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1. INTRODUCTION

Historically, control systems have primarily depended upon their isolation [1] from the Internet
and from traditional Information Technology (IT) networks as a means of maintaining secure
operation in the face of potential remote attacks over computer networks. However, these networks
are incrementally being upgraded [2] and are becoming more interconnected with external
networks so they can be effectively managed and configured remotely. Examples of control
systems include the electric power grid, smart grid networks, micro grid networks, oil and natural
gas refineries, water pipelines, and nuclear power plants. Given that these systems are becoming
increasingly connected, computer security is an essential requirement as compromises can result
in consequences that translate into physical actions [3] and significant economic impacts [4] that
threaten public health and safety [5]. Moreover, because the potential consequences are so great
and these systems are remotely accessible due to increased interconnectivity, they become
attractive targets for adversaries to exploit via computer networks. Several examples of attacks on
such systems that have received a significant amount of attention include the Stuxnet attack [6],
the U.S.-Canadian blackout of 2003 [7], the Ukraine blackout in 2015 [8], and attacks that target
control system data [9] itself. Improving the cybersecurity of electrical power grids is the focus of
our research.

The power grid is responsible for providing electricity to society, including homes, businesses,
and a variety of mission critical systems, such as hospitals, power plants, oil and gas refineries,
water pipelines, financial systems, and government institutions. The "smart grie acts as an
advanced power grid with upgrades that provide power distribution systems and consumers with
improved reliability, efficiency, and resiliency [10]. Some of the upgrades include automated
energy load balancing, real-time energy usage tracking and control, real-time monitoring of grid-
wide power conditions, distributed energy resources, advanced end devices with two-way
communications, and improved processing capabilities. Advanced end devices, which are being
integrated into smart grids, include programmable logic controllers (PLCs), remote telemetry units
(RTUs), intelligent electronic devices (IEDs), and smart meters that are capable of controlling and
performing physical actions, such as opening and closing valves, monitoring remote real-time
energy loads, monitoring local events such as voltage readings, and providing two-way
communications for monitoring and billing, respectively. These new devices replace legacy
devices that have been in place for decades that were not originally designed with security in mind
since they were previously closed systems without external network connectivity. Although these
new devices aid in efficiency, they may create more avenues for attack from external sources.

Additionally, control systems are often statically configured [11] over long periods of time and
have predictable communication patterns [12]. After installation, control systems are often not
replaced for decades. The static nature combined with remote accessibility of these systems creates
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an environment in which an adversary is well positioned to plan, craft, test, and launch new attacks.
Given that the power grid is actively being developed and advanced, the opportunity to incorporate
novel security protections directly into the design phase of these systems is available and
necessary. Of particular interest are defenses that can better avoid both damage and loss of
availability, as previously documented in the power grid [5], to create a more resilient system
during a remote attack over computer networks.

1.1. Challenges

One of the main challenges of introducing modern computer security protections into Industrial
Control Systems (ICSs) is to ensure that the computer security protections themselves not only
improve the security of the overall system, but also do not impede the operational system from
functioning as expected. A security solution that is usable and practical within an IT environment
may not necessarily be practical within an ICS environment. ICSs often have real-time
requirements and any newly introduced software or security solution must also meet those same
requirements.

Another challenge is to identify useful metrics that quantify the effectiveness of the Moving Target
Defense (MTD) techniques from the perspective of both the adversary and the defender of the
system. The goal of the adversary is to exploit the system before the MTD defends against the
attack by modifying the environment. The goal of the defender is to change the environment
frequently enough to evade an adversary, but not too frequently so that system performance is
negatively impacted. Finding the correct balance is necessary so that the adversary cannot exploit
the system and the MTD strategy does not prevent the system from maintaining a normal operating
state.

Gaining access to representative ICS environments is another challenge when developing new
security protections for ICS systems. Modeling and simulation tools can be effective, but gaining
a true understanding of the consequences and effects of deploying a new security protection in
practice requires validation within a representative ICS environment. Several factors, such as
network load, processor load, and memory load are difficult to accurately project within a
simulated environment. The harsh working conditions of ICSs (such as wide temperature ranges)
are one element to consider when deploying new technologies within these environments.

