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Encryption in Ultra-low Energy Domain

► Security is of critical importance, but the
energy per operation is paramount to the
device's utility!

► Applications include...
► Low-Power Sensor Networks
► Implantable Medical Devices (IMD)
► Identification tags
► ...and more
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The Problem

Elliptic Curve Cryptography (ECC)

► Energy-efficient public-key cryptography
[Potlapally et al., 2006]

► Necessary for secure communication
► Energy cost is still prohibitive for ultra-low

energy devices!
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The Solution

Hardware acceleration can improve the energy
efficiency of elliptic curve cryptography!

► Off-load computation to energy
efficient accelerator

► Trade some reconfigurability for
increase in efficiency

Reconfigurability/Generality

Energy Efficiency

Optimized Instruction Set Microcoded Custom

Software Extensions Accelerator Hardware
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Contri bution

► Development of an improved GF(2m)
coprocessor

► Energy and performance evaluation across a
range of ECC key-sizes, including GF(p)
521-bit and GF(2m) 571-bit

► Evaluation of the energy benefit of an
instruction cache for ECC
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Finite-field Arithmetic

. ECC utilizes both GF(p) and GF(2m)

. Multi-precision computations such that
key-size » machine width

. Add, subtract, multiply, and inversion with
reduction

Elliptic Curve Digital Signature Algorithm

Scalar Point Multiplication

Point Add/Double

Finite Field Arithmetic
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GF(p) and GF(2m)

GF(p), a.k.a. prime-field arithmetic

. Uses integer math with modulo as the
reduction operator

. Example: (3 + 5) modulo 7 = 1

GF(2m), a.k.a. binary-field arithmetic

. Uses polynomial arithmetic s.t. coefficients are
modulo 2

,. (x6 + x4 + x3 +1) + (X5 + x4 + x2 + 1)
= x6 + x5 + x3 + x2
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Binary-fields, GF(2m)

. Attractive for HW because add is simply XOR
(carry-less) and requires no reduction

. Squaring algorithm has O(n) complexity as
opposed to O(n2)

. Reduced computational complexity has the
potential to save energy

10/44



Energy-Efficient Implementations of GF(p) and GF(2m) ECC

L Design

zackfirolincl

Design

11/44



Energy-Efficient Implementations of GF(p) and GF(2m) ECC

L Design

Overview of Approach

Explore design space:
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Energy efficient baseline

Typical embedded System
On a Chip (SoC)...
► 5-stage, RISC pipelined

processor

► No MMU or cache
► Multi-cycle multiplication

unit

► Minimal memory
configuration

Main Memory

"Pete"

RISC Processor
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Baseline Software

. Operand scanning multi-precision multiplication

. NIST fast reduction techniques

. Sliding window scalar point multiplication

. Three dimensional coordinate systems
[Brown et al., 2001]
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Instruction Set Extensions (ISE)

. Improve efficiency of product-scanning
multiplication [Großschkl and Savas, 2004]

. Decrease computation time significantly

. While only marginally increasing power
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GF(21 ISE

. Require minimal modifications to the processor
core

Format Operation

MULGF2 rs, rt Carry-less Multiply
MADDUGF2 rs, rt Carry-less Multiply-Accumulate
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Instruction Fetch Energy

Energy breakdown showed fetching instructions
from ROM is costly

. RISC processor fetches every clock cycle

. Energy of memory access is related to size of
memory

. Program ROM is the largest memory in our
system

. Solution: Add an instruction cache to our
system!
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Moving further towards the right...

Reconfigurability/Generality

Energy Efficiency

1 1 I I

Optimized Instruction Set Microcoded Custom
Software Extensions Accelerator Hardware

Nonconfigurable
Accelerator
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Binary-field Accelerator

Further reduce energy with a binary accelerator:

. Improvement over previously proposed designs
[Guo and Schaumont, 2009]

. Non-configurable architecture tuned to field

. Performs carry-less addition, multiplication,
and squaring

. Similar approach as the original IBM 360
floating point unit [Anderson et al., 1967]
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Pete and Billie Overview

Register

File

In tr

Queue

t Decode 1—*

port mux

A A  

Multiplier Adder

:-Zrde

Unit

Finite-Field Accelerator (Billie)

Main Memory

256KB
ROM

16KB RAM

iCeProc2 Interface

IF 

ID/RD

♦
 14-*Re=or

D Mem 
a Wb

Mult/Div

Hi/Lo

RISC Processor (Pete)

► 16 entry register file
► DMA to shared memory
► Multiple functional units, including a digit serial

multiplier [Kumar et al., 2006]
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Energy per Operation vs. Key Size

► 6 cliff. HW/SW
configurations
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Energy Breakdown for ISE Configurations

. !Cache trades
ROM energy for
less ICache
energy

. Binary-field
computation is
less complex
with fewer
memory
accesses
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Energy Breakdown for Monte vs. Billie

. Billie's size scales
with field size
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. RAM energy is 250
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Energy Improvements with Clock Gating

. Assume no 
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Latency Comparison

. For a 163-bit scalar
multiply

. Improvement due
to efficient
coprocessor
interface
(Montgomery)

. Improvement due
to windowing
algorithm
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N

Future Work

. Evaluate ICache w/ binary-field ISA ext.

