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Kokkos the Programming Model

► Machine model
► N execution spaces x M memory spaces
► N x M matrix for memory access performance/possibility
► Asynchronous execution allowed

► Implementation Approach
► A C++ template library
► Application focused: each feature is requested by application

and used right now
► Performance focused: very high bar for acceptance if a feature

impeders performance
► C++11 required
► Target different back-ends for different hardware architectures

► Distribution
► Open Source library
► Available on Github: github.com/kokkos/kokkos
► Extensive tutorial: github.com/kokkos/kokkos-tutorials
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Abstraction Concepts

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...
Execution Policy: how (and where) a user function is executed

► E.g., data parallel range : concurrently call function(i) for i = [0..N)

► User's function is a C++ functor or C++11 lambda

Execution Space: where functions execute

► Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space: where data resides

► AND what execution space can access that data

► Also differentiated by access performance; e.g., latency & bandwidth

Memory Layout: how data structures are ordered in memory

► provide mapping from logical to physical index space

Memory Traits: how data shall be accessed

► allow specialisation for different usage scenarios (read only, random, atomic, ...)
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Pattern Policy

Concepts: Patterns, Policies, and Bodies

for (size_t i 0; i < N; ++i) {

double y_i = 0;

>, for (int j = 0; j < M; ++j) {
-0 y_i += A[i][j] * x[j];
}
y[i] = y_i;

}

Terminology:

► Pattern: structure of the computations
for, reduction, scan, task-graph, ...

► Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

► Computational Body: code which performs each unit of
work; e.g., the loop body

The pattern and policy drive the computational body.
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Patterns: parallel_for

Example: y = Ax

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i] [j] * x[j];
}

y[i] = y_i;
}

parallel_for(N, [=] (const size_t

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i] [j] * x[j];
}

y[i] = y_i;
});
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Patterns: parallel_reduce

Example: (yTIAx) 
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double yAx = 0;

#pragma omp parallel for reduction(+:yAx)

for (int i = 0; i < N; ++i) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];
}

yAx += y[i] * Ax_i;
}

double yAx = 0;

parallel_reduce(N, [=] (const size_t i, double& yAx_thread)

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];
}

yAx_thread += y[i] * Ax_i;

}, yAx);
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View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.
► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.
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View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.
► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.

Example:

View<double***> data("label", NO, N1, N2); 3 run, 0 compile

View<double**[N2]> data("label", NO, N1); 2 run, 1 compile

View<double*EN1IIN2> data("label", NO); 1 run, 2 compile

View<double[NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.
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View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.
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View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c);

print a(0)
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View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c); 3.0
print a(0)
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Example: (y Ax) 

#include <Kokkos_Core.hpp>

int main(int argc, char* argv[]) {

// Initialize Kokkos analogous to MPI_Init()

Kokkos::initialize(argc, argv);

}

Kokkos::View<double**> A ("A", N,M); // Allocate matrix 1111.11

Kokkos::View<double*> x("X",M), y("Y",10; // Allocate vector

double yAx = 0;

Kokkos::parallel_reduce(N, [=] (const size_t

double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j)

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;
}, yAx);

Kokkos::finalize();
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r Compute nodes will be heterogeneous in cores and memory:
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Compute nodes will be heterogeneous in cores and memory:
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Node

Many-core revolution: 20-year "just recompile" free ride is over.
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Compute nodes will be heterogeneous in cores and memory:
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Many-core revolution: 20-year "just recompile" free ride is over.

How much do l have to learn and change to use these nodes? _...
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., "place to run code")
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Execution spaces: Serial, Threads, OpenMP, Cuda,

PACT15, San Francisco, Oct. 18th 2015 12 24



Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

ExecutionPolicy<ExecutionSpace>(...)
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

► If no ExecutionSpace is provided to an execution policy the

default execution space is used.
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Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

► If no ExecutionSpace is provided to an execution policy the

default execution space is used.