1.2. MTD within Critical Infrastructure

Critical infrastructure systems bring in a distinctive set of constraints and requirements when
compared against traditional IT-based systems. Critical infrastructure systems are often time-
sensitive with stringent real-time constraints, as is the case for cyber-physical systems [13]. It is
therefore important for any new computer security protections introduced to also meet these same
time requirements so that they do not negatively affect the operational network. Additionally, the
most important requirements for these systems are often to maintain high availability and integrity
due to the nature of the systems that they control (e.g., the electrical power grid, water pipelines,
oil and natural gas refineries, hospitals, residential and commercial buildings, etc.). Any loss of
availability can result in significant consequences not only in terms of economics, but also in terms
of public health and safety. Similarly, compromising the integrity of these systems, such as sending
maliciously modified commands, can result in similar consequences. Also of note, is that critical
infrastructure systems are composed of both legacy and modern systems that must interoperate
with one another without affecting availability and security. New security solutions must therefore



take interoperability into account so that they can scale without the requirement of upgrading every
end device within the system. Additionally, in order for MTD-based approaches to be successfully
deployed within critical infrastructure environments, they must satisfy the distinct time constraints
and requirements of these environments. Since the time constraints vary from one system to
another, the stricter time requirement used for teleprotection systems should be used (12-20 ms)
[14]. For Supervisory Control and Data Acquisition (SCADA) communications, those
requirements can, in some cases, be relaxed to 2-15 seconds or more.

2. BACKGROUND

Artificial diversity is an active area of research with the goal of defending computer systems from
remote attacks over computer networks. Artificial diversity within computer systems was initially
inspired by the ability of the human body's natural immune system [15] to defend against viruses
through diversity [13]. Introducing artificial diversity into the Internet Protocol (IP) layer has been
demonstrated to work within a software-defined network (SDN) environment [16]. Flows, based
on incoming port, outgoing port, incoming media access control (MAC) and outgoing MAC, are
introduced into software-defined switches from a controller system. The flows contain matching
rules for each packet and are specified within the flow parameters. If a match is made within a
packet, then the flow action is to rewrite source and destination IP addresses to random values.
The packets are rewritten dynamically while they are in flight traversing each of the software-
defined switches. Although applying artificial diversity on an SDN has been demonstrated, the
effectiveness of such approaches has not been quantitatively measured. Furthermore, to our
knowledge, the approach has not been deployed within an ICS setting, which differs substantially
from traditional IT-based systems.

It has also been demonstrated that IP randomization can be implemented through the Dynamic
Host Configuration Protocol (DHCP) service that is responsible for automatically assigning IP
addresses to hosts within the network [17]. Minor configuration modifications to the DHCP service
can be made to specify the duration of each host's IP lease expiration time to effectively change
IP addresses at user-defmed randomization intervals. However, this approach only considers long-
lived Transmission Control Protocol (TCP) connections, otherwise disruptions in service will
occur as the TCP connection will need to be re-established. Service interruptions within an ICS
setting is not an option due to their high availability requirements. Quantifying the effectiveness
of such approaches has also not been performed within an ICS setting outside of surveys [18] that
evaluate MTD techniques within an IT setting, where IP randomization by itself was qualitatively
ranked to have low-effectiveness with low operational costs. Also of note is that IP randomization
approaches by themselves have been demonstrated to be defeated through traffic analysis where
endpoints of the communication stream can be learned by a passive adversary observing and
correlating traffic to individual endpoints [19].

Anonymization of network traffic is an active area of research with several implementations
available in both commercial and open source communities. MTD and anonymization are related
in that they both have the goal of protecting attributes of a system from being discovered or
understood. One of the early pioneering groups of anonymous communications describes the idea
of onion routing [20], which is widely used today. This approach depends on the use of an overlay
network made up of onion routers. The onion routers are responsible for cryptographically
removing each layer of a packet, one at a time, to determine the next hop routing information to
eventually forward each packet to their final destinations. The weaknesses of this solution are that



side channel attacks exist and have been demonstrated to be susceptible to timing attacks [21],
packet counting attacks [22], and intersection attacks [23], which can all reveal the source and
destination nodes of a communication stream.

The Onion Router (Tor) is one of the most popular and widely used implementations of onion
routing with over 2.25 million users [24]. Tor is able to hide servers, hide services, operate over
TCP, anonymize web-browsing sessions, and is compatible with Socket Secure (SOCKS)-based
applications for secure communications between onion routers. However, it has been shown
empirically with the aid of NetFlow data that Tor traffic can be de-anonymized with accuracy rates
of 81.4% [25]. The results are achieved by correlating traffic between entry and exit points within
the Tor network to determine the endpoints in communication with one another. Furthermore, Tor
has an overhead associated with the requirement to encrypt traffic at each of the onion routers; this
overhead would need to be limited within an ICS environment to meet the real-time constraints
required of these systems. Similarly, garlic routing [26] combines and anonymizes multiple
messages in a single packet, but is also susceptible to the same attacks.

