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Computational barrier

High-fidelity simulation

+ An indispensible tool
- Very high computational cost

Barrier

Time-critical applications

Many query Real time

[Andrieu et al., 2003] [pow, ]

Objective: break barrier
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Computational barrier at Sandia

m CFD model m High simulation costs
m 100 million cells m 6 weeks, 5000 cores
m 200,000 time steps m 6 runs maxes out Cielo
m Fast-turnaround design m Uncertainty quantification
(UQ)
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Surrogate modeling

inputs g — ‘full—order model \ — outputs y

inputs g — ‘surrogate model ‘ — outputs y

1) Data fits 2) Coarsened 3) Reduced-order

physics models (ROMs)
‘: :/ T + Physics based

— High speedups

output

+ Preserve

- Not physics structure

based

I + Rigorous error
+ High speedups - 5

analysis

- Unproven for
nonlinear
dynamical

- Low speedups systems
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ROM = data science + modeling and simulation

Goal: exploit simulation data to drastically reduce simulation costs
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ROM: state of the art [genner et al., 2015]

m Linear time-invariant systems: mature [Antoulas, 2005]
m Balanced truncation [Moore, 1981]
m Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]
m Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]
m Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
m Reduced-basis method
[Prud’'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]
m Subsystem-based reduced-basis method
[Maday and Rgnquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]
+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Nonlinear dynamical systems: unproven
m Proper orthogonal decomposition (POD)—Galerkin
- Not reliable: Stability and accuracy not guaranteed
- Not certified: error bounds not sharp
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [7, C. et al., 2015a]

m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]
+ Low cost

m Sample-mesh approach [C. et al,, 2011, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b)

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement [C., 2015]
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POD-Galerkin: offline data collection

%:f(x;t,u); x(0,p) =x%p), te[0,T], peD

Collect ‘snapshots’ of the state

Data compression

m Compute SVD: [Xlii] = u i iTI
m Truncate: ® = [ug --- up)
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POD-Galerkin: online projection

Full-order model: % =f(x;t,pn), x(0,p)=x"(p)
)~ X dx(t) 2 ®T(f(x,t)— 9X)=0
| | | II P
i dx T S T,0
Galerkin ROM: T = =o' f(dx;t,pu), x(00,pu)=0 x°(p)
Nonlinear model reduction Carlberg
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CaVity—ﬂOW pr0b|em. Collaborator: M. Barone (SNL)

m Unsteady Navier—Stokes m Re =6.3 x 10°

m DES turbulence model m M=06

m 1.2 million degrees of m CFD code: AERO-F
freedom [Farhat et al., 2003]
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FOM responses

vorticity field
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POD-Galerkin failure

- Galerkin ROMs unstable
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [7, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

m Sample-mesh approach [C. et al., 2011, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement [C., 2015]
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How to construct a ROM for nonlinear dynamical systems?

m Optimize then discretize? (Galerkin)

m Discretize then optimize? (discrete optimal)

Full-order model optimal
ODE projection

time discretization

Discrete- :
timal B
optimal ROM < optinia Full-order model
OAE projection OAE

m Qutstanding questions:

Galerkin ROM
ODE

!

time discretization

Galerkin ROM
OAE

Time-continuous and time-discrete representations?

Are the two techniques ever equivalent?
Discrete-time error bounds?
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Nonlinear model reduction

Full-order model
ODE

|

time discretization

|

Full-order model
OAE
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Full-order model (FOM)

m ODE: time continuous
% =f(x,t), x(0)=x° tel0,T]

m OAE, linear multistep schemes: , n=1,...,N

k k
r'" (x) = agx — dtfof(x, t") + Z ajx" — &Z Bif (x"~I, ")

=1 =1
x" = x" (explicit state update)

m OAE, Runge-Kutta: | r] (x7,...,x]) =0 ‘ i=1,..,s

s
ri(xq, ..., xs) = x; — F(x"1 + 5tz ajixj, t"1 + ¢idt)
j=1

S
x"=x""1 4 6tZ bix} (explicit state update)
i=1
This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model Galerkin
ODE projection

time discretization

|

Full-order model
OAE

Nonlinear model reduction

Galerkin ROM
ODE
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Galerkin: first optimize, then discretize

