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Summary 

The increased penetration of renewable energy has significantly changed the conditions and the 
operational timing of the electricity grid. More flexible, faster ramping resources are needed to 
compensate for the uncertainty and variability introduced by renewable energy. Distributed energy 
resources (DERs) such as distributed generators, energy storage, and controllable loads could help 
manage the power grid in terms of both economic efficiency and operational reliability. In order to realize 
the benefits of DERs, coordination and control approaches must be designed to enable seamless 
integration of DERs into the power grid. Transactive coordination and control is a new approach for DER 
integration, where individual resources are automated and engaged through market interaction. 
Transactive approaches use economic signals—prices or incentives—to engage DERs. These economic 
signals must reflect the true value of the DER contributions, so that they seamlessly and equitably 
compete for the opportunities that today are only available to grid-owned assets. Value signals must be 
communicated to the DERs in near-real time, the assets must be imbued with new forms of distributed 
intelligence and control to take advantage of the opportunities presented by these signals, and they must 
be capable of negotiating and transacting a range of market-driven energy services. The concepts of 
transactive energy systems are not new, but build upon evolutionary economic changes in financial and 
electric power markets. These concepts also recognize the different regional structures of wholesale 
power markets, electricity delivery markets, retail markets, and vertically integrated service provider 
markets. Although transactive energy systems are not revolutionary, they will be transformational in their 
ability to provide flexibility and operational efficiency. 

A main goal of this research is to establish useful foundation for analysis of transactive energy systems 
and to facilitate new transactive energy system design with demonstrable guarantees on stability and 
performance. Specifically, the goals are to (1) establish a theoretical basis for evaluating the performance 
of different transactive systems, (2) devise tools to address canonical problems that exemplify challenges 
and scenarios of transactive systems, and (3) provide guidelines for design of future transactive systems. 
This report, Part 1 of a two part series, advances the above-listed research objectives by reviewing 
existing transactive systems and identifying a theoretical foundation that integrates payoff functions, 
control decisions, information privacy, and mathematical solution concepts.
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1.0 Introduction 

Electricity demand has been steadily increasing (EIA 2011). One way to keep up with demand is to build 
more generation facilities. However, planning generation capacity based on peak demand could leave 
much generation capacity idle when peak demand increases faster than base demand. A more appealing 
solution is to integrate renewable energy into the power grid, which could significantly reduce fossil fuel 
consumption and greenhouse gas emissions. Renewable integration is growing because of environmental 
concerns and economic requirements. However, integration of extensive renewable energy into the power 
grid imposes challenges to the conventional supply-side control paradigm. As pointed out in (CAISO 
2010, Makarov et al. 2009, Smith et al. 2007), it will substantially increase the need for operational 
reserves to absorb the variability of renewable energy so that supply and demand balance instantaneously 
and continuously. If additional reserves are still required to from conventional generators, it will diminish 
the net carbon benefit from renewable integration, reduce generation efficiency, and eventually become 
economically untenable. 

Besides supply-side control, there has long been interest in using electric loads to help balance supply and 
demand; this is termed demand-side control. Development of communication and computation techniques 
enables real-time control of electric loads (Brooks et al. 2010). When properly coordinated and 
controlled, aggregated end-user loads can provide various grid services that were traditionally provided 
by generators (Callaway and Hiskens 2011) and satisfy the requirements of speed, accuracy, and 
magnitude. Because end-user loads usually have large population size and high aggregated ramping rate, 
demand-side control offers enormous potential to mitigate the variability and uncertainty introduced by 
renewable generation. 

A simple form of aggregated load control is direct load control (DLC), where the aggregator (utility 
companies, load serving entities, or curtailment service provider) can remotely control end-user loads 
based on prior mutual financial agreements. Traditional DLC is usually concerned only with services such 
as peak shaving and load shifting (Chen et al. 1995, Chu et al. 1993, Kurucz et al. 1996). Lately, DLC has 
begun focusing on modeling and control for a large population of end-user loads such as thermostatically 
controlled loads (Bashash and Fathy 2013, Callaway 2009, Kalsi et al. 2012, Kondoh et al. 2011, Mathieu 
et al. 2013, Zhang et al. 2013), plug-in electric vehicles (Liu et al. 2013, Vandael et al. 2013), and data 
center servers (Chen et al. 2013, Li et al. 2014) to provide services including frequency regulation and 
load following. Some of these DLC approaches require fast communication between the aggregator and 
individual loads. 

Although DLC can achieve reliable and accurate aggregated load response, its practical application is 
greatly challenged by privacy and security concerns of residential customers. It is usually difficult in 
practice to obtain private information that is required for the implementation of DLC approaches. As an 
alternative to DLC, price responsive control (PRC) protects customer privacy by sending price signals to 
end-user loads so that they can individually and voluntarily manage their local demand. Common 
examples of PRC include time-of-use pricing, critical-peak pricing, and real-time pricing (RTP) (Allcott 
2011, Borenstein et al. 2002, Chao 2010, Hogan 2010). Recently projects (Faruqui et al. 2010) have 
demonstrated the performance of PRC in terms of payment reduction, load shifting, and power shaving. 
However, these approaches either directly pass the wholesale energy price to end users or modify the 
wholesale price in a heuristic way. Therefore, it cannot achieve the predictable, reliable aggregated load 
response required of demand-response applications. 

Transactive control and coordination is a new type of coordinated load control for demand response. 
Concepts from microeconomic theory (Mas-Colell et al. 1995) are combined with control theory to design 
strategies to coordinate and control the aggregated response (Fahrioglu and Alvarado 2000, Samadi et al. 
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2012b). Transactive control has advantages of both PRC and DLC. It preserves customer privacy by using 
internal price as the control signal. However, the internal price is systematically designed according to 
specific control objectives, which can be dramatically different from the wholesale price (see, for 
example, (Chen et al. 2010a, Li et al. 2011a)). Hence, it can also have more predictable and reliable 
aggregated load response. 

The GridWise® Architecture Council defines transactive energy as, “a system of economic and control 
mechanisms that allows the dynamic balance of supply and demand across the entire electrical 
infrastructure using value as a key operational parameter” (The GridWise Architecture Council 2015). 
Several field demonstration projects in the U.S. and Europe have proven the technology feasibility of 
transactive energy. The Olympic Peninsula Demonstration (2006–2007) (Fuller et al. 2011, Hammerstrom 
et al. 2007) was the first proof-of-concept demonstration project in the U.S. that used a double-auction 
market for congestion management. Building upon the Olympic Peninsula Demonstration, the AEP 
(American Electric Power) gridSMART® Demonstration (2010–2014) (Widergren et al. 2014, Widergren 
et al. 2014) also used the double-auction market for residential load coordination and incorporated RTP. 
The Pacific Northwest Smart Grid Demonstration (PNWSGD) (2010–2015) (Hammerstrom et al. 2015, 
Huang et al. 2010) used peer-to-peer negotiation based on consensus principles to coordinate the 
operation of DERs. PowerMatching City (2009–2015) (Kok et al. 2012) was a demonstration project in 
Europe that used a double-auction market to balance supply and demand. 

In Part I of this report, we review literature on existing transactive energy systems. Using principles from 
microeconomic theory, we develop a theoretical foundation for the systematic analysis and design of 
transactive energy systems. Internally consistent payoff functions, control decisions, information privacy, 
and mathematical solution concepts are offered. In Part II, we develop performance measures for 
analyzing different transactive approaches and apply the theory of Part I to analyze transactive energy 
systems deployed in the AEP gridSMART® demonstration project and the PNWSGD project, 
respectively. 
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2.0 Transactive Energy Systems 

According to the GridWise® Architecture Council definition of transactive energy, “value” implies the 
transactive energy price, which enables customers of all sizes to join traditional providers in producing, 
buying, and selling electricity using automated control to drive a more reliable and cost-effective power 
grid. In terms of customer privacy, scalability, and efficiency, transactive energy systems have clear 
advantages over coordination methods such as DLC and PRC. In this section, several major projects in 
the U.S. and Europe that use transactive approaches to coordinate DERs with system operations will be 
introduced and reviewed. 