Overlay networks have similar features as Tor, but with the goal of reducing the overhead
associated with a Tor network. It has been shown that overlay networks can be used to mitigate
Distributed Denial of Service (DDoS) attacks [27]. The overlay networks reroute traffic through a
series of hops that change over time to prevent traffic analysis. In order for users to connect to the
secure overlay network, they must first know and communicate with the secure overlay access
points within the network. The required knowledge of the overlay systems prevents external
adversaries from attacking end hosts on the network directly. This design can be improved by
relaxing the requirement of hiding the secure overlay access points within the network from the
adversary. If an adversary is able to obtain the locations of the overlay access points, then the
security of this implementation breaks down and is no longer effective.

Steganography is typically used to hide and covertly communicate information between multiple
parties within a network. The methods described in current literature [28] include the use of IP
version 4 (IPv4) header fields and reordering IPsec packets to transmit information covertly.
Although the focus of the steganography research is not on anonymizing endpoints, it can be used
to pass control information to aid in anonymizing network traffic. The described approach would
have to be refined to increase the amount of information (e.g., log2 (n!) bits can be communicated
through n packets) that can be covertly communicated if significant information is desired to be
exchanged. Steganography techniques have the potential to facilitate covert communication
channels for MTD techniques to operate correctly, but have not been applied in this fashion.

Transparently anonymizing IP-based network traffic is a promising solution that leverages Virtual
Private Networks (VPNs) and the Tor [29] service. The Tor service hides a user's true IP address
by making use of a Virtual Anonymous Network (VAN), while the VPN provides the anonymous
IP addresses. The challenge of this solution is the requirement that every host must possess client-
side software and have a VPN cryptographic key installed. In practice, it would be infeasible for
this approach to scale widely, especially within ICS environments where systems cannot afford
any downtime to install and maintain the VPN client-side software and the cryptographic keys that
would be necessary at each of the end devices. To reduce the burden on larger scale networks, it
may be more effective to integrate this approach into the network level, as opposed to at every end
device, using an SDN-based approach. In order for an MTD strategy to be effective within an ICS



environment, the MTD solution must have the ability to scale to a large number of devices without
significant interruptions in communications.

2.1. MTD Techniques

MTD is an active area of research that seeks to thwart attacks by invalidating knowledge that an
adversary must possess to mount an effective attack against a vulnerable target [30]. For each
MTD defense deployed, there is an associated delay imposed on both the adversary and on the
defender of the operational system. Quantitatively analyzing the delays introduced by each
additional MTD technique applied individually and in combination with one another within an ICS
environment is necessary before deploying an MTD strategy. Our analysis will aid in optimally
assigning the appropriate MTD techniques to enhance the overall security of a system by
minimizing the operational impacts while maximizing the adversarial workload to a system. We
also evaluate each of the possible MTD defenses placed at various levels of an ICS system.

2.2. MTD Categories

Because power systems are statically configured and often do not change over long periods of
time, those environments are ideal for introducing and evaluating MTD-based protections. The
goal of the various MTD techniques presented here is to increase the adversarial workload and
level of uncertainty during the reconnaissance phases of an attack. Since it remains an open
problem to completely stop a determined, well-funded, patient, and sophisticated adversary,
increasing the delay and likelihood of detection can be an effective means of computer security.
There are a variety of MTD approaches that can be categorized according to where the defense is
meant to be applied, including at the application level, the physical level, or the data level of a
system. Five high-level MTD categories have been described as part of a MTD survey [31], which
include dynamic platforms, dynamic runtime environments, dynamic networks, dynamic data, and
dynamic software. These categories are described in the sections that follow within the context of
a critical infrastructure environment.

