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LIntroduction

Encryption in Ultra-low Energy Domain

» Security is of critical importance, but the
energy per operation is paramount to the
device's utility!

» Applications include...

» Low-Power Sensor Networks

» Implantable Medical Devices (IMD)
» ldentification tags

» ...and more
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The Problem

Elliptic Curve Cryptography (ECC)
» Energy-efficient public-key cryptography
[Potlapally et al., 2006]
» Necessary for secure communication

» Energy cost is still prohibitive for ultra-low
energy devices!
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The Solution

Hardware acceleration can improve the energy
efficiency of elliptic curve cryptography!

» Off-load computation to energy ReconfqurabityGenerally
efficient accelerator

» Trade some reconfigurability for
increase in efficiency Eneroy Effciency
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Contribution

» Development of an improved GF(2™)
coprocessor

» Energy and performance evaluation across a
range of ECC key-sizes, including GF(p)
521-bit and GF(2™) 571-bit

» Evaluation of the energy benefit of an
instruction cache for ECC
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Finite-field Arithmetic

» ECC utilizes both GF(p) and GF(2™)

» Multi-precision computations such that
key-size > machine width

» Add, subtract, multiply, and inversion with
reduction

Elliptic Curve Digital Signature Algorithm

Scalar Point Multiplication

Point Add/Double

Finite Field Arithmetic
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GF(p) and GF(2™)

GF(p), a.k.a. prime-field arithmetic

» Uses integer math with modulo as the
reduction operator

» Example: (3+5) modulo 7 =1
GF(2™), a.k.a. binary-field arithmetic

» Uses polynomial arithmetic s.t. coefficients are
modulo 2

» (XX X+ D)+ (X XxP+1)
=x"+x° + x>+ x*
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Binary-fields, GF(2™)

» Attractive for HW because add is simply XOR
(carry-less) and requires no reduction

» Squaring algorithm has O(n) complexity as
opposed to O(n?)

» Reduced computational complexity has the
potential to save energy
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Explore design space:

Start with an efficient baseline
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Overview of Approach

Explore design space:

» Start with an efficient baseline
Optimize software for baseline

v

Add instruction set extensions

v

Add instruction cache

v

v

Add full coprocessor
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Energy efficient baseline
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Typical embedded System

On a Chip (SoC)...

>

5-stage, RISC pipelined
processor

No MMU or cache .
Multi-cycle multiplication
unit i
Minimal memory
configuration

Main Memory '

RISC Processor

: AreF ]
' < :§
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Baseline Software

v

Operand scanning multi-precision multiplication
NIST fast reduction techniques

v

Sliding window scalar point multiplication

v

Three dimensional coordinate systems
[Brown et al., 2001]

v
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Instruction Set Extensions (ISE)

» Improve efficiency of product-scanning
multiplication [GroBschadl and Savas, 2004]

» Decrease computation time significantly
» While only marginally increasing power
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GF(2™) ISE

» Require minimal modifications to the processor
core

Format \ Operation

MULGF2 rs, rt Carry-less Multiply

MADDUGEF?2 rs, rt | Carry-less Multiply-Accumulate

16/44



Energy-Efficient Implementations of GF(p) and GF(2™) ECC
L Design

Instruction Fetch Energy

Energy breakdown showed fetching instructions
from ROM is costly
» RISC processor fetches every clock cycle
» Energy of memory access is related to size of
memory
» Program ROM is the largest memory in our
system
» Solution: Add an instruction cache to our
system!
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Moving further towards the right...

Reconfigurability/Generality

Energy Efficiency

Optimized Instruction Set Microcoded Custom
Software Extensions Accelerator Hardware

Nonconfigurable
Accelerator
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Binary-field Accelerator

Further reduce energy with a binary accelerator:

» Improvement over previously proposed designs
[Guo and Schaumont, 2009]

» Non-configurable architecture tuned to field

» Performs carry-less addition, multiplication,
and squaring

» Similar approach as the original IBM 360
floating point unit [Anderson et al., 1967]
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Pete and Billie Overview
i ————— I """"""""""""" m

Register Instr
File Quens

Decode
( port mux ](—J
AN § f
m a5 Sayere ] D) m Mult/Div
£
Hi/Llo
v 2 Cwe ]

Finite-Field Accelerator (Billie)

» 16 entry register file
» DMA to shared memory

» Multiple functional units, including a digit serial
multiplier [Kumar et al., 2006]

20/44



Energy-Efficient Implementations of GF(p) and GF(2™) ECC
L Evaluation

Evaluation

21/44



Energy-Efficient Implementations of GF(p) and GF(2™) ECC
I—Evaluation

Energy per Operation vs. Key Size

» 6 diff. HW/SW 1400 Prime Baseline
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Energy Breakdown for ISE Configurations

400
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Energy Breakdown for Monte vs. Billie

» Billie's size scales

with field size

» RAM energy is

reduced with Billie

» Amdahl’'s Law
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strikes again
(inversion)
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Energy Improvements with Clock Gating