2.1 Olympic Peninsula Demonstration 

The Olympic Peninsula Demonstration project (Hammerstrom et al. 2007) was one of the first transactive 
energy demonstration projects. It took place in an area of the Olympic Peninsula of Washington state that 
receives electricity through a radial transmission connection to the Pacific Northwest power grid. The 
project tested the potential for coordinating DERs to postpone or eliminate the need for a transmission 
upgrade. The project used a 5-minute double-auction market to coordinate four large municipal water 
pumps, two backup diesel generators, and residential demand response from electric water- and space 
heating systems in 112 homes. The project established the viability of transactive energy to achieve 
multiple objectives: system peak load and distribution constraint management; wholesale price purchases 
by the utility; and residential, commercial, and municipal energy cost savings. The market received 
supply bids from the utility based on a markup of the local wholesale energy price. The diesel generators’ 
bids were based on the actual fixed and variable costs incurred for operation. The pumps’ bids into the 
market were based on water reservoir levels they regulated. Residential demand-response equipment 
allowed the households to specify their automatic price-response preferences. To capture their 
preferences, a selection of comfort settings was devised, each selection named to indicate ranges between 
most comfortable (not price responsive) to most economical (highly price responsive). The 5-minute 
market determined the clearing price for energy and broadcast that to the market participants. Each 
participant’s bidding equipment would operate based on whether his bid was higher or lower than the 
market-clearing price. Besides coordinating the price-responsive resources with wholesale price 
fluctuations, the transactive system also managed congestion on a distribution circuit, by managing all of 
the devices as if they were on one circuit and seasonally adjusting the capacity setting of that circuit to 
exercise constrained operating conditions. The project kept the imported capacity of the circuit below the 
constraint for all but one 5-minute interval over the entire project year. The technical details of the 
transactive approach adopted in this project will be described in the next subsection. 

2.2 AEP gridSMART® Demonstration 

Building upon the Olympic Peninsula Demonstration project, the AEP gridSMART® demonstration 
project (2010−2014) had an RTP component, called SMART Choice®,1 that used a 5-minute double-
auction market to dispatch participating responsive loads on each of four distribution circuits (Widergren 
et al. Feb. 2014, Sep. 2014). The RTP experiments ran during the late spring and summer of 2013 and 
involved four feeders with approximately 200 participating households. The preferences of household 
occupants were reflected in software agents that developed an overall price flexibility curve for the 
residential heating, ventilation, and air conditioning (HVAC) units to be coordinated with the market 
system. Then, a market-clearing engine at the operations center aggregated the bids from all households 

                                                      
1 SMART Choice is a registered trademark of AEP Ohio. 
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to form a price-sensitive demand curve for the distribution circuit and calculated a clearing price and a 
supply bid, which incorporated the regional market operator’s (PJM) 5-minute wholesale locational 
marginal price for electricity. The clearing price was finally broadcast back to the households and 
captured in the billing system according to a tariff approved by the regulator, the Public Utility 
Commission of Ohio. An overview of the RTP system design is presented in Figure 1. 

 
Figure 1.  Design Overview of the AEP Ohio gridSMART® RTP System 

The transactive approach based on a 5-minute double-auction market is as follows: 

• At the beginning of each market cycle, the local controllers of individual household HVAC loads first 
calculate the bidding price λbid based on the current room temperature Tc and the local bidding curve 
as shown in Figure 2. This bidding curve is determined by several parameters. The parameters 
𝑇𝑇desired, 𝑇𝑇min, and 𝑇𝑇max are directly specified by users, where 𝑇𝑇desired is the desired indoor air 
temperature setpoint, and 𝑇𝑇min and 𝑇𝑇max are the lower and upper bounds of the acceptable indoor air 
temperature setpoint. The parameters 𝜆𝜆avg and 𝜎𝜎 are the average and standard deviation, respectively, 
of the electricity prices over a past period. The parameter 𝑘𝑘 is a positive number derived entirely from 
the owner’s preference of indoor air temperature setpoint versus electricity price. Then, individual 
household HVAC loads submit their bids to the market. Each bid consists of a bidding price and a 
bidding quantity. 

 
Figure 2.  Determination of Bidding Price 
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• After receiving all the bids from individual HVAC loads, the market sorts the individual bidding 
prices in decreasing order to form a demand curve, shown in green in Figure 3, where the 
unresponsive load (𝑃𝑃uc) is assumed to bid a price at the price cap (𝜆𝜆cap). 

• The market also forms a supply curve by using a base price obtained from the wholesale locational 
marginal price and the feeder capacity limit. 

• When there is no congestion, that is, the feeder capacity limit 𝑃𝑃lim  is not exceeded, the cleared price 
(𝜆𝜆clear) is the new base price and the cleared quantity (𝑃𝑃clear) is determined by the intersection of the 
demand curve and the horizontal part of the supply curve as shown in Figure 3.  

 
Figure 3.  Market Clearing without Congestion 

• When there is congestion, that is, the feeder capacity limit is reached, loads are reduced according to 
the individual bids at the distribution feeder level. The cleared quantity (𝑃𝑃clear) is the feeder capacity 
(𝑃𝑃lim). The cleared price (𝜆𝜆clear) is determined by the intersection of the demand curve and the 
vertical part of the supply curve as shown in Figure 4. In this case, the clearing price 𝜆𝜆clear will be 
greater than the price of supply (𝜆𝜆base). If the congestion persists, more and more responsive loads 
lose their flexibility, and the market will clear at the price cap (𝜆𝜆cap). 

 
Figure 4.  Market Clearing with Congestion 

• After the market clears, the clearing price is broadcast back to household loads. The local controllers 
map the clearing price to local temperature set points according to the bidding curve, as shown in 
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Figure 5. This new temperature set points will be used as the local control and maintained until a new 
market cycle begins in 5 minutes. 

 
Figure 5.  Determination of Local Control Input 

• During congestion periods, consumers pay at a clearing price that is higher than the base supply price, 
which results in a congestion surplus to the utility. This surplus (the red area in Figure 6) is returned 
to the consumers in the form of rebates to make the service provider revenue neutral. An incentive 
mechanism is also used to reflect the value of load reduction, which rewards the consumers who are 
most flexible to price changes. The incentive (the blue area in Figure 6) is computed as a product of 
the actual consumed energy and the difference between the cleared price and the base supply price. 

 
Figure 6.  Congestion Surplus Rebate and Incentive 
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2.3 PowerMatching City Demonstration 

PowerMatching City was a demonstration project in Europe that used simultaneous optimization for 
energy trade and active distribution management. PowerMatching City is located in the Hoogkerk suburb 
of Groningen in The Netherlands. This living smart grid community was officially opened in April 2010. 
PowerMatcher, the major coordination mechanism in this project, is designed based on the concept of 
transactive energy. Various residential appliances, electric vehicles, and wind turbines are interfaced with 
the PowerMatcher software to operate PowerMatching City as a virtual power plant (Kok et al. 2005, Kok 
2013). 

In PowerMatcher, an electronic exchange market is used to determine the supply or demand amount for 
each device agent. The electronic market has a tree structure of supply and demand aggregators called 
“SD-Matchers.” Each SD-Matcher aggregates the demands of the devices and SD-Matchers under it, and 
the SD-Matcher at the top of the tree (the root SD-Matcher) determines the price. The root SD-Matcher 
can also define the characteristics of the markets, such as the time slot length, the time horizon, and the 
execution time (e.g., “every 15 minutes,” “every day at 12:00”). At each execution time, the root SD-
Matcher requests bids from all directly connected agents, which include the aggregate bids from devices. 
The root SD-Matcher then determines an equilibrium price and sends it to the devices. Each device can 
determine its allocated power based on the received market price and its own bid function. 

The devices are categorized by their controllability: 

• Shiftable operation devices: controllable devices such as washers, dryers, and swimming pool pumps 
that have a fixed supply or demand over time. 

• External resource buffering devices: controllable devices such as electrical heating/cooling devices 
and heat pump devices that have certain operation flexibility. 

• Electricity storage devices: controllable storage devices that react to market prices and try to buy 
energy at low prices and sell at high prices. 

• Freely controllable devices: devices such as diesel generators that are fully controllable within certain 
limits. These devices’ bidding strategies are highly dependent on the marginal costs of the electricity 
production. 

• Uncontrollable devices: solar and wind energy systems. These devices must accept the market prices. 

• User-action devices: uncontrollable devices that are operated directly by users. These devices are 
similar to stochastic operation devices and must accept the market prices. 

