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Current ScramjetUQ Project Team

Team includes Sandia (Livermore + Albuquerque), Duke, MIT, and USC.

I Institution Expertise Participants

Sandia
UQ + Comb Habib Najm, Bert Debusschere,

Cosmin Safta, Khachik Sargsyan
Xun Huan

LES + SprayComb Joe Oefelein, Guilhem Lacaze

Zachary Vane

Mike Eldred (+pd tbd)

Duke
UQ + Comb Omar Knio, lhab Sraj

LES Guglielmo Scovazzi, Oriol Colomés, (+tbill

MIT UQ + Optim Youssef Marzouk, Olivier Zahm,

Florian Augustin

USC UO + Optim Roger Ghanem, (+pd tbd) ■
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Project Goals

For UQ in coupled multiphysics problems, address challenges of:

• High dimensionality
O Forward UQ
• Mesh discretization error
O Inverse UQ

• Model complexity
o Model error
o Multifidelity UQ

• Design optimization
• Optimization under uncertainty

Demonstrate capabilities on unit problems leading to:

• Problem P1: Turbulent jet in cross flow - Phase 1
• Problem P2: Scramjet problem - Phase 11
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Project Out

o Three-year project plan with specified tasks and milestones

o Year-1:
o LES code development for P1 & P2 including unit problems
o UQ methods development and tests on P1 unit problems
o Demo on a simplified P1 unit problem

o Year-2:
o Testing and demonstration on full P1
o UQ developments and tests on P2 unit problems

o Year-3:
o UQ developments and tests on unions of P2 unit problems

- increasing complexity

o Demonstration on full P2
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H !FIRE Experime

o HIFiRE experiments provide data for extrapolating results of ground
tests to flight hardware and validation of numerical simulation tools

O Cavity-based hydrocarbon-fueled dual-mode scramjet combustor
e Emulates complex transition from subsonic to supersonic combustion
e Characterized by nonlinear coupling between multiscale physics
e Turbulence and shock interactions intricately coupled to combustion,

heat transfer, and thermodynamics

* Involve both flight and ground based experiments via HIFiRE Direct
Connect Rig (HDCR) ... this project is focused on HDCR

O Test facility has generated a large body of publications and recognized
as a key experiment for hypersonic science

o Available data includes static pressure and temperature distributions
along wall and wall heat flux

e Additional quantities of interest can be extracted from LES
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Arc-Heated SCRAMJET Test Facility

(AHSTF) ... NASA LaRC

HDCR

Flow path constructed with 50.8 mm (2 inch) thick
copper walls thermally protected with zirconium
dioxide coating (144 static pressure ports, 19 flow
path surface thermocouples, 4 heat flux gauges)
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Available Data (Provided by Hass et al., NASA LaRC)

B5 B6

a Port

•
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Flow
• ...... • • •

•

• •

•• •

C2

•

. Port

Flow
  • •

•

Bodyside Instrumentation Layout Cowlside Instrumentation Layout

• 144 static pressure ports (blue circles)

• 19 flow path surface thermocouples (red diamonds)

• 4 heat flux gauges (X boxes)

• Also "porr and "starboard" sidewall thermocouples

• Both fueled and "tare" (no fuel) measurements available
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HDCR Flow Pa
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Injectors lnjectom

Body.. (e) 15
\_190°

4,Y

Isolator Cavity Combustion Chamber I-.

Cowlside (C) 15°

--------71
-

2 P 3 4 5 6 S

P.m], (Xide) Y [mm], (Y/dp)
B I 0.000(0.000) 12.7 (4.000)

B2 203(63.94) 12.7 (4.000)
BP 244(76.85) 13.6 (4.283)
B3 295(92.91) 14.8 (4.661)
B4 294(92.60) 31.9 (10.05)
B5 359(113.1) 33.4 (10.52)
B6 401(126.3) 17.2 (5.417)

BS 419(132.0) 17.6 (5.543)
B7 711(223.9) 24.2 (7.622)

cl 0.000(0.000) -12.7 (-4.000)

