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@ Team Status
© Project Highlights

© Progress and Plans
Application Code - Scramjet

High Dimensionality
Model Error

o
o
@ Mesh Discretization Error
o

Optimization under Uncertainty

Q@ Closure
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Current ScramjetUQ

Team lights

Project Team

Team includes Sandia (Livermore + Albuquerque), Duke, MIT, and USC.

Institution | Expertise Participants
uQ + Comb Habib Najm, Bert Debusschere,
Sandia Cosmin Safta, Khachik Sargsyan
Xun Huan
LES + SprayComb | Joe Oefelein, Guilhem Lacaze
Zachary Vane
uQ + Optim Mike Eldred (+pd tbd)
Duke uQ + Comb Omar Knio, lhab Sraj
LES Guglielmo Scovazzi, Oriol Colomeés, (+tbd)
MIT uUQ + Optim Youssef Marzouk, Olivier Zahm,
Florian Augustin
usc uQ + Optim Roger Ghanem, (+pd tbd)
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Highlights
Project Goals

For UQ in coupled multiphysics problems, address challenges of:

@ High dimensionality

e Forward UQ
o Mesh discretization error
e Inverse UQ

@ Model complexity

e Model error
o Multifidelity UQ

@ Design optimization
e Optimization under uncertainty

Demonstrate capabilities on unit problems leading to:

@ Problem P1: Turbulent jet in cross flow - Phase |
@ Problem P2: Scramijet problem - Phase Il

SNL Najm ScramjetUQ 4/56



Project Outline

@ Three-year project plan with specified tasks and milestones

o [Year-1:
o LES code development for P1 & P2 including unit problems
e UQ methods development and tests on P1 unit problems
e Demo on a simplified P1 unit problem
o Year-2:
e Testing and demonstration on full P1
e UQ developments and tests on P2 unit problems
o Year-3:
e UQ developments and tests on unions of P2 unit problems
- increasing complexity
e Demonstration on full P2

SNL Najm ScramjetUQ 5/56
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HIFIRE Experiments

@ HIFiRE experiments provide data for extrapolating results of ground

tests to flight hardware and validation of numerical simulation tools
Cavity-based hydrocarbon-fueled dual-mode scramjet combustor
Emulates complex transition from subsonic to supersonic combustion
Characterized by nonlinear coupling between multiscale physics
Turbulence and shock interactions intricately coupled to combustion,
heat transfer, and thermodynamics

@ Involve both flight and ground based experiments via HIFiRE Direct
Connect Rig (HDCR) ... this project is focused on HDCR
e Test facility has generated a large body of publications and recognized
as a key experiment for hypersonic science
o Available data includes static pressure and temperature distributions
along wall and wall heat flux
e Additional quantities of interest can be extracted from LES

SNL Najm ScramjetUQ 6/56
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Geometry

HDCR

* uuuww\%‘i’
Arc-Heated SCRAMJET Test Facility &{

‘ ‘ I
(AHSTF) ... NASA LaRC u““u‘
Flow path constructed with 50.8 mm (2 inch) thick

copper walls thermally protected with zirconium
dioxide coating (144 static pressure ports, 19 flow
path surface thermocouples, 4 heat flux gauges)

SNL Najm ScramjetUQ 7/56
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Available Data (Provided by Hass et al.,, NASA LaRC)

B4 BS B6 B < ca C €6 7
° °
° Port ° . ° Port ° °
. .
o o o . ol . B .o o x ° . .0
Flow —> Flow —>
ccceses 00 o o o e o of f{eccceco e o |o o eoo o
° e o ol o ° e e oo .
o o
. B o o ° .
o °

Bodyside Instrumentation Layout

Cowlside Instrumentation Layout

* 144 static pressure ports (blue circles)

» 19 flow path surface thermocouples (red diamonds)

* 4 heat flux gauges (X boxes)

« Also “port” and “starboard” sidewall thermocouples

« Both fueled and “tare” (no fuel) measurements available

Najm ScramjetUQ
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HDCR Flow Path

