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Computational barrier

High-fidelity simulation

+ An indispensible tool
- Very high computational cost

Barrier

0.15

0.05

Time-critical applications

Many query

000

Real time

[Andrieu et al , 2003] [pow, ]

Objective: break barrier
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Computational barrier at Sandia

■ CFD model

■ 100 million cells
■ 200,000 time steps

■ High simulation costs

■ 6 weeks, 5000 cores
■ 6 runs maxes out Cielo

Barrier

■ Fast-turnaround design ■ Uncertainty quantification

(UQ)
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Surrogate modeling

inputs µ

inputs µ,

1) Data fits

o

A

►
input

- Not physics

based

+ High speedups

full-order model

surrogate model

2) Coarsened
physics

+ Physics based

- Low speedups

outputs y

outputs y

3) Reduced-order
models (ROMs)

+ Physics based

+ High speedups

+ Preserve
structure

+ Rigorous error

analysis

Unproven for

nonlinear
dynamical
systems
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ROM = data science + modeling and simulation

Goal: exploit simulation data to drastically reduce simulation costs
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ROM: state of the art [Benner et al., 2015]
• Linear time-invariant systems: mature [Antoulas, 2005]
• Balanced truncation [Moore, 1981]
• Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]
• Moment matching

[Bai, 2002, Freund, 2003, Gallivan et al , 2004, Baur et al., 2011]

• Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
• Reduced-basis method

[Prud'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]

• Subsystem-based reduced-basis method
[Maday and Ronquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]

+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Nonlinear dynamical systems: unproven
• Proper orthogonal decomposition (POD)—Galerkin
- Not reliable: Stability and accuracy not guaranteed
- Not certified: error bounds not sharp
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

• Improve projection technique [7, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

• Sample-mesh approach [C. et al., 2011, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification

• Error bounds [C et al., 2015a]
• Statistical error modeling [Drohmann and C 2015]

+ Reliability

• A posteriori h-refinement [C., 2015]
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POD—Galerkin: offline data collection
dx

f(x; t, µ); x(0, µ) = x°(µ), t E [0, T] , µ E D
dt

El Collect 'snapshots' of the state

El Data compression

• Compute SVD: [x1 x2 x31 =

• Truncate: = [u1 • • • up]

i
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POD—Galerkin: online projection

Full-order model:
dx

f(x; t, p,), x(0, p) = (p)
dt

1 x(t) z(t) = Ci(t)

Galerkin ROM:

1
2 4:07-(f(k, t) — ̀ 1) = 0

dk 
= 

T 
f (0x; t, p,), '/(0,µ) = 07-xo(l-t)

dt
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Cavity-flow problem. Collaborator: M. Barone (SNL)

• Unsteady Navier—Stokes

• DES turbulence model

• 1.2 million degrees of

freedom

• Re = 6.3 x 106

• Moo = 0.6

• CFD code: AERO-F

[Farhat et al., 2003]
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FOM responses

vorticity field

pressure field
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POD—Galerkin failure

2.8

2.6

2.4
a)
7 2.2-
tn

a) 2 -

1.8

1.4

M. A

=0 006
012

0 015
0 024

= 6.0015

ti me

- Galerkin ROMs unstable

6
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Our research goal

Nonlinear model-reduction methods that are

accurate, low cost, certified, and reliable.

+ Accuracy

• Improve projection technique [?, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

• Sample-mesh approach [C. et al., 2011, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification

• Error bounds [C. et al., 2015a]
• Statistical error modeling [Drohmann and C., 2015]

+ Reliability

• A posteriori h-refinement [c., 2015]
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How to construct a ROM for nonlinear dynamical systems?