C2 203(63.94) -12.7 (-4.000)

CP 244(76.85) -13.6 (-4.283)
C3 295(92.91) -14.8 (-4.661)

294(92.60) -31.9 (-10.05)
CS 359(113.1) -33.4 (-10.52)

C6 401(126.3) -17.2 (-5.417)
CS 419(132.0) -17.6 (-5.543)
C7 711(223.9) -24.2 (-7.622)

7 d„ = 3.175 mm, d, = 2.3876 mm.
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LES Performed using RAPTOR Code Framework

Theoretical framework ...
(Comprehensive physics)

Fully-coupled, compressible
conservation equations

Real-fluid equation of state
(high-pressure phenomena)
Detailed thermodynamics,
transport and chemistry

Multiphase flow, spray
(Lagrangian-Eulerian)
Dynamic SGS modeling
(No Tuned Constants)

Numerical framework ...
(High-quality numerics)

— Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

— Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation)

— Detailed treatment of geometry,
wall phenomena, transient BC's

Massively-parallel ... (Highly-scalable)

— Demonstrated performance on hierarchy of HPC
platforms (e.g., scaling on ORNL TITAN)

— Selected for early science campaign on next
generation SUMMIT plafform (ORNL Center for
Accelerated Application Readiness, 2015 — 2018)
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LES unit problem

o LES of P1, P2 cases performed over hierarchy of grid resolutions to
establish benchmarks (e.g., 3D # d/64, d/32, d/16, d/8)

o Benchmarks post-processed and analyzed in detail to establish and
characterize Qols (including comparisons with available data)

co Expensive calculations, data generation, and/or analysis requiring
significant HPC resources performed by LES group

o Affordable UQ relevant unit cases designed and justified from
established set of high-fidelity benchmarks

o Temporal convergence analysis: 10 flow-through-times (of the air
stream) required to get converged RMS.

o Unit cases are designed to emulate key Qols while at the same time
facilitating detailed parametric studies
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Progressive
(1/8th dom

Simplifications
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App HD ME MDE OUU

Grids For 1/8th Domain Periodic and 21 Cases

2 P 3,4 5 6 S

-----------

Grid Spacing nx ny nz Total (2D) Total (3D)

4/8 1,800 32 64 57,600 3,686,400

4/16 3,600 64 128 230,400 29,491,200

4/32 7,200 128 256 921,600 235,929,600

4/64 14,400 256 512 3,686,400 1,887,436,800

Does not include cavity.
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Prog App

Both B
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P2, d/32, 2D
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P1 Domain s Cut at x/d = 60, 110 wit Cavity Removed

Mach

1.8 2 2.2 2.5 2.8

1.54 2.96:

-03 0 0.1

-0.141 0.164
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Instantaneous Pressure
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Mean Pressur

1.8
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RMS Pressur

Prms [bar]

0.1
MIMMINd• 'AMMO

0.256
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Instantaneous Temperature

T [K] 8

279 88

3D, d/16

aimilirresar —

2D, d/32
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Mean Temperatur

27 I

3D. d/32

3D. d/16
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RMS Temperature

2,1 40 nU 

I n;

3D, d/32

3D, d/16

3D, d/8

1111111111, 2D, d/32
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Summary Compl,
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ted LES Tasks

• Benchmark calculations performed to-date have served to define
affordable unit cases that emulate key physics

co Insights have demonstrated tradeoffs related to resolution and
geometry (P1 geometry defined and running)

co Will continue to add complexities and work toward full reacting P2
while progressively staging P1 unit cases

o Sparse quadrature simulations of P1 unit cases aimed at forward UQ
baseline, dimensionality reduction, and model error in progress

• Managing the balance between computational cost and the
progression of UQ tasks/needs is key to success
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High Dimensionality - Parameter Space

• The number of (lumped) uncertain parameters is:
30-50 for P1 and 60-90 for P2.

