
Kokkos: Enabling Performance Portablility

Christian R. Trott 1, H. Carter Edwards 1

1Sandia National Laboratories

PACT15, San Francisco, Oct. 18th 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy's National Nuclear Security Administration under contract

DE-AC04-94AL85000.

SAND2015-XXXX PE

SAND2015-9078C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Motivation: Increasing Node Complexity

Applications

0 • 0

I I i

DDR I

Multi-Core Many-Core APU CPU + GPU

Hardware Architectures

PACT15, San Francisco, Oct. 18th 2015

r
Kokkos the Programming Model

► Machine model
► N execution spaces x M memory spaces
► N x M matrix for memory access performance/possibility
► Asynchronous execution allowed

► Implementation Approach
► A C++ template library
► Application focused: each feature is requested by application

and used right now
► Performance focused: very high bar for acceptance if a feature

impeders performance
► C++11 required
► Target different back-ends for different hardware architectures

► Distribution
► Open Source library
► Available on Github: github.com/kokkos/kokkos
► Extensive tutorial: github.com/kokkos/kokkos-tutorials

PACT15, San Francisco, Oct. 18th 2015 3/24

Abstraction Concepts

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...
Execution Policy: how (and where) a user function is executed

► E.g., data parallel range : concurrently call function(i) for i = [0..N)

► User's function is a C++ functor or C++11 lambda

Execution Space: where functions execute

► Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space: where data resides

► AND what execution space can access that data

► Also differentiated by access performance; e.g., latency & bandwidth

Memory Layout: how data structures are ordered in memory

► provide mapping from logical to physical index space

Memory Traits: how data shall be accessed

► allow specialisation for different usage scenarios (read only, random, atomic, ...)

PACT15, San Francisco, Oct. 18th 2015 4 24

Pattern Policy

Concepts: Patterns, Policies, and Bodies

for (size_t i 0; i < N; ++i) {

double y_i = 0;

>, for (int j = 0; j < M; ++j) {
-0 y_i += A[i][j] * x[j];
}
y[i] = y_i;

}

Terminology:

► Pattern: structure of the computations
for, reduction, scan, task-graph, ...

► Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

► Computational Body: code which performs each unit of
work; e.g., the loop body

The pattern and policy drive the computational body.

PACT15, San Francisco, Oct. 18th 2015 5/24

0.
2
Gl

cn
O_v
O

Patterns: parallel_for

Example: y = Ax

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i] [j] * x[j];
}

y[i] = y_i;
}

parallel_for(N, [=] (const size_t

double y_i = 0;

for (int j = 0; j < M; ++j) {

y_i += A[i] [j] * x[j];
}

y[i] = y_i;
});

PACT15, San Francisco, Oct. 18th 2015

Patterns: parallel_reduce

Example: (yTIAx)

CL

Gl

CD

0
—Y
—Y
0
NC

double yAx = 0;

#pragma omp parallel for reduction(+:yAx)

for (int i = 0; i < N; ++i) {

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];
}

yAx += y[i] * Ax_i;
}

double yAx = 0;

parallel_reduce(N, [=] (const size_t i, double& yAx_thread)

double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A[i][j] * x[j];
}

yAx_thread += y[i] * Ax_i;

}, yAx);

PACT15, San Francisco, Oct. 18th 2015

View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.
► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.

PACT15, San Francisco, Oct. 18th 2015 8/24

View overview:

► Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

► Number of dimensions (rank) is fixed at compile-time.
► Arrays are rectangular, not ragged.
► Sizes of dimensions set at compile-time or runtime.

e.g., 2x20, 50x50, etc.

Example:

View<double***> data("label", NO, N1, N2); 3 run, 0 compile

View<double**[N2]> data("label", NO, N1); 2 run, 1 compile

View<double*EN1IIN2> data("label", NO); 1 run, 2 compile

View<double[NO][N1][N2]> data("label"); 0 run, 3 compile

Note: runtime-sized dimensions must come first.

PACT15, San Francisco, Oct. 18th 2015 8/24

111111111Mir

View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

PACT15, San Francisco, Oct. 18th 2015 9/24

View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c);

print a(0)

PACT15, San Francisco, Oct. 18th 2015 9/24

View life cycle:

. Allocations only happen when explicitly specified.

i.e., there are no hidden allocations.

1. Copy construction and assignment are shallow (like pointers).

so, you pass Views by value, not by reference

. Reference counting is used for automatic deallocation.

