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1 Introduction

Factorization is one of the most crucial features of QCD: all perturbative QCD studies

rely on this separation between a hard partonic subamplitude and long distance matrix

elements. This separation is justified in the presence of a sufficiently large scale Q in the
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observable, for which αs(Q) is small enough for perturbation theory to apply. However

large logarithms can arise from QCD dynamics and compensate the smallness of αs(Q),

which makes the resummation of such logarithms necessary.

For most observables, two different factorization schemes can be employed, depending

on the center-of-mass energy s of the process. For processes with the center-of-mass energy

comparable to the large scale of the process (s ∼ Q), collinear factorization is applied and

the large log(Q) terms are resummed via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution equations [1–3]. On the other hand, processes with the center-of-mass

energy much larger than any other scale (s ≫ Q) are treated in the so-called low-x regime.

In this case, kt-factorization applies and large log(s) terms are resummed.

Several descriptions of kT -factorization for low-x physics have been developed over

the last couple of decades, starting with the well known Balitsky-Fadin-Lipatov-Kuraev

(BFKL) framework [4, 5]. The most recent low-x frameworks, namely the dipole model

[6–8] and the shockwave framework [9–11] rely on a semi-classical approach, where low x

gluon fields are treated as external fields. With such a treatment, all interactions with the

external field can be resummed into path-ordered Wilson line operators which then consti-

tute the building blocks of these low-x formalisms. Remarkably, due to this resummation

of all interactions, perturbative results from this framework were found to be compatible

with previous results for the semi-classical treatment of scattering off dense targets [12–

14] which include gluon saturation effects from multiple scatterings. All of these recent

frameworks are equivalent, and logarithms are resummed via the Balitsky/Jalilian-Marian-

Iancu-McLerran-Weigert-Leonidov-Kovner (B-JIMWLK) hierarchy of evolution equations

[15–22], or in the mean field approximation by the Balitsky-Kovchegov (BK) equation

[9, 23]. Nowadays, the weak coupling non-perturbative realization of the saturation in

QCD is referred to as the Color Glass Condensate (CGC) [21, 22]. Throughout this paper,

we refer to CGC as a unified picture (Balitsky formalism/ Mueller’s dipole picture/CGC)

of the small-x QCD.

The fact that the CGC generalizes the BFKL framework was established early on

at Leading-Logarithmic (LL) accuracy [24, 25] and made more explicit in [26], then at

Next-to-Leading-Logarithmic accuracy (NLL) in [27] and more explicitly in [28–30]. This

equivalence relies on the expansion of the path-ordered Wilson lines in powers of the gluon

field for small values of gA, what is known as the dilute limit.

Although it is not a true all-order factorization scheme, as opposed to collinear fac-

torization for several simple processes [31], the CGC framework applies in principle to

any low-x or high-density process regardless of the number of observed scales. In contrast,

collinear factorization in its most common form is not valid for processes involving not only

a hard scale Q, but also a second, smaller scale. In the present context the most interesting

case is when that smaller scale is related to the transverse momentum of a parton inside

a hadron. The collinear distributions were generalized for such processes, leading to the

Transverse Momentum Dependent (TMD) factorization scheme [31–38].

For a process with center-of-mass energy s, a hard scale Q, and a hard yet softer

transverse momentum scale |k| ? ΛQCD, the respective application ranges of CGC and

TMD schemes are s ≫ Q ? |k| and s ∼ Q ≫ |k|. A matching of these schemes in the
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overlapping regime where |k| /Q and Q/s are both small was proven in [39, 40]. Since

then, gluon TMDs in the CGC have been at stake in many recent studies (see for example

[41, 46–48] ). Indeed the measurement of TMD parton distributions offers great insight

in the 3D structure of hadrons, yet these distributions are not fully universal and thus

they require case-by-case studies. Studying them at low-x allows one to use standard CGC

tools like the McLerran-Venugopalan (MV) model [12–14], Golec-Biernat-Wüsthoff (GBW)

parametrization [49] or numerical solutions to the B-JIMWLK hierarchy of equations [41]

for the description of these complicated TMD distributions.

Notable attention has been drawn to polarized TMDs and to their role in angular

distributions at low-x [42–47], and the relation between process-independence breaking in

TMD factorization and the Wilson lines which are natural built-in features of the CGC

[48].

On the other hand, the CGC framework in the so-called dilute limit also matches BFKL

results, which were built for processes with different kinematics, where s ≫ Q ∼ |k| . A
new scheme for TMD factorization at low-x, which is referred to as the improved TMD

scheme (iTMD), was built in [50, 51] as an attempt to interpolate between both |k| ≪ Q

and |k| ∼ Q limits. This framework aims at resumming some powers of |k| /Q by taking

into account non-zero k in the hard subamplitude. In practice, as we will show in this

article, it resums all kinematic twist corrections to the hard subamplitude which couples to

the leading-twist TMD operator, leaving genuine twist corrections aside. For an alternative

approach for twist studies in the saturation regime, see [52].

The purpose of this paper is to study the relation between CGC and iTMD amplitudes,

with a comparison with dilute BFKL amplitudes as well. It is organized as follows. In

section 2, we consider the first corrections to the correlation limit in a CGC amplitude and

compare them to the first power corrections in the TMD factorization, and show how both

expansions are related to one another. Then in section 3, we start with the most generic

form for 1 → 2 processes in the CGC and expand it in powers of the dipole size. We extract

the pure kinematic twist corrections and resum them to infinite accuracy. This leads to the

main result of this article: a completely generic infinite-twist CGC amplitude in Eq. (3.10)

in an all-body Wandzura-Wilczek approximation (i.e. where all genuine twist corrections

are neglected). In section 4, we start again from the generic CGC amplitude and perform

a more standard dilute expansion, leading to a generic dilute CGC amplitude in Eq. (4.8).

Section 5 is devoted to a short review of the iTMD framework and to recalculating the

iTMD cross sections in a form that can be compared with the CGC all-kinematic-twists

result. In section 6, we apply the generic kinematic twist resummed CGC result for different

processes and compare them to the iTMD predictions. We find a perfect match between

the kinematic twist resummed cross sections for each process and the corresponding iTMD

results. Moreover, we also compare the dilute limit of the generic CGC cross sections with

the kinematic twist ressumed cross sections by simply setting all distributions to the same

value and find a perfect matching as well. Finally, in section 7 we summarize and discuss

our findings for this study.
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Notations and conventions

We define two lightlike vectors n1 and n2 such that n1 ·n2 = 1, and light cone directions +

and − such that n1 · k = k−, n2 · k = k+. The projectile (resp. target) is assumed to have

a large momentum ∼ √
s along the + (resp. −) direction. In the CGC calculations we use

the lightcone gauge A+ = 0. Transverse components are denoted with a ⊥ subscript in

Minkowski space and by bold characters in Euclidean space. Therefore, for two vectors k

and x, we write

k · x = k+x− + k−x+ + k⊥ · x⊥ = k+x− + k−x+ − k · x (1.1)

The CGC part of this paper relies on the separation of the gluon fields in the QCD La-

grangian depending on their + momentum between fast fields (k+ > e−Y p+) and slow

fields (k+ < e−Y p+). In the eikonal approximation, the slow fields have the shockwave

form

Aµ(x) = δ(x+)B(x⊥)n
µ
2 +O(s−1/2), (1.2)

where B is a function of x⊥ only. In the semi-classical approximation for the slow fields,

treated as external fields for the projectile, interactions with the target are resummed into

path-ordered Wilson lines

[a+, b+]x = P exp

[

ig

∫ b+

a+
dz+A−(z+, 0, x⊥)

]

, (1.3)

and we write

Ux = [−∞,+∞]x. (1.4)

CGC Wilson line operators carry a color representation, in which case we define UR
x

as

the Wilson line obtained from Eq. (1.3) by replacing A−(x) → T a
RA

−
a (x). Finally, we use

the CGC brackets to describe the normalized forward actions of Wilson line operators on

target states |P 〉. For an operator O we define the brackets as:

〈O〉 ≡ 〈P |O|P 〉
〈P |P 〉 . (1.5)

2 Correlation limit and TMD power expansion

In this work we study processes that describe the production of a pair of particles with a

large invariant mass from a single particle in an external shockwave field built from the

target gluons. We consider the case when both outgoing particles are tagged and their

transverse momenta are fully reconstructed. The produced particles carry longitudinal

momenta p+1 and p+2 , and transverse momenta p1 and p2. The two important combinations

of these momenta are the sum of the two transverse momenta k

k ≡ p1 + p2 (2.1)
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and the transverse-boost invariant momentum q which is defined as

q ≡ p+2 p1 − p+1 p2

p+1 + p+2
. (2.2)

The hard scale Q of the process is given by the invariant mass of the outgoing pair which

is directly related to the transverse boost invariant momentum:

Q2 =

(

p+1 + p+2
)2

2p+1 p
+
2

q2 =
q2

2zz̄
, (2.3)

where

z ≡ p+1
p+1 + p+2

≡ 1− z̄ . (2.4)

As discussed in detail in [40], one can get the gluon TMDs through CGC calculations

in certain limit which is usually referred to as ”back-to-back correlation limit”. In this

limit, the two transverse scales |k| and |q| are well separated, i.e. |q| ≫ |k|. In the

CGC framework, the transverse boost invariant momentum q is Fourier conjugate to the

transverse size of the produced pair (dipole size) r and the total transverse momentum

is conjugate to the impact parameter b. Therefore, the back-to-back correlation limit

corresponds to the case |r| ≪ |b| in coordinate space allowing a Taylor expansion of the

CGC observables in the dipole size r.

We start by clarifying the power expansion employed here and in the rest of this section

we consider a simple process in the back-to-back correlation limit to utilize the small dipole

size expansion in the CGC framework and compare it with the power expansion in the TMD

factorization framework to clarify the relation between the two procedures.

2.1 Power expansion at the amplitude level

The TMD framework involves gauge invariant light ray operators [53], for which the dis-

tinction between kinematic twists and genuine twists is convenient. For a set of gauge

invariant twist p operators1 O(i)
p associated with the hard part H(i)

p , the n-th power of

k⊥ in the cross section is given by the sum over p ∈ {0 · · · n} of the p-th power in H(i)
n−p

convoluted with O(i)
n−p and summed over all i.

For inclusive observables, power corrections are split between amplitudes and complex

conjugate amplitudes. However for the sake of this article, which aims at comparing CGC

and iTMD results, it is actually sufficient to study power corrections at the amplitude

level. Rather than using full, gauge invariant, inclusive operators, it is also enough for the

comparison to use ”half”-operators at the amplitude level, knowing how they would get

combined into gauge invariant inclusive operators at the cross section level.

In the particular cases studied in this article, O(i)
p will be a set of p-body gluon light ray

1Note that in a light ray OPE, the gauge links in the operators are not taken into account in the counting

of twists.
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half-operators

O(i)
p (x1, ..., xp) = [±∞, x1]F

−j1 (x1) [x1, x2]F
−j2 (x2) ... [xp−1, xp]F

−jp (xp) [xp,±∞] .

