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Kokkos the Programming Model

» Machine model
» NN execution spaces X M memory spaces

» N X M matrix for memory access performance/possibility
» Asynchronous execution allowed
» Implementation Approach
A C++ template library
» Application focused: each feature is requested by application
and used right now
» Performance focused: very high bar for acceptance if a feature
impeders performance
» C++11 required
» Target different back-ends for different hardware architectures
» Distribution
» Open Source library
» Available on Github: github.com/kokkos/kokkos
» Extensive tutorial: github.com/kokkos/kokkos-tutorials

v
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Abstraction Concepts

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...
Execution Policy: how (and where) a user function is executed

> E.g., data parallel range : concurrently call function(i) for i = [0..N)
» User's function is a C+-+ functor or C++11 lambda
Execution Space: where functions execute

» Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space: where data resides
» AND what execution space can access that data
» Also differentiated by access performance; e.g., latency & bandwidth
Memory Layout: how data structures are ordered in memory
> provide mapping from logical to physical index space
Memory Traits: how data shall be accessed

> allow specialisation for different usage scenarios (read only, random, atomic, ...)
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Concepts: Patterns, Policies, and Bodies

Pattern Policy
for (size_t i = 0; i < N; ++i) {
double y_i = 0;
> for (int j = 0; j < M; ++j) {
frcs y_i += A[i][j] * x[jl;
o0
y[il = y_i;

}
Terminology:
» Pattern: structure of the computations
for, reduction, scan, task-graph, ...

» Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

» Computational Body: code which performs each unit of
work; e.g., the loop body

= The pattern and policy drive the computational body.

PACT15, San Francisco, Oct. 18th 2015




Example: y = Ax

Patterns

: parallel_for

O | #pragma omp parallel for
S|for (int i = 0; i < N; ++i) {
c double y_i = 0;
8_ for (int j = 0; j < M; ++j) {
@) y_i += A[il1[j] * x[j1;
}
. y[il = y_i;
o}
=
3
¥ | parallel_for (N, [=] (const size_t i) {

double y_i = 0;
for (int j = 0; j < M; ++j) {
y_i += A[i1[31 * x[j1;
}
gl =
393

35
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Patterns: parallel_reduce

Example: (y 7 |Ax)

double yAx = 0;

Q.| #pragma omp parallel for reduction (+:yAx)
S|for (int i = 0; i < N; ++i) {
5| double Ax_i = 0;
g for (int j = 0; j < M; ++j) {
o Ax_i += A[il[3] * x[j1;
}
@ yAx += y[i]l * Ax_i;
O}
X
X
o
X|double yAx = 0;

parallel_reduce (N, [=] (const size_t i, double& yAx_thread) A
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A[il[j1 * x[jl;
}
yAx_thread += y[i] * Ax_ij;
}, yAx);
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View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
> Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

PACT15, San Francisco, Oct. 18th 2015




View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
> Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View<double#***> data("label", NO, N1, N2); 3 run, O compile
View<double**[N2]> data("label", NO, N1); 2 run, 1 compile
View<double*[N1] [N2]> data("label", NO); 1 run, 2 compile
View<double [NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<doublex> c(b); What gets printed?
assignValueInView(c);

print a(0)
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View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView (c); 3.0

print a(0)
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Example: (y7|Ax)

#include <Kokkos_Core.hpp>

int main(int argc, charx argv[]) {
// Initialize Kokkos analogous to MPI_Init ()
Kokkos::initialize (argc, argv);

Kokkos::View<doublex*x> A ("A", N,M); // Allocate matrix "A"
Kokkos::View<doublex> x("X",M), y("Y",N); // Allocate vector

double yAx = O0;
Kokkos::parallel_reduce (N, [=] (const size_t i,
double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);

Kokkos::finalize ();
}
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What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package
Memory

91X3 I

Network-on-Chip

soepoIY|

108UU00JBIU| [BUIBIXT
yIomiaN [eu.

On-Package
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What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package
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Accelerator

On-Package

Many-core revolution: 20-year “just recompile” free ride is over.
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What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package

108UU02IBIU| [BUIBIXT

Accelerator

On-Package

Many-core revolution: 20-year “just recompile” free ride is over.

How much do | have to learn and change to use these nodes?
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism
(i.e., “place to run code”)

108UUODIBI| [BUISIXT
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.
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Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

> ExecutionPolicy<ExecutionSpace>(...)

> Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

> ExecutionPolicy<ExecutionSpace>(...)

> Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more
> If no ExecutionSpace is provided to an execution policy the
default execution space is used.
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

PACT15,

ExecutionPolicy<ExecutionSpace>(...)

Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

If no ExecutionSpace is provided to an execution policy the
default execution space is used.