The transactive approach deployed in this demonstration project is similar to the one used in the Olympic 
Peninsula and AEP demonstration projects that is based on the double-auction principle. For each 
controllable device, a demand function states the agent’s demand at a price. For generators, the demand 
function has a negative value at each price. Each device submits the full demand function to the SD-
Matcher above it through line agents. The line agents perform the demand function propagation and the 
price back propagation over the network lines they represent. Depending on a device’s current status, its 
bids can be changed at any time. The intermediate SD-Matchers aggregate all incoming bids of the nodes 
that are directly connected to them and pass the bids towards the top of the tree. The root SD-Matcher 
clears the market by determining a market price at which supply and demand match, and then sends the 
price down through the tree structure. 
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2.4 Pacific Northwest Smart Grid Demonstration 

Based on the successful implementation of transactive control concepts during the Olympic Peninsula 
Demonstration project (Hammerstrom et al. 2007), the PNWSGD project (2010–2015) featured an 
innovative transactive system aimed at synchronizing demand and supply for a generation-driven 
operation of the grid (Hammerstrom 2013, Hammerstrom et al. 2015). The PNWSGD project included 
multiple states and cooperation from multiple electric utilities, including rural electric co-ops and 
investor-owned, municipal, and other public utilities, as indicated in Figure 7. There were 55 unique 
instantiations of distinct smart grid systems demonstrated at the project sites. This project deployed a 
transactive system to coordinate the operation of DERs and addressed regional objectives, including 
mitigation of renewable energy intermittency and flattening system load. This was accomplished by 
engaging users and responsive assets throughout the participating areas of the grid to collaborate with the 
supply side to improve the system reliability and efficiency by reducing system peaks, reducing expenses, 
and mitigating challenges associated with integration of variable supply provided by renewable energy 
resources, such as wind. The transactive control methodology proposed by the PNWSGD project offers 
procedures and rules that would help transform the power grid into a smart grid. 

In the PNWSGD project setting, negotiations are based on value-based principles, but the signals do not 
necessarily have to account for monetary or revenue exchanges. An iterative process between players is 
needed to ensure convergence to a solution. The approach is seeking a multi-objective optimum based on 
the exchange of value between participants. The basic principles behind the PNWSGD consensus-based 
transactive mechanism are 

• bidirectional communication 

• incentives and feedback communicated via one nodal signal 

• simultaneous engaged multiple operational objectives and responsive assets 

• interoperability 

• 24/7 response 

• end-user friendly 

• distributed control facilitator 

• dynamic signal on multiple time scales. 
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Figure 7. Geographical Region of the PNWSGD Project, Including Participants and Major Generation 

and Transmission 

The four main components of the PNWSGD transactive control are 

• transactive nodes – locations or pieces of equipment in the electrical connectivity architecture through 
which power flows 

• transactive signals – the incentive signals coming from the nodes upstream, and the related generated 
feedback signal to be sent back 

• responsive assets – the principal drivers of the transactive control system that directly influence the 
electrical energy consumption 

• enabling assets – any of the information, communication, and metering equipment and technologies 
that cannot by themselves modify energy consumption, but are integral parts of the system. 

The PNWSGD comprised 27 transactive nodes: 14 transmission zone nodes representing large areas of 
the Northwest transmission system and 13 utility-site nodes corresponding to the distribution circuits 
owned by 11 distribution utilities in the Northwest. These nodes exchange two types of transactive 
signals: 

• transactive incentive signal (TIS) – the unit cost of the delivered energy requested by the transactive 
feedback signal 

• Transactive feedback signal (TFS) – the energy flowing from one transactive node to the neighboring 
one during a given time interval. 
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All transactive signals are represented as a series of triplets, with each triplet comprising a time interval, a 
value, and a level of confidence to qualify the value. Based on the time horizon of the transactive control 
strategies considered, the PNWSGD project’s system architects decided to support forecasts over 56 time 
intervals ranging from five minutes to a day, and extending more than three days into the future. Figure 8 
provides a high-level summary of the transactive-node approach developed for this project. 

 
Figure 8.  Overview of Transactive-Node Approach in the PNWSGD Project, including (a) the Node’s 

Responsibilities and (b) the Node’s Possible Location (Marked Red) and Communication 
among a Network of other Nodes  

The core of the PNWSGD transactions is the TIS, which could be unique for each transactive node, 
because it is directly influenced by the node’s components, such as energy suppliers, upstream (toward 
bulk generation) transmission pathways and distances, operational practices, local infrastructure, and 
downstream customers. Within one time interval 𝑛𝑛, the TIS is obtained as a weighted sum of all the 
incurred costs, whether production, capacity, infrastructure, or maintenance. Weights are given by the 
inverse of the entire load (including exported energy), or the entire supply (including the imports), at one 
transactive node: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 =  
𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐
+ 𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑒𝑒𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

where the offset costs are the incentive functions that do not represent an energy resource. 

The TFS is determined by each transactive node on a radial distribution branch by summing the 
inelastic/unresponsive loads and elastic/responsive loads to predict the power flow between it and its 
transactive neighbors. Each transactive node has a set of transactive neighbors to which it is electrically 
connected. These neighbors are also part of the transactive system, and agree to exchange energy unit cost 
(TIS) and energy quantity (TFS) with all their transactive neighbors. Each transactive node is required to 
exchange the information bidirectionally. This means that it will both send and receive both signals. 
Depending on the sign of the TFS, the energy exchanged between two neighboring transactive nodes 
could be considered an available resource or a load that needs to be supplied to the transactive node. 
Moreover, a transactive node might have its own electricity resources, and a responsibility to supply local 
loads. 
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In the case of local generation resources, an optimizer at the level of each transactive node has specific 
functions designed to monetize resource costs and incentives, while responding to the transactive node’s 
attempts to balance supply and demand, especially as the loads respond to the TIS. 

Much of the system load is inelastic, and thus unresponsive to the TIS. These loads need to be served by 
functions that accurately predict their behavior and energy consumption, because they have a big impact 
on the energy balance at the level of the transactive node, as well as the entire transactive system. The 
elastic or responsive loads’ functions have a harder mission. First, based on the TIS and the local 
conditions, the timing and magnitude of elastic loads is to be determined, such as event-driven, daily, or 
continuous response. A second function is in charge of maintaining a performance model, which could 
help estimate and predict the impact of the elastic loads’ response. 

This innovative transactive methodology developed specifically for the PNWSGD coordinated DERs and 
demand-responsive assets. Not only has it proved that generation-driven operation of the grid is efficient 
and reliable for supply-demand balancing, it also addressed regional goals, such as mitigation of 
renewable energy intermittency and the flattening of system loads. 

2.5 Transactive Campus Energy Systems 

The transactive campus project is currently funded by Washington State’s Clean Energy Fund (WA-
CEF). WA-CEF was established as a source of matching capital investments in the state’s research and 
development (R&D) infrastructure for federally funded R&D projects. This ongoing project proposes to 
connect the Pacific Northwest National Laboratory (PNNL), University of Washington, and Washington 
State University campuses to form a multi-campus testbed, as shown in Figure 9, for transactive energy 
management solutions. Building on the foundational transactive energy management system of the 
PNWSGD project, it proposes to construct and operate the testbed as both a regional flexibility resource 
and as an R&D platform for building and grid integration. Using the flexibility provided by loads, energy 
storage, and smart inverters for batteries and photovoltaic solar systems, the testbed will support the 
integration of renewables and other regional needs at four physical scales: multi-campus, campus, 
microgrid, and building. Each campus testbed will further be specialized as a platform on which 
additional R&D will be conducted to advance the state of knowledge in areas of critical interest to the 
project’s U.S. Department of Energy sponsors. 
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Figure 9.  Multi-Campus Testbed in the Transactive Campus Project 

PNNL has conducted additional R&D on transactive energy management systems for campuses and 
commercial buildings. The goal is to apply transactive energy concepts to control components within a 
commercial building as well as allow different buildings on a campus to trade and negotiate their energy 
consumption. In particular, a transactive approach was recently proposed to control the HVAC systems 
within commercial buildings for demand response. The technical details have been summarized in (Hao 
et al. 2016), and a sketch of the building system under transactive control is shown in Figure 10. Under 
the proposed transactive building control, air-handling units (AHUs) will “purchase” hot and cold water 
from the boiler and chiller, and “sell” heated and cooled supply air to the variable air volume boxes 
connected to the conditioned zones. A double-auction market will be constructed to efficiently coordinate 
various components of the HVAC system (AHUs, chiller, boiler, variable air volume boxes, etc.) through 
a market bidding and clearing process. This transactive approach is similar to the one used in the Olympic 
Peninsula, AEP gridSMART® and PowerMatching City demonstration projects. At the beginning of each 
market cycle, individual components first calculate local demand for the coming market period, and 
submit it to the central market along with an expected price. Then, the central market agent collects all the 
bids and clears the market to determine the clearing prices. The clearing prices for individual components 
are broadcast back to them. Finally, local controllers will translate the received clearing prices into the 
corresponding local inputs for the operation of individual components. Currently, this transactive building 
control approach is applied to the individual components of the energy systems within PNNL’s newly 
constructed systems engineering building to realize reduced energy use and cost and allow for increased 
flexibility in managing demand. 
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Figure 10.  Conceptual Topology of Transactive Building Control 