Full-order model Galerkin s Galerkin ROM
ODE projection ODE
time discretization time discretization
Full-order model Galerkin ROM
OAE OAE
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Galerkin ROM

m ODE

dx 5
- = o Ff(dx, 1), %(0)=d"x° te[0,T]
+ Continuous velocity ‘;—’;‘ is optimal
Theorem (Galerkin ROM: continuous optimality)
The Galerkin ROM velocity minimizes the time-continuous FOM residual:

Xt =arg_min [lv = F(x, 02

m OAE
F(x")=0, n=1,..,N

k k
P () = a0k —0tBo®T F(O%, t")+> k"5t > foTF (m"*f, t"*f')
j=1 j=1
- Discrete state X" is not generally optimal
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Galerkin ROM: Commutativity

Projection and time discretization are commutative for Galerkin ROMs:
P(%) =T (d%)

Full-order model Galerkin s Galerkin ROM
ODE projection ODE
time discretization time discretization
Full-order model Galerkin - Galerkin ROM
OAE projection OAE
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Discrete-optimal ROM: first discretize, then optimize

Discrete- z
Petrov—Galerk
optimal ROM  |<€— e;:;jec;:r: n
OAE

Nonlinear model reduction

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM

ODE

!

time discretization

3 Galerkin ROM
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Discrete-optimal ROM

= FOM OAE

r"(x"y=0, n=1,..,N
m Discrete-optimal ROM OAE:

an H n 3\ (|2

X" = arg min [|Ar" (®2) ||2.

)
neon\T .n on nea T ar"
v " (dx") =0, W'(x)=A A8 (®x)

m A = I. Least-squares Petrov—Galerkin
[LeGresley, 2006, Bui-Thanh et al., 2008, 7]
m Alternative norm: ¢! [Abgrall and Amsallem, 2015]

+ Discrete solution is optimal
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Does the discrete-optimal ROM have a time-continuous representation?

| ? |
o )
Discrete- .
optimal ROM < PEt’;S(\)/jeS;fr:kln
OAE

Nonlinear model reduction

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
OAE
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Does the discrete-optimal ROM have a time-continuous representation?

o 7D7isc7re7tej o | i
) Petrov—Galerkin
: optimal ROM <€ - projection
. ODE |
1
Y

time discretization

Y
Disgrete. Petrov—Galerkin
optimal ROM < .
OAE pres

Nonlinear model reduction

Sometimes.

Full-order

Galerkin
model projection
ODE
time discretization
FuII-c:]rdler Galerkin
mode! projection

OAE

Galerkin ROM
ODE

!

time discretization

R Galerkin ROM
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Discrete-optimal ROM: continuous representation

Theorem

The discrete-optimal ROM is equivalent to applying a Petrov—Galerkin
projection to the FOM ODE with test basis

vz t)=A"A <aol = Atﬁog—i(xo + ®%, t)> o
if

Bj=0,j>1 (eg., asingle-step method),

the velocity f is linear in the state, or

Bo =0 (i.e., explicit schemes).
Time-continuous test basis depends on

time-discretization parameters!
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Are the two approaches ever equivalent?

m Galerkin: o7 (0x") =0
m Discrete-optimal: W"(X")7r" (®%") =0

Does W"(x") = ® ever?

Yes.

V(%) = ATAZ:( (bx)= A'A <a0/ = 6tﬂog—i(¢2, t”)) o

The two approaches are equivalent (W"(x) = ®)
in the limit of 6t — 0 with A =1/,/al,
if the scheme is explicit (6o = 0) with A =1/,/aql, or
if 9 is positive definite with [22]71 = AT A.
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Discrete-time error bound

If the following conditions hold:

f(-, t) is Lipschitz continuous with Lipschitz constant k, and

dt is such that 0 < h := |ap| — |Bo|kdt,
then

< k k
ot . = 1 - c
lxgll < = > 8l (1 = V) £ (x0+¢x’(’; l) I+3 37 (1Belwbt + o
(=0 f=1