» Assume no

25 /44

dynamic power
when Billie is idle
Provides 22% to
32.2% reduction in
energy
consumption
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Latency Comparison

» For a 163-bit scalar ™ ook
multi p |y g 250000 Montgomery
» Improvement due E 200000
to efficient g
coprocessor ‘fé 150000
interface F—
(Montgomery) 3: I
» Improvement due & ™
to windowing ol . . . . . . |
algorithm Multiplier Digit Size

Prior work: [Guo and Schaumont, 2009]
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>

Public-key cryptography is necessary but very
costly in terms of energy

ISA extensions with lcache — up to 2.08x
improvement over baseline

Prime-field coprocessor — up to 6.34x
improvement over baseline

Binary-field ISA extensions — up to 2.11x
improvement over prime-field ISA ext.

Binary-field coprocessor — 1.94x improvement
over Monte for 163/192-bit
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Questions??7?
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Future Work

v

Evaluate ICache w/ binary-field ISA ext.
Continued work on Billie

» Model large register file in SPICE
» Accelerate inversion
» Fixed sized accelerator

v

Investigate Koblitz Curves

v

v

Investigate post-quantum algorithms
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Why should ECC be used over RSA?

Due to sub-exponential attacks on RSA, ECC
requires smaller keys for equivalent security...

Key Length (Bits)[Hankerson et al., 2004]

RSA | 1024 | 2048 | 3072 | 8192 | 15360

ECC| 160 | 224 | 256 | 384 512
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Suggested ISA extensions

ISA Extensions for GF(p) [GroBschadl and Savas, 2004].

Format Operation

MADDU rs, rt | Multiply and Accumulate Unsigned
M2ADDU rs, rt | Multiply, Double, and Accumulate Unsigned
ADDAU rs, rt Add to Accumulator Unsigned

SHA Shift Accumulator to the right by 32 bits
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GF(2™) Math
GF(2") multiplication assuming f(x) = x" + x + 1:

X+ +x)x (xX°+x*+1)=x>+x+1
» Multiplication:
a(x) x b(x) = x2+x° +x8+ x" + x° + x> + x
» Reduction:
modulo f(x) = x®+x +1

» Addition and subtraction are the same
operation and do not require reduction

v
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GF(2™) Computation

» Attractive for HW because add is simply XOR
(carry-less)

» Denoted in the following way:
a(x) = am_1x™ 1+ + ax? + a1 x + ap where
x is the indeterminate of the polynomial, and
the coefficients, apm_1,- - -, a, a1, a € [0, 1].
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32

Binary-field Support

{17 ¢17
» Changes in light gray and F |
additions in dark gray

» Increases static power by
2.65%

» Decreases overall power
by 2.56%

"

36 /44



Energy-Efficient Implementations of GF(p) and GF(2™) ECC
L Backup Slides
L Monte Details

Further improve efficiency...

Add a dedicated GF(p) coprocessor for modular
arithmetic...

» Performs prime-field math much more
efficiently [Targhetta and Gratz, 2011]

» Reduces instruction fetching with small
microcode ROM

» Utilizes coprocessor interface for command and
control

» Shares RAM with “Pete”
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Pete and Monte overview

Main Memory : [CoProc2 Interface

Register
File

Finite-Field Accelerator (Monte): RISC Processor (Pete)

» Double buffered scratch pad memory
» Direct Memory Access (DMA) to shared memory
» Instruction queue (out-of-order processing)
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Monte Instructions

v

Fetched and decoded by Pete, then forwarded
to Monte (coprocessor interface)

Allow reconfiguration of field width
Include mod ADD, SUB, MULT

Handle transfer of data to/from shared memory

v

v

v
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FFAU overview
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» Microcoded control
unit

» Pipelined arithmetic
core

» Computes modular
add, subtract, and
multiply

» Utilizes Montgomery
multiplication
[Montgomery, 1985]

)

‘ Addr Logic
A B c

Arithmetic Core
Result

[€—{ control Unit

Microcoded
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Billie Microarchitecture

-4

Instr
Queue
Register
Fil
A - A ad
L\ 4 Load
163// 163// Store
(" v Decode it
port mux
A A | A
|
163 1 16%
1631 YvY Y VY Y
| Adder ] [ Square
1631 Multiplier
s
Y
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Methodology

» Estimate energy in logic:
» HDL models of Pete, Monte and Billie synthesized

to 45nm
» Synopsys Prime-Time simulated energy
consumption while performing ECC [Yip, 2006]

» Estimate energy in memory:
» Test bench counts reads and writes to memories
» Cacti estimates energy per read/write and static
energy [Muralimanohar et al., 2009]
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Motivation
W Mult
B Square
[ Add/Sub
, 75% [l Other

multiply /square
» 9% add/sub
» ~16% other

Portion of time spent performing
modular math for P384 ECDSA.
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Energy in Sensor Network Domain

For example in sensor network domain:

» Consumes approx. 72% of the energy allotted

for communication handshaking
[Wander et al., 2005]

» Only 5% to 10% of energy budget is available
for handshakes!
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