2.2.1. Dynamic Platforms

PLCs, RTUs, and IEDs vary widely from one site to another within an ICS environment. There
are a number of vendors that produce these end devices with different processor, memory, and
communications capabilities. These devices are responsible for measuring readings from the field
(such as power usage within a power grid context) and taking physical actions on a system (such
as opening or closing breakers in a power grid). Many of these end devices are several decades old
and must all be configured to work together. If an adversary has the ability to exploit and control
these types of end devices, they would have the ability to control physical actions remotely through
an attack over computer networks. At the physical layer, several MTD strategies exist to increase
the difficulty of an adversary's workload to successfully exploit a system. One strategy rotates the
physical devices that are activated within a system [32, 33, 34]. For this strategy to work, the
physical devices and software may vary widely, but the only requirement is that they must be
capable of taking in the same input and successfully producing the same output as the other
devices. If there are variations in the output, then alerts can be generated to take an appropriate
action. These approaches increase the difficulty from an adversary's perspective because the
adversary would be required to simultaneously exploit many devices based on the same input
instead of exploiting just a single device. The difficulty for the defender comes in the form of
having additional devices that must be administered and managed while also ensuring the security



of the monitoring agents is maintained and that they do not become additional targets themselves.
Strategies such as n-variant [35] MTD techniques run several implementations of a particular
algorithm with the same input where variations of outputs would be detected by a monitoring
agent. Others [36] have shown firmware diversity in smart meters can limit the effectiveness of
single attacks that are able to exploit a large number of devices with a single exploit. Customized
exploits would have to be designed specifically for each individual device.

2.2.2. Dynamic Runtime Environments

Instruction Set Randomization (ISR) [37] and Address Space Layout Randomization (ASLR) [38]
are MTD techniques that modify the execution environment of an application over time. The
effectiveness of such techniques has been measured in traditional enterprise networks, but has not
yet been measured on devices found within ICS-based environments where real-time responses
are a major requirement. The impact upon the real-time response requirement has been measured
along with the adversary's increased workload when ISR [39] and ASLR [38, 40] are enabled.

2.2.3. Dynamic Networks

Section 2 describes many of the network randomization research efforts that have been performed.
The resilience of network MTD techniques against several adversaries with different capabilities
has been measured in prior work [41]. For network-based MTD techniques to be effective, the
exact point at which the benefit of each MTD strategy to the defender is maximized and the
adversarial workload is maximized must be found. The analysis should also take into account that
ICS systems have strict real-time and high availability constraints. The MTD parameters used,
such as rates of randomization and the location of the MTD techniques themselves (at the network
level or the end device level), to find the balance between security and usability should ensure that
the solution does not hinder the operational network.

2.2.4. Dynamic Data

Randomizing the data within a program is another technique used to protect data stored within
memory from being tampered with or exfiltrated [42]. Compiler techniques to xor memory
contents with unique keys per data structure [43], randomizing Application Programming
Interfaces (APIs) for an application, and Structured Query Language (SQL) string
randomization [44] help protect against code injection type attacks. These techniques have been
demonstrated on web servers and have shown varying levels of impacts to the operational systems.
The benefits are that adversaries can be detected if the data being randomized is accessed
improperly when the system is being probed or an attack is being launched in the case of SQL
string randomization.

The same techniques can be applied and measured within a control system environment to assess
the feasibility of applying such techniques and meeting the real-time constraints. For example, a
historian server typically maintains a database of logs within an ICS environment. This server is a
prime location to apply SQL string randomization towards database accesses. Data randomization
can be performed on the data stored within the registers of a PLC. To measure the effectiveness of
this technique, metrics of the response times to find the delays introduced can be captured. After
gathering these measurements, an evaluation of the delays introduced can be performed to ensure
that they are within the acceptable limits of an ICS environment. These are a few examples of
where data randomization can be applied within an ICS setting.



2.2.5. Dynamic Software

Introducing diversity into software implementations helps eliminate targeted attacks on specific
versions of software that may be widely distributed and deployed. In the case of a widely deployed
software package, compromising a single instance would then compromise the larger population
of deployed instances. To introduce diversity and help prevent code injection attacks in networks,
the network can be mapped to a graph coloring problem [45] where no two adjacent nodes share
the same color or software implementations. This type of deployment helps prevent worms from
spreading and rapidly infecting other systems in a network using a single payload. These
techniques should also be considered as a defensive mechanism within an ICS environment.
However, metrics and measurements need to be gathered and evaluated using software that is
deployed and found within operational ICS environments.

At the instruction level, metamorphic code is another strategy that has primarily been utilized by
adversaries to evade anti-virus detection [46]. The code is structured so that it can modify itself
continuously in time and maintain the same semantic behavior while mutating the underlying
instructions of the code. The idea is similar to a quine [47] where a program is capable of
reproducing itself as output. Metamorphic code reproduces semantically equivalent functionality
but with an entirely new and different implementation with each replication. There are many
techniques to develop metamorphic code-generating engines, but they are typically not used as a
defensive strategy.