• Optimize then discretize? (Galerkin)

• Discretize then optimize? (discrete optimal)

Discrete- S
optirnal ROM

0.6.E

Full-order model optirnal

ODE projection

♦

time discretization

♦

time discretization

projection 
Full-order model Galerkin ROM

OAE CIAE

• Outstanding questions:
▪ Time-continuous and time-discrete representations?
▪ Are the two techniques ever equivalent?
II Discrete-time error bounds?
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Full-order model
ODE

time discretization

Full-order model
OAE
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Full-order model (FOM)
• ODE: time continuous

dx
—
dt 
= f(x, t), x(0) = t E [0, T]

• OAE, linear multistep schemes:

k

rn (x) := aox - StOof(x, tn) +
;=].

xn = xn (explicit state update)

• OAE, Runge-Kutta:

rn(xn)=o , n =1, , N

- St (xn-i ,
j=i

r7 (x111, , xs. n) = 0

rn (xi, , x5) := x, - f (x11-1 + t

s

j=1

, i = 1, ...,s

aux.], tn 1 + Ci(St)

xn xn-1 + (St bix7 (explicit state update)
i=1

This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model
ODE

'1'

time discretization

Full-order model
0.6.E

Galerkin
projection

r-
Galerkin ROM

ODE
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Galerkin: first optimize, then discretize

Full-order model
ODE

time discretization

Full-order model
0.6.E

Galerkin
projection

time discretization

Galerkin ROM
0.6,E
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Galerkin ROM

• ODE

d X
  = 4:0 7- f(Ci, t), k(0) = Tx°, t E [0, T]
dt

+ Continuous velocity 2 is optimal
Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:
dic
—
dt
(x, t) = arg min llv f(x, t)112

vErange(0)

• OAE
(zi) = 0, n = 1, , N

k k

(k) := aok—St,304:0T f (4)k, t̂ )-FE coin -1-õt E ,3;4) f (4)kn—i  tn—i)

j=1 j=1

- Discrete state Sin is not generally optimal
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Galerkin ROM: Commutativity

Theorem

Projection and time discretization are commutative for Galerkin ROMs:
in (Jo (DT rn (co

Galerkin
projection

Full-order model
ODE

time discretization

Full-order model
an.E

—3.
Galerkin
projection

—3.

time discretization

Galerkin ROM
0.6.E
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Discrete-optimal ROM: first discretize, then optimize

( Full-order
model
ODE )

♦

time discretization

Galerkin
projection

Discrete- Petrov—Galerkin ( Full-order Galerkin
optimal ROM projection model projection

\ 
OAE OAE )

time discretization

Galerkin ROM
OAE
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Discrete-optimal ROM

• FOM OAE

rn (xn) = 0, n = 1, , N

• Discrete-optimal ROM OAE:

= arg rnin llArn (1)1)112.
lERP

Wn(kr7)T rn (okn) Itin(k) AT Aa: (ok)

■ A = l: Least-squares Petrov—Galerkin
[LeGresley, 2006, Bui-Thanh et al., 2008, ?]

■ Alternative norm: fl [Abgrall and Amsallem, 2015]

+ Discrete solution is optimal
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Does the discrete-optimal ROM have a time-continuous representation?

Galerkin
projection

Full-order
model
ODE

♦

time discretization

♦
Discrete-

optimal ROM
Petrov—Galerkin

projection

Full-order
model

Galerkin
projection

OAE OAE

time discretization

Galerkin ROM
OAE
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Does the discrete-optimal ROM have a time-continuous representation?

Sometimes.

Discrete-
I optimal ROM ft — •

Petrov—Galerkin
projection .4 —

Fu I I-order
model

Galerkin
projection

ODE ODE

♦

time discretization time discretization

♦
Discrete- Petrov—Galerkin Fu I I-order Galerkin

optimal ROM
projection 'IC— model projection

0,6,E 0.6.E

time discretization

i
Galerkin ROM

OAE
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Discrete-optimal ROM: continuous representation

Theorem

The discrete-optimal ROM is equivalent to applying a Petrov—Galerkin
projection to the FOM ODE with test basis

Of
t) = AT A (1.01 — At,30—(x"

r,
+ 4)X, t)) 4)

Ox

if

,▪ (3.; = 0, j > 1 (e.g., a single-step method),

El the velocity f is linear in the state, or

▪ = 0 (i.e., explicit schemes).

Time-continuous test basis depends on

time-discretization parameters!
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Are the two approaches ever equivalent?

• Galerkin: (DT rn ow) 0

• Discrete-optimal: klin(k9T rn OW) = 0

Does klin(kn) = (I) ever?