• The number depends on which physical models are activated
- e.g. non-reacting vs reacting, wall models, etc

o The number of modes in the representation of random fields further
increases the dimensionality
- We will employ Karhunen-Loève expansions for

representation of random fields to tackle dimensionalities
0(105 — 107) for
• wall boundary conditions
• model error representation
o mesh discretization error representation

• The requisite number of runs for forward UQ renders the
straightforward application of isotropic sparse quadrature techniques
prohibitive for 3D LES.
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Parameter pace - Baseline UQ study f , r P1

Limited dimensionality study to determine the effects of select input
parameters on several Qols relevant to the Scramjet configuration.

o Employing isotropic sparse quadrature (Gauss-Kronrod-Patterson) to
estimate polynomial chaos expansions (PCEs) for the selected Qols

o Progressively increasing the number of parameters

Q 2D, non-reacting, 1 row of fuel injectors, 6 uncertain parameters: About
70 LES runs/701( CPU hours for 2nd order PCE.

• Same setup as above, with 10 parameters. The additional parameters
pertain to the turbulence intensity and lengthscale. Computational
budget: 200 runs/2001< CPU hours

• Same as above, adding sub-sgrid scale model parameters to the list of
uncertain parameters, for a total of 14 parameters. Computational
budget: 400 runs/4001( CPU hours

la 3D, non-reacting, 1 row of fuel injectors. Setup TBD

SNL Najrn ScrarnjetUO 24/56



Team Highlights Prog closure App HiD ME MDE OUU

Baseline UQ stud for P1 - Preliminary Results

• Baseline UQ study in progress; some runs are completed
O Illustration of influence of individual parameters: To, MO, Mf below

• 001: turbulent kinetic energy (TKE) crosswise profiles, shown below
O at = 80 (top row) and x/dm, = 90 (bottom row)

To Mo

0.0005

0.0000

Mf

y/dbni y/d.

-4 3 

11/dm,
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Baseline UQ st dy for P1 - Preliminary Results

• First order PCEs are constructed for several Qols using a preliminary
set of LES simulations

• Total order Sobol indices indicate that uncertainties in oxidizer inlet
Mach number 1/0, and stagnation temperature To, control most of
the variance in the selected Qols.

TKE and Trms

o Since the flow is non-reacting, uncertainties in fuel inflow
parameters have a negligible impact on the selected Qols.

Tli/4

T0 Mf

0 0.2 O. 4 0.6

Tf Mf

0.6 0. 8
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Techniques for Di
Prog

ensionality Reducti
App HiD ME MDE OUU

o Karhunen-Loeve expansions for random fields

o Spatio-temporal boundary conditions

✓ Mesh-based quantities (subgrid params, model & mesh errors)

o Compressed Sensing (CS) to discover and fit sparse surrogates

o Explore and compare OMP, LARS, and BCS algorithms

o Explore algorithm enhancements that reduce overfitting
v e.g. Inverse Scale Space mehods

o Leverage experience of collaborators

✓ Basis Adaptation - with R. Ghanem, USC

o Low-rank tensor representations - with P. Rai, SNL
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Model error - Mai
Prog App HiD ME MDE OUU

target

Model error = deviation from 'truth; or from a higher-fidelity model

o Represent and estimate the error associated with

co Mathematical formulation, theoretical framework
Go Assumptions, parameterizations
o Geometric simplifications (e.g 3D-vs-2D)
o Numerical discretization - connection to Mesh Discretization Error Task

o ...will be useful for

• Model validation, comparison and improvement
o Reliable computational predictions: i.e. require

low-fidelity model uncertain prediction to be consistent with
high-fidelity simulations - connection to Multifidelity U0 Task

• Inverse modeling context

o Given experimental or higher-fidelity model data,
estimate the model error - connection to Inverse U0 Task
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Model error - Mo

1.5 

1.0

0.5

0.0

—0.5

—1.0

—0.5 0.0 0.5 1 0

Model-data fit

• Given noisy data - Gaussian noise

• y = gtrue(x)
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1.: 

1.6

0.5

0.0

—0.