(2.5)

We refer to O(i)
p as a p-body operator, with O(i)

1 being the set of leading 1-body operators,

which would combine into the leading twist (2-body in the standard counting) TMDs at

the cross section level. Then the n-th power correction is given by the sum of p-th power in

the (n− p)-body hard part, convoluted with the (n− p)-body operator. Corrections from

the hard parts are kinematic twists, while higher-body operators lead to genuine twist

corrections. In particular, fully kinematic twists, that are the main focus of this study, are

given by successive k⊥-derivatives of the 1-body hard part.

2.2 Dipole size expansion for γ → qq̄ in the CGC

It is informative to start by computing the first few corrections to the correlation limit in

the CGC. As a simple example, let us consider the amplitude for the photoproduction of

a quark-antiquark dijet which reads

Aγ→qq̄ = (2π) δ
(

p+q + p+q̄ − p+γ
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥

r2

[(

Ub+z̄rU
†
b−zr

)

− 1
]

φµ (2.6)

where the Wilson lines Ub+z̄r are defined in Eq. (1.4) with Eq. (1.3). Here, φµ is the tensor

part of the amplitude that encodes the Dirac structure for this process and it is defined as

φ(γ→qq̄)
µ = i

eq
2π

εσp⊥ūpq [2zg⊥µσ − (γ⊥µγ⊥σ)] γ
+vpq̄ . (2.7)

In the correlation limit, it is straightforward to expand this amplitude in powers of the

small dipole size r and keep the first two terms in the expansion. After performing a

simple integration by parts, the result can be written as

Aγ→qq̄ = i
eq
2π

εlp (2π) δ
(

p+q + p+q̄ − p+g
)

∫

d2b d2r e−i(q·r)−i(k·b)

× rirj

r2
ūpq

(

2zδil + γiγl
)

γ+vpq̄

[

1

2
rk
(

∂jUb

)

(

∂kU †
b

)

(2.8)

+ z̄
(

∂jUb

)

U †
b

(

1 +
1

2
(iz̄k · r)

)

− zUb

(

∂jU †
b

)

(

1− 1

2
(izk · r)

)]

.

O(1) terms in Eq.(2.8) give the well-known back-to-back result which reads

A(b2b)
γ→qq̄ = i

eq
2πε

l
p (2π) δ

(

p+q + p+q̄ − p+g
) ∫

d2b d2r e−i(q·r)−i(k·b)

×rirj

r2 ūpq
(

2zδil + γiγ l
)

γ+vpq̄

[

z̄
(

∂jUb

)

U †
b − zUb

(

∂jU †
b

)]

, (2.9)
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that has been proven to match the leading twist TMD amplitude. The rest of the terms

are O(r) in Eq.(2.8) that are corrections to the back-to-back result:

A(nb2b)
γ→qq̄ = i

eq
2π

εlp (2π) δ
(

p+q + p+q̄ − p+g
)

∫

d2b d2r e−i(q·r)−i(k·b)

× 1

2

rirj

r2
ūpq

(

2zδil + γiγ l
)

γ+vpq̄ (2.10)

×
[

rk
(

∂jUb

)

(

∂kU †
b

)

+ z̄
(

∂jUb

)

U †
b (iz̄k · r)− zUb

(

∂jU †
b

)

(− (izk · r))
]

.

We would like to emphasize that the next-to-back-to-back term, Eq. (2.10), has a very

interesting form. Noting the fact that a derivative acting on a CGC Wilson line extracts

a gluon field, one can immediately conclude that the first term in the brackets is a 2-body

half-operator. On the other hand, one can manipulate the last two terms using the fact

that

iz̄rle−i(q·r) = − ∂

∂pl
q

e−i(q·r) , (2.11)

−izrle−i(q·r) = − ∂

∂pl
q̄

e−i(q·r) , (2.12)

so that the next-to-back-to-back term can be written as

A(nb2b)
γ→qq̄ = i

eq
2π

εlp (2π) δ
(

p+q + p+q̄ − p+g
)

∫

d2b d2r e−i(k·b)

× 1

2

rirj

r2
ūpq

(

2zδil + γiγl
)

γ+vpq̄ (2.13)

×
[

rk
(

∂jUb

)

(

∂kU †
b

)

− z̄
(

∂jUb

)

U †
b

(

k · ∂

∂pq

)

+ zUb

(

∂jU †
b

)

(

k · ∂

∂pq̄

)]

e−i(q·r).

At this point we can make a diagram-by-diagram correspondence with TMD factorization.

Naturally,
(

∂jUb

)

U †
b terms correspond to the diagram where the TMD gluon hits the

quark, while Ub

(

∂jU †
b

)

terms correspond to the diagram where it hits the antiquark. For

such diagrams, it is easy to see that the dependance on k and pq (resp. k and pq̄) is only in

the intermediate quark (resp. antiquark) propagator G
(

k+ pq

)

(resp. G
(

k − pq̄

)

). Thus

for those diagrams we have

k · ∂

∂pq

= k · ∂

∂k
, (2.14)

k · ∂

∂pq̄

= −k · ∂

∂k
. (2.15)

Hence, the next-to-back-to-back contribution can be cast into the following form:

A(nb2b)
γ→qq̄ =

∫

d2b e−i(k·b)

[

(

∂jUb

)

(

∂kU †
b

)

Hjk
2 +

(

∂jUb

)

U †
b

(

k · ∂

∂k

)

Hj
1

]

, (2.16)
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where Hjk
2 is a 2-body hard subamplitude, and Hj

1 is a 1-body hard subamplitude (given

by the sum of the two diagrams discussed above).

2.3 TMD power corrections to γ → qq̄

For the photoproduction of a quark-antiquark dijet, the 1-body amplitude2 for TMD fac-

torization has the following form:

A1 (k) = ig

∫

d2k1

(2π)2
(2π)2 δ2 (k1 − k)Hi

1 (k1)

∫

db+1 d
2b1e

−i(k1·b1) (2.17)

×
[

−∞, b+1
]

b1
F−i (b1)

[

b+1 ,−∞
]

b1
,

where Hi
1 (k1) is a hard subamplitude. Power corrections are obtained via the Taylor

expansion of this hard part. Up to the first correction, rewriting the TMD operator as the

derivative of a Wilson line, it reads:

A1 (k) ≃
∫

d2b e−i(k·b)

[

Hi
1 (0)−

(

k · ∂

∂k
Hi

1

)

(0)

]

(

∂iUb

)

U †
b . (2.18)

The 2-body amplitude for the same process can be written as

A2 (k) = g2
∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k)Hij

2 (k1,k2)

∫

db+1 db
+
2 d

2b1d
2b2 (2.19)

× e−i(k1·b1)−i(k2·b2)
[

−∞, b+1
]

b1

{

F−i (b1) [b1, b2]F
−j (b2)

}

b−1 =b−2 =0

[

b+2 ,−∞
]

b2
.

Taking the leading term in the Taylor expansion of the hard part yields

A2 (k) = g2
∫

db+1 db
+
2

∫

d2b1d
2b2 δ

2 (b1 − b2) e
−i(k·b2)Hij

2 (0,0)

×
[

−∞, b+1
]

b1

{

F−i (b1) [b1, b2]F
−j (b2)

}

b−1 =b−2 =0

[

b+2 ,−∞
]

b2
. (2.20)

Using the δ-function of the impact parameters b1 and b2 which sets these two transverse co-

ordinates to the same value, one can rewrite the gauge link [b1, b2] as
[

b+1 ,+∞
]

b1

[

+∞, b+2
]

b2
.

This allows us to rewrite the operator as derivatives of Wilson lines and the leading term

in the Taylor expansion of the 2-body amplitude for photoproduction of a quark-antiquark

dijet reads

A2 (k) =

∫

d2b e−i(k·b)Hij
2 (0,0)

(

∂iUb

)

(

∂jU †
b

)

. (2.21)

The comparison between Eqs. (2.18), (2.21) and the CGC result given in Eq. (2.16) shows a

strong similarity between the small-dipole expansion in the CGC and the power expansion

in the TMD framework. A more general matching could be conjectured. In this paper, we

only focus on kinematic twist corrections and compare the 1-body contributions from the

2We write the amplitude in an operator form, similarly to what is done in the CGC. The true amplitude

is given by the action of this operator on target states.
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CGC to those obtained in the TMD framework with infinite power accuracy via the iTMD

scheme developed in [50]. Comparisons for higher-body terms are left for further studies.

3 Kinematic twist resummation for a generic 1 → 2 process in the CGC

In the previous section, we have calculated the next-to-back-to-back corrections for a spe-

cific process (γ → qq̄) in the CGC framework and showed how one can isolate the 1-body

and 2-body terms in this contribution. Our main goal in this section is to generalize this

procedure to all orders in the small dipole size expansion. We isolate the 1-body contri-

bution from the higher-body contributions, and then resum the 1-body contributions that

appear in higher orders in the small dipole size expansion.

We would like to apply our results to several different 1 → 2 processes in the CGC

framework. Therefore, we start from a generic CGC amplitude for a 1 → 2 process from

which one can easily deduce all these different processes that are computed using effective

Feynman rules in a shockwave background field [9–14] given in Appendix A. For this

generic process, as before, we consider the case when the outgoing pair of particle has a

large invariant mass, and the incoming particle is on the mass shell. For each (p0 → p1p2)

process, we use the same longitudinal momentum fractions (z and z̄) introduced in Eq. (2.4),

the total transverse momentum k of the produced particles defined in Eq. (2.1) and the

transverse boost invariant momentum q that is defined in Eq. (2.2). The generic CGC

amplitude (see Fig. 1) in this case reads

A0→12 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b)

× rµ⊥
r2

[(

UR1
b+z̄rT

R0UR2
b−zr

)

−
(

UR1
b TR0UR2

b

)]

φµ, (3.1)

where φµ is a Dirac structure which does not depend on coordinates, and (R1, R0, R2)

p0, R0

b b+ z̄r

b− zr

p1, R1

p2, R2

Figure 1: Generic (0 → 12) process in an external shockwave field. The gray blobs
represent the dressing of each line crossing it by Wilson line operators, resumming any
number of eikonal scatterings with the external field.

are color representations. This is a well known form in small-x kinematics: the interaction

with the target can be factorized out in the eikonal limit, and it contains all information

on color flow. The spin structure factorizes in the massless case due to transverse boost
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invariance: the mere topology of a diagram is sufficient to predict its momentum structure,

or equivalently in coordinate space its dipole-size dependence. One can easily check that

the amplitudes listed in Appendix B have the form of Eq. (3.1).

The expression for the generic CGC amplitude for a 1 → 2 process expanded to the

n-th power of r is obtained by performing a Taylor series expansion of the Wilson line

operators in A0→12 which can be simply written as

A(n)
0→12 = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥φµ

r2
(3.2)

× 1

n!
rα1
⊥ ...rαn

⊥

n
∑

m=0

(

n

m

)

z̄m (−z)n−m
(

∂α1 ...∂αmUR1
b

)

TR0

(

∂αm+1 ...∂αnU
R2
b

)

.