Yes.

rn
tie (1c) := AT A° 

OX OX 
(CO = AT A (Go/ — t00—

Of
(40k, tn))

Theorem

The two approaches are equivalent (Iiin() =

il in the limit of St 0 with A =

Ei if the scheme is explicit Po = 0) with A = 1[Vaol, or

p if 5, is positive definite with [5:]-1 = AT A.

Nonlinear model reduction Carlberg 28 / 24



Discrete-time error bound

Theorem

lf the following conditions hold:

▪ f(•, t) is Lipschitz continuous with Lipschitz constant lc, and
▪ 6t is such that 0 < h := Polk6t,

then

llå )(r 
—8t loE111(i —v)f (x0 + cinc.e)11+T., E(113eItc6t + lad) 116x -i ll
h

St k

i=1

f (xo (1)1(V) II  (106CC5t lad) P5X1:9-1.
E=0 E=1

with

■ 45xt := x,n — 4:0*.

■ 6x1h := x,n — nD

■ V := 0(1)T

• Ton ((r) T0) -1 (pti)T
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Discrete-optimal ROM yields a smaller error bound

Theorem (Backward Euler)

If conditions (1) and (2) hold, then
n-1

II'S 411 < StE ov+, II (I V) r (X° + (ok -j)11
J=0

n-1

li6x; E (hy+1 11 _ f (xo + 01c1L 

j=0
eS—)

= 114)5C. — ötf (zo + — 41.11-1 11

ekD = II mxo — Jtf (xo +Okke,) — = min 110y — Stf (xo + oy) mzp 1 II

Corollary (Discrete-optimal smaller error bound)

sika5-1 = kG— 
then EkD
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Discrete-optimal ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define

• AkiD := — icir) 1 and

• Aki: full-space solution increment from IciD-1.

Then, the discrete-optimal error can also be bounded as
n-1

I x°I1 St(1+ kSt) >2- (iihy  f (i(JD-1 + A17-1)11

with pi := 110A1(jD *AY:

Effect of decreasing St:

+ The terms St(1 + KR) and 1/(h)j±1 decrease

- The number of total time instances n increases

? The term /in—] may increase or decrease, depending on the
spectral content of the basis
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Galerkin and discrete-optimal responses for basis dimension p = 204

2.8

2.6

2.4

2 2

In

2 2
0-

1.6

I 4

M, At = 0.0015
-9.3756-05
=0.0001875
=0.000375
=0.00075
=0.0015
=0.003
0 006

3

time

(a) Galerkin

6

2.8

2.6  - t=

= tt==
= 2.4 — t=

2 2.2
0-

2

1.8

—FOM, At = 0 0015
  - 1

45

10

ti me
(b) Discrete optimal

4

- Galerkin ROMs unstable for long time intervals

(consistent with previous results [C. et al., 2013, ?, C., 2011])

+ Discrete-optimal ROMs accurate and stable (most time steps)

Nonlinear model reduction Carlberg 32 / 24



Discrete-optimal ROM: superior performance

lo-1

110-

--Minimum residual

O

10-4 
10

At

(c) 0 < t < 0.55

10-'

110-2

lo-3

—Minimum residual

At

(d) 0 < t < 1.1

10-'

io-3
!

;10-, 

—Galerkin
—Minimum residual

10
At

(e) 0 < t < 1.54

s/ Discrete-optimal ROM yields a smaller error for all time

intervals and time steps.
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Limiting equivalence

At

(f) p = 204

10'

10- 10- 10-'
At

(g) p = 368

10-

10-' 10-P
At

(h) p = 564

Galerkin/discrete-optimal difference in the stable Galerkin interval
0 < t < 1.1.