2.6 Transactive Energy Market Information Exchange 

Transactive Energy Market Information Exchange (TeMix) is a transactive energy platform (Cazalet 
2010) that allows different parties such as generators, DERs, and storage to transact with each other using 
a protocol network. The TeMix approach is a peer-to-peer transactive energy technique that allows 
exchange between unconnected neighbors, in contrast with the consensus technique used in the 
PNWSGD. The objective is to balance supply and demand using bilateral market instruments including 
derivatives. The customers and suppliers are engaged in decentralized markets for energy transactions that 
are binding exchanges of currency for a quantity of an energy product. The two basic energy products are 
(1) energy delivered at a specific location during a specific period of time, and (2) transport of energy 
from one location to another. The call options on energy or transport are comparable to the capacity and 
ancillary service products. In TeMix, forward contracts and real-time balancing services with varying 
prices are offered to the customers. Contracts may be traded at any time when there is a market. With an 
offer in the network, a counterpart will respond, and both parties enter into a binding commitment to 
transact at a specific price and location. Each participant needs to use their available resources or tools to 
enter into bilateral agreements. Supply and demand are balanced using financial instruments such as 
derivatives. 
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3.0 Overview of Microeconomic Theory 

Transactive systems, even ones that appear at first to be dissimilar, derive from shared economic 
principles. Transactive energy can be broadly viewed as a class of methods that employ economic 
principles, concepts, and perspectives to study the coordination and control of energy resources that 
belong to stakeholders or users. Therefore, microeconomics plays a central role in the design and analysis 
of transactive energy systems. 

This section provides a concise introduction to important concepts and results in microeconomic theory 
(Mas-Colell et al. 1995, Varian 1992). We will emphasize the important concepts and results that can be 
potentially applied to transactive energy systems. 

Economic analysis typically involves the following four components: 

(i) Economic environment: specify the key players, their characteristics, information structure, and 
basic environment setups, such as the exogenous variables and parameters. 

(ii) Individual agent behavior models: describe how individual agents make economic decisions. This 
typically involves agents’ preferences, rationality assumptions, information available to the 
agents, and their optimization problems. 

(iii) Institutional arrangement: specify the rules in which agents interact with each other. These 
interaction rules couple individual decisions in specific ways, such as through a competitive 
market, an oligopolistic market, a particular auction setup, or a certain contract. 

(iv) Outcome of the economy: define the outcome of the economy under study. Depending on the 
application and the setup of the previous components, the outcome can be a market equilibrium, a 
competitive equilibrium, a constrained competitive equilibrium, a Nash equilibrium, or a 
Bayesian Nash equilibrium, among others. 

Depending on the application, one may study different properties of the given economy, such as 
efficiency, fairness, individual rationality, incentive compatibility, etc. A more challenging question is 
how to design an economic environment to induce an outcome to achieve a given desired social objective. 
Such a problem is called economic design. Economic analysis is the foundation for economic design. In 
the following, we will discuss several important paradigms for economic analysis and design. For each 
paradigm, we will first specify each of the four key components mentioned above and then present the 
main results. 

3.1 Classical Welfare Economics 

A competitive market is a key concept in microeconomic theory. The theoretical tools for analysis of 
competitive market economies also are fundamental to the study of other types of market mechanisms. 
The main results consist of a number of welfare theorems that are regarded as important cornerstones of 
microeconomics. The results can be presented in an exchange economy or the more general production 
economy using either a partial equilibrium approach or a general equilibrium approach. 

For simplicity, we will present classical welfare economic results through an exchange economy using the 
general equilibrium approach. These classical welfare economic results cannot be directly used to analyze 
and design transactive energy systems. However, they are still arguably the most important economic 
results for transactive energy systems. In fact, most of the transactive energy examples presented in the 
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previous section can be viewed as competitive market design problems to efficiently allocate energy or 
services to economic agents. The economic results reviewed in this section will explain important 
economic concepts that will serve as the foundation for developing transactive energy systems. 

3.1.1 Economic Environment 

The economic environment for an exchange economy usually consists of the following components: 

• 𝑵𝑵 = {1, … ,𝑁𝑁}: set of consumers 

• 𝑳𝑳 = {1, … , 𝐿𝐿}: set of private goods (commodities) 

• 𝑿𝑿𝒊𝒊 ⊆ ℝ𝐿𝐿: consumption space of consumer 𝑐𝑐 ∈ 𝑵𝑵, specifying the boundaries of the consumptions over 
all the private goods. A vector 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 is called a (feasible) consumption vector 

• 𝑤𝑤𝑖𝑖 ∈ 𝑿𝑿𝒊𝒊: initial endowment vector of consumer 𝑐𝑐 

• 𝑿𝑿 = 𝑿𝑿𝟏𝟏 × 𝑿𝑿𝟐𝟐 × ⋯× 𝑿𝑿𝑵𝑵: overall consumption space. An element 𝑥𝑥 ∈ 𝑿𝑿, is called a consumption 
bundle. 

3.1.2 Institutional Arrangement 

Welfare economics is based on a private market mechanism, by which all the agents’ decisions are 
coupled through a competitive market. 

• 𝜆𝜆 = [𝜆𝜆1, … , 𝜆𝜆𝐿𝐿]𝑇𝑇 ∈ ℝ+
𝐿𝐿 : a price vector 

• 𝜆𝜆𝑇𝑇𝑥𝑥𝑖𝑖: the expenditure of consumer 𝑐𝑐 

• 𝜆𝜆𝑇𝑇𝑤𝑤𝑖𝑖: the value of the endowments of consumer 𝑐𝑐. 

3.1.3 Individual Decision Model 

An exchange economy only involves one type of players, namely, the consumers. Their decision process 
is described below. 

• Each consumer 𝑐𝑐 ∈ 𝑵𝑵, has a known preference for each of the 𝐿𝐿 goods. It is typically assumed that 
such preference can be captured by a utility function 𝑈𝑈𝑖𝑖(𝑥𝑥𝑖𝑖) that depends only on the consumption of 
agent 𝑐𝑐, i.e., there is no externality. 

• In the given perfect competitive market, each agent 𝑐𝑐 is assumed to be a price-taker and determines 
her consumption by solving the following utility maximization problem: 

�
max
𝑥𝑥𝑖𝑖

𝑈𝑈𝑖𝑖(𝑥𝑥𝑖𝑖)

subject to �
𝑥𝑥𝑖𝑖 ∈ 𝑿𝑿𝒊𝒊

𝜆𝜆𝑇𝑇𝑥𝑥𝑖𝑖 ≤ 𝜆𝜆𝑇𝑇𝑤𝑤𝑖𝑖

 

In this problem, the first constraint is called the individual feasibility constraint while the second 
constraint is the agent’s budget constraint. The overall constraint set depends on the price vector and will 
be denoted by 

𝐵𝐵𝑖𝑖(𝜆𝜆) = {𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖: 𝜆𝜆𝑇𝑇𝑥𝑥𝑖𝑖 ≤ 𝜆𝜆𝑇𝑇𝑤𝑤𝑖𝑖}. 
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3.1.4 Economic Outcome 

The outcome (competitive equilibrium) of a competitive market in the exchange economy is a price-
allocation pair (𝜆𝜆, 𝑥𝑥). An allocation profile 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) specifies what goods and how much each 
agent holds. A desired allocation needs to satisfy some conditions or desired properties. 

Definition – Feasible Allocation: An allocation 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) is called feasible if 𝑥𝑥𝑖𝑖 ∈ 𝑿𝑿𝒊𝒊, for all 𝑐𝑐 ∈ 𝑵𝑵, 
and ∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1 = ∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1  

An essential requirement for a feasible allocation profile to be optimal is that it possesses the so called 
Pareto optimality (or Pareto efficiency) property. 