711.2 mm
x [mm], (x/d,) y [mm], (y/d,)
BI1 [ 0.000 (0.000) 12.7 (4.000)
E & z B2| 203 (63.94) 7 (4.000)
o £ L BP | 244 (76.85) 13.6 (4.283)
5 Flow—> "-i *1' B3| 205 (9291) 14.8 (4.661)
- & B4 | 204 (92.60) 31.9 (10.05)
B5| 359 (113.1)
/' '\ B6 401 (126.3) 17
BS | 419 (132.0) 17.6
B7 | 711(223.9) 24.5
Primary Secondary C1 [ 0.000 (0.000) —12.7
Injectors Injectors C2| 203(63.94) —12.7
‘LJT”J o CP| 244 (76.85) —13.6
£ Bodyside (B) 157 Ti) c3 295 (92.91)
St
g I Isolator Cavity Combustion Chamber X E: ;59 E] ]:;Atlii) :
N Cowlside (C) 15", Cc6 401 (126.3)
g " CS| 419(132.0) —17.6
C7| 711(223.9) —242
4 5

6s 7 d,=3.175 mm, d, = 2.3876 mm.
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LES Performed using RAPTOR Code Framework

* Theoretical framework .. * Massively-parallel ... (Highly-scalable)
(CompI’EhenSIve phy5|cs) — Demonstrated performance on hierarchy of HPC
— Fully-coupled, compressible platforms (e.g., scaling on ORNL TITAN)
conservation equations — Selected for early science campaign on next
— Real-fluid equation of state generation SUMMIT platform (ORNL Center for
(high-pressure phenomena) Accelerated Application Readiness, 2015 — 2018)
— Detailed thermodynamics,
transport and chemistry 150000 100
— Multiphase flow, spray
(Lagrangian-Eulerian) a = °
— Dynamic SGS modeling S 495 ‘;
(No Tuned Constants) § 100000+ = = f 8
* Numerical framework ... n . 190 ﬁg
(High-quality numerics) E = ) 5
— Staggered finite-volume < 5
differencing (non-dissipative, = 50000+ . lss ®
discretely conservative) S 8 S
- Dual-tin]e stepping V'{i!h X < = Near linear scalability o
generalized preconditioning beyond 100,000 cores
(all-Mach-number formulation) 1 : 2 180
— Detailed treatment of geometry, 1 50000 100000 150000
wall phenomena, transient BC’s Number of Cores
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LES unit problems

@ LES of P1, P2 cases performed over hierarchy of grid resolutions to
establish benchmarks (e.g., 3D # d/64,d/32,d/16,d/8)

@ Benchmarks post-processed and analyzed in detail to establish and
characterize Qols (including comparisons with available data)

@ Expensive calculations, data generation, and/or analysis requiring
significant HPC resources performed by LES group

o Affordable UQ relevant unit cases designed and justified from
established set of high-fidelity benchmarks

@ Temporal convergence analysis: 10 flow-through-times (of the air
stream) required to get converged RMS.

@ Unit cases are designed to emulate key Qols while at the same time
facilitating detailed parametric studies

SNL Najm ScramjetUQ 1/56
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Progressive Simplifications

(1/8th domain, 3D periodic, 2D, etc.)

711.2 mm

101.6 mm
[ )
[ ]
K

T N

25.4 mm
-

Bz P1Domain —>
15" Fe——————l
1 2 P 3,4 5 68 7
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Grids For 1/8th Domain Periodic and 2D Cases

p —
N
[ Ja-)

34

PN
p O
[ 17

~

15°

Grid Spacing nx ny nz|Total (2D) Total (3D)
d,/8 1,800 32 64 57,600 3,686,400
d,/16 3,600 64 128 | 230,400 29,491,200
d,/32 7,200 128 256| 921,600| 235,929,600
d,/64 14,400 256 512 3,686,400 | 1,887,436,800

Does not include cavity.

SNL Najm ScramjetUQ 13/56



Prog

Both Baseline P1(d/32, 3D) and

Initial P2 (d/32, 2D) Cases Running

SEBRM DA R ACTINIRT AT, A e
P stagnation [bar] ~ =
" 2 4

P2,d/32,2D
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& Mach
i | 18 2 22 25 28
L \ —.“\ [t twsery
. 1.54 2.96

Y 0.1 .0 0.1
Ny S
" - 0.141 0.164
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Prog

Instantaneous Pressure

3D, d/32
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Mean Pressure

Pmean [bar]
0.8 1.2 1.6
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App HID ME

RMS Pressure

Prms [bar]
0.1 0.2

T

el i
0.00738 0.256
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Prog

Instantaneous Temperature
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Mean Temperature

Tmean [K]
400 600 800

271 872
e

E— -
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Trms [K]
20 40 60 80 100
| |
117
R