When software remains static, it becomes a dependable target that can be analyzed, tested, and
exploited over long periods of time by an adversary. Introducing diversity at the instruction level
helps eliminate code injection attacks, buffer overflows, and limits the effectiveness of malware
to a specific version of software in time. Once the code self-modifies itself, the malware may no
longer be effective, depending on the self-modification being performed. Several techniques [48]
exist to use self-modifying code as a defensive mechanism, such as inserting dead code, switching
stack directions, substituting in equivalent but different instructions, in-lining code fragments,
randomizing register allocation schemes, performing function factoring, introducing conditional
jump chaining, enabling anti-debugging, and implementing function parameter reordering.

2.2.6. Dead Code

Dead code refers to function calls to code fragments that do not contribute to the overall goal of
an algorithm and is a useful strategy to deter an adversary. Dead code fragments have the goal of
causing frustration, confusion, and generally wasting the time of an adversary in analyzing
complex code fragments that are not of importance to the overall algorithm. However, techniques
do exist to dynamically detect dead code [49] fragments, so this strategy should be deployed with
care. Also of note is that if the size of a program cannot exceed a certain threshold, it may be
necessary to take into account the available space on the system so that the code does not overly
cause an excess amount of bloat and exceed space limitations.

Dead code can help protect against an adversary who is statically analyzing and reverse-
engineering a software implementation. In this case of a MTD protection, when the dead code is
included, the goal is to cause the adversary to spend a significant amount of time analyzing code
that is not useful to the overall software suite. This technique serves as a deterrence and a decoy
to protect the important software. Dead code is often used as an obfuscation technique of software
to make it more difficult for an adversary to understand [50].



Although this technique may be effective against certain types of adversaries performing static
code analysis, the security is based on the assumed limited analytical and intelligence capabilities
placed on an adversary. This assumption is not valid when considering sophisticated adversaries
who have a wide array of resources in terms of finances, staff, and intelligence available. The
technique also breaks down and fails when dynamic code analysis is performed to recognize that
the dead code does not actually provide any contributions to the overall functionality of the
software under consideration.

2.2.7. Stack Directions

The direction that the stack grows can be chosen to grow either at increasing memory addresses or
decreasing memory addresses [51]. Buffer overflow attacks must take into account this direction
to effectively overflow the return address so that the adversary can execute their own arbitrary
code. One strategy to eliminate such an attack is to either run a program that dynamically selects
the direction of the stack at runtime or to run two instances of a program in parallel with each
instance having their stacks growing in opposite directions. The two programs would then be
overseen by a monitoring agent to ensure that there are no deviations in results between the two
programs. It is possible that an attack can still succeed in both cases at the same time, but only in
very specialized cases where the original code is written in such a way that the overflow works on
different variables simultaneously in both directions that the stack grows; this is, however, unlikely
to occur on the majority of code that is of practical interest to an adversary.

This technique must consider possible space limitations of the system and the overhead to detect
deviations between the two versions of software. If both versions are running on the same system,
then the processor utilization may also be a concern for other applications running on the system.
If the implementations are on separate systems, then the network overhead to communicate the
results of each run must also not negatively impact the system in question. An additional area of
importance is the security of the monitoring agent to validate that a possible attack is in progress.
Many security protections often become a target [52] for adversaries and need to be taken into
account, as well.

2.2.8. Equivalent lnstruction Substitution

Many techniques exist to introduce diversity into a program by substituting equivalent instructions
[53]. The goal of substituting equivalent instructions for multiple instances of a program is to
maintain equivalent functionality while diversifying the implementation of the underlying
software. The benefit is that the difficulty of identifying functionally equivalent software
implementations from one another is increased from the adversaries' perspective. This increases
the difficulty placed on an adversary who is attempting to develop a scalable malware solution
designed to compromise a large number of systems using a single exploit. The tradeoff is typically
in the increased performance of the variants of equivalent instructions. In many cases, compiler
optimizers will automatically reduce high-level programming modifications to the same optimized
assembly instructions using dependency graphs [54]. To disable compiler optimizations, compiler
flags must be enabled to maintain the intended diversity within the binary executable. The impact
on the defender and operational network of applying this approach has not been measured within
an ICS environment at the time of this writing. The feasibility of applying this approach within an
ICS setting will depend on the availability and number of equivalent instructions that can be
replaced that function the same and do not introduce significant time delays.