Definition – Pareto Efficiency: An allocation 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) is called Pareto efficient (or Pareto 
optimal) if it is feasible and there is no other feasible allocation that is strictly preferred by all the agents, 
i.e., there is no other feasible 𝑥𝑥� = (𝑥𝑥�1, … , 𝑥𝑥�𝑁𝑁) such that 𝑈𝑈𝑖𝑖(𝑥𝑥�𝑖𝑖) ≥ 𝑈𝑈𝑖𝑖(𝑥𝑥𝑖𝑖),∀𝑐𝑐 ∈ 𝑵𝑵 and 𝑈𝑈𝑗𝑗�𝑥𝑥�𝑗𝑗� > 𝑈𝑈𝑗𝑗�𝑥𝑥�𝑗𝑗� 
for some 𝑗𝑗 ∈ 𝑵𝑵. 

Note that in the above definitions, individual budget constraints are not considered. 

In a competitive market, each price vector 𝜆𝜆 will induce an allocation profile 𝑥𝑥 through individual utility 
maximizations. A price-allocation pair (𝜆𝜆∗,𝑥𝑥∗) is called a competitive equilibrium if every agent’s 
consumption 𝑥𝑥𝑖𝑖∗ is the best response for the given price 𝜆𝜆∗. 

Definition – Competitive (Walrasian) Equilibrium: An allocation profile 𝑥𝑥∗ = (𝑥𝑥1∗, … , 𝑥𝑥𝑁𝑁∗ ) and a price 
vector 𝜆𝜆∗ is called a competitive equilibrium if the 𝑥𝑥∗ is feasible and satisfies 

𝑈𝑈𝑖𝑖(𝑥𝑥𝑖𝑖∗) ≥ 𝑈𝑈𝑖𝑖(𝑥𝑥𝑖𝑖), for all 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖(𝜆𝜆∗) and for all 𝑐𝑐 ∈ 𝑵𝑵. 

3.1.5 Fundamental Welfare Theorems 

Classical welfare economic theory is mainly concerned with the efficiency of the allocation, i.e., whether 
there is unnecessary waste of resources in the society. The key questions the theory tries to answer are 
whether an equilibrium of a competitive market is Pareto efficient, and under what conditions a given 
Pareto efficient allocation can be achieved induced by a competitive market. The main results are two 
fundamental welfare theorems stated below. 

First Fundamental Welfare Theorem: If (𝑥𝑥∗,𝜆𝜆∗) is a competitive (Walrasian) equilibrium, then 𝑥𝑥∗ is 
Pareto efficient. 

Second Fundamental Welfare Theorem: Suppose that 𝑥𝑥∗ is Pareto optimal and the utility functions are 
concave, continuous, and monotonic. Then there exists a price vector 𝜆𝜆∗ such that (𝑥𝑥∗, 𝜆𝜆∗) is a competitive 
equilibrium with initial endowment 𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖∗. 

Pareto efficiency is only concerned with efficiency and does not specify how to allocate the welfare to 
different agents. Given an (exchange) economy, there are typically infinitely many Pareto efficient 
allocations. One way to specify the distribution is by introducing a social welfare function. 

Definition – Social Welfare Function: A function 𝑊𝑊:𝑅𝑅𝑛𝑛 → 𝑅𝑅 is called a welfare function for 𝑁𝑁 
economic agents if 𝑊𝑊 is monotonically increasing in each of its arguments. 
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In this context, we assume that the society should operate at a point that maximizes social welfare defined 
by 𝑊𝑊, that is, we should choose an allocation 𝑥𝑥∗ that solves the following social welfare optimization 
problem: 

⎩
⎪
⎨

⎪
⎧max
𝑥𝑥∈𝑋𝑋

𝑊𝑊�𝑟𝑟1(𝑥𝑥1), … ,𝑟𝑟𝑁𝑁(𝑥𝑥𝑁𝑁)�

�𝑥𝑥𝑖𝑖 ≤�𝑤𝑤𝑖𝑖

𝑁𝑁

𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
 

Theorem – Welfare Maximization → Pareto Efficiency: If 𝑥𝑥∗ maximizes a social welfare function, 
then 𝑥𝑥∗ is Pareto efficient. 

Theorem – Pareto Efficiency → Welfare Maximization: Let 𝑥𝑥∗ be a Pareto efficient allocation with 
𝑥𝑥𝑖𝑖∗ > 0 for all 𝑐𝑐 ∈ 𝑵𝑵. Assume that each utitliy function 𝑟𝑟𝑖𝑖 is concave, continuous, and monotonic. Then 
there exist nonnegative weights 𝑐𝑐𝑖𝑖 with ∑𝑐𝑐𝑖𝑖 = 1 such that 𝑥𝑥∗ is the solution to the social welfare 
maximization problem with welfare function 𝑊𝑊 = ∑ 𝑐𝑐𝑖𝑖𝑟𝑟𝑖𝑖(𝑥𝑥𝑖𝑖)𝑁𝑁

𝑖𝑖 . 

The theorems presented in this section are not stated in the most general form. Generally, the main results 
in classical welfare theory can be summarized as follows: 

• Competitive equilibrium is Pareto efficient. 

• Pareto efficient allocations can be obtained through competitive equilibria under concavity 
assumptions and endowment redistributions. 

• Social welfare maxima are Pareto efficient. 

• Pareto efficient allocations are welfare maxima under concavity assumptions for some choice of 
welfare weights. 

3.2 Information Economics 

A competitive market is arguably the most important economic paradigm for transactive energy systems, 
especially when the system involves a large number of participants. Nonetheless, there are cases under 
which a transactive energy system cannot be modeled as a competitive market. For example, when the 
number of participants is small, the price-taker assumptions are no longer appropriate. In such cases, one 
may consider using monopolistic or oligopolistic markets to analyze the system outcome. Although the 
analysis will be quite different for these cases, they follow similar ideas. A more dramatic difference will 
occur if we adopt a different information structure assumption. For competitive/monopolistic/oligopolistic 
markets, we assume every agent has complete information about the whole economy system. However, in 
reality, much information is privately held by agents, and some agents are more informed than others. The 
asymmetry of information will completely change the nature of economic analysis and design. The study 
of economic systems under asymmetric information is often called information economics, another focus 
of modern microeconomic theory (Borgers et al. 2015, Diamantaras et al. 2009, Krishna 2009, Laffont 
and Martimort 2009, Vohra 2011). 
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4.0 Theoretical Foundation for Transactive Energy Systems 

Transactive energy systems can be viewed as a class of special economic-engineering systems. Studying 
this class of systems requires the development of specialized economic foundations and principles that 
could be quite different from the classical economic results. The development of transactive coordination 
and control involves the design of appropriate market rules to engage and coordinate various DERs such 
as energy storage, distributed generation, and responsive end-user loads to achieve certain group 
objectives while respecting local objectives and constraints. This coordination and control problem can be 
studied from many different perspectives at different levels. At the resource level, we can consider the 
problem of individual or aggregated resource modeling. We can also consider how individual resources 
make decisions under the given market structure. At the coordination level, we can consider how the 
coordinator makes decisions in the given market structure. We can also consider a more challenging 
problem of how to design appropriate market rules. Designing transactive energy systems poses two 
major challenges. One challenge is imposed by the resource modeling. We have to model not only the 
resource dynamics but also their economic preferences. The other challenge arises from the computational 
issues. Many principles and concepts that are clear in microeconomic theory may be difficult to 
implement computationally. For example, it would be almost impossible to compute the Nash equilibrium 
of a game even when the microeconomic theory proves its existence. This has been known in general as 
an “NP-hard” problem. Therefore, appropriate mathematical tools should be applied to practical 
problems. In this section, we will examine the economic foundation of transactive energy systems to 
illustrate the underlying design challenges. We will develop a theoretical foundation with a formal 
specification of the essential economic assumptions and components of a general transactive energy 
system, and those existing economic results will be leveraged and extended to solve transactive energy 
problems. 

4.1 Transactive Control Framework 

In order to apply transactive approaches to coordinate and control DERs, we first need to model these 
controllable resources, their decision making, and the market interactions among their decisions. For this 
purpose, we propose a theoretical transactive control framework that consists of four key elements: payoff 
functions, control decisions, information, and the solution concept. We will present the details of these 
elements in the following subsection. 