1.65
_—___—?—‘

3D, d/8
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Summary Completed LES Tasks

@ Benchmark calculations performed to-date have served to define
affordable unit cases that emulate key physics

@ Insights have demonstrated tradeoffs related to resolution and
geometry (P1 geometry defined and running)

@ Will continue to add complexities and work toward full reacting P2
while progressively staging P1 unit cases

@ Sparse quadrature simulations of P1 unit cases aimed at forward UQ
baseline, dimensionality reduction, and model error in progress

@ Managing the balance between computational cost and the
progression of UQ tasks/needs is key to success

Najm ScramjetUQ
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High Dimensionality - Parameter Space

@ The number of (lumped) uncertain parameters is:
30-50 for P1 and 60-90 for P2.

o The number depends on which physical models are activated
- e.g. non-reacting vs reacting, wall models, etc

@ The number of modes in the representation of random fields further
increases the dimensionality
- We will employ Karhunen-Loéve expansions for

representation of random fields to tackle dimensionalities

0O(10° — 107) for
o wall boundary conditions
e model error representation
e mesh discretization error representation

@ The requisite number of runs for forward UQ renders the
straightforward application of isotropic sparse quadrature techniques
prohibitive for 3D LES.

SNL Najm ScramjetUQ 23/56
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Parameter Space - Baseline UQ study for P1

Limited dimensionality study to determine the effects of select input
parameters on several Qols relevant to the Scramjet configuration.

@ Employing isotropic sparse quadrature (Gauss-Kronrod-Patterson) to
estimate polynomial chaos expansions (PCEs) for the selected Qols
@ Progressively increasing the number of parameters

@ 2D, non-reacting, 1 row of fuel injectors, 6 uncertain parameters: About
70 LES runs/70K CPU hours for 2nd order PCE.

@ Same setup as above, with 10 parameters. The additional parameters
pertain to the turbulence intensity and lengthscale. Computational
budget: 200 runs/200K CPU hours

© Same as above, adding sub-sgrid scale model parameters to the list of
uncertain parameters, for a total of 14 parameters. Computational
budget: 400 runs/400K CPU hours

© 3D, non-reacting, 1 row of fuel injectors. Setup TBD

SNL Najm ScramjetUQ 24/56
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Baseline UQ study for P1 - Preliminary Results

@ Baseline UQ study in progress; some runs are completed
o lllustration of influence of individual parameters: Ty, Mo, My below
@ Qol: turbulent kinetic energy (TKKE) crosswise profiles, shown below
e atxz/din; = 80 (top row) and z/d;; = 90 (bottom row)

00035 o
00030
00025
00025
2 00020 .5 00020
g g
& ooms :
= = 0.0015
=
00010
ac0t0
00005
0. 0.0005
0005 "
00040
0.0035{ 0.0025
oF fi +F 00020
5 oons 2
i <
& 00020 & 0o0is
oc01s
00010
00010
oot 00005
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Baseline UQ study for P1 - Preliminary Results

@ First order PCEs are constructed for several Qols using a preliminary
set of LES simulations
@ Total order Sobol indices indicate that uncertainties in oxidizer inlet
Mach number M, and stagnation temperature Ty, control most of
the variance in the selected Qols.
o TKE and Tims

@ Since the flow is non-reacting, uncertainties in fuel inflow
parameters have a negligible impact on the selected Qols.

TKE T

N N
Pl »
& &
o s
S\z” s\
$ N
A P
& o
2 N
Rd L)
) T iy T;

M, M; I 7] My iy T My

0 0.2 0.6 0 0.2 0.4 0.6 0.8

0.4
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Techniques for Dimensionality Reduction

@ Karhunen-Loéve expansions for random fields
e Spatio-temporal boundary conditions

o Mesh-based quantities (subgrid params, model & mesh errors)

@ Compressed Sensing (CS) to discover and fit sparse surrogates
o Explore and compare OMP, LARS, and BCS algorithms

e Explore algorithm enhancements that reduce overfitting
@ eg. Inverse Scale Space mehods

@ Leverage experience of collaborators
o Basis Adaptation - with R. Ghanem, USC

o Low-rank tensor representations - with P. Rai, SNL

SNL Najm ScramjetUQ 27/56
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Model error - Main target

Model error = deviation from ‘truth;, or from a higher-fidelity model

@ Represent and estimate the error associated with
o Mathematical formulation, theoretical framework
Assumptions, parameterizations
Geometric simplifications (e.g. 3D-vs-2D)
Numerical discretization - [connection to Mesh Discretization Error Task