► Giving an integer N as policy is equivalent to
RangePolicy<>(N)
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Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction(const size_t s) const
KOKKOS_INLINE_FUNCTION
void operator()(const size_t index) const {

helperFunction(index);

// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline /*#if CPU—only */
#define KOKKOS_INLINE_FUNCTION inline __device host /* #if CPU+Cuda */
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Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction (const s ze_t s) const
KOKKOS_INLINE_FUNCTION
void operator 0( const size_t index) const {

helperFunction ( index );

// Where kokkos defines :
#d efi n e KOKKOS_INLINE_FUNCTION inline /* #i f CPU—only */
#d efi n e KOKKOS_INLINE_FUNCTION inline __device host /* #i f CPU+Cuda */

Lambda annotation with KOKKos_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: para I lel_for ( number0fIterations ,
KOKKOS_LAMBDA ( const size_t index ) { —});

// Where kokkos defines :
#define KOKKOS_LAMBDA [=] /* #if CPU—only */
#define KOKKOS_LAMBDA [=] __d evice__ /* #if CPU+Cuda */
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Memory spaces (0)

Memory space:

explicitly-manageable memory resource
(i.e., "place to put data")
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***,MemorySpace> data( . . . ) ;
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

 1
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space

 1
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data( ...) ;
► Available memory spaces:

HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space

► If no Space is provided, the view's data resides in the default
memory space of the default execution space.

 1

PACT15, San Francisco, Oct. 18th 2015 16/24



r
Example: (y Ax) 

// Allocate explicitly in CudaSpace

Kokkos::View<double**, Kokkos::CudaSpace> A ("A", N,M);

Kokkos::View<double*, Kokkos::CudaSpace> x("X",M), y("Y",N);

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos::parallel_reduce(Kokkos::RangePolicy<Kokkos::Cuda>(N),

KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;

1, yAx);

—AAA
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portant concept: Layouts

Every View has a Layout set at compile-time.

View<double***, Layout, Space> name(...);
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rImportant concept: Layouts

Every View has a Layout set at compile-time.

View<double** Layout, Space> name(...);

► Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

► If no layout specified, default for that memory space is used.

LayoutLeft for CudaSpace, LayoutRight for HostSpace.

► Layouts are extensible: -50 lines
► Advanced layouts: LayoutStride, LayoutTiled, ...

extensible
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Example: (y Ax) 

// Allocate explicitly with LayoutRight

Kokkos::View<double**, Kokkos::LayoutRight> A

Kokkos::View<double*> x("X",M), y("Y",N);

( A

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos::parallel_reduce(N,

KOKKOS_LAMBDA (const size_t i, double& yAx_thread)
double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;
}, yAx);

N,M);
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Hierarchical Parallelism

rmportant concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.
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Hierarchical Parallelism

rmportant concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]), );
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Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]), );

► Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);
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Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]), );

Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

► Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);
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Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), );

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . . ) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . . ) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.
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Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), );

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . . ) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . . ) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

► The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.
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Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]), );

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . . ) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . . ) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

► The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

► Threads within a team are guaranteed to run concurrent,
teams are not.
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Example: Hierarchical Parallelism

// Execution policies use a 'member type' as argument

typedef Kokkos::TeamPolicy<>::member_type team_type;

double yAx = 0;

// Split rows over teams, with Kokkos choosing team size

Kokkos::parallel_reduce(Kokkos::TeamPolicy<>(N, Kokkos::AUTO),
KOKKOS_LAMBDA (const team_type& team, double& yAx_team) {

double Ax_i = 0;

// Do nested dot product with the team

Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team, M),

[&] (const int& j) {

Ax_i += A(i,j) * x(j);
1,Ax_i);

// Only one thread per team adds to the result

Kokkos::single(Kokkos::PerTeam(team), [&] {

yAx_team += y(i) * Ax_i;

});
}, yAx);
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✓eaFtures which were not discussed:

► Atomics: Support of arbitrary sized atomics

0- Team Scratch Pads: Exposes Cuda shared memory functionality

N. Algorithms: Sort and Random Numbers

0- Containers: DualView, std::vector replacement, unordered map

1" ExecutionTags: have classes act as functors with multiple tagged
operators

► Custom Reductions/Scans: use functors with join, init and final functions

0- Profiling support: simple inbuild capabilities + hooks for third party tools

Whats next (next couple of years and subject to finding people):

0- Kernels package in Trilinos: BLAS, Sparse LA, Graph algorithms

► Task support: under development, prototype on CPUs

0- Remote memory spaces: incorporate shmem like capabilities

I. More debugging features: e.g. runtime identification of potential write
conflicts
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