4.1.1 Payoff Functions 

Consider the case with one coordinator and 𝑁𝑁 control DERs (or agents). Throughout this section, we refer 
to the coordinator as agent 0 and others as agent 𝑐𝑐. In general, individual controllable resources are 
modeled as automated agents that can communicate with other agents and the coordinator and perform 
local decision making. They seek only to maximize their own local payoff when interacting with others 
and the system coordinator. This local objective can be represented as a payoff function that depends on 
the energy consumption of the resource and the price. In this case, each agent wants to maximize his 
payoff subject to local constraint. For each agent 𝑐𝑐 = 1, … ,𝑁𝑁, we can formulate the payoff maximization 
problem as follows: 
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Maximize
𝑝𝑝𝑖𝑖

  𝑉𝑉𝑖𝑖(𝑐𝑐𝑖𝑖 , 𝜆𝜆𝑖𝑖; 𝜃𝜃𝑖𝑖) (1) 

Subject to  ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0,  

where 𝑉𝑉𝑖𝑖(𝑐𝑐𝑖𝑖, 𝜆𝜆𝑖𝑖; 𝜃𝜃𝑖𝑖) is the payoff function of each controllable load for its energy consumption 𝑐𝑐𝑖𝑖 under 
the energy price 𝜆𝜆𝑖𝑖, and 𝜃𝜃𝑖𝑖 is private information including agent preferences and local constraints. Notice 
that the optimization variable is unstated, since we have not yet specified the control decision of each 
agent yet. This will be clear after we introduce the control decision later. 

For the coordinator, we can define a similar payoff maximization problem subject to constraints: 

Maximize
𝑝𝑝𝑖𝑖

  𝑉𝑉0(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) (2) 

Subject to  𝑒𝑒(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) ≤ 0  

 ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0,  

where 𝑐𝑐 = (𝑐𝑐1, … ,𝑐𝑐𝑁𝑁), 𝜆𝜆 = (𝜆𝜆1, … , 𝜆𝜆𝑁𝑁), θ = (𝜃𝜃1, … ,𝜃𝜃𝑁𝑁) and 𝑉𝑉0(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) is the payoff function of the 
coordinator. Unlike DERs, the coordinator’s objective function depends on the energy consumption and 
prices of all DERs. In addition, he also has a global constraint to maintain, such as the power flow 
constraint of the transmission system. 

This optimization problem in (1) and (2) can cover a single period or multiple periods, depending on 
whether the energy consumption is defined over a period of time. The local constraints are usually 
expressed in terms of capacity and ramping limits. These limits are determined simultaneously based on 
the local dynamics, control strategies, and operating ranges. For example, the feasible energy 
consumption of an air conditioning unit during a period is constrained by the current room temperature 
with respect to the comfort zone specified by the consumer and how fast the room temperature can be 
changed. There are several difficulties in modeling DERs. First, it is difficult to accurately model some 
controllable resources such as residential HVAC units, which have very complicated characteristics and 
dynamics in power system applications. Second, it is difficult to obtain the utility function of controllable 
loads. Unlike the cost function of controllable generators, which can be easily determined based on 
generator operational cost, fuel efficiency, and fuel cost, the utility function should be determined by the 
underlying economics of energy consumption. However, extracting the underlying economics based on 
the preferences of individual customers is not straightforward. Furthermore, the economic preferences 
should affect local dynamics in certain ways, which makes the resource modeling even more challenging. 
Therefore, there is no universal model for all applications with all types of DERs. 

4.1.2 Control Decisions 

The payoff function specifies what objective each agent wants to optimize, but it does not specify how 
each agent optimizes its objective. This can be done by defining a set of control decisions for the 
coordinator and DERs. 

Let 𝛾𝛾𝑖𝑖 ∈ Γ𝑖𝑖 be the decisions of agent 𝑐𝑐, and let 𝛾𝛾0 ∈ Γ0 denote the control decision of the coordinator. In 
this case, Γ𝑖𝑖 and Γ0 are the feasible control decisions for the agents and the coordinator, respectively. We 
allow the control decisions to have different forms, as long as the energy and price (𝑒𝑒,𝑐𝑐) are uniquely 
determined whenever the decisions of all participating entities are given. Below we give an example. 
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Consider the case where the coordinator determines the unit price of energy, and each agent determines its 
own energy consumption. In other words, we can write the decisions as 𝛾𝛾0 = 𝑐𝑐 and 𝛾𝛾𝑖𝑖 = 𝑒𝑒𝑖𝑖. In this case, 
the optimization problem is 

Maximize
𝛾𝛾𝑐𝑐

  𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖, 𝛾𝛾0; 𝜃𝜃𝑖𝑖) (3) 

Subject to  ℎ𝑖𝑖(𝛾𝛾𝑖𝑖;𝜃𝜃𝑖𝑖) ≤ 0,  

and the coordinator’s payoff optimization problem becomes 

Maximize
𝛾𝛾0

  𝑉𝑉0(𝛾𝛾0, 𝛾𝛾1, … , 𝛾𝛾𝑁𝑁; 𝜃𝜃) (4) 

Subject to  𝑒𝑒(𝛾𝛾0, 𝛾𝛾1, … , 𝛾𝛾𝑁𝑁; 𝜃𝜃) ≤ 0  

 ℎ𝑖𝑖(𝛾𝛾𝑖𝑖;𝜃𝜃𝑖𝑖) ≤ 0.  

It is important to note that after the control decision is specified, the payoff functions can be written as the 
function on the decisions (𝛾𝛾0, 𝛾𝛾1, … , 𝛾𝛾𝑁𝑁), and unlike the original problem (1), the induced problem (3) 
introduces coupling between the decisions of different agents. In the case of (3), the payoff of the agents 
depends not only on their own decisions, but also on that of the coordinator. Note that in a more general 
case, the decision variable may not be price, and the agent decision may not be its energy consumption. 
For instance, the coordinator may need to determine a pricing function that maps the energy consumption 
to a price. In such case, the utility of each agent not only depends on his decision and the coordinator’s 
decision, but can also depend on the decisions of other agents. 

4.1.3 Information 

Aside from control decisions, the information availability to each agent in the system is also an important 
element of transactive energy systems. To capture the information structure of the system, we define an 
information set for each agent as 𝑇𝑇𝑖𝑖, and define an information set for the coordinator as 𝑇𝑇0. 

The information set consists of two parts. The first part describes the private information of the agents, 
denoted by 𝑇𝑇𝑖𝑖𝑡𝑡, which can be user preferences or local constraints. In the transactive control framework, it 
is important to specify whether each agent or coordinator knows the preferences or local constraints of 
others. In different cases, the techniques employed to solve the problem can be significantly different. The 
second part of the information set concerns the information on control decisions of each agent or the 
coordinator, denoted as 𝑇𝑇𝑖𝑖𝑐𝑐. More specifically, it describes whether an agent or coordinator knows the 
control decisions of others before he makes his own decision. If agent 𝑐𝑐 knows the decision of agent 𝑗𝑗 
before he moves, then we write 𝛾𝛾𝑗𝑗 ∈ 𝑇𝑇𝑖𝑖𝑐𝑐. 

As an example, consider an information set 𝑇𝑇𝑖𝑖 = {𝑇𝑇𝑖𝑖𝑡𝑡, 𝑇𝑇𝑖𝑖𝑐𝑐}, where each agent 𝑐𝑐 knows its own private 
information, but does not know the information of others. In this case, 𝑇𝑇𝑖𝑖𝑡𝑡 = {𝜃𝜃𝑖𝑖}. In addition, the 
coordinator does not know the private information of the agents, but only knows a prior probability 
distribution on 𝜃𝜃, denoted as 𝐹𝐹(𝜃𝜃). Therefore we have 𝑇𝑇0𝑡𝑡 = 𝐹𝐹(𝜃𝜃). In this example, let the coordinator 
determine the price first and announce the price to each agent. Then we have 𝑇𝑇0𝑐𝑐 = ∅ and 𝑇𝑇𝑖𝑖𝑡𝑡 = 𝛾𝛾0. 
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Note that the information on control decisions inherently indicates a sequence of decisions. For instance, 
if the agent knows the coordinator decision before he moves, then it indicates that the coordinator moves 
first, and then the agent moves accordingly. In general, we allow any information structure that may lead 
to any sequence of actions. For instance, the coordinator and some agents may make decisions first, then 
these decisions are passed down to the rest to make their decisions accordingly. This sequential decision 
can be illustrated as in Figure 11. 

 
Figure 11.  Sequential Decision Making 

4.1.4 Solution Concept 

The information on control decisions provides a sequence of decisions among the agents and the 
coordinator. This leads to a multilevel decision problem. Note that at each level of the problem, the agents 
move simultaneously. Therefore, in general the multilevel problem can be viewed as multiple layers of 
problems. The entire population of agents is divided into several layers, and those in the same layer make 
control decisions simultaneously. 