• • Data, N 5

— Predictive mean

PredIctIve stclev

-5-- 0 —0 5 0.0 0.5 1 0

Model-data fit

A i

Posterior on parameters

• Employ Bayesian inference to fit an exponential model - yr,-, = f (x, A)

o Discrepancy between data and prediction presumed exclusively due to
Gaussian data noise - y = f (x, À) + Ed

fa Plotted:

o Posterior density on the parameters
o Preditive mean and standard deviation
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Model error - Motivath

1.5 

1.0

0.5

0.0

—0.5

• • Data, N 5
— Predictive mean

PredIctive stder
function

1,

.0 —0 5 0.0 0.5 1 0

Model-data fit

A i

Posterior on parameters

• Employ Bayesian inference to fit an exponential model - yr,-, = f (x, À)

• Discrepancy between data and prediction presumed exclusively due to i.i.d.
Gaussian data noise - y = f (x, A) + Ed

• True model g(x) - dashed-red - differs from fit model f (x, A)

• Actual discrepancy includes both data and model errors
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Model error - Motiv

1.0

0.5

0.0

—0.5

—1.0

. • Data, — 20

— Predictive mean

Predictive stdev

--- True fire..

—0 5 0.0

Model-data fit

0.5 1 0

Posterior on parameters

o Increasing number of data points decreases posterior and predictive
uncertainty

co We are increasingly sure about predictions based on the wrong model
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Model err

1.0

0.5

0.0

—0.5

—1.0

. • Data, — 50

— Predictive mean

Predictive stdev

--- True fire..

—0.5 0.0 0.5

Model-data fit

1 0

Posterior on parameters

o Increasing number of data points decreases posterior and predictive
uncertainty

co We are increasingly sure about predictions based on the wrong model
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Model error - Motivati

1.0

0.5

0.0

—0.5

—1.0

.0 

• • Data, — 50

— Predictive mean

Predictive stdev

--- True Mnction

—0.5 0.0 0.5

Model-data fit

1

1 5
• • Data, N — 50

— Predictive mean

1.0 Predictive stdev

--- True function

0.5
!•

0.0

—0.5

—1.0
. •

0
1,..s .0 

—0.5 0.0 0.5 1 0

What we want

• If the model has structural uncertainty, more data leads to biased and
overconfident results

• We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

e Cannot ignore model error

SNL Najrn ScramjetLIO 29/56



Total error budget

yi = f(xi; À) + 8(xi) +Ei

Truth g(xj)

0.0 0 5

• Ignoring model error 8(x) leads to incorrect predictive errors

• Conventional statistical modeling (Kennedy and O'Hagan, 2001)
• makes it difficult to disambiguate model/data errors
o may violate physical constraints
co not meaningful for prediction of other Qols

fa Issue is highlighted in model-to-model calibration (E, = 0)
o no a priori knowledge of the statistical structure of the discrepancy
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App HiD ME MDE OUU

babilistic embedding

Cast input parameters A as a random variable A

= f(xi; A) + s(xi) + Ei = f(xi; A) + ei

• Embed model error in specific submodel phenomenology
e a modified transport or constitutive law
• a modified formulation for a material property
o turbulent model constants

• Allows placement of model error term in locations where key
modeling assumptions and approximations are made
• as a correction or high-order term
• as a possible alternate phenomenology

• Naturally preserves model structure and physical constraints

co Disambiguates model/data errors
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Model Error - Bayesian density estimation

= f (xi; A) + ci

o Parametrize embedded random variable A:
o PDF form 'TA (.; a)

o Polynomial Chaos (PC): A = Ek ak Tic (0

o Multivariate Normal (MVN): 

Ai = al() + (1116

A2 = a20 + ct216 + CE22 2

Ad = adO ad16 + Ctd22 + • • • + C1dc41

o Inverse modeling context
o Parameter estimation of A PDF estimation of A parameter estimation of a

o Bayesian formulation
p(aly) a Ly(a) P(a)
Posterior Likelihood Prior
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More data leads to 'leftover' model error

Calibrating a quadratic f (x) = Ao + Aix + A2x2
w.r.t. 'truth' g(x) = 6 + x2 — 0.5(x + 1)3.5 measured with noise cr = 0.1.