Giving an integer N as policy is equivalent to
RangePolicy<>(N)

San Francisco, Oct. 18th 2015




Execution spaces (2)

Kokkos function and lambda portability annotation macros

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {

KOKKOS_INLINE_.FUNCTION

double helperFunction(const size_t s) const {...}

KOKKOS_INLINE_.FUNCTION

void operator()(const
helperFunction(index);

size_t index) const {

/* #if CPU—only x/

}
/* #if CPU4+Cuda x/

// Where kokkos defines:
#define KOKKOS_INLINE_.FUNCTION inline
_.device__. __host__

#define KOKKOS_INLINE_.FUNCTION inline

18th 2015
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Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {
KOKKOS_INLINE_.FUNCTION
double helperFunction(const size_t s) const {...}
KOKKOS_INLINE_.FUNCTION
void operator()(const size_t index) const {
helperFunction(index);

}

// Where kokkos defines:

#define KOKKOS_INLINE_LFUNCTION inline /* #if CPU-only x/
#define KOKKOS_INLINE_LFUNCTION inline __device-- __host__. /% #if CPU+Cuda =/

Lambda annotation with KOKKOS_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: parallel_for(numberOflterations ,
KOKKOSLAMBDA (const size_t index) {...});

// Where kokkos defines:
#define KOKKOS.LAMBDA [=] /% #if CPU—only x/
#define KOKKOSLAMBDA [=] __device_. /% #if CPU4+Cuda x*/

PACT15, San Francisco, Oct. 18th 2015




Memory spaces (0)

Memory space:
explicitly-manageable memory resource
(i.e., place to put data”)

On-Package

108UU02JB)U| [BUIBIXT

Accelerator

On-Package
Memory
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.
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Every view stores its data in a memory space set at compile time.
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);
> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

» Each execution space has a default memory space, which is
used if Space provided is actually an execution space
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
» Each execution space has a default memory space, which is
used if Space provided is actually an execution space

> If no Space is provided, the view's data resides in the default
memory space of the default execution space.
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Example: Spaces

Example: (y7|Ax)

// Allocate explicitly in CudaSpace
Kokkos::View<double**, Kokkos::CudaSpace> A ("A", N,M);
Kokkos::View<double*, Kokkos::CudaSpace> x("X",M), y("Y",N);

double yAx = O0;
// Run explicitly in the Cuda execution space
Kokkos::parallel_reduce (Kokkos::RangePolicy<Kokkos::Cuda>(N),
KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);
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Important concept: Layouts

Every View has a Layout set at compile-time.

View<doublex***, Layout, Space> name(...);
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Important concept: Layouts
Every View has a Layout set at compile-time.

‘View<doub1e***, Layout, Space> name(...); ‘

» Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

> If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

> Layouts are extensible: "50 lines

» Advanced layouts: LayoutStride, LayoutTiled, ...
extensible
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Example: Layout

Example: (y7|Ax)

// Allocate explicitly with LayoutRight
Kokkos::View<doublex*#*, Kokkos::LayoutRight> A ("A", N,M);
Kokkos::View<doublex*> x("X",M), y("Y",N);

double yAx = O0;
// Run explicitly in the Cuda execution space
Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);
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Performance Layout
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Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.
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Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ... );

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
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Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ... );

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);

> Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);
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Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ... );

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.
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Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ... );

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

» The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.
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Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ... );

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

» The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

» Threads within a team are guaranteed to run concurrent,
teams are not.
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Example: Hierarchical Parallelism

// Execution policies use a ’member type’ as argument
typedef Kokkos::TeamPolicy<>::member_type team_type;
double yAx = 0;
// Split rows over teams, with Kokkos choosing team size
Kokkos ::parallel_reduce (Kokkos::TeamPolicy<>(N, Kokkos::AUTO),
KOKKOS_LAMBDA (const team_type& team, double& yAx_team) {
double Ax_i = 0;
// Do mnested dot product with the team
Kokkos::parallel_reduce (Kokkos::TeamThreadRange (team, M),
[&] (const int& j) {
Ax_i += A(i,j) * x(j);
Y, Ax_i);
// Only one thread per team adds to the result
Kokkos::single (Kokkos::PerTeam(team), [&] () {
yAx_team += y(i) * Ax_i;
B
}, yAx);
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Performance TeamPolicy
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Features which were not discussed:

> Atomics: Support of arbitrary sized atomics

vV v v Y

>

Team Scratch Pads: Exposes Cuda shared memory functionality
Algorithms: Sort and Random Numbers
Containers: DualView, std::vector replacement, unordered map

ExecutionTags: have classes act as functors with multiple tagged
operators

Custom Reductions/Scans: use functors with join, init and final functions

Profiling support: simple inbuild capabilities + hooks for third party tools

Whats next (next couple of years and subject to finding people):

>

| 4
| 4
>

PACT15,

Kernels package in Trilinos: BLAS, Sparse LA, Graph algorithms
Task support: under development, prototype on CPUs
Remote memory spaces: incorporate shmem like capabilities

More debugging features: e.g. runtime identification of potential write
conflicts
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