The rest of our discussion relies on a symmetry hypothesis based on our experience of

BFKL and CGC amplitudes. In the CGC, diagrams with scattering only on one line

give (UR1 − 1R1)1R2 and 1R1(UR2 − 1R2) contributions, which once summed up with

the symmetric contribution (UR1 − 1R1)(UR2 − 1R2) lead to the gauge invariant dipole

UR1UR2 −1R11R2 . In BFKL computations, diagrams with one gluon on each line give the

impact factor ϕ(k1⊥, k2⊥) + ϕ(k2⊥, k1⊥) while diagrams with both gluons on one line give

counterterms −ϕ(k1⊥+k2⊥, 0⊥) and −ϕ(0⊥, k1⊥+k2⊥). The latter insure the cancellation

of the full impact factor for k1⊥ = 0⊥ and for k2⊥ = 0⊥ and thus gauge invariance in the

BFKL sense.

By analogy, keeping in mind that one derivative equals one gluon in the TMD, we assume

that contributions with no derivative on one line must be a gauge-invariance restoring term

for the 1-body contributions, i.e. a kinematic twist, which we extract with the following

procedure.

We assume that the n-body contribution to the amplitude, for n > 1, does not contain

the least symmetric Wilson line operators, in terms of derivatives. In other words, our

statement is that no U(∂i1 ...∂inU
†) or (∂i1 ...∂inU)U † term contributes to gauge invariant

amplitudes. Operators with the least symmetric derivative structures need to be integrated

by parts using

∫

d2b e−i(k·b)
(

∂α1 ...∂αmUR1
b

)

TR0

(

∂αm+1 ...∂αnU
R2
b

)

(3.3)

=

∫

d2b e−i(k·b)
[

−ik⊥αn

(

∂α1 ...∂αmUR1
b

)

TR0

(

∂αm+1 ...∂αn−1U
R2
b

)

−
(

∂α1 ...∂αm+1U
R1
b

)

TR0

(

∂αm+2 ...∂αnU
R2
b

)]

or the other way around, depending on which Wilson line has more derivatives acting on it.

By employing this procedure, we make sure that the non-symmetric operators are reduced

to a more symmetric contribution and a contribution with less derivatives acting on the

Wilson line operators. One can then proceed recursively in order to isolate all the 1-body

contributions from the higher-body terms. However, we should emphasize that a stronger

hypothesis is required in order to study genuine twist corrections, which are left for future
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studies. Nevertheless, as mentioned earlier in this study we focus on the kinematic twists.

In order to clarify our discussion, let us consider the case for n = 4. The generic CGC

amplitude for a 1 → 2 process, when expanded to O(r4), after employing the procedure

described above, reads

A0→12 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥φµ

r2

×
{

rα1
⊥

[

z̄
(

∂α1U
R1
b

)

TR0UR2
b

(

1 +
iz̄ (k · r)

2!
+

(iz̄ (k · r))2
3!

+
(iz̄ (k · r))3

4!

)

−zUR1
b TR0

(

∂α1U
R2
b

)

(

1 +
−iz (k · r)

2!
+

(−iz (k · r))2
3!

+
(−iz (k · r))3

4!

)]

− rα1
⊥ rα2

⊥

(

∂α1U
R1
b

)

TR0

(

∂α2U
R2
b

)

(

1

2!
+

−i (z − z̄) (k · r)
3!

+
(−i (z − z̄) (k · r))2

4!

)

+ rα1
⊥ rα2

⊥ rα3
⊥

[

z
(

∂α1U
R1
b

)

TR0

(

∂α2∂α3U
R2
b

)

(

1

3!
− 2 (iz (k · r))

4!

)

(3.4)

−z̄
(

∂α1∂α2U
R1
b

)

TR0

(

∂α3U
R2
b

)

(

1

3!
+

2 (iz̄ (k · r))
4!

)]

+rα1
⊥ rα2

⊥ rα3
⊥ rα4

⊥

(

∂α1∂α2U
R1
b

)

TR0

(

∂α3∂α4U
R2
b

) 1

4!

}

.

As emphasized multiple times earlier, our aim in thus work is to study the
(

∂α1U
R1
b

)

TR0UR2
b

and UR1
b TR0

(

∂α1U
R2
b

)

terms and perform an all-order dipole size resummation for them.

This amounts to the Wandzura-Wilczek approximation for all twists [54]. Here after, we

denote all the amplitudes and the cross sections obtained from the CGC calculations by

adopting the Wandzura-Wilczek approximation with the superscript WW . With our sym-

metry argument, it is easy to obtain a generic form for the n-th power in the amplitude,

by performing (n − 1) integrations by parts on the least symmetric terms. Summing up

such contributions for all n leads to

AWW
0→12 = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥φµ

r2
(3.5)

× rα1
⊥

[

z̄
(

∂α1U
R1
b

)

TR0UR2
b

∑

n

[iz̄ (k · r)]n
(n+ 1)!

− zUR1
b TR0

(

∂α1U
R2
b

)

∑

n

[−iz (k · r)]n
(n+ 1)!

]

.

It is now straightforward to perform the resummation explicitly which results in the fol-

lowing form

AWW
0→12 = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥φµ

r2
(3.6)

× rα1
⊥

[

z̄
(

∂α1U
R1
b

)

TR0UR2
b

eiz̄(k·r) − 1

iz̄ (k · r) − zUR1
b TR0

(

∂α1U
R2
b

) e−iz(k·r) − 1

−iz (k · r)

]

.
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The integral over the dipole size r is factorized from the rest of the expression and can be

performed explicitly by considering the following integral

Iij (p) ≡
∫

ddr
rirj

r2
e−i(p·r) − 1

(p · r) e−i(q·r), (3.7)

for p = z̄k or p = −zk. The details of the calculation can be found in Appendix C and

the result reads

Iij (p) = −2
iπ

p2

(

piδjl + pjδil − plδij
)

(

ql + pl

(q + p)2
− ql

q2

)

. (3.8)

Plugging this result into Eq. (3.6) and reintroducing the transverse momenta of the pro-

duced particles (p1,p2) leads to the final expression for the generic CGC amplitude for a

1 → 2 process in the Wandzura-Wilczek approximation:

AWW
0→12 = (2π)2 δ

(

p+1 + p+2 − p+0
)

∫

d2b e−i(k·b) φ
i

k2

(

kiδjl + kjδil − klδij
)

×
[(

ql

q2
+

pl
2

p2
2

)

(

∂jUR1
b

)

TR0UR2
b +

(

ql

q2
− pl

1

p2
1

)

UR1
b TR0

(

∂jUR2
b

)

]

. (3.9)

Using the generic CGC amplitude given in Eq. (3.9), the generic cross section can be

calculated in a straightforward manner and the result reads

dσWW
0→12

dy1dy2d2p1d
2p2

=
(2π)

16C0p
+
0

δ
(

p+1 + p+2 − p+0
)

(

φiφi′∗
)

∫

d2b

(2π)2
d2b′

(2π)2
eik·(b

′−b)

× 1

k4

(

kiδjl + kjδil − klδij
)(

ki′δj
′l′ + kj′δi

′l′ − kl′δi
′j′
)

×
{

(

ql

q2
+

pl
2

p2
2

)

(

ql′

q2
+

pl′
2

p2
2

)

〈

Tr
[(

∂jUR1
b

)

TR0UR2
b UR2†

b′
TR0†

(

∂j′UR1†

b′

)]〉

+

(

ql

q2
+

pl
2

p2
2

)

(

ql′

q2
− pl′

1

p2
1

)

〈

Tr
[(

∂jUR1
b

)

TR0UR2
b

(

∂j′UR2†

b′

)

TR0†UR1†

b′

]〉

(3.10)

+

(

ql

q2
− pl

1

p2
1

)

(

ql′

q2
+

pl′
2

p2
2

)

〈

Tr
[

UR1
b TR0

(

∂jUR2
b

)

UR2†

b′
TR0†

(

∂j′UR1†

b′

)]〉

+

(

ql

q2
− pl

1

p2
1

)

(

ql
′

q2
− pl′

1

p2
1

)

〈

Tr
[

UR1
b TR0

(

∂jUR2
b

)(

∂j′UR2†

b′

)

TR0†UR1†

b′

]〉

}

,

where the factor 1
2C0

originates from the spin and color averaging over the incoming state

and 〈· · · 〉 is defined in Eq. (1.5). The color Fierz factor C0 is Nc for a quark,
(

N2
c − 1

)

for

a gluon and 1 for a photon.

Eq. (3.10) is the main result of this paper. It is the generic CGC cross section for a

1 → 2 process that resums all kinematic twists. By introducing the proper color structure
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and the proper Dirac structure for a specific 1 → 2 process, one can get the kinematic

twist resummed CGC cross section for that specific process. In the following sections, we

study several of such specific processes and show that the results match exactly the ones

obtained through the iTMD calculations.

4 Dilute limit of a generic 1 → 2 process in the CGC

For very high values of the center-of-mass energy s or for dense targets, multiple scatterings

are expected to occur. In practice, for values of |k| of the order of the target saturation scale

Q2
s ∼ (A/x)1/3, it is expected for the target fields A− to scale like 1/g due to a high gluon

occupation number, so that gA− must be resummed into the path-ordered Wilson line

operators UR
b which are the natural building blocks of the CGC or shockwave formalisms.

The regime where |k| ≫ Qs, is referred to as the dilute limit. In this limit gA− is

expected to be small and therefore one is allowed to expand Wilson line operators in gluon

fields (or in Reggeon fields for more involved analysis, as [26, 55]) or equivalently to use a

dilute formalism like BFKL.

In this section, we consider the dilute limit of the CGC by expanding the Wilson line

operators in the generic CGC amplitude for a 1 → 2 process whose expression is given

in Eq. (3.1). The generic Wilson line operator, when expanded in powers of the strong

coupling constant g, in arbitrary representation R reads

UR
x = 1 + igT a

R

∫

dx+A−
a

(

x+, 0,x
)

+O
(

g2
)

. (4.1)

with T a
R being the SU(Nc) generator in the representation R. Then, in the dilute limit,

the generic CGC amplitude given in Eq. (3.1) can be written as

AgA∼0
0→12 = ig (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b) r
µ
⊥

r2
φµ

×
∫

dz+
{

TR0T
a
R2

[

A−
a

(

z+, 0, b − zr
)

−A−
a

(

z+, 0, b
)]

(4.2)

+T a
R1

TR0

[

A−
a

(

z+, 0, b + z̄r
)

−A−
a

(

z+, 0, b
)]}

.

After introducing the incoming target state P and the target remnant states X, and using

the translation invariance of the 〈X |(...)|P 〉 matrix elements, one can easily integrate over

the impact parameter which yields to the following form of the matrix element:

〈

X
∣

∣

∣
AgA∼0

0→12

∣

∣

∣
P
〉

= ig (2π)4 δ (k + PX − P − p0)

∫

d2r e−i(q·r) r
µ
⊥

r2
φµ

〈

X
∣

∣A−
a (0)

∣

∣P
〉

×
[

TR0T
a
R2

(

e−iz(k·r) − 1
)

+ T a
R1

TR0

(

eiz̄(k·r) − 1
)]

. (4.3)

In Eq. (4.3), the integral over the dipole size r can be performed in a straightforward
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manner by using the well known integral

∫

d2r
rµ⊥
r2

e−i(ℓ·r) = −2iπ
ℓµ⊥
ℓ2

, (4.4)

which finally leads to the following form of the dilute amplitude

〈

X
∣

∣

∣
AgA∼0

0→12

∣

∣

∣
P
〉

= 2πg (2π)4 δ (k + PX − P − p0)
〈

X
∣

∣A−
a (0)

∣

∣P
〉

(4.5)

×
[

TR0T
a
R2

(

pµ1⊥
p2
1

− qµ⊥
q2

)

− T a
R1

TR0

(

pµ2⊥
p2
2

+
qµ⊥
q2

)]

φµ.