The key remaining concern is that within each layer, the simultaneous-move problem may be coupled. In 
other words, the payoff functions of the agents in any layer may depend on the decisions of other players 
in the same layer. Therefore, each layer may be a simultaneous-move game problem, and a proper 
solution concept must be selected for each layer of the problem. Note that in our context, the solution 
concept refers to the solution for each layer. The overall transactive control problem may have different 
layers, and may have different solution concepts for different layers. 

Now consider an arbitrary layer, and assume there are s agents in this layer. To define the solution 
concept, there are two different cases. 

(1) When the payoff function of each agent does not depend on the decisions of other players in this 
layer, then the solution concept is simply the optimal solution to a standard optimization problem. 
For instance, in this case we can write the payoff function as 𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖), and the solution 𝛾𝛾𝑖𝑖∗ simply 
satisfies 𝛾𝛾𝑖𝑖∗ = argmax

𝛾𝛾𝑖𝑖
𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖). 

(2) When the payoff function of each agent depends on the other agents in the same layer, then we 
have a game problem, and the solution to this problem is a game equilibrium. There are two basic 
versions of solution concept for a game problem: Nash equilibrium and the dominant strategy 
equilibrium, which are described below. 

Nash equilibrium in our context is a collection of decisions from which no one wants to deviate given that 
others stick to the equilibrium decision. Mathematically, we can define the Nash equilibrium as follows: 
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Definition – Nash equilibrium: a collection of strategies 𝛾𝛾∗ = (𝛾𝛾1∗, … , 𝛾𝛾𝑠𝑠∗) is a Nash equilibrium for the 
simultaneous-move game problem if for each 𝑐𝑐 = 1, … , 𝑐𝑐, we have 

𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖∗, 𝛾𝛾−𝑖𝑖∗ ) ≥ 𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖 , 𝛾𝛾−𝑖𝑖∗ ) 

for all 𝛾𝛾𝑖𝑖, where 𝛾𝛾−𝑖𝑖 denotes the decisions of all players in this layer other than that of agent 𝑐𝑐, i.e., 𝛾𝛾−𝑖𝑖 =
(𝛾𝛾1, … , 𝛾𝛾𝑖𝑖−1, 𝛾𝛾𝑖𝑖+1, … , 𝛾𝛾𝑠𝑠). In Nash equilibrium, the agent has no motivation to deviate from the 
equilibrium strategy only if others commit to the equilibrium strategy. If the other players do not commit 
to the equilibrium strategy, he may want to reconsider his control decision.  

In contrast, the dominant strategy equilibrium is more stable in the sense that each agent will stick to the 
equilibrium strategy no matter what decisions other players make. Formally, we can define it as follows: 

Definition – dominant strategy equilibrium: a collection of strategies 𝛾𝛾∗ = (𝛾𝛾1∗, … , 𝛾𝛾𝑠𝑠∗) is is a dominant 
strategy equilibrium for the simultaneous-move game problem if for each 𝑐𝑐 = 1, … , 𝑐𝑐, we have 

𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖∗, 𝛾𝛾−𝑖𝑖) ≥ 𝑉𝑉𝑖𝑖(𝛾𝛾𝑖𝑖 , 𝛾𝛾−𝑖𝑖) 

for all 𝛾𝛾𝑖𝑖 and all 𝛾𝛾−𝑖𝑖. 

4.2 Realizations of Transactive Control Framework 

The proposed framework can be used to recognize the similarities and differences among different types 
of transactive energy systems, and identify the key challenges in each type. In the remainder of this 
section, we will apply the proposed framework to study some important transactive energy systems in the 
literature. 

4.2.1 Centralized Optimization 

If the coordinator knows all the information about the agents, such as their cost and utility functions, the 
resource allocation problem can be solved directly as a centralized optimization problem. In this case, the 
control decision of the coordinator is the energy allocation to each agent and the energy price, and the 
agent does not make any decisions. The coordinator will first collect the cost and utility functions from 
individual resources. Because most of the resources are nonstrategic, the collected information will be 
truthful. The coordinator then solves the global optimization problem to obtain the optimal energy 
allocation, and dispatches the individual resources to follow the allocated amount of energy. In many 
cases, the global optimization problem is convex, and thus the solution can be easily determined. 
However, including the load dynamics in the optimization problem makes the problem very challenging 
to solve. Some related work can be found in (Kohansal and Mohsenian-Rad 2016, Mohsenian-Rad et al. 
2010, Yang et al. 2014). 

4.2.2 Competitive Market 

A very important class of transactive problems is one where the agent’s objective function is quasi-linear 
with respect to the price, and the coordinator’s objective is to minimize the overall operational cost while 
engaging DERs to balance supply and demand and provide ancillary services. More specifically, this 
agent payoff function is 𝑉𝑉𝑖𝑖(𝑐𝑐𝑖𝑖, 𝜆𝜆; 𝜃𝜃𝑖𝑖) = 𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖;𝜃𝜃𝑖𝑖) − 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖, where 𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖) denotes the agent’s utility 
resulting from consuming the energy 𝑐𝑐𝑖𝑖, and the term 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖 is the energy payment. Given the agent’s 
objective function, the global objective can be formulated as a social welfare maximization problem: 
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Maximize
𝛾𝛾𝑖𝑖

  �𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖 ; 𝜃𝜃𝑖𝑖) −
𝑁𝑁

𝑖𝑖=1

𝐶𝐶 ��𝑐𝑐𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� (5) 

Subject to  𝑒𝑒(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) ≤ 0 (Global constraints)  

 ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0, (Local constraints)  

where 𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖;𝜃𝜃𝑖𝑖) is the utility function of each DER, and 𝐶𝐶(⋅) is the cost function of energy consumption. 
The objective function is defined as the difference between total utility and total cost of energy. The 
global constraints include constraints imposed on power balance, line flow, voltage magnitude, system 
reserve limits, etc. The local constraints are capacity and ramping limits for the individual resources. 

Next we show that the competitive market is a special case of the proposed transactive control problem. 
Since we have already specified the payoff functions of the agent and the coordinator, it suffices to define 
the control decision, the information set, and the solution concept. In this case, the control decision of the 
agent is its energy consumption and the coordinator’s decision is price. Therefore, we have 𝛾𝛾0 = 𝜆𝜆 and 
𝛾𝛾𝑖𝑖 = 𝑐𝑐𝑖𝑖. In terms of the information, the coordinator does not know the private information of the agents, 
and he determines the price first. In addition, since the agent decisions are decoupled after the price is 
given, the solution concept is the standard solution to optimization problems. We comment that the 
competitive market problem typically collects information before implementing the solution. In this step, 
it assumes the agents to be price-takers, and thus each agent will report truthful information. In this 
regard, although the coordinator does not know the private information in the original setup, it is 
essentially equivalent to the case where all private information is known. 

There are different ways of computing the solution of the competitive market. Broadly speaking, these 
methods can be characterized into two different types according to whether an iterative algorithm is 
needed in computing the solution. 

(1) One method is the non-iteration–based algorithm. It typically requires the agent to submit a demand 
curve. Based on the submitted bids, the coordinator constructs aggregated demand and supply 
curves. The market is then cleared at the intersection of the two curves. It can be shown that the 
solution of such method maximizes the social welfare (Hao et al. 2017, Li et al. 2016). 

(2) The second method is to use iterative algorithms. These algorithms can be divided into several 
categories, such as primal-dual algorithms (Chen et al. 2012, Chen et al. 2010b, Gan et al. 2013, 
Hansen et al. 2015, Jokic et al. 2010, Li et al. 2011b, Mohsenian-Rad et al. 2010, Nguyen et al. 
2012, Papadaskalopoulos and Strbac 2013), average consensus algorithms (Zhang and Chow 2011, 
Zhang and Chow 2012a, Zhang and Chow 2012b), ratio consensus algorithms (Dominguez-Garcia 
et al. 2012, Yang et al. 2016), etc. 

For example, consider a social welfare maximization problem (5) with a global constraint that requires 
power balance. When it is a convex optimization problem, we can solve it via dual decomposition. At 
each iteration, individual resources first solve the local optimization problem as specified by the 
coordinator, then communicate with their neighboring resources according to predefined protocols to 
determine the power imbalance, and finally update the dual variable locally. This process iterates until the 
dual variables converge to the same value. The primal-dual algorithm for this problem can be summarized 
as follows: 
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(1) At the 𝑘𝑘-th iteration, solve the primal subproblem: 𝑐𝑐𝑖𝑖 = argmin
𝑝𝑝𝑖𝑖

𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖 ; 𝜃𝜃𝑖𝑖 ) − 𝜆𝜆(𝑘𝑘)𝑐𝑐𝑖𝑖; 

(2) Update the dual variable 𝜆𝜆 as 𝜆𝜆(𝑘𝑘 + 1) = 𝜆𝜆(𝑘𝑘) − 𝛾𝛾Δ𝑐𝑐(𝑘𝑘), where Δ𝑐𝑐(𝑘𝑘) = ∑ 𝑐𝑐𝑖𝑖𝑁𝑁
𝑖𝑖=1 (𝑘𝑘) − 𝐷𝐷. 