✓ The discrete-optimal ROM converges to Galerkin as St O.
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Discrete-optimal performance in 0 < t < 2.5

„,io°

40-1
a)
ed
40-2
c3

10-3

0

4o-410-5

—p
—p 

=5364 
=68

10-4 10-3 10-2
At

10-1 10°

107

106

o

1▪ 04

103 
io-4 io-3

At
10-2 10-'

✓ An intermediate St produces the lowest error and better speedup.

p = 564 case:

• St = 1.875 x 10-4 sec: relative error = 1.40%, time = 289 hrs

• St = 1.5 x 10-3 sec: relative error = 0.095%, time = 35.8 hrs

KTC: Still slow!!!
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

• Improve projection technique [?, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

• Sample-mesh approach [C. et al., 2011, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification

• Error bounds [C. et al., 2015a]
• Statistical error mode[ing Prohmann and C., 2015]

+ Reliability

• A posteriori h-refinement [c., 2015]
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

IC" = arg rnin Or" (4)2) 112.
2E rsP

Can we select A to make this inexpensive?

1. (x) = ORP(x) 2. Pn(x) = arg mjn 11PORF — Prn(x)112

I = arg rylin

r

2

jin = arg min
2ERP 

11 1." (V1)113 = arg 
2min

2ERP MOO' (0z)112= 
arg min

2ERP 
11 Fn (VI) 113

= arg rnin (POO+ P rn (1*)113.
2ERP

A

+ A = (POO+ P leads to low-cost

• Offline: Construct (POD) and P (greedy method)
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Cavity-flow problem: GNAT

kn = arg min 11 (POO+ Prn ((") 11
zERP

•

• Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance

vorticity field

GNAT
ROM

FOM

< 1% error in time-averaged drag

• FOM: 5 hour x 48 CPU

• GNAT ROM: 32 min x 2 CPU

+ 229x CPU-hour savings

pressure field
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GNAT performance

vorticity field pressure field

GNAT

ROM

FOM

•
U

▪ < 1% error in time-averaged drag
• FOM: 5 hour x 48 CPU

• GNAT ROM: 32 min x 2 CPU

+ 229x CPU-hour savings. Good for many query.

- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) , 2011]

0450

l•-••

X 400

(13350

Z300
O

k. 250
X

Q.200
j 2 4 6 u 10 12

(c) CPU-hour savings

14 16

14

12

Z 10
O

8

6
O 

4 -

6 CIS " 12

(d) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)

- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!

14 16
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Our research goal

Nonlinear model-reduction methods that are

accurate, low cost, certified, and reliable.

+ Accuracy

• Improve projection technique [?, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

• Sample-mesh approach [C. et al., 2011, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification

• Error bounds [C. et al., 2015a]
• Statistical error modeling [Drohmann and C., 2015]

+ Reliability

• A posteriori h-refinement [c., 2015]
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Time-parallel algorithrns [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

to i—H— tM

1 t 11 ti2 
II It

h
i
.._
llilHAIIIIIIIIII

To 7-1 T2 TA-4_1 Tiv4

• Fine propagator: time step h

T(x; T1, T2)

• Coarse propagator: time step H

g(x; T2)

• Parareal iteration k (sequential and parallel steps):

wm+1 = g(xT+1; Tm, Trn+i) + T(41; Tm, Tm+i) — g(xkr"; Tm, Tin+i)
'sk+1
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Illustration: sequential and parallel steps

1.7

1.6

15
'X.4

10

4+1 = g(xT; Tm, Tm+i)
1.7

1.6

1.5
1.4

1.1

1
0 10 20 timAtep 40

Xmi +1=T(XcT; Tm, Tm+i)

+G(xj.n; Tm, Tm+1)—G(x(j; Tm, Tm+1)

20 tinAtep 40 50

50

60

60

1.7

1.6

15
*E.4

3
1.2

1.1

1

1.7

1.6

15
14

1.1

10

10 20 thaOstep 40 50

.F(x(T; Tm, Tm+i)

60

10 20 timAtep 40

-F(x77; Tm, Tm+i)

50 60
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

■ Existing coarse propagators

■ Same integrator [Lions et al., 2001b, Bal and Maday, 2002]
■ Coarse spatial discretization

[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

■ Simplified phyics model [Baffico et al., 2002, Maday and Turinici, 2003,
Blouza et al., 2011, Engblom, 2009, Maday, 2007]

■ Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
■ Reduced-order model (on the fly) [Farhat et al , 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?
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Revisit the SVD

[ X1 x2 )(3] = U E Vr

M
time step

First row of VT

jth row of VT contains a basis for time evolution of )?.]