® 6 ¢

@ ..will be useful for

@ Model validation, comparison and improvement

o Reliable computational predictions: i.e. require
low-fidelity model uncertain prediction to be consistent with
high-fidelity simulations - |connection to Multifidelity UQ Task

@ Inverse modeling context

o Given experimental or higher-fidelity model data,
estimate the model error - ([connection to Inverse UQ Task

SNL Najm ScramjetUQ 28/56



Prog

Model error - Motivation

1.0

0.5

-0.5

-1.9

=10 -0.5 0.0 0.5 1.0
X

Model-data fit

@ Given noisy data - Gaussian noise

@ y = gie(x) + €
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Prog

Model error - Motivation

® e Data,N=5
= Predictive mean
1.0 @ Predictive stdev

=1.0 =05 0.0 0.5 1.0 0.6 0.7 0.8 0.9 10 11
by
X 1

Model-data fit Posterior on parameters

@ Employ Bayesian inference to fit an exponential model - ym = f(z, A)

@ Discrepancy between data and prediction presumed exclusively due to i.id.
Gaussian data noise - y = f(z,\) + €4

@ Plotted:

e Posterior density on the parameters
o Preditive mean and standard deviation

SNL Najm ScramjetUQ 29/56



Prog

Model error - Motivation

® e Data,N=5
= Predictive mean
1.0 @ Predictive stdev
=== True function

-L35 =05 0.0 05 T.o o7 08 o9 To 11
X

Model-data fit Posterior on parameters

@ Employ Bayesian inference to fit an exponential model - ym = f(z, A)

@ Discrepancy between data and prediction presumed exclusively due to i.id.
Gaussian data noise - y = f(z,\) + €4

@ True model g(z) - dashed-red - differs from fit model f(z, \)

@ Actual discrepancy includes both data and model errors

SNL Najm ScramjetUQ 29/56
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Model error - Motivation

1. 1
® e Data, N =20
— Predictive mean
1.0{mmm Predictive stdev y.
-~ True function > 40 1.4
1.5
"
1.4
33
~L3p =05 0.0 05 To lgg—o7 08 09 1o 11
X A
Model-data fit Posterior on parameters

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model
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Model error - Motivation

® e Data, N =50

— Predictive mean
1.0{Emm Predictive stdev
-+ True function R 4 14

1.0 6% 0.7 0.8 0.9 10 Tl
X A

Model-data fit Posterior on parameters

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model

SNL ScramjetUQ 29/56
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Model error - Motivation

© e Data, N =50
— Predictive mean

® e Data, N =50
— Predictive mean
1.0 = Predictive stdev
- True function

0| = Predictive stdev
® --- True function

1.0

Model-data fit What we want

@ If the model has structural uncertainty, more data leads to biased and
overconfident results

@ We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

e Cannot ignore model error

SNL Najm ScramjetUQ 29/56
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Model Error - Challenges with current methods

Total error budget

yi = f(zi; A) + 6(z;) +e;
e

Truth g(z;)

@ Ignoring model error §(x) leads to incorrect predictive errors

@ Conventional statistical modeling (Kennedy and O'Hagan, 2001)

e makes it difficult to disambiguate model/data errors
e may violate physical constraints
e not meaningful for prediction of other Qols

@ Issue is highlighted in model-to-model calibration (¢; = 0)
@ no a priori knowledge of the statistical structure of the discrepancy
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Model Error - Key idea: probabilistic embedding

Cast input parameters A as a random variable A

U — @) sre(Esee) — [ =il N e

@ Embed model error in specific submodel phenomenology

e amodified transport or constitutive law
e a modified formulation for a material property
o turbulent model constants

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ Naturally preserves model structure and physical constraints
@ Disambiguates model/data errors

SNL Najm ScramjetUQ 31/56
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Model Error - Bayesian density estimation

v —flzgA) e
@ Parametrize embedded random variable A:
o PDF form 7 (+; «)
o Polynomial Chaos (PC): A = >, ax W (§)

A = a0+ a11&1
Ao = a0 + a2161 + a22és

o Multivariate Normal (MVN):
Aa = ago + aa1ér + aa2ba + -+ + @aaa

@ Inverse modeling context
o Parameter estimation of A = PDF estimation of A = parameter estimation of «

o Bayesian formulation

plaly) oc Ly(a) p(a)
—— —— =~

Posterior Likelihood Prior
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More data leads to ‘leftover model error

Calibrating a quadratic f(z) = Ao + A& + Aax?
wrt. ‘truth’ g(x) = 6 4+ x2 — 0.5(x + 1)3+® measured with noise ¢ = 0.1.