1) lloxg |l
lloxpll < o zk: Belll (1 =P7) F (Xo + ‘1”?"_@) ||->~E i (18e|dt + |ae) [|8x5“]l,
~— h = ‘ 2 h = : 2
with
m Ox% = x] — OXL. aV =dp’
n .__ n on
m Ox} = x] — ®xp

m PP =@ (W) (W)
Nonlinear model reduction
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Discrete-optimal ROM yields a smaller error bound

Theorem (Backward Euler)
If conditions (1) and (2) hold, then
=i

loxel < ot (,,%IH (1-v)f (Xo + d)f(g‘f) I
=0

el
€6

n—1
loxpll <3t S (,,y%ll (1= B9) £ (x0-+ 0257) |
Jj=0

n—j
€D

k= | o%k — otf (xo + ¢)‘<kc) —oxk

k= ||k — 5tF (xo 4 mg) — ®&f57!| = min||®y — 3tF (xo + ®y) - oz

Corollary (Discrete-optimal smaller error bound)
If)?’fj_l = )“(’&_1, then 5’5 = 5’&.
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Discrete-optimal ROM has an interesting time-step dependence

Corollary (Backward Euler)
Define
" A)“(jD r= )“(Jb — 2’51 and
m AX/: full-space solution increment from x5 1

Then, the discrete-optimal erzo_rlcan also be bounded as
16xD|| < (1 + mét)z . Ty ||f(x~’ + AR
with 1 = |®AR — AR || /AxJ.

Effect of decreasing dt:
+ The terms 0t(1 + xdt) and 1/(h)T! decrease
- The number of total time instances n increases

? The term ;/”/ may increase or decrease, depending on the
spectral content of the basis ®
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Galerkin and discrete-optimal responses for basis dimension p = 204

3
24 M, At = 0.0015 —TFOM, At|=0.0015
—4.375¢-05 — A=0.00015
=0:800751% —§t=3 1875
2.6) =0.000375 28F —A1=0.000375
=0:00075 AE=0:00075
=0.0015 —R¢=0.0015
—0.003 {=0.003
2.4 =0.006 26 — ffg'B? i\
g =
322 . 324 T
0 7]
g g
2 2 Y22
o o
18 3
16, 18
14 1 2 3 4 5 6 ' 2 4 6 8 10 12 14
time time
(a) Galerkin (b) Discrete optimal

- Galerkin ROMs unstable for long time intervals
(consistent with previous results [c. et al., 2013, 7, C., 2011])

+ Discrete-optimal ROMs accurate and stable (most time steps)
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Discrete-optimal ROM: superior performance

£10 - £10 - £10 -
] ——Galerkin . = ——Galerkin . = ——Galerkin R
3 ——Minimum residual 2 ——Minimum residual 2 ——Minimum residual
= =2 =
&107 G107 / 107 i/
= : \/ .
= b bt
o o o
> = =
@ @ 3
. . .
2107 E10? E10?
pe] g pe]
=) = 8
= ~.. [
S o <)
= = &
% 10 S Chty
107 107 107 10°
At At At
(c)0<t<055 (do<t<11 () 0<t<154

v Discrete-optimal ROM vyields a smaller error for all time
intervals and time steps.
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Limiting equivalence

1072

107

1072

10!

107

[
O
® o
=]
T
o=
¢
® o
Q5
Eg
g
o
1073
10 1077 1072
At
(f) p =204

Galerkin/discrete-optimal difference in the stable Galerkin interval

0<t<11.

V" The discrete-optimal ROM converges to Galerkin as dt — 0.

Nonlinear model reduction
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Discrete-optimal performance in 0 <t <25

100

)
i

«error indime-ayeraged pressure
o =
& b

=

]
[GR(GV]\v)
SO
GO

-—Pp
4
-—p

=

1

=5 107* 1072 1072 107! 100
At

107

)

seconds
— A
(@) )
[S11 [=;]

—_
o
=

y

simulation time (

/

0
1074

1073 A 1072 107!

V" An intermediate dt produces the lowest error and better speedup.

p = 564 case:
m 5t = 1.875 x 10™* sec: relative error = 1.40%, time = 289 hrs
m 6t = 1.5 x 1073 sec: relative error = 0.095%, time = 35.8 hrs
KTC: Still slow!!!
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [?, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

m Sample-mesh approach [C. et al,, 2011, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability

m A posteriori h-refinement [C., 2015]
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Hyper-reduction via Gappy POD (ewerson and Sirovich, 1005]
" — arg min ||Ar" (®2) 3.
ZeRP

Can we select A to make this inexpensive?