N = 20 N = 50 N = 1000

Summary of features:
100

le
• Well-defined model-to-model calibration

• Model-driven discrepancy correlations
g 10"
.2

.-566.cube

• Respects physical constraints
10-2

• Disambiguates model and data errors I 10'
•-• Model error

•••• Data error
• Calibrated predictions of multiple ads 10'4

lo le le los 100
Number of Samples, N
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Model Error - LE subgrid static/dyna ic modeling

• Problem Focus: P1 Jet in Crossflow problem - 3D, d/8 grid resolution

o LES subgrid parameters (CR, Prt, Sct)

• LES model fidelity
o Dynamic: subgrid parameters variable in space/time
o Static : subgrid parameters constant in space/time

co Target: Calibrate a static model against a dynamic model

- accounting for model error

o Setup:
o Consider dynamic model as the truth model g(x)
o Fit parameters of static model f (x, À) w.r.t. data from dynamic model

simulations
= (CR, Prt-1, Sct-1)

o In principle:
o Proceed by embedding PCE for a in static model governing equations

51,IL Nairn Scrarnjetli0 34/56
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Model Error - Embed it in turbulent clo ure constants

• Eddy Viscosity:

tat = TCRA21-1! rig = : 5 S= (vii + vfiT)

• Stress Tensor:

= (T- — T) = (tit + µ),T1 [(V • ii.)1 + (V + WIT)] — ® — ®

• Energy Flux:

• Mass Flux:

d=(9e- Q)= Prt .Tr) .FTVit + - 7 (hu — hu)
i=1

1 V — (
(S et; Sei Re

) kill — Yid)
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Model Error - Embed it in turbulent clo ure constants

• Eddy Viscosity:

/4=pa,n! 17=§:§ Š= (vt-i+vitT)

• Stress Tensor:

= (T- - T) = (Pt + µ)/T1 [-(`V +(vu+ - (ig - ® - 
3 
-
1
Tq

2
f I

• Energy Flux:

= -Q) = (6+ + E - -
Pr Re

• Mass Flux:

- Si) = —1 - _
Sci Re °

{

CR = CEM + (7E116

Pr t 1 = ce20 + a216 + ct2g2

Sct 1 = ce30 + ce316 + a326 + a336
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Model Error - Embed it in turbulent clo ure constants

• Eddy Viscosity:

= Cyn! l7y = s:§ s= (vti + viiT)

• Stress Tensor:

= (T- - T) = (Fit + µ)/T1 [-(`V ii)I +(vu+ ViiT)1 - ® - ® - 
3 
-
1
Tq

2
f I

• Energy Flux:

= n—Q)= (1:,+„ + E - -
Pr Re

• Mass Flux:

= (4, - = + P '11 - 151sct, sci Re

{ CR = al() + ct116

Prt-1 = a20

Sc-1t =  a30
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Model Error - Embed it in turbulent clo ure constants

• Eddy Viscosity:

= pcit6.211 I7y = 8:§ Š= (vti+vúT)

• Stress Tensor:

= (T- - T) = (Pt + µ)/T1 [-(V ii)I +(vu+ ViiT)1 - ® - - 
3 
-
1
Tq

2
f I

• Energy Flux:

= — Q) = vb+ Pr Re 
E - p -

• Mass Flux:

= (4, - + P '11 - 151sct, sci Re

{ CR — alo

Prt 1 = a20 + a216

Sc-1t =  a30
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Model Error - Embed it in turbulent clo ure constants

• Eddy Viscosity:

far = TCR6,211! riš = : S S= (va + viiT)

• Stress Tensor:

1 [(T- — T) = (tit+ µ),T —5(V .0+ (VII+ ViiT)] — T )(Agit — iieu) — 5p4;&I

• Energy Flux:

• Mass Flux:

