is paper describes objective technical results and analysis. Any subjective views or opinions that might be expres
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Governm

SAND2015-9078C

Kokkos: Enabling Performance Portablility

Christian R. Trott !, H. Carter Edwards !
1Sandia National Laboratories

PACT15, San Francisco, Oct. 18th 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

SAND2015-XXXX PE

riesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of San
well International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under cont

Motivation: Increasing Node Complexity

- -

@E—

Multi-Core Many-Core CPU + GPU

Hardware Architectures

PACT15, San Francisco, Oct. 18th 2015

Kokkos the Programming Model

» Machine model
» NN execution spaces X M memory spaces

» N X M matrix for memory access performance/possibility
» Asynchronous execution allowed
» Implementation Approach
A C++ template library
» Application focused: each feature is requested by application
and used right now
» Performance focused: very high bar for acceptance if a feature
impeders performance
» C++11 required
» Target different back-ends for different hardware architectures
» Distribution
» Open Source library
» Available on Github: github.com/kokkos/kokkos
» Extensive tutorial: github.com/kokkos/kokkos-tutorials

v

PACT15, San Francisco, Oct. 18th 2015

Abstraction Concepts

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...
Execution Policy: how (and where) a user function is executed

> E.g., data parallel range : concurrently call function(i) for i = [0..N)
» User's function is a C+-+ functor or C++11 lambda
Execution Space: where functions execute

» Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space: where data resides
» AND what execution space can access that data
» Also differentiated by access performance; e.g., latency & bandwidth
Memory Layout: how data structures are ordered in memory
> provide mapping from logical to physical index space
Memory Traits: how data shall be accessed

> allow specialisation for different usage scenarios (read only, random, atomic, ...)

PACT15, San Francisco, Oct. 18th 2015

Concepts: Patterns, Policies, and Bodies

Pattern Policy
for (size_t i = 0; i < N; ++i) {
double y_i = 0;
> for (int j = 0; j < M; ++j) {
frcs y_i += A[i][j] * x[jl;
o0
y[il = y_i;

}
Terminology:
» Pattern: structure of the computations
for, reduction, scan, task-graph, ...

» Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

» Computational Body: code which performs each unit of
work; e.g., the loop body

= The pattern and policy drive the computational body.

PACT15, San Francisco, Oct. 18th 2015

Example: y = Ax

Patterns

: parallel_for

O | #pragma omp parallel for
S|for (int i = 0; i < N; ++i) {
c double y_i = 0;
8_ for (int j = 0; j < M; ++j) {
@) y_i += A[il1[j] * x[j1;
}
. y[il = y_i;
o}
=
3
¥ | parallel_for (N, [=] (const size_t i) {

double y_i = 0;
for (int j = 0; j < M; ++j) {
y_i += A[i1[31 * x[j1;
}
gl =
393

35

PACT15, San Francisco, Oct.

18th 2015

Patterns: parallel_reduce

Example: (y 7 |Ax)

double yAx = 0;

Q.| #pragma omp parallel for reduction (+:yAx)
S|for (int i = 0; i < N; ++i) {
5| double Ax_i = 0;
g for (int j = 0; j < M; ++j) {
o Ax_i += A[il[3] * x[j1;
}
@ yAx += y[i]l * Ax_i;
O}
X
X
o
X|double yAx = 0;

parallel_reduce (N, [=] (const size_t i, double& yAx_thread) A
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A[il[j1 * x[jl;
}
yAx_thread += y[i] * Ax_ij;
}, yAx);

PACT15, San Francisco, Oct. 18th 2015

View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
> Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

PACT15, San Francisco, Oct. 18th 2015

View overview:

» Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

» Number of dimensions (rank) is fixed at compile-time.
> Arrays are rectangular, not ragged.

» Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

Example:

View<double#***> data("label", NO, N1, N2); 3 run, O compile
View<double**[N2]> data("label", NO, N1); 2 run, 1 compile
View<double*[N1] [N2]> data("label", NO); 1 run, 2 compile
View<double [NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

PACT15, San Francisco, Oct. 18th 2015

View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

PACT15, San Francisco, Oct. 18th 2015

View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<doublex> c(b); What gets printed?
assignValueInView(c);

print a(0)

PACT15, San Francisco, Oct. 18th 2015

View life cycle:

> Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

» Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

» Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<doublex> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView (c); 3.0

print a(0)

PACT15, San Francisco, Oct. 18th 2015

Example: (y7|Ax)

#include <Kokkos_Core.hpp>

int main(int argc, charx argv[]) {
// Initialize Kokkos analogous to MPI_Init ()
Kokkos::initialize (argc, argv);

Kokkos::View<doublex*x> A ("A", N,M); // Allocate matrix "A"
Kokkos::View<doublex> x("X",M), y("Y",N); // Allocate vector

double yAx = O0;
Kokkos::parallel_reduce (N, [=] (const size_t i,
double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);

Kokkos::finalize ();
}

PACT15, San Francisco, Oct. 18th 2015

What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package
Memory

91X3 I

Network-on-Chip

soepoIY|

108UU00JBIU| [BUIBIXT
yIomiaN [eu.

On-Package

PACT15, San Francisco, Oct. 18th 2015

What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package

soepoIY|

Accelerator

On-Package

Many-core revolution: 20-year “just recompile” free ride is over.

PACT15, San Francisco, Oct. 18th 2015

What is a node?

Compute nodes will be heterogeneous in cores and memory:

On-Package

108UU02IBIU| [BUIBIXT

Accelerator

On-Package

Many-core revolution: 20-year “just recompile” free ride is over.

How much do | have to learn and change to use these nodes?

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism
(i.e., “place to run code”)

108UUODIBI| [BUISIXT

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

> ExecutionPolicy<ExecutionSpace>(...)

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

> ExecutionPolicy<ExecutionSpace>(...)

> Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

> ExecutionPolicy<ExecutionSpace>(...)

> Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more
> If no ExecutionSpace is provided to an execution policy the
default execution space is used.

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

PACT15,

ExecutionPolicy<ExecutionSpace>(...)

Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

If no ExecutionSpace is provided to an execution policy the
default execution space is used.

Giving an integer N as policy is equivalent to
RangePolicy<>(N)

San Francisco, Oct. 18th 2015

Execution spaces (2)

Kokkos function and lambda portability annotation macros

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {

KOKKOS_INLINE_.FUNCTION

double helperFunction(const size_t s) const {...}

KOKKOS_INLINE_.FUNCTION

void operator()(const
helperFunction(index);

size_t index) const {

/* #if CPU—only x/

}
/* #if CPU4+Cuda x/

// Where kokkos defines:
#define KOKKOS_INLINE_.FUNCTION inline
_.device__. __host__

#define KOKKOS_INLINE_.FUNCTION inline

18th 2015

PACT15, San Francisco, Oct.

Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with XOKKOS_INLINE_FUNCTION macro

struct ParallelFunctor {
KOKKOS_INLINE_.FUNCTION
double helperFunction(const size_t s) const {...}
KOKKOS_INLINE_.FUNCTION
void operator()(const size_t index) const {
helperFunction(index);

}

// Where kokkos defines:

#define KOKKOS_INLINE_LFUNCTION inline /* #if CPU-only x/
#define KOKKOS_INLINE_LFUNCTION inline __device-- __host__. /% #if CPU+Cuda =/

Lambda annotation with KOKKOS_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: parallel_for(numberOflterations ,
KOKKOSLAMBDA (const size_t index) {...});

// Where kokkos defines:
#define KOKKOS.LAMBDA [=] /% #if CPU—only x/
#define KOKKOSLAMBDA [=] __device_. /% #if CPU4+Cuda x*/

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (0)

Memory space:
explicitly-manageable memory resource
(i.e., place to put data”)

On-Package

108UU02JB)U| [BUIBIXT

Accelerator

On-Package
Memory

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

» View<double***, MemorySpace> data(...);

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);
> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

» Each execution space has a default memory space, which is
used if Space provided is actually an execution space

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time. |

» View<double***, MemorySpace> data(...);

> Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
» Each execution space has a default memory space, which is
used if Space provided is actually an execution space

> If no Space is provided, the view's data resides in the default
memory space of the default execution space.