N =20 N =50 N = 1000

10
Summary of features: g sz s
g 10 quad
@ Well-defined model-to-model calibration = s oo
. . ) £ 10 et
@ Model-driven discrepancy correlations £ e ~acube
. . £ 102 .
@ Respects physical constraints &
. . = Y '«._‘
@ Disambiguates model and data errors £1 S
. i e " L Data error Sl
@ Calibrated predictions of multiple Qols 10 : -
10! 10* 10° 10* 10° 10°

Number of Samples, N
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Model Error - LES subgrid static/dynamic modeling

@ Problem Focus: P1Jet in Crossflow problem - 3D, d/8 grid resolution
@ LES subgrid parameters (Cr, Pry, Sct)
@ LES model fidelity
e Dynamic: subgrid parameters variable in space/time
e Static : subgrid parameters constant in space/time
@ Target: Calibrate a static model against a dynamic model
- accounting for model error
@ Setup:

e Consider dynamic model as the truth model g(z)
o Fit parameters of static model f(z, ) w.r.t. data from dynamic model
simulations

o \= (CR,Prgl,Scfl)
@ In principle:
o Proceed by embedding PCE for X in static model governing equations

Najm ScramjetUQ
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Model Error - Embed it in turbulent closure constants

o Eddy Viscosity:

je=pCeAM  Tg=§:8§ L (va+ val)

Ivlb—

o Stress Tensor:
= ( )= ( )1 2( B+ (Vi ") 7(17){ :C‘ﬁ) l_)z |
o - . L) —— o " ' - s [0:9) L X — o
] T I e+ e 3 V-u Vua + Va plu®@u—u 3, Tats

e Energy Flux:

=
3 1 — ~ = =~ =
Q=@ -Q)= (}/3;;’ + %) EW’ + ; hiS; — p (11[1 - /1{1)
e Mass Flux: |
L= o M 7R i
Si=@-8) (S«, &,) V¥ = 7 (v —vin)
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Model Error - Embed it in turbulent closure constants

o Eddy Viscosity:
= ACy) -’llé llg=S8:S S= i) (Va+val)

o Stress Tensor:

2 — . 1,
T=T-T)=(u+p)— T {7;(V-[l)l'(Vﬁ+VﬂT)} - ﬁ([l:-: 1‘1—1‘15".1‘1) - —sﬁq:,J

e Energy Flux:
v

Q, =(q,-Q)= (é}# —I%) e —Vh+ Z/lé — /l(/lll—/!ll)

s‘_»a,_sflf 40 Y - o (Va- Vi)

Cr =10+ a1y

e Mass Flux:

Y
3
o
o
I

Qg + 2161 + 226

Sc;t = ago + aziér + azbs + azzés
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Model Error - Embed it in turbulent closure constants

o Eddy Viscosity:

1 :-’llé Mg=5:5 §= i) (Va - vil)

o Stress Tensor:
= - 1 Dy = N T T == 1_,
T=F-T)=(u+p— |-=(V-0)I+ (Va+va’)| - /:(u:-: 0—u® u) - =P 1
Re 3 3

e Energy Flux:

N

: = 4t o | 5 s =
O=(@-Q=(t-+5 ) =Vi+ > husi - -
Q.=(q-Q) (f’u t Pr) e Vh+ 2 hiS; I (hu hu)

H "

e Mass Flux:
§=(g—8)=(Lr+
(@ -8 (Hr,, SL,’)

#VY; - P ({Vu - 3.',1‘1)

Cr = aio + a11é1
-1
PTt = (90
—1
Sct = (30
35/56
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Model Error - Embed it in turbulent closure constants

o Eddy Viscosity:

| 5. & s 1 . .
p=pCpA°MI  Mg=S:8 S:;(Vu—VuT)
o Stress Tensor:
= - 1 Dy = N T T == 1_,
T=F-T)=(u+p— |-=(V-0)I+ (Va+va’)| - /:(u:-: 0—u® u) - =P 1
Re 3 3

e Energy Flux:

N

8. =(@-Q-= (é‘y %) %w » ;h,s} = p(ﬂu— /)u)

e Mass Flux:

& _ (= Hi 4 L iy ST S
Si=(@-S)= (ﬁ'r/‘ SL',) HCVL il (3_,\1 3,11)

Cr=aio
—1
Pr;" = ag + ans

Sct_l = (30
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Model Error - Embed it in turbulent closure constants

o Eddy Viscosity:

1 2 .
1y = pCrA? ny Mg=S:8 S= %(Tu—vu )
o Stress Tensor:
F= —T) = (u + p) % {—%V Wl + (Va+ va’ )} - p(llﬂl;—ll ® fl) - %m:’,\l

e Energy Flux:

3 _ = He
=(q. — —V S — T
2=(q-Q)= (/u + ,) e h+ E i 7 (hu hu)

i=1

8 =@-S) ”)1"vs 7ﬁ(ﬁ1—)',\i)

Cr=aio

o Mass Flux:

PTt_l = (20

—1
Sc; " = ago + az1&1
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Computational cost of LES - Use of Surrogates

Major challenge:
@ Static model f(z; \) is still expensive
- asingle run for a fixed \ is ~ 3 hours on 480 proc
@ Default strategy:

o Embed model error a few parameters at a time, A — A
o DefinePCEA =), o,V (&) and push forward through f(xz; A)
o Infer PC coefficients «

is infeasible with direct use of static model in the likelihood
Resolution:
@ Pre-build a 3-parameter surrogate f,(z; A) =~ f(z; )

o Ranges selected from baseline computations:
Cr € [0.005,0.08], Pr; ', Se; ! € [0.25,2.0]
o Atotal of 64 = 4° runs in progress

@ Employ fs(z, A) in the inference for «

SNL Najm ScramjetUQ 36/56
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Preliminary results - embed model err in Cj
Calibrate with TKE data, predict both TKE and Pressure

Pushed forward posterior

TKE Pressure
0. —0.024
* = Data from high-fid model + * Data from high-fid model
© o Pred. mean of low-fid model _0.02 red. mean of low-fid model
0.00: B Pred. st.dev. due to posterior : ed. st.dev. due to posterior
—0.028
0.004
* g_
i g 0.03(
% 0.00: 2
8
= —0.032
No model error &
0.002
—0.034
0.00 ’\ —0.036
s e0000000000000000s 00
00005 3 -3 -2 -1 ~0038 5 -2 =3 =2 =1
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Mesh Discretization Error (MDE) - Framework

Goal: Probabilistic quantification of mesh discretization errors (MDE) ...as
manifested at the production run resolution

@ Clear distinction with “sub-grid physics™: we are not after modeling of
subgrid scales

@ At the same time, methodology should (i) apply to and (i) link with
model error representations

Approach:
@ Random-field representation of MDE (dynamical forcing)

@ Consider and contrast finite-difference/variational methods in
uniform and variable resolution settings

@ Downselect and extend to extreme-scale multiphysics simulations
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Mesh Discretization Error - Approaches

Random Field (RF) approach:

@ Apply a “downscaling” approach to estimate local discretization
errors

@ Use error estimates to infer a low-dimensional representation of
stochastic source term

@ Apply a sampling strategy to quantify the impact on Qols

Variational Multiscale (VMS) Formalism:

@ Provides explicit error estimator based on the convolution of a
simple kernel with the residual of the mesh scale (coarse scales)
equations

@ Naturally links with model-error estimation, namely by incorporating
model parametrization into residual

@ Error estimates are represented using low-dimensional RF:
- leads to stochastic forcing of coarse-mesh dynamics
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Mesh Discretization Error - Key Steps

Consider canonical problem:

ou
i alAu = F(u)

where F'is a non-linear (transport and/or reaction) source term
Given estimates €(x, t) for MDE error on the production grid:
o View: € as an approximate source (“nudging”) term in the equation

@ Challenge: é is inherently a high-dimensional object, at least as many
dofs as the solution!