= _ = (A + V + /ix - p Ch —

S. = - Si) = i) IT
V-
11 T9

{
CR — alo

Pril = a20

Sct-1 = a30 + a316.
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Computati nal cost of LES - Use of Surrogates

Major challenge:

co Static model f (x; A) is still expensive

- a single run for a fixed A is — 3 hours on 480 proc

• Default strategy:
• Embed model error a few parameters at a time, A A
• Define PCE A = k CekWk (0 and push forward through f (x; A)
o Infer PC coefficients a

is infeasible with direct use of static model in the likelihood

Resolution: 

co Pre-build a 3-parameter surrogate f,(x; A) f (x; A)
• Ranges selected from baseline computations:
CR E [0.005, 0.08], P7.71, Sc71 E [0.25, 2.0]

o A total of 64 = 43 runs in progress

co Employ f,(x, A) in the inference for a

SNL Najnn ScrarnjetUO 36/56



Pro, ME

Preliminary results - embed model err i
Calibrate with TKE data, predict both TKE and Pressure

0.006 

0 005

0.004.

TKE

0.001- —

0.0 12, 

Pushed forward posterior

• • onfe from loldndid model
• • Pred. mean of low.fid model

Pred. striev. due to posterior

No model error
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—0.0010.0005 
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0
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Team Highlights Prog App HiD ME MDE OUU

Mesh Discr tization Error (MDE) - Fram work

Goal: Probabilistic quantification of mesh discretization errors (MDE) ...as
manifested at the production run resolution

o Clear distinction with "sub-grid physics": we are not after modeling of
subgrid scales

o At the same time, methodology should (i) apply to and (ii) link with
model error representations

Approach:

o Random-field representation of MDE (dynamical forcing)

o Consider and contrast finite-difference/variational methods in
uniform and variable resolution settings

o Downselect and extend to extreme-scale multiphysics simulations
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Tearn Highlights Prog clusuie App HiD ME MDE OUU

Mesh Dis retization Error - Approaches

Random Field (RF) approach:

co Apply a "downscaling' approach to estimate local discretization
errors

o Use error estimates to infer a low-dimensional representation of
stochastic source term

o Apply a sampling strategy to quantify the impact on Qols

Variational Multiscale (VMS) Formalism:

o Provides explicit error estimator based on the convolution of a
simple kernel with the residual of the mesh scale (coarse scales)
equations

o Naturally links with model-error estimation, namely by incorporating
model parametrization into residual

o Error estimates are represented using low-dimensional RF:

- leads to stochastic forcing of coarse-mesh dynamics

SNL Nairn ScrarnjetUO 39/56



App HiD ME MDE OUU

Mesh Discretization Error - Key Steps

Consider canonical problem:

au

at 
cfAu = F(u)

where F is a non-linear (transport and/or reaction) source term
Given estimates c(x, t) for MDE error on the production grid:

o View: E as an approximate source ("nudging') term in the equation

o Challenge: F is inherently a high-dimensional object, at least as many
dofs as the solution!

o Treat E data as a realization of a random-field s(x, t, (.0) to be inferred

• Use a semi-intrusive strategy to propagate uncertainty into the
solution, i.e. consider a finite size ensemble of trajectories:

au
ozAu = F(u, E) + s(x, t,wi)

at

i = 1, , N where N is the ensemble size
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Tearn HIghlights Prog dosure App HiD ME MDE OUU

Mesh Discretizati n Error - Illustration

Consider Burger's equation in 1D:

au Ott
— vAu = F(u), F(u)

• on the interval [-1, 1] with homogeneous Dirichlet boundary
conditions

• initial condition u(x, 0) = — sin@rx)

• Set v = 0.01 and h = 0.008

e Second-order time integration with At = 10-4

SNL Najm ScrarnjetLAD 41 /56



Team Highlights Prog closute App HiD ME MDE OUU

Mesh Discretizati, n Error - Illustration

Behavior of solution

1 
Burgers Equation solutions at fine and coarse grid
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Tearn Highlights Prog closute App HiD ME MDE OUU