The cross section in the dilute limit can be easily obtained from Eq. (4.5), and the result

reads

dσgA∼0
0→12

dy1dy2d2p1d
2p2

=
αs

4s
δ
(

p+1 + p+2 − p+0
)

∫

db+d2b

(2π)2
e−i(k·b)

〈

P
∣

∣A−
c (b)A−

a (0)
∣

∣P
〉

b−=0

(

φiφj∗
)

× Tr

{[

TR0T
a
R2

(

pi
1

p2
1

− qi

q2

)

− T a
R1

TR0

(

pi
2

p2
2

+
qi

q2

)]

(4.6)

×
[

T c†
R2

T †
R0

(

p
j
1

p2
1

− qj

q2

)

− T †
R0

T c†
R1

(

p
j
2

p2
2

+
qj

q2

)]}

.

Finally, it is customary to introduce the unintegrated parton distribution function (uPDF)

G (k) that is defined as

∫

db+
∫

d2b

(2π)2
e−i(k·b)

〈

P
∣

∣A−
a (b)A−

c (0)
∣

∣P
〉

= (2π)P−Gac (k)

k2 (4.7)

with

δacGac (k) = G (k) .

Averaging over the spin and color states of the incoming parton or photon, we arrive to

the generic form of the cross section in the dilute limit:

dσgA∼0
0→12

dy1dy2d2p1d
2p2

=
(2π)

16C0p
+
0

αsδ
(

p+1 + p+2 − p+0
) (

φiφj∗
) Gac (k)

k2

×
{

(

qi

q2
+

pi
2

p2
2

)

(

qj

q2
+

p
j
2

p2
2

)

Tr
(

T a
R1

TR0T
†
R0

T c†
R1

)

+

(

qi

q2
+

pi
2

p2
2

)

(

qj

q2
− p

j
1

p2
1

)

Tr
(

T a
R1

TR0T
c†
R2

T †
R0

)

(4.8)

+

(

qi

q2
− pi

1

p2
1

)

(

qj

q2
+

p
j
2

p2
2

)

Tr
(

TR0T
a
R2

T †
R0

T c†
R1

)

+

(

qi

q2
− pi

1

p2
1

)

(

qj

q2
− p

j
1

p2
1

)

Tr
(

TR0T
a
R2

T c†
R2

T †
R0

)

}

,
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with C0 being the factor that one obtains via color averaging, as introduced previously in

section 3. We would like to draw attention to the similarity between dilute limit of the

generic cross section given in Eq. (4.8) and the kinematic-twist-resummed cross section

given in Eq. (3.10). We discuss the implications of this similarity in section 7.

5 Small-x Improved TMD factorization (iTMD)

In the following section we briefly recall the small-x improved TMD factorization con-

structed in [50]. Although the framework is more general, here we focus on dijets in pA

and γA collisions. This section is organized as follows. We first list and explain the general

form of the formulas for dijets in pA collisions. Next, we shall put the iTMD formulation

into the context of the TMD factorization theorems to better clarify the terminology. In

the end of this section, we shall give the formulas for the cross section for all channels in

a form that can be compared with the CGC framework.

5.1 Framework

The iTMD factorization formula for pA collisions has the form of a hybrid generalized

kT -factorization. That is: (i) the incoming dilute projectile is described by the collinear

PDF as it is probed at large x – so called hybrid approach [56], (ii) the target is probed at

small x and is described by a set of process-dependent TMD gluon distributions, (iii) the

hard factors are constructed from off-shell gauge invariant matrix elements. Thanks to (i),

the formula for the cross section can be written as

dσpA→2j+X =
∑

q

fq/H ⊗ dσqA→qg + fg/H ⊗ [dσgA→gg + nfdσgA→qq] , (5.1)

where fa/H is the collinear PDF for parton a = q, g (we can safely neglect antiquarks in this

approximation), ⊗ denotes the convolution in the longitudinal fraction xp of the proton

momentum carried by parton a, nf is the number of flavors. The remaining objects are

cross sections for scattering a parton a off the target to produce the given final states.

They can be generically written as follows:

dσaA→bc

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
) 1

s̄2

∑

i=1,2

H̃(i)
ag∗→bc (p1,p2, z) Φ

(i)
ag→bc (xA,k) , (5.2)

where s̄ = xpxAs, H̃(i)
ag∗→bc are off-shell gauge invariant hard factors and Φ

(i)
ag→bc are un-

polarized TMD gluon distributions in the target. The sum over i corresponds to two

inequivalent color flows that exist for each channel.

The TMD gluon distributions Φ
(i)
ag→bc are linear combinations [50] (Table 1) of the

basic distributions with the following operator definitions [38]:

F (1)
qg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P |Tr
[

F̂ i− (ξ)U [−]†F̂ i− (0)U [+]
]

|P 〉 , (5.3)
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F (2)
qg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P | Tr
[

U [�]
]

Nc
Tr
[

F̂ i− (ξ)U [+]†F̂ i− (0)U [+]
]

|P 〉 ,

(5.4)

F (1)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P | Tr
[

U [�]†
]

Nc
Tr
[

F̂ i− (ξ)U [−]†F̂ i− (0)U [+]
]

|P 〉 ,

(5.5)

F (2)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 1

Nc
〈P |Tr

[

F̂ i− (ξ)U [�]†
]

Tr
[

F̂ i− (0)U [�]
]

|P 〉 ,

(5.6)

F (3)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P |Tr
[

F̂ i− (ξ)U [+]†F̂ i− (0)U [+]
]

|P 〉 , (5.7)

F (4)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P |Tr
[

F̂ i− (ξ)U [−]†F̂ i− (0)U [−]
]

|P 〉 , (5.8)

F (5)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ 〈P |Tr
[

F̂ i− (ξ)U [�]†U [+]†F̂ i− (0)U [�]U [+]
]

|P 〉 ,

(5.9)

F (6)
gg (x, |k|) = 2

∫

dξ+d2ξ

(2π)3 P−
eixP

−ξ+−ik·ξ

〈P | Tr
[

U [�]
]

Nc

Tr
[

U [�]†
]

Nc
Tr
[

F̂ i− (ξ)U [+]†F̂ i− (0)U [+]
]

|P 〉 , (5.10)

with F̂ (ξ) = taF a (ξ+, ξ− = 0, ξ). The staple-like Wilson lines appearing above are defined

as

U [±] =
[(

0+, 0−,0
)

,
(

±∞, 0−,0
)]

[(

±∞, 0−,0
)

,
(

±∞, 0−, ξ
)] [(

±∞, 0−, ξ
)

,
(

ξ+, 0−, ξ
)]

. (5.11)

The Wilson loop is made from two staples glued together:

U [�] = U [−]†U [+] . (5.12)

The off-shell gauge invariant hard factors H̃(i) involve incoming off-shell gluons with

momentum k = xAP+k⊥, k
2 = −k2, coupled eikonally to the target via a TMD correlator.

In general, such Feynman diagrams are not gauge invariant when calculated using the

standard QCD Feynman rules. There are several ways, to deal with this. First, one could

use the Lipatov effective action and resulting vertices in the quasi-multi-Regge kinematics

[70]. In [71–74] other methods have been developed, based on the spinor helicity formalism,

especially convenient to deal with multiparticle processes and to guarantee fast computer

implementation. The method [72] has been recently extended to loop level [75]. The easiest

way to understand the diagrammatic content of the hard factors is probably provided by

the method [76] which defines the gauge invariant off-shell amplitudes as partonic matrix

elements of straight infinite Wilson line operators. In case of the hard factors involving
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i 1 2

Φ
(i)
gg∗→gg

1

2N2
c

(

N2
cF (1)

gg − 2F (3)
gg

+ F (4)
gg + F (5)

gg +N2
cF (6)

gg

)

1

N2
c

(

N2
cF (2)

gg − 2F (3)
gg

+ F (4)
gg + F (5)

gg +N2
cF (6)

gg

)

Φ
(i)
gg∗→qq

1

N2
c − 1

(

N2
cF (1)

gg −F (3)
gg

)

−N2
cF (2)

gg + F (3)
gg

Φ
(i)
qg∗→qg F (1)

qg
1

N2
c − 1

(

−F (1)
qg +N2

cF (2)
qg

)

Φ
(i)
γg∗→qq F (3)

gg
—

Φ
(i)
qg∗→γq F (1)

qg
—

Table 1: The TMD gluon distributions corresponding to the hard factors H̃(i).

one off-shell gluon needed here the Wilson line has a direction along P−. The diagrams

contributing to each channel for pA collisions are given in Fig. 2.

The form of the generalized factorization (5.2) appears as follows. First the color

structure is separated from the kinematic part of the amplitude by means of the color

decomposition [77]. The amplitudes with the color structure separated contain only planar

diagrams with fixed ordering of the external legs. The TMD gluon distributions Φ
(i)
ag→bc are

derived for the color structures (squared) following the general procedure of resummation

of collinear gluons constructed in [38]. The color decomposition of amplitudes guarantees

that each Φ
(i)
ag→bc corresponds to a gauge invariant subset of diagrams. For more details

and application to multiparticle processes see [78].