PACT15, San Francisco, Oct. 18th 2015

Example: Spaces

Example: (y7|Ax)

// Allocate explicitly in CudaSpace
Kokkos::View<double**, Kokkos::CudaSpace> A ("A", N,M);
Kokkos::View<double*, Kokkos::CudaSpace> x("X",M), y("Y",N);

double yAx = O0;
// Run explicitly in the Cuda execution space
Kokkos::parallel_reduce (Kokkos::RangePolicy<Kokkos::Cuda>(N),
KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);

PACT15, San Francisco, Oct. 18th 2015

Important concept: Layouts

Every View has a Layout set at compile-time.

View<doublex***, Layout, Space> name(...);

PACT15, San Francisco, Oct. 18th 2015

Important concept: Layouts
Every View has a Layout set at compile-time.

‘View<doub1e***, Layout, Space> name(...); ‘

» Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

> If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

> Layouts are extensible: "50 lines

» Advanced layouts: LayoutStride, LayoutTiled, ...
extensible

PACT15, San Francisco, Oct. 18th 2015

Example: Layout

Example: (y7|Ax)

// Allocate explicitly with LayoutRight
Kokkos::View<doublex*#*, Kokkos::LayoutRight> A ("A", N,M);
Kokkos::View<doublex*> x("X",M), y("Y",N);

double yAx = O0;
// Run explicitly in the Cuda execution space
Kokkos::parallel_reduce (N,
KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;
for (int j = 0; j < M; ++j) {
Ax_i += A(i,j) * x(j);
}
yAx_thread += y(i) * Ax_i;
}, yAx);

PACT15, San Francisco, Oct. 18th 2015

Performance Layout

<ylAx>
NxM = 228
200 — — — — . . .
@—® K80 LayoutLeft
L | @ @ K80 LayoutRight 4
A—A HSW LayoutLeft
1501 A /2 HSW LayoutRight
2
as) L
<)
£ 100~
ko] /
=1 B /
2 /
502
0 7 ‘ . ! [[[
512 4k 33k 2M 17M 134 M

262k
N

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);

> Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

» The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

Important concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

> Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLengthl), ...);

» Thread: parallel_xx(TeamThreadRange (team_handle,Begin,End),...);
» Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

» The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

» The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

» Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015

Example: Hierarchical Parallelism

// Execution policies use a ’member type’ as argument
typedef Kokkos::TeamPolicy<>::member_type team_type;
double yAx = 0;
// Split rows over teams, with Kokkos choosing team size
Kokkos ::parallel_reduce (Kokkos::TeamPolicy<>(N, Kokkos::AUTO),
KOKKOS_LAMBDA (const team_type& team, double& yAx_team) {
double Ax_i = 0;
// Do mnested dot product with the team
Kokkos::parallel_reduce (Kokkos::TeamThreadRange (team, M),
[&] (const int& j) {
Ax_i += A(i,j) * x(j);
Y, Ax_i);
// Only one thread per team adds to the result
Kokkos::single (Kokkos::PerTeam(team), [&] () {
yAx_team += y(i) * Ax_i;
B
}, yAx);

PACT15, San Francisco, Oct. 18th 2015

Performance TeamPolicy

<ylAx>
NxM =228
200 — I T 1
@—® K80 LayoutLeft
L | @ @ K80 LayoutRight |

A—A HSW LayoutLeft

/£ /5 HSW LayoutRight
_ 150 e 220, —
2 |eeee? %
O | astthrblbtsBbtny 1
= \
= / - \
5 100/ é\ % -
3
el
=]
<
m

50
0

PACT15, San Francisco, Oct. 18th 2015

Features which were not discussed:

> Atomics: Support of arbitrary sized atomics

vV v v Y

>

Team Scratch Pads: Exposes Cuda shared memory functionality
Algorithms: Sort and Random Numbers
Containers: DualView, std::vector replacement, unordered map

ExecutionTags: have classes act as functors with multiple tagged
operators

Custom Reductions/Scans: use functors with join, init and final functions

Profiling support: simple inbuild capabilities + hooks for third party tools

Whats next (next couple of years and subject to finding people):

>

| 4
| 4
>

PACT15,

Kernels package in Trilinos: BLAS, Sparse LA, Graph algorithms
Task support: under development, prototype on CPUs
Remote memory spaces: incorporate shmem like capabilities

More debugging features: e.g. runtime identification of potential write
conflicts

San Francisco, Oct. 18th 2015