Mesh Discretizati n Error - Illustration

Solution error and forcing term

-2

6

MDE

—t = 0.1
t = 0.2
1= 0.3

—1= 0.5
—1= 1.0
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Solution error, estimated by
downscaling the equations
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Error source term

Solution estimates shown on the
left are differentiated in time, to
generate data for the source field
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Team Highlights Prog

Mesh Discretization Error - Illustration

Error samples and solution ensemble:

o Matérn 3/2 covariance

o KL representation of random source term

0 05 
Error source term sample at t = 0.5 s

1 "-1=0.069635 
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SNL Najr, ScrarnjetL/0 44 / 56



Team Highlights Prog closute App HiD ME MDE OUU

Mesh Discr tization Error - Illustration

Elliptic problem:

V (K(x)u(x)) = —f(x), Vx E S2 = [0, 1],

o log ic(x) = 2 sin(107(1 — x)2), f (x) = 1 + 5 exp(—(x — 0.5)2/.005)

o Dirichlet and / or Neuman type bc

o P1 finite element solution

Gaussian Process correction:

F(x, co) = f (x) + F (x, w), SF f ,E2f).

fa SF squared-exponential Matérn covariance structure

o correlation length, variance, and hyper-parameter inferred from
error estimates
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App HiD ME MDE OUU

Mesh Discretization Error - Illustration
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• Corrected solution endowed with uncertainty reflecting its error
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Team Highlights Prog closure App HiD ME MDE OUU

Mesh Discretiz tion Error - Next Steps

o Refine random source field modeling:
o Contrast performance of Bayesian PCA and LIS approaches
e Explore more elaborate source field models, particularly to enable

enforcement of solution constraints

o Apply VMS methodology to:
e develop local error estimates
o extend framework to combined mesh and model error UQ

o Extend framework to canonical problems involving parametrized
subgrid representations
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Tearn Highlights Prog closure App HiD ME MDE OUU

ion - Challenges and Approach
Challenges:

• OUU further amplifies UO expense

• Complex design process must effectively manage:

- multiple simulation fidelities and UO resolutions
- uncertainty due to model error
- dimensionality of both random and design domains

Approach:

• Develop and deploy provably-convergent derivative-free optim.
(DFO) framework that manages multiple levels of approximation

- Efficient DFO algorithms provide solver foundation
- Meta-algorithms manage model hierarchy

• Theory: Establish rigorous (local) convergence

- Extend deterministic theory to include stochastics

• Scale: Extend DFO to higher dimensions

- Leverage sparse surrogates (6-regularization)

• Multifidelity: Manage multiple fidelities and UO resolutions
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Team H ighLgh Ls Prog dosure App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/SNOWPAC

No adjoints at simulation level OUU approaches must be
derivative-free or use derivatives inferred from surrogates.

Nonlinear Optimization with Path-Augmented Constraints (NOWPAC)

o TR approach for nonlinear constrained DFO

o Non-intrusive optimization framework

o New way of handling constraints using an inner boundary path

o Provable convergence to a first order local optimal design

NOWPAC framework

• Build fully linear surrogate models of
objective and constraints

o Find improved designs by minimizing
surrogate models
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App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/S OWPAC

Optimization under uncertainty
requires the quantification of risk

• Expectation optimization
and variance minimization

• Risk minimization using CVaR

• Chance constraints

Example: minimize CVaR

Quantity of War.

Sample approximations of risk / deviation measures are noisy

• Only a small number of PDE simulations available

• Estimate statistical error using confidence intervals

Stochastic NOWPAC

• Generalized framework to handle noise in objective and
constraint evaluations
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Tearn Highlights Prog closure App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