Example:
void assignValueInView(View<double*> data) { data(0) = 3; }

View<double*> a("a", NO), b("b", NO);

a(0) = 1;

b(0) = 2;

a = b;

View<double*> c(b); What gets printed?
assignValueInView(c); 3.0
print a(0)

PACT15, San Francisco, Oct. 18th 2015 9/24

Example: (y Ax)

#include <Kokkos_Core.hpp>

int main(int argc, char* argv[]) {

// Initialize Kokkos analogous to MPI_Init()

Kokkos::initialize(argc, argv);

}

Kokkos::View<double**> A ("A", N,M); // Allocate matrix 1111.11

Kokkos::View<double*> x("X",M), y("Y",10; // Allocate vector

double yAx = 0;

Kokkos::parallel_reduce(N, [=] (const size_t

double& yAx_thread) {

double Ax_i = 0;

for (int j = 0; j < M; ++j)

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;
}, yAx);

Kokkos::finalize();

PACT15, San Francisco, Oct. 18th 2015 10 24

r Compute nodes will be heterogeneous in cores and memory:

a

Accelerator

Node

-7

PACT15, San Francisco, Oct. 18th 2015 11 2 I

r
-7

m111111111M11111F

Compute nodes will be heterogeneous in cores and memory:

a

Accelerator

Node

Many-core revolution: 20-year "just recompile" free ride is over.

PACT15, San Francisco, Oct. 18th 2015 11/24

Compute nodes will be heterogeneous in cores and memory:

m

On-Pack
Mem. Core Core

111_ CD ..40. Network-on-Chip
1MN

8- 2
77. t
g

NUMA Domain

COMA

NLIMA Domain

Accelerator

Node

-7

Many-core revolution: 20-year "just recompile" free ride is over.

How much do l have to learn and change to use these nodes? _...

PACT15, San Francisco, Oct. 18th 2015 11/24

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., "place to run code")

m

3

o

Execution spaces: Serial, Threads, OpenMP, Cuda,

PACT15, San Francisco, Oct. 18th 2015 12 24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at
compile time as part of an execution policy.

ExecutionPolicy<ExecutionSpace>(...)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

► If no ExecutionSpace is provided to an execution policy the

default execution space is used.

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (1)

Important concept: Execution spaces

Every parallel operation is executed in an execution space set at

compile time as part of an execution policy.

► ExecutionPolicy<ExecutionSpace>(...)

► Available execution spaces:
Serial, Pthread, OpenMP, Cuda, ... more

► If no ExecutionSpace is provided to an execution policy the

default execution space is used.

► Giving an integer N as policy is equivalent to
RangePolicy<>(N)

PACT15, San Francisco, Oct. 18th 2015 13/24

Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction(const size_t s) const
KOKKOS_INLINE_FUNCTION
void operator()(const size_t index) const {

helperFunction(index);

// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline /*#if CPU—only */
#define KOKKOS_INLINE_FUNCTION inline __device host /* #if CPU+Cuda */

PACT15, San Francisco, Oct. 18th 2015

Execution spaces (2)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro
struct ParallelFunctor
KOKKOS_INLINEFUNCTION
double helperFunction (const s ze_t s) const
KOKKOS_INLINE_FUNCTION
void operator 0(const size_t index) const {

helperFunction (index);

// Where kokkos defines :
#d efi n e KOKKOS_INLINE_FUNCTION inline /* #i f CPU—only */
#d efi n e KOKKOS_INLINE_FUNCTION inline __device host /* #i f CPU+Cuda */

Lambda annotation with KOKKos_LAMBDA macro (CUDA requires v 7.5)

Kokkos:: para I lel_for (number0fIterations ,
KOKKOS_LAMBDA (const size_t index) { —});

// Where kokkos defines :
#define KOKKOS_LAMBDA [=] /* #if CPU—only */
#define KOKKOS_LAMBDA [=] __d evice__ /* #if CPU+Cuda */

PACT15, San Francisco, Oct. 18th 2015 14/24

Memory spaces (0)

Memory space:

explicitly-manageable memory resource
(i.e., "place to put data")

m

3

o
o

PACT15, San Francisco, Oct. 18th 2015

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

PACT15, San Francisco, Oct. 18th 2015

 1

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***,MemorySpace> data(. . .) ;

PACT15, San Francisco, Oct. 18th 2015

 1

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data(...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

 1

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data(...) ;

► Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space

 1

PACT15, San Francisco, Oct. 18th 2015 16/24

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

► View<double***, MemorySpace> data(...) ;
► Available memory spaces:

HostSpace, CudaSpace, CudaUVMSpace, more

► Each execution space has a default memory space, which is
used if Space provided is actually an execution space

► If no Space is provided, the view's data resides in the default
memory space of the default execution space.

 1

PACT15, San Francisco, Oct. 18th 2015 16/24

r
Example: (y Ax)

// Allocate explicitly in CudaSpace

Kokkos::View<double**, Kokkos::CudaSpace> A ("A", N,M);

Kokkos::View<double*, Kokkos::CudaSpace> x("X",M), y("Y",N);

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos::parallel_reduce(Kokkos::RangePolicy<Kokkos::Cuda>(N),

KOKKOS_LAMBDA (const size_t i, double& yAx_thread) {
double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;

1, yAx);

—AAA

PACT15, San Francisco, Oct. 18th 2015 17 24

portant concept: Layouts

Every View has a Layout set at compile-time.

View<double***, Layout, Space> name(...);

PACT15, San Francisco, Oct. 18th 2015 18/24

rImportant concept: Layouts

Every View has a Layout set at compile-time.

View<double** Layout, Space> name(...);

► Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

► If no layout specified, default for that memory space is used.