@ Treat é data as a realization of a random-field s(z, t,w) to be inferred

@ Use a semi-intrusive strategy to propagate uncertainty into the
solution, i.e. consider a finite size ensemble of trajectories:

o8 _ alAu = F(u,X) + s(x,t, w;)
ot
1=1,..., N where N is the ensemble size
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Mesh Discretization Error - Illustration

Consider Burger's equation in 1D:

@ on theinterval [—1, 1] with homogeneous Dirichlet boundary
conditions

@ initial condition u(z,0) = — sin(7x)
@ Setr =0.01and h = 0.008
@ Second-order time integration with At = 10~*
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Mesh Discretization Error - Illustration

Behavior of solution

u(x,t)

Burgers Equation solutions at fine and coarse grid

=1 L 1 I 1
-1 -08 -06 -04 -02 0 02 04 06 08 1
X
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Mesh Discretization Error - Illustration

Solution error and forcing term

Error source term

0.06
0.04
5 0.02
©
" 0
2
£-0.02
-0.04
-8 -0.06
-1 -08 -06 -04 -0.2 0 02 04 06 08 1 -1 -08 -06 -04 -0.2 0 02 04 06 08 1
X X

Solution estimates shown on the
left are differentiated in time, to
generate data for the source field

Solution error, estimated by
downscaling the equations
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Mesh Discretization Error - Illustration

Error samples and solution ensemble:
@ Matérn 3/2 covariance
@ KL representation of random source term

. Error source term sample att= 0.5 s - Model solutions sample att=05's

[~ =0010736
—1-0.069635

m (x1)

1 08 06 04 02 0 02 04 06 08 1 1 08 -06 -04 02 0 02 04 06 08 1
x x

.10 _Error source term sample att=1s

—— o= 000092565
1=0.025057

Model solutions sample att=1s

5

m(x.t)
u ()

5 A
1 08 06 04 02 0 02 04 06 08 1 4 08 -06 04 02 0 02 04 06 08 1
x X
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Mesh Discretization Error - Illustration

Elliptic problem:

V- (x(@)u(@)) = f(z), VaeQ=[01]

o logk(z) = 2sin(107(1 — z)?), f(z) = 1 + 5exp(—(z — 0.5)2/.005)
@ Dirichlet and / or Neuman type bc
@ P1finite element solution

Gaussian Process correction:

F(z,w) = f(x) 4+ 6F(x,w), OF ~G(df, E?c)

@ (0 F squared-exponential Matérn covariance structure

@ correlation length, variance, and hyper-parameter inferred from
error estimates
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Mesh Discretization Error - Illustration

solution

solution
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@ Corrected solution endowed with uncertainty reflecting its error
@ Corrected solution approximates exact solution with decreasing /
e Both mean error and uncertainty go to zero
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Mesh Discretization Error - Next Steps

@ Refine random source field modeling:

e Contrast performance of Bayesian PCA and LIS approaches
o Explore more elaborate source field models, particularly to enable
enforcement of solution constraints

@ Apply VMS methodology to:

o develop local error estimates
e extend framework to combined mesh and model error UQ

@ Extend framework to canonical problems involving parametrized
subgrid representations

SNL Najm ScramjetUQ 47/ 56



Prog Of

Optimization - Challenges and Approach

Challenges:
@ OUU further amplifies UQ expense
@ Complex design process must effectively manage:

- multiple simulation fidelities and UQ resolutions
- uncertainty due to model error
- dimensionality of both random and design domains

Approach:

@ Develop and deploy provably-convergent derivative-free optim.
(DFO) framework that manages multiple levels of approximation

- Efficient DFO algorithms provide solver foundation
- Meta-algorithms manage model hierarchy

@ Theory: Establish rigorous (local) convergence
- Extend deterministic theory to include stochastics
@ Scale: Extend DFO to higher dimensions
- Leverage sparse surrogates (¢;-regularization)
@ Multifidelity: Manage multiple fidelities and UQ resolutions
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Optimization - Efficient DFO with NOWPAC/SNOWPAC

No adjoints at simulation level — OUU approaches must be
derivative-free or use derivatives inferred from surrogates.

Nonlinear Optimization with Path-Augmented Constraints (NOWPAC)
@ TR approach for nonlinear constrained DFO
@ Non-intrusive optimization framework
@ New way of handling constraints using an inner boundary path
@ Provable convergence to a first order local optimal design

NOWPAC framework

@ Build fully linear surrogate models of
objective and constraints

@ Find improved designs by minimizing
surrogate models
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Prog

Optimization - Efficient DFO with NOWPAC/SNOWPAC

Optimization under uncertainty Example: minimize CVaR

requires the quantification of risk

@ Expectation optimization
and variance minimization

@ Risk minimization using CVaR
@ Chance constraints ) "

Probabilty density

Sample approximations of risk / deviation measures are noisy

@ Only a small number of PDE simulations available
@ Estimate statistical error using confidence intervals