1. r(x) =~ F" " 2. P'(x) = arg m|n |PPrF— Pri(x)||2

CDRr
| | I _argmm I |

2

A" = =arg ! m|n 7" (®2) |5 = arg m|n PP (®2) |3 = arg 1 m|n 17" (®2) |13

= arg min | (P®R)T Pr" (d)z) 3.
2€RP e ——
A
+ A= (Pdg)" P leads to low-cost
m Offline: Construct ¥ (POD) and P (greedy method)
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Cavity-flow problem: GNAT

%" = arg min || (PdR)T Pr"(®2)]3
ZcRP

m Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance

vorticity field pressure field

FOM

+ < 1% error in time-averaged drag
m FOM: 5 hour x 48 CPU

m GNAT ROM: 32 min x 2 CPU

+ 229x CPU-hour savings
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GNAT performance

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

m FOM: 5 hour x 48 CPU

m GNAT ROM: 32 min x 2 CPU

-+ 229x CPU-hour savings. Good for many query.
- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) (c. 201

)

)/(
Trom/ Trom

IS

10 12 14 16 0

0 2 4 6

2 cPu
(c) CPU-hour savings (d) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)
- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!

Nonlinear model reduction Carlberg 41 / 24



Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [?, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

m Sample-mesh approach [C. et al., 2011, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b)

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability

m A posteriori h-refinement [C., 2015]
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Tlme—pa ra”el a|g0rltth [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

to —H— tm
t t h

|—¢1—|2—|—|—H—|:¢—|<—_H—I—¢—|—H\ \\—H—I—H—H—H—|

To T1 T2 TI\7I 1 TM

m Fine propagator: time step h
F(x;71,72)

m Coarse propagator: time step H
G(x;11,m2)

m Parareal iteration k (sequential and parallel steps):

XT_;_’_I]' = g(XT+1§ T, Tm+1) T .F(X;(”; Tm, Tm+1) - g(XT; Tm. Tm+1)
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lllustration: sequential and parallel steps

17 17
16 " : 16 R
%5 : %5 /

< <
T4 8 4

13 I3

g.z §.2

11 11

X 10 20 galiep 0 50 60 Y10 timaGtep 40 50 60

1 m.
m+ g(xo ) Tmy Tm+1) ‘F(XO ; Ty Tm+1)

17 1.7
1.6 :/—;/—4 1 1.6 7{>‘
N / s /
4 a4
g &

3 1 13
‘_gg,z é.z

11 11

Y10 timaGtep 40 50 60 Y100 tima&ep 40 50 60

P = E e T Tt ) F T Ta)

+g(xin; Tm, Tm+1)_g(X6n; Tm, Tm+1)
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

m Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization

[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]
Simplified phyics model [Baffico et al., 2002, Maday and Turinici, 2003,
Blouza et al., 2011, Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
Reduced-order model (on the fly) [Farhat et al., 2008,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?
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Revisit the SVD

[X1 X2 X3] =

II I 0 . M
time step

First row of VT

jth row of VT contains a basis for time evolution of X

m Construct =;: basis for time evolution of X;

= = [511 ﬁft'ai"]' &= vmg-1y1j - vmijl’

Nonlinear model reduction Carlberg
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Previous method (c. et ai., 20151]

compute forecast by gappy POD in time domain:

%1 ): ——/ | \\

0 time step

X1 so far; memory « = 4; forecast; temporal basis

zj=argmin||Z(m—1,a)=jz— Z(m — 1, a)g(X)]2
zeR¥
m Time sampling: Z(k, ) := [ex—p --- ek]T
m Time unrolling: g(%) : & — [Xi(to) -+ K(tm)] "