The iTMD formula was constructed to agree with the kT -factorization for dijet pro-

duction [79] in the limit of k2 ∼ Q2 ≫ Q2
s and also with the leading power limit of the

CGC expressions [40] for Q2 ≫ k2 ∼ Q2
s. In the present paper we further compare all

the power corrections contained in the framework. To this end, we need the small x limit

of the TMD gluon distributions compliant with the CGC theory. They are obtained by

neglecting the x dependence in the Fourier transforms and trading the hadronic matrix

elements to the averages over the color distributions in the nucleus. In addition, lightcone

gauge is used, in which for the shockwave approximation the transverse components of the
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qg∗ → qg :

k

gg∗ → qq̄ :

k k k

gg∗ → gg :

k k k

k k k

Figure 2: Diagrams contributing to the gauge invariant hard factors H̃(i)
ag∗→bc for various

channels. We show only planar color-ordered diagrams, i.e. the planar diagrams with fixed
ordering of external legs, as they are enough to reconstruct the hard factors contributing
to the in-equivalent color flows (see Section 6 of [50] on how to reconstruct the hard factors
from color-ordered amplitudes and [77] for a general review of color decompositions). The
off-shell gluon has momentum k. The double line corresponds to the Wilson line propagator
in momentum space, which couples to gluons via the igtaPµ vertex. The double line
propagator with a momentum p is −i/ (p · P + iǫ). These diagrams have to be multiplied
by k2/g – for all the details see [76]. We do not display the diagrams for processes with
a photon since they do not require the use of a Wilson line, despite the off-shellnes of the
gluon.

gauge fields do not contribute due to EOM. This allows to neglect the transverse parts of

the staple gauge links (5.11). Within the above approximation we have [40, 41]:

F (1)
qg =

4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

Tr
{

(∂iUy)
(

∂iU
†
x

)}〉

, (5.13)

F (2)
qg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y) 1

Nc

〈

Tr
{

(∂iUx)U
†
y

(

∂iU
†
y

)

U †
x

}

Tr
{

UyU
†
x

}〉

. (5.14)

F (1)
gg =

4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y) 1

Nc

〈

Tr
{

(∂iUy)
(

∂iU
†
x

)}

Tr
{

UxU
†
y

}〉

, (5.15)
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F (2)
gg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y) 1

Nc

〈

Tr
{

(∂iUx)U
†
y

}

Tr
{

(∂iUy)U
†
x

}〉

, (5.16)

F (3)
gg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

Tr
{

(∂iUx)U
†
y (∂iUy)U

†
x

}〉

, (5.17)

F (4)
gg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

Tr
{

(∂iUx)U
†
x (∂iUy)U

†
y

}〉

, (5.18)

F (5)
gg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

Tr
{

(∂iUx)U
†
yUxU

†
y (∂iUy)U

†
xUyU

†
x

}〉

, (5.19)

F (6)
gg = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

1

N2
c

〈

Tr
{

(∂iUx)U
†
y (∂iUy)U

†
x

}

Tr
{

UxU
†
y

}

Tr
{

UyU
†
x

}〉

. (5.20)

For completeness, let us now put the iTMD formulation into the context of the formal

TMD factorization theorems [31]. First, one should understand that it does not involve

an all-order factorization theorem like the ones existing for the Drell-Yan process and

semi-inclusive DIS. These theorems are proved to leading power in the hard scale to any

logarithmic accuracy, while the iTMD framework resums the power corrections, but its

validity is limited to leading logarithms of energy. Next, the mentioned TMD factorization

theorems involve processes with at most two colored partons in the hard process (plus

soft/collinear contributions of course) and two TMD correlators (parton distribution or

fragmentation function). Because of the simplicity of the color structure, all Wilson lines

appearing due to the resummation of collinear gluons can be disentangled and put into the

gauge invariant definitions of the TMD objects. For jet production processes in hadron-

hadron collision, where formally one has at least two TMD correlators and more than two

colored partons, it is not possible. Thus, formally, even the generalized factorization breaks

down [80]. However, in the iTMD approach, which targets the collisions of a moderate-x

projectile and a low-x target, there is only one TMD correlator, thus, at least formally, this

problem does not occur. On the formal ground there is no all-order proof of the hybrid

approach so far.

Finally, let us comment on the evolution equations for the TMD gluon distributions.

The most adequate treatment would be using the renormalization group equation at small

and moderate x developed in [81, 82]. It however still requires work to derive the complete

set of equations, not to mention solving them. An important feature of such procedure

would be that some Sudakov logarithms lnk2 can be consistently resummed. For exist-

ing phenomenological applications using iTMD [51, 83] the evolution was based on BK or

B-JIMWLK and some Sudakov resummation effects were estimated by means of a phe-

nomenological model.
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Below, we explicitly give formulas for the cross sections (5.2) in a form that can be

directly compared with the CGC expressions.

5.2 qg∗ → qg channel

We get

dσqA→qg

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
)

[

H(1)
qg→qgΦ

(1)
qg→qg +H(2)

qg→qgΦ
(2)
qg→qg

]

, (5.21)

with

H(1)
qg→qg = α2

s

z2
(

1 + z2
)

2q2

{

z

p2
1

+
1

N2
c

q2 − z2p2
1

zp2
1p

2
2

}

, (5.22)

H(2)
qg→qg = α2

s

NA

2N2
c

z
(

1 + z2
)

p2
1p

2
2

. (5.23)

Note, that the above hard factors H(i)
qg→qg are not exactly the ones in (5.2). The expressions

are however more compact in the above notation.

5.3 gg∗ → qq channel

dσgA→qq

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
)

[

H(1)
gg→qqΦ

(1)
gg→qq +H(2)

gg→qqΦ
(2)
gg→qq

]

, (5.24)

where H(1)
gg→qq, H

(2)
gg→qq are the reduced off-shell hard factors. They read

H(1)
gg→qq =

α2
s

2Nc
zz (1− 2zz)

p2
1 (1− z)2 + p2

2z
2

q2p2
1p

2
2

, (5.25)

H(2)
gg→qq =

α2
s

2N2
cCF

(zz)2 (1− 2zz)
(p1 · p2)

q2p2
1p

2
2

. (5.26)

5.4 gg∗ → gg channel

dσgA→gg

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
)

[

H(1)
gg→ggΦ

(1)
gg→gg +H(2)

gg→ggΦ
(2)
gg→gg

]

, (5.27)

with

H(1)
gg→gg = α2

s

2N2
c

NA
(1− zz)2

p2
1z

2 + p2
2z

2

q2p2
1p

2
2

, (5.28)

H(2)
gg→gg = α2

s

N2
c

NA
(1− zz)2

q2 − p2
1z

2 − p2
2z

2

q2p2
1p

2
2

. (5.29)

Above, an additional symmetry factor of 1/2 was included to account for identical final

states.

5.5 γg∗ → qq channel

dσγA→qq

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
)

Hγg∗→ggF (3)
gg , (5.30)
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with

Hγg∗→gg = αemαs
zz (1− 2zz)

p2
1p

2
2

. (5.31)

5.6 qg∗ → qγ channel

dσqA→qγ

d2p1d
2p2dy1dy2

= p+0 δ
(

p+1 + p+2 − p+0
)

Hqg∗→qγF (1)
qg , (5.32)

with

Hqg∗→qγ = αemαs
1

CA

zz2
(

1 + z2
)

q2p2
2

. (5.33)

6 From the generic CGC process to the specific cases

In sections 3 and 4, we have computed both the kinematic-twist-resummed cross section

and the dilute limit of the CGC cross section for a generic 1 → 2 process respectively. Our

aim in this section is to get both of these cross sections for specific processes and compare

these results with the ones that are obtained through iTMD framework in section 5.

To be more accurate, we consider the photoproduction of a dijet, as well as all possible

channels for two particle production (dijet or photon-jet) in forward pp and pA collisions.

Within the CGC framework, hybrid formalism [56] is the state of the art approach for these

processes. It has been very successfully used to calculate the next-to-leading order single

inclusive particle production [57]-[66], heavy quark production [67], dijet production [41]

and recently dijet+photon [47, 68] and trijet production [69] in forward pA collisions.

In the hybrid formalism, the final state particles are produced in the forward rapidity

region so they can be treated in the collinear framework, i.e. the incoming partons are

on-shell collinear partons and the partonic cross section calculated in this set up should

be convoluted with the collinear parton distribution functions in order to get the hadronic

cross sections. On the other hand, the target is assumed to be dense and the center-of-mass

energy is large so it can be treated in the CGC framework. At the parton level, the set up

that we have used for the calculation of the kinematic-twist-resummed cross section Eq.

(3.10) and the dilute cross section Eq. (4.8) for a generic process is compatible with the

hybrid formalism. Thus, we use those results to study the different channels and compare

them with the ones obtained from iTMD framework in the rest of this section.

6.1 q → qg channel

Let us start our analysis by considering the q → qg channel (see Fig. 3). In this channel,

the incoming quark splits into a quark-gluon pair at order gs which then scatters off the

target via eikonal interaction. The CGC amplitude for this channel is given in Eq. (B.1).

In order to be able to use the kinematic twist resummed generic cross section Eq. (3.10),

the first thing we need is the tensor part of the amplitude that encodes the Dirac structure

of this channel and it is given by

φ(q→qg)
µ =

igs
2π

εσ∗pg⊥ūpq [2zg⊥µσ + z̄ (γ⊥µγ⊥σ)] γ
+up, (6.1)
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whose square for an unpolarized observable can be calculated in a straightforward manner

and the result reads

φi(q→qg)φi′∗(q→qg) = δii
′

( gs
2π

)2
(

p+0
)2

16z
(

1 + z2
)

. (6.2)

One can read off the color structure in this channel from Fig. 3 and it is given by setting

p0, R0 = F

b b+ z̄r

b− zr

p1, R1 = F

p2, R2 = Adj

Figure 3: q → qg amplitude in an external shockwave background with the appropriate
color representations.

UR1
b = Ub, U

R2
b = Uab

b and TR0 = T b. This color structure leads to the following TMD

operators

O(q→qg)
1 =

(

∂jUb

)

T bUab
b Uac†

b′
T c
(

∂j′U †

b′

)

O(q→qg)
2 =

(

∂jUb

)

T bUab
b

(

∂j′Uac
b′

)

T cU †

b′
(6.3)

O(q→qg)
3 = UbT

b
(

∂jUab
b

)

Uac†
b′

T c
(

∂j′U †

b′

)

O(q→qg)
4 = UbT

b
(

∂jUab
b

)(

∂j′Uac
b′

)

T cU †

b′
.

By using the identity that relates the adjoint and fundamental representations of a unitary

matrix

Uab(b) = 2Tr
[

taU(b)tbU †(b)
]

(6.4)

and the Fierz identity

taαβt
a
σλ =

1

2

[

δαλδβσ − 1

Nc
δαβδσλ

]

(6.5)

one can easily get the following identities

T b
(

∂jUab
b

)

=
(

∂jU †
b

)

T aUb + U †
bT

a
(

∂jUb

)

(6.6)
(

∂j′Uac
b′

)

T c† =
(

∂j′U †

b′

)

T aUb′ + U †

b′
T a
(

∂j′Ub′

)

,

The next step is to compute the color trace of the TMD operators that are listed in Eq.

(6.3). By using the identities given in Eq. (6.6), these traces can easily be computed and
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the result reads

Tr
[

O(q→qg)
1

]

= −1

2
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

− 1

2Nc
Tr
[

(

∂jUb

)

(

∂j′U †

b′

)]

Tr
[

O(q→qg)
2

]

=
1

2
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

(6.7)

Tr
[

O(q→qg)
3

]

=
1

2
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

Tr
[

O(q→qg)
4

]

= −1

2
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

+
Nc

2
Tr
[

(

∂jUb

)

(

∂j′U †

b′

)]

.

Comparing the structure of the trace of the Wilson lines in Eq. (6.7) and the definitions

of the first two gluon TMDs in the quark channel F (1)
qg and F (2)

qg given in Eqs. (5.13) and

(5.14) respectively, one can conclude that these are the two gluon TMDs which appear in

this channel. Moreover, for convenience, we can define the following combinations of the

gluon TMDs F (1)
qg and F (2)

qg :

Φ(1)
q→qg (k) ≡ F (1)

qg (k) (6.8)

Φ(2)
q→qg (k) ≡

N2
cF

(2)
qg (k)−F (1)

qg (k)

N2
c − 1

which are exactly the same combinations that one gets from the iTMD calculations given

in the Table 1.