. Continued work on Billie
. Model large register file in SPICE
. Accelerate inversion
. Fixed sized accelerator

. Investigate Koblitz Curves

. Investigate post-quantum algorithms
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L Key Sizes

Why should ECC be used over RSA?

Due to sub-exponential attacks on RSA, ECC
requires smaller keys for equivalent security...

Key Length (Bits)[Hankerson et al., 2004]
RSA 1024 2048 3072 8192 15360
ECC 160 224 256 384 512
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L ISA Extensions

Suggested ISA extensions

ISA Extensions for GF(p) [GroßschJdl and Sava5, 2004].

Format Operation

MADDU rs, rt Multiply and Accumulate Unsigned

M2ADDU rs, rt Multiply, Double, and Accumulate Unsigned

ADDAU rs, rt Add to Accumulator Unsigned

SHA Shift Accumulator to the right by 32 bits
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GF(2m) Math

GF(27) multiplication assuming f(x) = x7 + x +1:

. (x6 + x3 + x) x (x6 + x2 +1) = x3 + x +1

. Multiplication:
a(x) x b(x)= X12 + X9 + X8 + X7 + X6 + X5 + X

. Reduction:
modulo f(x) = x3 + x +1

. Addition and subtraction are the same
operation and do not require reduction
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L ISA Extensions

GF(21 Computation

. Attractive for HW because add is simply XOR
(carry-less)

. Denoted in the following way:
a(x) = arn_lxm-1 + • • • + a2x2 + alx + a0 where
x is the indeterminate of the polynomial, and
the coefficients, am_l, • • •, a2, al, a0 e [0,1].
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Binary-field Support

. Changes in light gray and
additions in dark gray

. Increases static power by
2.65%

. Decreases overall power
by 2.56%
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L Monte Details

Further improve efficiency...

Add a dedicated GF(p) coprocessor for modular
arithmetic...

. Performs prime-field math much more
efficiently [Targhetta and Gratz, 2011]

. Reduces instruction fetching with small
microcode ROM

. Utilizes coprocessor interface for command and
control

. Shares RAM with "Pete"
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Pete and Monte overview

Flnite-Fleld Accele ator (Monte

Main Memory

s

iroProc2 Interface

IF 

256KB r 10/110 1(—> nl:r

ROM
l E. 14—*

Mult/Div

Mern

HI / Lo

16KB RAM1*—).
Wb 

RISC Processor (Pete)

► Double buffered scratch pad memory
► Direct Memory Access (DMA) to shared memory

► Instruction queue (out-of-order processing)

38/44



Energy-Efficient Implementations of GF(p) and GF(2m) ECC

L Backup Slides

L Monte Details

Monte Instructions

. Fetched and decoded by Pete, then forwarded
to Monte (coprocessor interface)

. Allow reconfiguration of field width

. Include mod ADD, SUB, MULT

. Handle transfer of data to/from shared memory
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L Monte Details

FFAU overview

► Microcoded control
unit

► Pipelined arithmetic
core

► Computes modular
add, subtract, and
multiply

► Utilizes Montgomery
multiplication
[Montgomery, 1985]

...
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L Billie Details

Billie Microarchitecture

Register
File

163

163

32

port m ux

Multiplier

42

lnstr
Queue

42

Decode

Load
Store
Unit
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Methodology

► Estimate energy in logic:
► HDL models of Pete, Monte and Billie synthesized

to 45nm
► Synopsys Prime-Time simulated energy

consumption while performing ECC [Yip, 2006]

► Estimate energy in memory:
► Test bench counts reads and writes to memories
► Cacti estimates energy per read/write and static

energy [Muralimanohar et al., 2009]
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L Motivation

Motivation

. 75%
multiply/square

. 9% add/sub

. —16% other

• Mult

• Square

• Add/Sub

• Other

Portion of time spent performing
modular math for P384 ECDSA.
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—

Energy in Sensor Network Domain

For example in sensor network domain:

. Consumes approx. 72% of the energy allotted
for communication handshaking
[Wander et al., 2005]

. Only 5% to 10% of energy budget is available
for handshakes!
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