T= 5. as initi 2t ) |
use e, =;z; as initial guess for Xj(tm) in Newton solver
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Previous results: structural dynamics [c etai, 2015]

1o

o

Newton-it
reduction
speedup

v

memory « memory «

+ Newton iterations reduced by up to ~2x
+ Speedup improved by up to ~1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

m Offline: Construct time-evolution basis =¥

J
L =]
L //3\‘ B
=1 =2 =3 =4 =5
=1 =1 =1 =1, =1
0 M

time step

= Online: Coarse propagator G defined via forecasting:
Compute « time steps with fine propagator
Compute forecast via gappy POD
Select last timestep of forecast
F(Ry: Tons T + )
~ — ) — T + .
G s (%55 Toms Tnga) ez,/,h:j [Z(a+1,0)=]] :
F(Ri FToa T +-hw)
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|deal-conditions speedup

Theorem

If g(x;) € range(Z;), j=1,...,p, then the proposed method
converges in one parareal iteration and realizes a theoretical

speedup of m
M(M — 1)a/M 41

w
o1

a=1 —
[ ——a=2 #

N W
o1 O
T

speedup
N
o

0 5 10 15 20 25 30 35
processors M
Ideal-conditions speedup for M = 5000
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|deal-conditions speedup with initial guesses

Corollary

If f is nonlinear, g(X;) € range(Z;), j=1,...,p, and the
forecasting method also provides Newton-solver initial guesses,
then

the method converges in one parareal iteration, and

only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M
(Ma) 4+ (M/M — a)7,

relative to the sequential algorithm without forecasting. Here,

residual computation time

Tr = B B B .
nonlinear-system solution time
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|deal-conditions speedup with initial-guesses
120

100 +

80 -

15 20 _ 25 30 35
processors M

Ideal-condition speedup for M = 5000, 7, = 1/10

Significant speedups possible by leveraging time-domain data!
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Stability

If the fine propagator is stable, i.e.,
[F(xi 1, )|l < (1+ CH)Ix],
then the proposed method is also stable, i.e.,

171 < o exp(CrmH)[R°]1

m Coi= 31 (5)Bey™ak(H/h)m=k
m By :=exp(—Crk(H — ha)) < 1
m v := max(maxm;j 1/||Z(a+1, @)=]|, 1/omin(Z(a+1, @)=]"))
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Example: inviscid Burgers equation [rewienski, 2003]

du(x,7) 10 (u2 (x, 7-)) - -
87_ + 5 aX = 0.026

u(0,7) = 1, V7 €0, 25]
u(x,0) =1, Vx € [0, 100],

Discretization: Godunov's scheme

(1, 12) € [2.5,3.5] x [0.02,0.075]

h=0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG p7; with POD basis dimension p = 100

Ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler

Backward Euler Forecasting

2.8 2.6 s
2.6 2.4

2.4 22

2.2 2

g? Sie

B8 >'?16

1.6 :

1.4 1.4 Tteration 1
12 1.2

1
1O 100 200 300 400 500 600 0 100 20Q 300 400 500 600
e step time step

Dlo DIO

o ? o ?

| —

Q08 o8

3 8 =3

2 2

g3 g 3

wn w0

g2 =

S) 9]

o1 (&} 1

0 10 20 30, 40 50 60 T 80 90 100 10 20 30 i) 50 €0 T 80 90 100
spatial variable x spatial variable x

Nonlinear model reduction Carlberg 55 / 24



Parareal performance

parageal iterationg

[N}

25 3 35 4 45 5 55_ 6
number of processors M

25 3 35, 4 45 5 5.
number of processors

+ Forecasting: minimum possible iterations

- Backward Euler: maximum possible iterations

More parallelism successfully exposed!
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Conclusions

Use temporal data to reduce ROM simulation time

m offline: time-evolution bases from right singular vectors
m online: use as coarse propagator
compute « time steps with fine propagator
use gappy POD to forecast
theory: excellent speedup and stabilty
ideal parareal performance observed
significant improvement over Backward Euler
no additional error introduced
generally applicable
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