Finally, we can plug the square of the tensor part of the amplitude given in Eq. (6.2)

and the Wilson line structure given in Eq. (6.7) together with the definitions and the

combinations of the gluon TMDs Eq. (6.8) in the generic kinematic twist resummed cross

section Eq. (3.10) to get the cross section for q → qg channel as

dσWW
q→qg

dy1dy2d2p1d
2p2

= α2
s

z
(

1 + z2
)

2p2
1p

2
2

p+0 δ
(

p+1 + p+2 − p+0
)

(6.9)

×
[(

z2
p2
2

q2
+

1

N2
c

(

1− z̄2
p2
1

q2

))

Φ(1)
q→qg (k) +

(

N2
c − 1

N2
c

)

Φ(2)
q→qg (k)

]

which coincides exactly with Eq. (5.21) by using Eqs. (5.22) and (5.23).

Our next order of business is to consider the dilute limit in the q → qg channel.

Inserting the proper color representations in the dilute limit of the generic cross section

given in Eq. (4.8), we get

dσgA∼0
q→qg

dy1dy2d2p1d
2p2

=
αs

16Nc

(

p+0
)2 (2π)

Gac (k)

k2

(

φiφj∗
)

p+0 δ
(

p+1 + p+2 − p+0
)

(6.10)

× Tr

[

if badtd
(

pi
1

p2
1

− qi

q2

)

− tatb
(

pi
2

p2
2

+
qi

q2

)]

[

−if bcete

(

p
j
1

p2
1

− qj

q2

)

− tbtc

(

p
j
2

p2
2

+
qj

q2

)]

,

with Gac (k) being the unintegrated parton distribution function defined in Eq. (4.7). Using
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the definition of the tensor part of the amplitude that encodes the Dirac structure in the

q → qg channel given in Eq. (6.1) and performing some color algebra, one simply gets the

dilute limit of the cross section in this channel:

dσgA∼0
q→qg

dy1dy2d2p1d
2p2

= α2
s

z
(

1 + z2
)

2p2
1p

2
2

p+0 δ
(

p+1 + p+2 − p+0
)

G (k)

(

1 + z2
p2
2

q2
− 1

N2
c

z̄2p2
1

q2

)

.

(6.11)

From Eq. (6.9) and (6.11), we also get a straightforward matching between the improved

TMD scheme and the dilute scheme:

σgA∼0
q→qg = σWW

q→qg

∣

∣

Φ
(1)
q→qg=Φ

(2)
q→qg=G

. (6.12)

The substitution Φ
(1)
q→qg = Φ

(2)
q→qg = G in the iTMD scheme in the dilute limit can be

simply justified as follows. For |k| ≫ Qs and large, the Fourier transforms in the operator

definitions force the transverse separation between the fields to be small. In that limit

the gauge links become identical, while the Wilson loops become trivial. This universal

behaviour was tested numerically in [51] and [41].

6.2 g → qq̄ channel

The next channel we consider is g → qq̄. In this channel, the incoming gluon splits into

a quark-antiquark pair at order gs, then it scatters through the target (see Fig. 4). The

CGC amplitude for this channel is given in Eq. (B.2) and the tensor part of it reads

φ(g→qq̄)
µ = −i

gs
2π

εσp⊥ūpq [2zg⊥µσ − (γ⊥µγ⊥σ)] γ
+vpq̄ , (6.13)

whose square can be computed easily for an unpolarized observable:

φi(g→qq̄)φi′∗(g→qq̄) = δii
′

( gs
2π

)2
(

p+0
)2

16zz̄
(

z2 + z̄2
)

(6.14)

The color structure of this channel can be read off from Fig. 4 and it is given by setting

p0, R0 = Adj

b b+ z̄r

b− zr

p1, R1 = F

p2, R2 = F ∗

Figure 4: g → qq̄ amplitude in an external shockwave background with the appropriate
color representations.
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UR1
b = Ub, U

R2
b = U †

b and TR0 = T b. This color structure leads to the following gluon

TMD operators that appears in the generic kinematic twist resummed cross section given

in Eq. (3.10):

O(g→qq̄)
1 =

(

∂jUb

)

T bU †
bUb′T

b
(

∂j′U †

b′

)

O(g→qq̄)
2 =

(

∂jUb

)

TRU †
b

(

∂j′Ub′

)

T bUb′ (6.15)

O(g→qq̄)
3 = UbT

b
(

∂jU †
b

)

Ub′T
b
(

∂j′U †

b′

)

O(g→qq̄)
4 = UbT

b
(

∂jU †
b

)(

∂j′Ub′

)

T bU †

b′

One can easily compute the trace over the color indexes of the operators listed in Eq. (6.15)

and the result reads

Tr
[

O(g→qq̄)
1

]

=
1

2
Tr
[

(

∂jUb

)

(

∂j′U †

b′

)]

Tr
(

Ub′U
†
b

)

+
1

2Nc
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
[

O(g→qq̄)
2

]

=
1

2
Tr
[

(

∂jUb

)

U †

b′

]

Tr
[

U †
b

(

∂j′Ub′

)]

− 1

2Nc
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

(6.16)

Tr
[

O(g→qq̄)
3

]

=
1

2
Tr
[(

∂jU †
b

)

Ub′

]

Tr
[

Ub

(

∂j′U †

b′

)]

− 1

2Nc
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
[

O(g→qq̄)
4

]

=
1

2
Tr
[(

∂j′Ub′

)(

∂jU †
b

)]

Tr
(

UbU
†

b′

)

+
1

2Nc
Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

.

A comparison between the Wilson line structure in this channel given in Eq. (6.16) and the

definitions of the first three gluon TMDs in the gluon channel F (1)
gg , F (2)

gg and F (3)
gg given in

Eqs. (5.15), (5.16) and (5.17) suggests that these are the three gluon TMDs that appear

in the g → qq̄ channel. We define the following combinations of the TMDs which are the

same combinations defined in Table 1:

Φ
(1)
g→qq̄ (k) ≡

N2
cF

(1)
gg (k)−F (3)

gg (k)

N2
c − 1

(6.17)

Φ
(2)
g→qq̄ (k) ≡ −N2

cF (2)
gg (k) + F (3)

gg (k)

Finally, the square of the tensor structure, Eq. (6.14), the Wilson line structure, Eq.

(6.16), and the TMD definitions with the combinations given in Eq. (6.17) are plugged in

the generic kinematic twist resummed cross section given in Eq. (3.10). The result can

simply be written as

dσWW
g→qq̄

dy1dy2d2p1d
2p2

=
α2
s

2Nc
p+0 δ

(

p+1 + p+2 − p+0
) zz̄

(

z2 + z̄2
)

q2
(6.18)

×
[

z̄2

p2
2

Φ
(1)
g→qq̄ (k) +

z2

p2
1

Φ
(1)
g→qq̄ (−k) + zz̄

(p1 · p2)

p2
1p

2
2

Φ
(2)
g→qq̄ (k) + Φ

(2)
g→qq̄ (−k)

(N2
c − 1)

]

which coincides exactly with Eq. (5.24) by using Eqs. (5.25) and (5.26).
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The next step is to consider the dilute limit in the g → qq̄ channel. Introducing the

proper color structure in the generic dilute cross section in Eq. (4.8), we get

dσgA∼0
g→qq̄

dy1dy2d2p1d
2p2

=
αs

16 (N2
c − 1)

(

p+0
)2 (2π) p

+
0 δ
(

p+1 + p+2 − p+0
) Gac (k)

k2

(

φiφj∗
)

(6.19)

× Tr

[

tbta
(

pi
1

p2
1

− qi

q2

)

+ tatb
(

pi
2

p2
2

+
qi

q2

)]

[

tctb

(

p
j
1

p2
1

− qj

q2

)

+ tbtc

(

p
j
2

p2
2

+
qj

q2

)]

,

which after some color algebra leads to

dσgA∼0
g→qq̄

dy1dy2d2p1d
2p2

=
α2
s

Nc (N2
c − 1)

zz̄
(

z2 + z̄2
)

2p2
1p

2
2

p+0 δ
(

p+1 + p+2 − p+0
)

G (k)

×
[

N2
c

(

z2
p2
2

q2
+ z̄2

p2
1

q2

)

− 1

]

. (6.20)

Finally, a comparison between the kinematic twist resummed cross section Eq. (6.18) and

the dilute limit of the cross section given in Eq. (6.20), again leads to a straightforward

matching between the iTMD scheme and the dilute scheme for g → qq̄ channel:

σgA∼0
g→qq̄ = σWW

g→qq̄

∣

∣

Φ
(1)
g→qq̄=Φ

(2)
g→qq̄=G

. (6.21)

6.3 g → gg channel

The next channel we consider is g → gg. The CGC amplitude for this channel is given in

Eq. (B.3). The tensor part for this channel can simply be read off from Eq. (B.3) and it

is given as

φ(g→gg)
µ =

2gsp
+
0

π
εσ0
p⊥ε

σ1∗
pg⊥

εσ2∗
qg⊥

[zg⊥σ0σ1g⊥µσ2 − zz̄g⊥σ1σ2g⊥µσ0 + z̄g⊥σ0σ2g⊥µσ1 ] (6.22)

Its square can be computed in a straightforward manner with the result being

φi(g→gg)φi′∗(g→gg) = δii
′

( gs
2π

)2
(

p+0
)2

32 (1− zz̄)2 (6.23)

The color structure of this channel is demonstrated in Fig. 5 and it is given by UR1
b = U b1a1

b ,

UR2
b = U b2a2

b and TR0 = fa0b1b2 . This leads to the following TMD operators once it is

inserted to the Wilson line structure of the generic kinematic twist resummed cross section

in Eq. (3.10):

O(g→gg)
1 =

(

∂jU b1a1
b

)

fa0b1b2U b2a2
b Ua2c2

b′
fa0c1c2

(

∂j′Ua1c1
b′

)

O(g→gg)
2 =

(

∂jU b1a1
b

)

fa0b1b2U b2a2
b

(

∂j′Ua2c2
b′

)

fa0c1c2Ua1c1
b′

(6.24)

O(g→gg)
3 = U b1a1

b fa0b1b2
(

∂jU b2a2
b

)

Ua2c2
b′

fa0c1c2
(

∂j′Ua1c1
b′

)

O(g→gg)
4 = U b1a1

b fa0b1b2
(

∂jU b2a2
b

)(

∂j′Ua2c2
b′

)

fa0c1c2Ua1c1
b′

.
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p0, R0 = Adj

b b+ z̄r

b− zr

p1, R1 = Adj

p2, R2 = Adj

Figure 5: g → gg amplitude in an external shockwave background with the appropriate
color representations.