4.2.3 Stackelberg Game 

The coordination problem becomes more challenging to solve when the individual payoff function is not 
quasi-linear, and the coordinator’s objective is different from maximizing the social welfare. In this case, 
the problem becomes a Stackelberg game (Basar and Srikant 2002, Coogan et al. 2013, Jiang and Low 
2011, Maharjan et al. 2013, Stankova and De Schutter 2011, Tushar et al. 2014, Tushar et al. 2012, 
Tushar et al. 2014, Yang et al. 2015, Zhong et al. 2013). We will formally discuss the four elements 
corresponding to Stackelberg game. 

The first important difference between a competitive market and the Stackelberg game lies in the payoff 
functions of the agents and the coordinator. In the Stackelberg game, the individual agent payoff function 
can be a general concave function of the energy consumption and the unit price, i.e., 𝑉𝑉𝑖𝑖(𝑐𝑐𝑖𝑖, 𝜆𝜆𝑖𝑖; 𝜃𝜃𝑖𝑖). 
Typically it is assumed that the marginal benefit of consuming a unit of energy is decreasing; this leads to 
a concave function 𝑉𝑉𝑖𝑖 with respect to 𝑒𝑒𝑖𝑖. Also, the coordinator’s objective is not necessarily to maximize 
the social welfare. For instance, it may want to maximize its profit by selling energy to the individual 
agents. In the Stackelberg game, we let the agent’s control decision to be its energy consumption, and let 
the coordinator’s control decision be the energy price. This is the same as in the competitive market case. 
In terms of information, we assume that the coordinator knows all the private information of the agents, 
and it acts first. This is different from a competitive market, where the coordinator does not know the 
private information of the individual agents. In addition, in Stackelberg games, the lower level problem 
may be coupled or not, and the solution concept should be defined accordingly. 

For example, if the coordinator’s objective is to maximize his profit, then the optimization problem of the 
coordinator is defined as 

Maximize
𝛾𝛾𝑐𝑐

  𝜆𝜆�𝑐𝑐𝑖𝑖 −
𝑁𝑁

𝑖𝑖=1

𝐶𝐶 ��𝑐𝑐𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� (6) 

Subject to  𝑒𝑒(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) ≤ 0  

 ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0,  

and the optimization problems of individual agents are defined as 

Maximize
𝛾𝛾𝑐𝑐

  𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖 , 𝜆𝜆; 𝜃𝜃𝑖𝑖) − 𝜆𝜆𝑐𝑐𝑖𝑖  (7) 

Subject to  ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0.  
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This is referred to as the Stackelberg game, and the solution satisfies the following optimization problem: 

Maximize
𝛾𝛾𝑐𝑐

  𝜆𝜆�𝑐𝑐𝑖𝑖 −
𝑁𝑁

𝑖𝑖=1

𝐶𝐶 ��𝑐𝑐𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� (8) 

Subject to  𝑒𝑒(𝑐𝑐, 𝜆𝜆; 𝜃𝜃) ≤ 0  

 ℎ𝑖𝑖(𝑐𝑐𝑖𝑖; 𝜃𝜃𝑖𝑖) ≤ 0,  

 𝑐𝑐𝑖𝑖 = argmax
ℎ𝑖𝑖(𝑝𝑝𝑖𝑖;𝜃𝜃𝑖𝑖)≤0 

𝑈𝑈𝑖𝑖(𝑐𝑐𝑖𝑖 , 𝜆𝜆; 𝜃𝜃𝑖𝑖) − 𝜆𝜆𝑐𝑐𝑖𝑖   

The computation of the equilibrium of a Stackelberg game is typically very challenging (Colson et al. 
2007). A special case is when the coordinator’s objective function is linear with respect to 𝜆𝜆 and the 
agent’s objective function is linear or quadratic with respect to 𝑒𝑒𝑖𝑖. In this case, the lower level problem is 
on the boundary of the constraint polytope, allowing efficient algorithms to solve the globally optimal 
solution. On the other hand, when the payoff function is not linear, one can try to solve the problem using 
well-developed numerical tools (such as KNITRO (Byrd et al. 2006)). However, in this case there is no 
guarantee that the solution is globally optimal, and the problem may be computationally intensive if the 
dimension is large. 

4.2.4 Mechanism Design 

When the coordinator does not have the full knowledge of the individual resources’ private information 
and the resources are strategic, it is the most challenging case, and the concept of mechanism design from 
microeconomics must be adopted to solve this problem. In this case, the information exchange is realized 
by bidding and clearing. Each resource aims to maximize local payoff and strategically determines 
bidding information sent to the coordinator. The coordinator needs to incentivize individual resources to 
reveal the true information in their bids so that the global objective can be achieved without 
compromising local objectives; i.e., the coordinator influences individuals’ decisions indirectly through 
pricing to achieve the desired social optimum. 

Mathematically, the payoff functions of the mechanism design problem are similar to the Stackelberg 
game, where the coordinator and the agents can have general cost functions. However, the key difference 
between mechanism design and a Stackelberg game lies in the control decisions and the information. In 
mechanism design, each agent is asked to submit a bid; thus, the agent’s decision is its bid. The 
coordinator then collects the bids from agents and determines the energy allocation and price. Therefore, 
the coordinator’s decision is a mapping from the bids to an energy/price pair. Note that in the mechanism 
design problem, the coordinator needs to determine a market rule instead of a market price. This means 
the coordinator’s decision is a function rather than a price value, which is different from the Stackelberg 
game. In terms of information, an important complication in mechanism design is that the coordinator 
does not know the private information of the agents. Thus his decision cannot depend on the private 
information, which is typically the case in a Stackelberg game. Since the individual preferences are 
unknown and the agents are strategic, they may not reveal their true preferences and may try to 
manipulate the price in order to increase their revenue. Therefore, the key challenge in mechanism design 
is for the coordinator to design a mechanism that motivates each agent to bid truthfully. When a 
mechanism induces truthful bidding, we say it is incentive compatible. 
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Mechanism design is extensively studied in economics, computer science, and various engineering fields. 
Papers related to mechanism design include (Athey and Segal 2013, Azevedo and Budish 2013, 
Bergemann and Välimäki 2010, Bitar and Xu 2013, Kearns et al. 2014, Li and Zhang 2015, Nissim et al. 
2012, Pavan et al. 2014, Pavan et al. 2009, Samadi et al. 2012a, Xu et al. 2016). In (Forouzandehmehr 
et al. 2015, Gerding et al. 2011, Grammatico et al. 2015, Ma et al. 2013), Nash equilibriums are analyzed 
based on the given mechanisms. However, despite these efforts, there are still many challenges. For 
instance, in many engineering applications, the private information of the agents cannot be parameterized 
as a scalar, which limits the available techniques to solve the problem. In addition, in energy markets, we 
typically require the price to be the same for the agents at the same location, which is quite challenging 
for the purpose of mechanism design. Furthermore, many classical mechanism design approaches are 
computationally complex (Nisan et al. 2007). These results are hard to implement in large-dimension 
problems. 
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5.0 Conclusions 

In this report, we first reviewed different transactive energy system designs that were deployed in several 
major demonstration projects in the U.S. and Europe. These demonstration projects have successfully 
proven the technical feasibility of transactive energy. In order to help understand the difference between 
these different transactive energy systems, it is important to establish the underlying theoretical 
foundation. We provided a concise introduction to important concepts and results in microeconomic 
theory. Then we developed a unified theoretical framework with a formal specification of the essential 
economic assumptions and components of a general transactive energy system. With the proposed 
theoretical framework, existing transactive energy systems can be rigorously analyzed, and future 
transactive energy systems can be systematically designed. 

Our next step is to develop a set of performance metrics to compare the performance and identify the 
limitations of various transactive energy systems. Then we will apply the proposed theoretical framework 
to systematically analyze transactive energy systems deployed by the AEP gridSMART® demonstration 
project and the PNWSGD project. 
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