• Construct basis for time evolution of )?.]

E j . . . Ciltrain] := [16,14(i_1)+1 . . 
VMI,jIT

Nonlinear model reduction Carlberg 46 / 24



Previous method [C. et al., 201513]

El compute forecast by gappy POD in time domain:

54 I

time step

1(1 so far; memory a = 4; forecast; temporal basis

zi = arg min IlZ(m — 1, ce)Eiz — Z(m — 1, cOg(j0112
ZERaj

• Time sampling: Z(k, ,(3) := [ek_o • • • ek
T

• Time unrolling: g(k)) : j(to) • • • Rj(tA4)]T

El use e„,TEizi as initial guess for ".i(tm) in Newton solver
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Previous results: structural dynamics [C. et al , 20151a]

2.5

- : ' -----

memory a memory a

+ Newton iterations reduced by up to —2x

+ Speedup improved by up to —1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

• Offline: Construct time-evolution basis Er

—.--

=1 —2_ =3 — 4_ =5
—1 —1 —1 —1 —1

o

time step

• Online: Coarse propagator gin defined via forecasting:
El Compute a time steps with fine propagator

Compute forecast via gappy POD
111 Select last timestep of forecast

,F(5ij;Tm,Tm + h)

: (sif; Trn, Tm+l)i— eH/h [Z (a + 1, a)E'll+

T(kj; Tm, Tm + ha) -

Nonlinear model reduction Carlberg 49 / 24



Ideal-conditions speedup
Theorem

lf g(M E range(E1), j =1, p, then the proposed method

converges in one parareal iteration and realizes a theoretical
speedup of M

A/1(M —1)a1A4 +1'

35

30

25

20

—a=1

—0=4
—a=8

—a-12

0 5 10 15 20 _ 25
processors M

Ideal-conditions speedup for M = 5000

30 35
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Ideal-conditions speedup with initial guesses
Corollary

If f is nonlinear, g(10 E range(E1), j = 1, , p, and the
forecasting method also provides Newton-solver initial guesses,
then

El the method converges in one parareal iteration, and

El only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M

(Ma) + (M/ M — a)yr

relative to the sequential algorithm without forecasting. Here,

residual computation time
Tr =  

nonlinear-system solution time
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Ideal-conditions speedup with initial-guesses
120

100

80

CL

60

40

20

0
0 5 10 15 20 _ 25

processors M

Ideal-condition speedup for M = 5000, Tr = 1/10

— a=1

— a=2

- — 0=4
— a=8

— a-12

30 35

Significant speedups possible by leveraging time-domain data!
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Stability

Theorem

If the fine propagator is stable, i.e.,

11.7(x;n, T2)11 < (1 +

then the proposed method is also stable, i.e.,

111(T+11 <

m Cm 
(11:1)0k-Ymak(H/ hr-k

• Ok exp(—C.Fk(H — ha)) < 1

• -y := max(maxm,j1/11Z(a+1, 1/amin(Z(a+1, cE)En)
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Example: inviscid Burgers equation [Rewienski, 2003]

LIOT 

(X , T) ± 

2 

1 0 (1.12 

Ox 

(X , T))
  = 0 .02e112x

u(0, T) = pi, VT E [0, 25]

u(x, 0) = 1, Yx E [0,100],

• Discretization: Godunov's scheme

• (P4, P2) E [2.5, 3.5] x [0.02,0.075]

• h = 0.1, M = 250 fine time steps

• FOM: N = 500 degrees of freedom

• ROM: LSPG m with POD basis dimension p = 100

• ntrain = 4 training points (LHS sampling); random online point

• Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler
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Parareal performance
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+ Forecasting: minimum possible iterations

- Backward Euler: maximum possible iterations

More parallelism successfully exposed!
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Conclusions

Use temporal data to reduce ROM simulation time

■ offline: time-evolution bases from right singular vectors
■ online: use as coarse propagator

El compute a time steps with fine propagator
El use gappy POD to forecast

+ theory: excellent speedup and stabilty
+ ideal parareal performance observed

+ significant improvement over Backward Euler

+ no additional error introduced

+ generally applicable
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Questions?
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