After a standard but cumbersome color algebra, the trace over the color indexes of the

above TMD operators can be written in terms of the fundamental Wilson line operators as

Tr
[

O(g→gg)
1

]

= −Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

Tr
(

Ub′U
†
b

)

− Tr
[

(

∂jUb

)

U †
bUb′U

†
b

(

∂j′Ub′

)

U †

b′
UbU

†

b′

]

+ 2Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

− Tr
[(

∂jU †
b

)

Ub

(

∂j′U †

b′

)

Ub′

]

(6.25)

+
Nc

2

{

Tr
[(

∂jU †
b

)(

∂j′Ub′

)]

Tr
(

UbU
†

b′

)

+Tr
[

(

∂jUb

)

(

∂j′U †

b′

)]

Tr
(

Ub′U
†
b

)

}

,

Tr
[

O(g→gg)
2

]

= Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

Tr
(

Ub′U
†
b

)

+Tr
[

(

∂jUb

)

U †
bUb′U

†
b

(

∂j′Ub′

)

U †

b′
UbU

†

b′

]

+Tr
[(

∂jU †
b

)

Ub

(

∂j′U †

b′

)

Ub′

]

− 2Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

(6.26)

+
Nc

2

{

Tr
[

U †

b′

(

∂jUb

)

]

Tr
[(

∂j′Ub′

)

U †
b

]

+Tr
[

Ub

(

∂j′U †

b′

)]

Tr
[(

∂jU †
b

)

Ub′

]

}

,

Tr
[

O(g→gg)
3

]

= Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

Tr
(

Ub′U
†
b

)

+Tr
[

(

∂jUb

)

U †
bUb′U

†
b

(

∂j′Ub′

)

U †

b′
UbU

†

b′

]

+Tr
[(

∂jU †
b

)

Ub

(

∂j′U †

b′

)

Ub′

]

− 2Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

(6.27)

+
Nc

2

{

Tr
[

Ub

(

∂j′U †

b′

)]

Tr
[(

∂jU †
b

)

Ub′

]

+Tr
[

(

∂jUb

)

U †

b′

]

Tr
[(

∂j′Ub′

)

U †
b

]

}

,
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and

Tr
[

O(g→gg)
4

]

= −Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

Tr
(

UbU
†

b′

)

Tr
(

Ub′U
†
b

)

− Tr
[

(

∂jUb

)

U †
bUb′U

†
b

(

∂j′Ub′

)

U †

b′
UbU

†

b′

]

+ 2Tr
[

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

]

− Tr
[(

∂jU †
b

)

Ub

(

∂j′U †

b′

)

Ub′

]

(6.28)

+
Nc

2

{

Tr
[(

∂j′Ub′

)(

∂jU †
b

)]

Tr
(

UbU
†

b′

)

+Tr
[

(

∂jUb

)

(

∂j′U †

b′

)]

Tr
(

U †
bUb′

)

}

Comparing the Wilson line structures appearing in Eqs. (6.25), (6.26), (6.27) and (6.28)

with the TMD definitions given in Eqs. (5.18), (5.19) and (5.20), one can conclude that

on top of the gluon TMDs F (1)
gg , F (2)

gg and F (3)
gg that have already appeared in the g → qq̄

channel, one also gets new gluon TMDs F (4)
gg , F (5)

gg and F (6)
gg in the g → gg channel. Again,

for convenience, we define the following combinations of the TMDs

Φ(1)
gg→gg (k) =

1

2N2
c

[

N2
cF (6)

gg (k) + F (5)
gg (k) + F (4)

gg (k)− 2F (3)
gg (k) +N2

c

(

F (1)
gg (k) + F (1)

gg (−k)

2

)]

(6.29)

Φ(2)
gg→gg (k) =

1

N2
c

[

N2
cF (6)

gg (k) +F (5)
gg (k) + F (4)

gg (k)− 2F (3)
gg (k) +N2

c

(

F (2)
gg (k) + F (2)

gg (−k)

2

)]

,

which match exactly the combinations one get from iTMD calculations given in Table 1.

After plugging these results into the generic kinematic twist resummed cross section given

in Eq. (3.10), we get the result for the g → gg channel as

dσWW
g→gg

dy1dy2d2p1d
2p2

= 2α2
s

N2
c

N2
c − 1

p+0 δ
(

p+1 + p+2 − p+0
) (1− zz̄)2

p2
1p

2
2

(6.30)

×
[(

1 + 2zz̄
(p1 · p2)

q2

)

Φ(1)
gg→gg (k)− zz̄

(p1 · p2)

q2
Φ(2)
gg→gg (k)

]

,

where a factor 1/2 is added due to the symmetry. This result coincides exactly with

Eq. (5.27) by using Eqs. (5.28) and (5.29).

Let us now consider the dilute limit of the cross section in the g → gg channel. Once

the proper color representations of this channel are plugged into the dilute limit of the

generic cross section given in Eq. (4.8), we get

dσgA∼0
g→gg

dy1dy2d2p1d
2p2

=
αs

16 (N2
c − 1)

(

p+0
)2 (2π) p

+
0 δ
(

p+1 + p+2 − p+0
) Gac (k)

k2

(

φiφj∗
)

(6.31)

× Tr

{[

fa0a1bf ba2a

(

pi
1

p2
1

− qi

q2

)

+ fa0a2bf ba1a

(

pi
2

p2
2

+
qi

q2

)]

×
[

fa0a1dfda2c

(

p
j
1

p2
1

− qj

q2

)

+ fa0a2dfda1c

(

p
j
2

p2
2

+
qj

q2

)]}
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which after some color algebra leads to

dσgA∼0
g→gg

dy1dy2d2p1d
2p2

= 2α2
s

N2
c

N2
c − 1

p+0 δ
(

p+1 + p+2 − p+0
) (1− zz̄)2

p2
1p

2
2

G (k)

(

1 +
zz̄ (p1 · p2)

q2

)

,

(6.32)

with the symmetry factor of 1/2. As a last comment for this channel, we would like to

emphasize that a comparison between Eqs. (6.30), (6.32) and the iTMD results lead to the

same matching condition between the iTMD scheme and the dilute limit:

σgA∼0
g→gg = σWW

g→qq̄

∣

∣

Φ
(1)
g→gg=Φ

(2)
g→gg=G

. (6.33)

6.4 γ → qq̄ channel

We have used this channel as an example to study the corrections to the back-to-back

correlation limit in subsection 2.2. In this subsection, we generalize that study by using

the generic expressions for the kinemtic twist resummed cross section and the dilute limit

of the generic CGC cross section. The amplitude is given by Eq. (2.6) from which we can

read off the tensor part:

φ(γ→qq̄)
µ = i

eq
2π

εσp⊥ūpq [2zg⊥µσ − (γ⊥µγ⊥σ)] γ
+vpq̄ (6.34)

The square of the tensor part for an unpolarized observable can be calculated easily and

the result reads

φi(γ→qq̄)φi′∗(γ→qq̄) = δii
′

( eq
2π

)2
(

p+0
)2

16zz̄
(

z2 + z̄2
)

(6.35)

The color structure for this channel is demonstrated in Fig. 6 and it is given by setting

p0, R0 = 1

b+ z̄r

b− zr

p1, R1 = F

p2, R2 = F ∗

Figure 6: γ → qq̄ amplitude in an external shockwave background with the appropriate
color representations.

UR1
b = Ub, U

R2
b = U †

b and TR0 = 1. This color structure leads to the following TMD
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operators:

O(γ→qq̄)
1 = −

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

O(γ→qq̄)
2 =

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′
(6.36)

O(γ→qq̄)
3 =

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′

O(γ→qq̄)
4 = −

(

∂jUb

)

U †
b

(

∂j′Ub′

)

U †

b′
.

The trace over the color indices can be performed in a straightforward manner and one

can easily conclude that this channel involves only one TMD F (3)
gg which is also referred to

as the Weizsäcker-Williams TMD defined in Eq. (5.17). Using this result and the square

of the tensor part given in Eq. (6.35), we can write the kinematic twist resummed cross

section for this channel as

dσWW
γ→qq̄

dy1dy2d2p1d
2p2

= αemαsp
+
0 δ
(

p+1 + p+2 − p+0
) zz̄

(

z2 + z̄2
)

p2
1p

2
2

F (3)
gg (k) , (6.37)

which coincides exactly with Eq. (5.30) by using Eq. (5.31).

Using the proper color representations for this channel and the dilute limit of the

generic CGC cross section given in Eq. (4.8), we can simply write the dilute limit of the

cross section for the γ → qq̄ channel as

dσgA∼0
γ→qq̄

dy1dy2d2p1d
2p2

=
αs

16
(

p+0
)2 (2π) p

+
0 δ
(

p+1 + p+2 − p+0
) G (k)

k2

(

φiφj∗
)

(6.38)

× Tr

[

ta
(

pi
1

p2
1

− qi

q2

)

+ ta
(

pi
2

p2
2

+
qi

q2

)]

[

tc

(

p
j
1

p2
1

− qj

q2

)

+ tc

(

p
j
2

p2
2

+
qj

q2

)]

,

which, after a simple color algebra and using the result for the square of the tensor part

given in Eq. (6.35), leads to

dσgA∼0
γ→qq̄

dy1dy2d2p1d
2p2

= αemαsp
+
0 δ
(

p+1 + p+2 − p+0
) zz̄

(

z2 + z̄2
)

p2
1p

2
2

G (k) . (6.39)

Finally, we would like to mention that a comparison between Eq. (6.30) and (6.32) suggests

a similar matching between the iTMD scheme and the dilute limit of the CGC calculation:

σgA∼0
γ→qq̄ = σWW

γ→qq̄

∣

∣

F
(3)
gg =G

. (6.40)

6.5 q → qγ channel

The last channel we consider is the q → qγ one. The CGC amplitude for this channel is

given by Eq. (B.4) from which we can read off the tensor part as

φ(q→qγ)
µ =

−ieq
2π

εσ∗pγ⊥ūpq [2zg⊥µσ + z̄ (γ⊥µγ⊥σ)] γ
+up (6.41)
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Its square for an unpolarized observable can be written as

φi(q→qγ)φi′∗(q→qγ) = δii
′

( eq
2π

)2
(

p+0
)2

16z
(

1 + z2
)

. (6.42)

As it can be seen from Fig. 7, the color structure of this channel is quite simple. One gets

p0, R0 = F

b b+ z̄r

b− zr

p1, R1 = F

p2, R2 = 1

Figure 7: q → qγ amplitude in an external shockwave background with the appropriate
color representations.

the proper color structure by setting UR1
b = Ub, U

R2
b = 1 and TR0 = 1. With this simple

color structure, only one TMD operator appears in this channel which reads

O(q→qγ) =
(

∂jUb

)

(

∂j′U †

b′

)

. (6.43)

Performing the trace over color indices leads to F (1)
qg TMD which has been introduced in

Eq. (5.13). Plugging these results into Eq. (3.10), we get the cross section for q → qγ

channel:

dσWW
q→qγ

dy1dy2d2p1d
2p2

=
αemαs

Nc
p+0 δ

(

p+1 + p+2 − p+0
) zz̄2

(

1 + z2
)

p2
2q

2
F (1)
qg (k) , (6.44)

which coincides exactly with Eq. (5.32) by using Eq. (5.33).

Before we continue with the dilute limit for this channel we would like to mention

that Eq.(6.44) is exact and it resums not only the kinematic twists but all twists for this

process, i.e. no higher-body twist correction is expected for the q → qγ channel. This is

due to the fact that one of the Wilson line operators is trivial for this process and there is

no other TMD operator involved.