• Build regularized surrogate models

.2

minimum-Frobenius norm models vs. regularized surrogate models
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Tearc Highlight, Prog closure App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

o Build regularized surrogate models

o Adapt trust region management to noise estimates

o S„, : structural error in surrogate approximations

o /„, : statistical estimate of the sampling noise

o Ensure Serr lerr

o Need a lower bound on trust region size dependent on i„,

SNL Najnn ScrarnjetUO 51/56



Tearc Highhght, Prog closure App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

o Build regularized surrogate models

o Adapt trust region management to noise estimates

o Introduce Gaussian process surrogate models
o Reduce noise in sample approximations of Qols
o Make efficient use of PDE simulations by exploiting information from

neighboring runs

o Blend Gaussian process mean with sample estimates of Qols
unl,er of Mark box eva
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Tearn Highlights Prog closure App HiD ME MDE OUU

Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC benchmark performance

o Use data profile to compare performance based on 2400
optimization runs

ds (a) =
2400

1 {p tps  < a}
nP + 1

• Tip: dimension of the design space of benchmark problem p
• tp,s: min number of simulations solver S needs to solve problem p

o An optimization problem is deemed "solved" if the error is below E f
and the constraint violation is less than E,

Performance comparison between

(S)NOWPAC (green), COBYLA (purple),

NOMAD (blue), SPSA (orange) and KWSA

(red).

0.7

▪ 0.3

0.7E
2 25 3

x 1 0'
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Prog App HiD ME MDE OUU

Optimization - Meta-Algorithms for Model Management

New Dakota infrastructure available for multiple model forms, each with
multiple discretization levels.
• enable algorithms that exploit special discretization structure

Nonlinear Optim. by Mesh Adaptive Direct search (NOMAD):

• Provable convergence based on pattern search theory

• Generalizing Dakota capability for multifidelity search plug-in

- Oth-order multifidelity trust-region (TR) approach provides
heuristic search accelerator, with fallback to rigorous poll

First-order TR model management w/ combined stoch expansions:

TRMM with gradient-based minimizers, enabled by combined
design/uncertain stochastic expansions: d) =EP 0 a3 d)

• Expectations over can be differentiated over d

o UO is derivative-free; Opt is derivative-inferred.

o Accuracy of inferred moment derivatives managed by design TR size
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App HiD ME MDE OUU

Optimization - Meta-Algorithms for Model Management

Multigrid optimization (MG/Opt) exploiting discretization hierarchies:

• Specialization of TRMM exploits special structure

- Apply multigrid V cycle to hierarchy of optim. problems
- Line search ensures fine-grid impr. from coarse-grid step

o prototype MG/Opt now available to test DFO sub-problem
optimizers (NOWPAC)

Efficient global optimization (EGO) with multifidelity GPs:

• Optimize expected impr. fn. (El F) from GP mean & pred. variance

• Extend for hierarchical prediction variance from multifidelity
o Simple: LF + discrepancy GP (single prediction variance)
o Advanced: multi-GP with adaptive level refinement

Candidate approaches to be down-selected based on performance on
model problems and emerging Scramjet OUU problem characteristics.
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Optimiza
Prog App HiD ME MDE OUU

ion - Progress and Plans

Progress:

o DFO solvers: NOWPAC SNOWPAC

• Model management meta-algorithms

- Exploiting infrastructure for model forms / discretizations
- Generalizing NOMAD for multifidelity search plug-in
- Deploying MG/Opt prototype with DFO solvers

• OUU & model hierarchy problem definitions

Plans:

o OUU development
o SNOWPAC development
o MG/Opt with DFO, including NOWPAC

• OUU deployment for P1
o Robust design with initial prototype of P1
o Evolve towards full P1 complexity

o OUU deployment for P2 (Phase 2)
o Demonstrate OUU for unions of P2 unit problems
o Device performance optimization for HIFiRE
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Tearn Highlights Prog closure

Closure

• The project is underway with progress on all tasks

o Demonstrated 3D liquid-jet in crossflow problem P1 at supercritical
conditions Milestone

o Preliminary P2 runs in progress

o Initial UO baseline and GSA study with P1-2D

co Initial demonstration of model error estimation and propagation
with P1-3D

• Initial demonstration of mesh error estimation and propagation in
model problems

• Progress on tools for derivative-free stochastic optimization under
uncertainty
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