Stochastic NOWPAC

@ Generalized framework to handle noise in objective and
constraint evaluations
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Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

@ Build regularized surrogate models

12772 12772

minimum-Frobenius norm models  vs.  regularized surrogate models
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Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

@ Build regularized surrogate models
@ Adapt trust region management to noise estimates

@ S, : structural error in surrogate approximations
@ 7., : statistical estimate of the sampling noise

@ Ensure S, = Zopp
o Need a lower bound on trust region size dependent on Z.-,
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Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC framework

@ Build regularized surrogate models
@ Adapt trust region management to noise estimates

@ Introduce Gaussian process surrogate models

@ Reduce noise in sample approximations of Qols
o Make efficient use of PDE simulations by exploiting information from
neighboring runs

@ Blend Gaussian process mean with sample estimates of Qols

number o 050 5 mumber of black box ovaluations: 100 - 54
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Optimization - Efficient DFO with NOWPAC/SNOWPAC

SNOWPAC benchmark performance

@ Use data profile to compare performance based on 2400
optimization runs

1 f.5
= L B8 <
45(2) = 3200 {p np + 1 —O‘}

e n,: dimension of the design space of benchmark problem p
@ t, s: min number of simulations solver S needs to solve problem p

)

@ An optimization problem is deemed “solved” if the error is below ¢
and the constraint violation is less than ..

=001and « =001 ,=0.001 and ¢_=0.001

Performance comparison between 7 — == —

(SINOWPAC (green), COBYLA (purple), < a2 =
NOMAD (blue), SPSA (orange) and KWSA o N
(red). 0 o |f
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Optimization - Meta-Algorithms for Model Management

New Dakota infrastructure available for multiple model forms, each with
multiple discretization levels.
@ enable algorithms that exploit special discretization structure

Nonlinear Optim. by Mesh Adaptive Direct search (NOMAD):

@ Provable convergence based on pattern search theory

@ Generalizing Dakota capability for multifidelity search plug-in

- 0'-order multifidelity trust-region (TR) approach provides
heuristic search accelerator, with fallback to rigorous poll

First-order TR model management w/ combined stoch expansions:

TRMM with gradient-based minimizers, enabled by combined

design/uncertain stochastic expansions: R(&, d) = Zf:o a,;U,(€, d)

@ Expectations over £ can be differentiated over d
e UQ s derivative-free; Opt is derivative-inferred.
@ Accuracy of inferred moment derivatives managed by design TR size
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Optimization - Meta-Algorithms for Model Management

Multigrid optimization (MG/Opt) exploiting discretization hierarchies:

@ Specialization of TRMM exploits special structure

- Apply multigrid V cycle to hierarchy of optim. problems
- Line search ensures fine-grid impr. from coarse-grid step

@ prototype MG/Opt now available to test DFO sub-problem
optimizers (NOWPAC)

Efficient global optimization (EGO) with multifidelity GPs:

@ Optimize expected impr. fn. (EIF) from GP mean & pred. variance
@ Extend for hierarchical prediction variance from multifidelity

e Simple: LF + discrepancy GP (single prediction variance)
e Advanced: multi-GP with adaptive level refinement

Candidate approaches to be down-selected based on performance on
model problems and emerging Scramjet OUU problem characteristics.
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Optimization - Progress and Plans

Progress:
@ DFO solvers: NOWPAC — SNOWPAC
@ Model management meta-algorithms
- Exploiting infrastructure for model forms / discretizations
- Generalizing NOMAD for multifidelity search plug-in
- Deploying MG/Opt prototype with DFO solvers
@ OUU & model hierarchy problem definitions
Plans:
@ OUU development

o SNOWPAC development
e MG/Opt with DFO, including NOWPAC

@ OUU deployment for P1

@ Robust design with initial prototype of P1
o Evolve towards full P1 complexity

@ OUU deployment for P2 (Phase 2)

e Demonstrate OUU for unions of P2 unit problems
o Device performance optimization for HIFIRE

SNL Najm ScramjetUQ 55/56



closure
Closure

The project is underway with progress on all tasks

Demonstrated 3D liquid-jet in crossflow problem P1 at supercritical
conditions = Milestone

e Preliminary P2 runs in progress
Initial UQ baseline and GSA study with P1-2D

Initial demonstration of model error estimation and propagation
with P1-3D

Initial demonstration of mesh error estimation and propagation in
model problems

Progress on tools for derivative-free stochastic optimization under
uncertainty
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