Inserting the simple color structure of this process into the dilute limit of the generic

CGC cross section given in Eq. (4.8), we get the dilute limit of the cross section for the
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q → qγ channel:

dσgA∼0
q→qγ

dy1dy2d2p1d
2p2

=
αs

16Nc

(

p+0
)2 (2π) p

+
0 δ
(

p+1 + p+2 − p+0
) Gac (k)

k2

(

φiφj∗
)

(6.45)

× Tr

[

ta
(

pi
2

p2
2

+
qi

q2

)]

[

tc

(

p
j
2

p2
2

+
qj

q2

)]

,

which leads to

dσgA∼0
q→qγ

dy1dy2d2p1d
2p2

=
αemαs

Nc
p+0 δ

(

p+1 + p+2 − p+0
) zz̄2

(

1 + z2
)

p2
2q

2
G (k) . (6.46)

As in the case of the other channels, comparing Eq. (6.44) and (6.46), we also get a

straightforward matching between the improved TMD scheme and the dilute scheme:

σgA∼0
q→qγ = σWW

q→qγ

∣

∣

F
(1)
qg =G

. (6.47)

7 Discussions

Earlier studies have shown that for certain observables the small-x limit of the TMD frame-

work and the so-called ”correlation limit” of the CGC framework overlap. In particular,

two particle production (such as dijet or photon+jet) in forward pp and pA collisions,

gluon TMDs can be recovered from the CGC calculations in the correlation limit. This

specific limit corresponds to the case when the total transverse momentum of the produced

particles k is much smaller than the hard scale Q. On the other hand, it is also well known

that in the dilute limit of the CGC framework, that is in the limit when the total trans-

verse momentum of the produced particles are of the same order as the hard scale, one

recovers the BFKL results. Recently, the small-x improved TMD (iTMD) formalism has

been developed to interpolate between these two limits.

In this paper we studied two cases. First, by studying the correlation limit of the CGC

amplitude for a generic 1 → 2 process, we identified the kinematic twist contributions from

higher order terms in the Taylor expansion of the transverse size of the pair of particles

produced in that process, resummed those twist corrections in the Wandzura-Wilczek ap-

proximation, i.e. neglecting all genuine twist corrections. The kinematic-twist-resummed

cross section for a generic 1 → 2 process, Eq. (3.10), is then used to compare the results

obtained in the iTMD framework for different channels in forward pp and pA collisions.

The perfect matching between these frameworks proves that the iTMD formalism is fully

obtained from the CGC formalism by taking the Wandzura-Wilczek approximation.

Second, we considered the dilute limit of the CGC amplitude for a generic 1 → 2

process. The BFKL amplitudes obtained by taking the dilute limit of the CGC amplitudes

are shown to match iTMD results by simply setting the different TMD distributions to the

unintegrated parton distribution function that defines the target.

One of the most striking results of this study is the perfect matching between the hard

parts of the kinematic twist resummed cross section and the dilute limit of the CGC one.

– 32 –



This can be explained in the following way. The kinematic twist resummation procedure

that has been developed in this paper isolates and resums the parts of the higher-body

contributions which can be rewritten as gauge invariance fixing counterterms to the 1-

body hard part. The remaining terms are the genuine twist contributions which vanish in

the dilute limit since they account for multiple scatterings. In that sense, we resum the

terms which do not vanish in the dilute limit. Thus, the difference between a rigorous twist

resummation and the dilute expansion does not lie in the hard parts. Instead, it is linked

to the way the hard parts couple to the distributions.

While iTMD distinguishes distributions depending on their gauge link structures,

therefore extending its validity range in terms of |k| /Qs when compared to BFKL, both

formalisms rely on the Wandzura-Wilczek approximation in the CGC.

With the previous observations, two origins of saturation can be expected. First of all,

the difference between BFKL and iTMD is related to the distinction between gauge link

structures, which account for multiple scattering from low x gluons. As discussed earlier,

all distributions are equal at large |k|/Qs and distinct at low |k|/Qs, were saturation

is expected. In that sense, the saturation scale Qs is the parameter which controls the

importance of multiple scatterings via gauge links. On the other hand, BFKL and iTMD

both rely on the Wandzura-Wilczek approximation when compared to the CGC. It will be

very instructive to compare predictions from iTMD and full CGC once genuine twists are

extracted from the CGC as well [94]. This would probe Qs as the parameter which controls

the importance of multiple scattering via genuine twists.

As a natural extension of this study, we plan to perform a similar analysis for more

complex observables where not only the unpolarized TMD distributions but their linearly

polarized partners appear. The two immediate observables that we are planning to study

are the heavy quark production [46] and three-particle production such as dijet+photon

production [47].

Last but not least, we would like to mention that recently there have been several

studies devoted to understand the subeikonal corrections in the CGC framework [84–93].

Comparing those to the future moderate-x corrections to the iTMD scheme would be also

a natural extension of our study.
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A Effective Feynman rules in the external CGC shockwave field

In this appendix, we list the effective Feynman rules that are used to calculate the CGC

amplitudes in Appendix B.

Outgoing quark line:

ū (pq, z0) =
1

2

(

p+q
2π

)
d
2 ∫

ddx1e
ip+q

(

z−0 −
(x1−z0)

2

2z+
0

+i0

)

−i(pq ·x1)+i
z
+
0

2p+q
(m2+i0) [

Ux1θ
(

−z+0
)

+ θ
(

z+0
)]

×
(

i

z+0

)
d
2

ūpqγ
+

(

γ− − x̂1⊥ − ẑ0⊥

z+0
+

m

p+q

)

(A.1)

Outgoing antiquark line:

v (pq̄, z0) =
1

2

(

p+q̄
2π

)
d
2 ∫

ddx2e
ip+q̄

(

z−0 −
(x2−z0)

2

2z+
0

+i0

)

−i(pq̄·x2)+i
z
+
0

2p+q̄
(m2+i0) [

U †
x2
θ
(

−z+0
)

+ θ
(

z+0
)

]

×
(

i

z+0

)
d
2

(

γ− − x̂2⊥ − ẑ0⊥

z+0
− m

p+q̄

)

γ+vpq̄ (A.2)

Incoming gluon line:

εb0a0µ0
(p0, z0) =

(

p+0
2π

)

d
2
∫

ddx0e
−ip+0

(

z−0 −
(x0−z0)

2

2z+
0

−i0

)

+i(p0·x0) [

U b0a0
x0

θ
(

z+0
)

+ δa0b0θ
(

−z+0
)

]

×
(−i

z+0

)
d
2
(

g⊥µ0σ0 +
x0⊥σ0 − z0⊥σ0

z+0
n2µ0

)

εσ0
p0⊥

(A.3)

Outgoing gluon line:

εba∗µ (pg, z0) =

(

p+g
2π

)
d
2 ∫

ddx2e
ip+g

(

z−0 −
(x2−z0)

2
−i0

2z+
0

)

−i(pg·x2) [
Uab
x2
θ
(

−z+0
)

+ δabθ
(

z+0
)

]

×
(

i

z+0

)
d
2
(

g⊥µσ +
x2⊥σ − z0⊥σ

z+0
n2µ

)

εσ∗pg⊥ (A.4)

B CGC amplitudes for all channels

In this appendix we list the CGC amplitudes calculated by using the effective Feynman

rules listed in Appendix A.
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q → qg channel for forward dijet production in pp and pA collisions:

Aq→qg =
igs
2π

εσ∗pg⊥ (2π) δ
(

p+q + p+g − p+
)

∫

d2bd2re−i(q·r)−i(k·b)

× rµ⊥
r2

[(

Ub+z̄rt
bUab

b−zr

)

−
(

tbδabUb

)]

(B.1)

× ūpq [2zg⊥µσ + z̄ (γ⊥µγ⊥σ)] γ
+up

g → qq̄ channel for forward dijet production in pp and pA collisions:

Ag→qq̄ = −i
gs
2π

εσp⊥ (2π) δ
(

p+q + p+q̄ − p+g
)

∫

d2bd2re−i(q·r)−i(k·b)

× rµ⊥
r2

[(

Ub+z̄rt
bU †

b−zrδ
ab
)

−
(

tbU ba
b

)]

(B.2)

× ūpq [2zg⊥µσ − (γ⊥µγ⊥σ)] γ
+vpq̄

g → gg channel for forward dijet production in pp and pA collisions:

Ag→gg =
2gsp

+

π
εσ0
p⊥ε

σ1∗
pg⊥

εσ2∗
qg⊥

(2π) δ
(

p+g + q+g − p+
)

∫

d2bd2re−i(q·r)−i(k·b)

× rµ⊥
r2

[

f b0b1b2δb0a0U b1a1
b+z̄rU

b2a2
b−zr − f b0b1b2δb1a1δb2a2U b0a0

b

]

(B.3)

× [zg⊥σ0σ1g⊥µσ2 − zz̄g⊥σ1σ2g⊥µσ0 + z̄g⊥σ0σ2g⊥µσ1 ]

Production of a forward photon-jet pair in pp and pA collisions:

Aq→qγ =
igs
2π

εσ∗pγ⊥ (2π) δ
(

p+q + p+g − p+
)

∫

d2bd2re−i(q·r)−i(k·b)

× rµ⊥
r2

(Ub+z̄r − Ub) ūpq [2zg⊥µσ + z̄ (γ⊥µγ⊥σ)] γ
+up (B.4)

C The integral

In this appendix, we present the details of the calculation of the following integral

Iij (p) ≡
∫

ddr
rirj

r2
e−i(p·r) − 1

(p · r) e−i(q·r). (C.1)

This integral is a symmetric tensor, hence we can decompose it in a 3-dimensional basis.

Let us choose
(

δij ,
piqj + qjpi

p · q ,
pipj

p2

)

, (C.2)

and write

Iij (p) = I0δ
ij + I1

piqj + qipj

p · q + I2
pipj

p2
. (C.3)
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This relations inverts to

I0 = Iii (p)− pipj

p2
Iij (p)

I1 = − (p · q)2

p2q2 − (p · q)2
pipj

p2
Iij (p) +

(p · q)
p2q2 − (p · q)2

piqjIij (p) (C.4)

I2 = −Iii (p) +
2p2q2

p2q2 − (p · q)2
pipj

p2
Iij (p)− 2 (p · q)

p2q2 − (p · q)2
piqjIij (p) .

Thus in order to compute Iij , it is sufficient to compute J0 = δijIij and J j
1 ≡ piIij. One

can actually show that J0 = 0. This becomes apparent by going to spherical coordinates,

integrating |r| out (taking into account the phase regulators i0 in the exponent from the

effective rules in Appendix A) and checking that the remaining angular integral is null.

J j
1 is obtained easily with the usual Schwinger representation tricks and reads:

J j
1 = −2iπ

(

qj + pj

(q + p)2
− qj

q2

)

. (C.5)

Finally plugging Eq. (C.5) in Eq. (C.4) then in Eq. (C.3), one obtains

Iij (k) = −2
iπ

p2

[(

(p · q)
q2

− (p · q) + p2

(q + p)2

)

δij +

(

1

(q + p)2
− 1

q2

)

(

piqj + qipj
)

+ 2
pipj

(q + p)2

]

,

(C.6)

which leads to the expression given in Eq. (3.8).
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