LayoutLeft for CudaSpace, LayoutRight for HostSpace.

► Layouts are extensible: -50 lines
► Advanced layouts: LayoutStride, LayoutTiled, ...

extensible

PACT15, San Francisco, Oct. 18th 2015 18/24

r Ex mid-. L. •

Example: (y Ax)

// Allocate explicitly with LayoutRight

Kokkos::View<double**, Kokkos::LayoutRight> A

Kokkos::View<double*> x("X",M), y("Y",N);

(A

double yAx = 0;

// Run explicitly in the Cuda execution space

Kokkos::parallel_reduce(N,

KOKKOS_LAMBDA (const size_t i, double& yAx_thread)
double Ax_i = 0;

for (int j = 0; j < M; ++j) {

Ax_i += A(i,j) * x(j);
}

yAx_thread += y(i) * Ax_i;
}, yAx);

N,M);

PACT15, San Francisco, Oct. 18th 2015 19 24

200

150

-o
z

50

0

Performance Layout

<ylAx>
NxM = 2^28

0-0 K80 LayoutLeft
-e) K80 LayoutRight

A-A HSW LayoutLeft
HSW LayoutRight

,A -A- .9, A, A—A-9.—A

9
•.*/ 9

512 4k 33k 262k 2M
N

PACT15, San Francisco, Oct. 18th 2015

17 M 134 M

Hierarchical Parallelism

rmportant concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

PACT15, San Francisco, Oct. 18th 2015

Hierarchical Parallelism

rmportant concept: Hierarchical Parallelism

Parallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]),);

PACT15, San Francisco, Oct. 18th 2015 21 24

Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]),);

► Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

PACT15, San Francisco, Oct. 18th 2015 21 j24

Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

Team:
parallel_xx(TeamPolicy<>(Worksets,Teamsize[,VectorLength]),);

Thread: parallel_xx(TeamThreadRange(team_handle,Begin,End),...);

► Vector: parallel_xx(ThreadVectorRange(team_handle,Begin,End),...);

PACT15, San Francisco, Oct. 18th 2015 21 j24

Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]),);

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . .) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . .) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]),);

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . .) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . .) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

► The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

PACT15, San Francisco, Oct. 18th 2015 21/24

Hierarchical Parallelism

rPmportant concept: Hierarchical Parallelism

arallel execution patterns can be nested by using a TeamPolicy.

► Team:
parallel_xx(TeamPolicy<>(WorkSets,TeamSize[,VectorLength]),);

► Thread: parallel_xx (TeamThreadRange(team_handle , Begin, End) , . . .) ;

► Vector: parallel_xx(ThreadvectorRange (team_handle , Begin , End) , . . .) ;

► The Vector Level is optional, and the provided vector length
has not on all platforms meaning.

► The body of a TeamPolicy kernel is executed as a parallel
region with respect to each team.

► Threads within a team are guaranteed to run concurrent,
teams are not.

PACT15, San Francisco, Oct. 18th 2015 21/24

r
Example: Hierarchical Parallelism

// Execution policies use a 'member type' as argument

typedef Kokkos::TeamPolicy<>::member_type team_type;

double yAx = 0;

// Split rows over teams, with Kokkos choosing team size

Kokkos::parallel_reduce(Kokkos::TeamPolicy<>(N, Kokkos::AUTO),
KOKKOS_LAMBDA (const team_type& team, double& yAx_team) {

double Ax_i = 0;

// Do nested dot product with the team

Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team, M),

[&] (const int& j) {

Ax_i += A(i,j) * x(j);
1,Ax_i);

// Only one thread per team adds to the result

Kokkos::single(Kokkos::PerTeam(team), [&] {

yAx_team += y(i) * Ax_i;

});
}, yAx);

PACT15, San Francisco, Oct. 18th 2015

200

150

C.7

.g 100
7.1

pa
50

0
256 4 k 66 k 1 M

N

Performance TeamPolicy

<ylAx>

NxM = 2^28

0-9 K80 LayoutLeft
0- -0 K80 LayoutRight

A—A HSW LayoutLeft
HSW LayoutRight

42-

4,,-A-16,-,2r 46, -&

4.1 /A rib alL

17 M 268 M

PACT15, San Francisco, Oct. 18th 2015 2 24

. .

✓eaFtures which were not discussed:

► Atomics: Support of arbitrary sized atomics

0- Team Scratch Pads: Exposes Cuda shared memory functionality

N. Algorithms: Sort and Random Numbers

0- Containers: DualView, std::vector replacement, unordered map

1" ExecutionTags: have classes act as functors with multiple tagged
operators

► Custom Reductions/Scans: use functors with join, init and final functions

0- Profiling support: simple inbuild capabilities + hooks for third party tools

Whats next (next couple of years and subject to finding people):

0- Kernels package in Trilinos: BLAS, Sparse LA, Graph algorithms

► Task support: under development, prototype on CPUs

0- Remote memory spaces: incorporate shmem like capabilities

I. More debugging features: e.g. runtime identification of potential write
conflicts

PACT15, San Francisco, Oct. 18th 2015 24/24

