,col) * x(entry));
}
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TeamThr eadRange (0)

First attempt at inner product exercise:

operator() (const member_type & teamMember ) {
const unsigned int row = teamMember.league_rank();

const unsigned int col = teamMember.team_rank();

atomic_add(&result,y(row) * A(row,col) * x(entry));
}

► When team size number of columns, how are units of work

mapped to team's member threads? Is the mapping

architecture-dependent?

► atomic_add performs badly under high contention, how can
team's member threads performantly cooperate for a nested
reduction?
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TeamThr eadRange (1)

We shouldn't be hard-coding the work mapping...

operator() (member_type & teamMember, double & update) {

const int row = teamMember.league_rank();

double thisRowsSum;

"do a reduction"("over M columns",

[=] (const int col) {
thisRowsSum += A(row,col) * x(col);

});
if (teamMember.team_rank() == 0) {

update += (row) * thisRowsSum;
}

}
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TeamThr eadRange (1)

We shouldn't be hard-coding the work mapping...

operator() (member_type & teamMember, double & update) {

const int row = teamMember.league_rank();

double thisRowsSum;

"do a reduction"("over M columns",

[=] (const int col) {
thisRowsSum += A(row,col) * x(col);

});
if (teamMember.team_rank() == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we'd use Kokkos: :parallel_reduce.
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TeamThr eadRange (1)

We shouldn't be hard-coding the work mapping...

operator() (member_type & teamMember, double & update) {

const int row = teamMember.league_rank();

double thisRowsSum;

"do a reduction"("over M columns",

[=] (const int col) {
thisRowsSum += A(row,col) * x(col);

});
if (teamMember.team_rank() == 0) {

update += (row) * thisRowsSum;
}

}

If this were a parallel execution,
we'd use Kokkos: :parallel_reduce.

Key idea: this is a parallel execution.
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TeamThr eadRange (1)

We shouldn't be hard-coding the work mapping...

operator() (member_type & teamMember, double & update) {

const int row = teamMember.league_rank();

double thisRowsSum;

"do a reduction"("over M columns",

[=] (const int col) {

thisRowsSum += A(row,col) * x(col);

});

if (teamMember.team_rank() == 0) {
update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we'd use Kokkos: :parallel_reduce.

Key idea: this is a parallel execution.

Nested parallel patterns
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TeamThreadRange (2)

TeamThreadRange:

operator() (const member_type & teamMember, double & update ) 1

const int row = teamMember.league_rank();
double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember, M),

[=] (const int col, double & rowUpdate

rowUpdate += A(row, col) * x(col);
}, thisRowsSum );

if (teamMember.team_rank() == 0) {

update += y(row) * thisRowsSum;
}

}

)
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TeamThr eadRange (2)

TeamThreadRange:

operator() (const member_type & teamMember, double & update ) 1

const int row = teamMember.league_rank();
double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember, M),

[=] (const int col, double & rowUpdate ) {

rowUpdate += A(row, col) * x(col);
}, thisRowsSum );

if (teamMember.team_rank() == 0) {

update += y(row) * thisRowsSum;
}

}

► The mapping of work indices to threads is
architecture-dependent.

► The amount of work given to the TeamThreadRange need not
be a multiple of the team_size.

lntra-team reduction handled for you.
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Nested parallelism

Anatomy of nested parallelism:

parallel_outer(

TeamPolicy<ExecutionSpace>(numberOfTeams, teamSize),

KOKKOS_LAMBDA (const member_type & teamMembeq, ...]) {

/* beginning of outer body */

parallel_inner(

TeamThreadRange(teamMember, thisTeamsRangeSize),

[=] (const unsigned int indexwithinBatch], ...]) {

/* inner body */

...]);
/* end of outer body */

...]);

► parallel_outer and parallel_inner may be any
combination of for, reduce, or scan.

0- The inner lambda may capture by reference, but
capture-by-value is recommended.

► The policy of the inner lambda is always a TeamThreadRange.
► TeamThreadRange cannot be nested.
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy<ExecutionSpace>(numberOfTeams, Kokkos::AUTO),

/* functor */);
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy<ExecutionSpace>(numberOfTeams, Kokkos::AUTO),

/* functor */);

NVIDIA GPU: 

► Special hardware available for coordination within a team.
► Within a team 32 threads (warp) execute "lock step."
► Maximum team size: 1024; Recommended team size: 256
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What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy<ExecutionSpace>(numberOfTeams, Kokkos::AUTO),

/* functor */);

NVIDIA GPU: 

► Special hardware available for coordination within a team.
► Within a team 32 threads (warp) execute "lock step."
► Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi: 

► Recommended team size: # hyperthreads per core
► Hyperthreads share entire cache hierarchy

a well-coordinated team avoids cache-thrashing
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Exercise #4: inner Product, Hierarchical Parallelism

Exercise: Inner product < y, A * x >

Details:

4 
N

11111[11111

r
y A x

".•

= ❑

► Location: -/kokkos-tutorials/SC15/Exercises/03/

► Use lambdas instead of functors for computational bodies.

0- Replace RangePolicy<Space> with TeamPolicy<Space>

0- Experiment with the combinations of Layout, Space, N to view

performance

0- Hint: what should the layout of A be?
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Exercise #4: Inner Product, Hierarchical Parallelism

<ylAx> Exercise 04 (Layouts/Teams)
KNC: Xeon Phi 57 cores; HSW: Dual Xeon Haswell 2x16 cores; K40: NVIDIA K40 GPU

200 

N—N KNC Right
KNC Left

•-• HSW Right
0-0 HSW Left
A—A K40 Right
kr -A K40 Left

t4=2.44,2(4y4,.
8 64 512 4K 32K 256K 2M 16M 128M

N
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r
Shared memory

Learning objectives:

► Understand how shared memory can reduce global memory
accesses

► Recognize when to use shared memory
► Understand how to use shared memory and why barriers are

necessary
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Shared memory (0)

Each team has access to a "scratch pad".

global memory

team
n
shared memory
"scratch pad"

„C) L) Q.) 0 GO,
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Shared memory (1)

Shared memory (scratch pad) details:

► Accessing data is shared memory is (usually) much faster
than global memory.

► GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

► CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

► Roughly, it's like a user-managed L1 cache.
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Shared memory (1)

Shared memory (scratch pad) details:

► Accessing data is shared memory is (usually) much faster
than global memory.

► GPUs have separate, dedicated, small, low-latency shared
memories (NOT subject to coalescing requirements).

► CPUs dont have special hardware, but programming with
shared memory results in cache-aware memory access patterns.

► Roughly, it's like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it's
better to load the data into shared memory and read from there.
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Shared memory example: finite difference

Main idea: Load global data into shared memory and reuse

operator()(member_type teamMember) const {

// Declare team-shared tile of memory

View< double***

, execution_space::scratch_memory_space

> tile( teamMember.team_shared(), );

// copy subgrid data into tile

teamMember.team_barrier();

// Compute stencil using tile
}
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Advanced features we haven't covered 

► There is a third level in the hierarchy below
TeamThreadRange: Threadvect orRange

► Just like for TeamThreadRange, you can perform
parallel_for, parallel_reduce, or parallel_scan.

► Important for full performance of Xeon Phi and GPUs

► Restricting execution to a single member:
PerTeam: one thread per team

PerThread: one vector lane per thread

► Multiple shared views can be made in shared memory.
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Section Summary

0- Hierarchical work can be parallelized via hierarchical
parallelism.

► Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

► Team "worksets" are processed by a team in nested
parallel_for (or reduce or scan) calls with a

TeamThreadRange policy.

► Teams can be used to reduce contention for global resources
even in "flat" algorithms.

► Teams have access to "scratch pad" shared memory.
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Tutorial Takeaways

► High performance computers are increasingly heterogenous
MPI-only is no longer sufficient.

► For portability: OpenMP, OpenACC, ... or Kokkos.
► Only Kokkos obtains performant memory access patterns via

architecture-aware arrays and work mapping.

i.e., not just portable, performance portable.

► With Kokkos, simple things stay simple (parallel-for, etc.).
i.e., it's no more difficult than OpenMP.

► Advanced performance-optimizing patterns are simpler
with Kokkos than with native versions.

i.e., you're not missing out on advanced features.
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