3. MTD APPLICATIONS AND SCENARIOS WITHIN ICS

MTD strategies can benefit a broad range of environments spanning enterprise IT systems that are
widely connected and ICS networks, which are completely isolated from the Internet. Each
environment has different requirements and constraints for which the MTD approaches and
parameters must be specifically configured in order for the strategy to be feasible in a practical
setting. Some of the MTD parameters that can be adjusted include the frequency of
reconfigurations, the amount of entropy supplied to the MTD technique when performing IP
address randomization, the maximum number of hops between endpoints tolerable when
performing communication path randomization, and the size of a binary when performing
application randomization, for example. The requirements and constraints of these systems include
meeting strict performance measurements (e.g., latency, bandwidth, throughput constraints),
satisfying the North American Electric Reliability Corporation (NERC) Critical Infrastructure
Protection (CIP) Standards [55], the International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) 27000 series of Information Security
Management Systems (ISMS) standards [56], and conformance to the National Institute of
Standards and Technology (NIST) Cybersecurity Framework [57].

Each environment has its own unique set of requirements and constraints that must be met in an
operational setting. Because MTD approaches can be applied broadly across a number of
environments, the parameters of the MTD strategies must be adjusted to meet the requirements
and constraints of the target environment. The focus here is on ICS environments, but the
approaches can be applied similarly to other environments including enterprise networks, Internet
of Things (IoT), cloud, mobile, etc.

3.1. Industrial Control Systems

The primary requirement for many of these systems is to maintain high availability and integrity
[1]. In the electrical power grid, the high availability requirement comes from the criticality of the
types of systems that depend on the power grid to operate (e.g., hospitals, governments,
educational institutions, commercial and residential buildings, etc.). Figure 1 shows an example
power grid and the components found at various layers of the network. These systems involve a
number of utilities communicating with one another and the distribution of power across a
geographically disperse area of customers. A study was performed with the goal of quantifying
the economic costs associated with service interruptions to the U.S. power grid and are estimated
to be approximately $79 million annually [58]. From the 2003 blackout in New York [59], the
estimated direct costs were between $4 billion and $20 billion [60] while there were also in excess
of 90 deaths [61]. Though these interruptions were not due to remote attacks over computer
networks, such attacks are capable of causing similar disruptions. The need for computer security
within an ICS setting is clear as the impacts and consequences of downtime can be dire.
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Figure 1. An example power grid that shows the high-level components from generation of power to transmission to distribution
and finally to delivery at a residential home.

3.1.1. Use Case

Because ICSs operate with both legacy and modern devices, there is a mixture of serial and IP
communications. Typical protocols deployed within ICS networks include Modbus [62],
Distributed Network Protocol (DNP3) [63], and Process Field Net (PROFINET) [64]. These
protocols are widely used within ICS environments and many, such as Modbus, were not designed
with security in mind since these protocols were originally intended for serial communications,
and only later expanded, with Modbus TCP, to function over IP networks. Still, the expectation
was that such IP networks would be controlled and isolated. Modbus is a protocol that can be used
to read and write memory values to ICS end devices, such as PLCs or industrial computers that
can either sense readings from equipment or perform physical actions based on digital inputs
received. Some of the physical actions include opening or closing a valve within a water pipeline,
opening or closing breakers within a power system, or shutting down a power plant.

Given that ICSs are becoming more interconnected to business networks for ease of maintenance
and management, remote attacks over computer networks become a real possibility since the
business networks are connected to the Internet. However, as demonstrated by Stuxnet [6], a
network connection to the Internet is not a requirement to exploit a system, and the attack against
Home Depot [65] shows how vulnerable operational technology can be exploited to penetrate
additional systems. In a scenario where the Modbus protocol is configured to read and write
memory values from and to, respectively, a PLC that controls a physical process, an adversary
could launch a man-in-the-middle (MITM) attack [66] to spoof values read/written to the PLC's
memory. Since legacy PLCs are fundamentally different from the systems we are accustomed to
working with (in terms of the memory and processing resources available) and because they were
designed with the understanding that they would be used only within closed system environments,
integrity and authentication checks were typically not built into these systems. As ICS
environments have evolved, PLCs and other end devices are becoming more connected externally.
As a result, end devices that do not have integrity and authentication checks built in are susceptible
to adversaries eavesdropping on communications and/or maliciously modifying those
communications via MITM attacks. To mitigate such an attack, a defender could deploy a number
of strategies to protect against this threat.



If the adversary has direct access to the network and has the ability to observe or modify traffic,
spoofed packets can be injected or replayed into the network. The goal of the adversary in this
scenario would be to maliciously write incorrect values into a PLC's memory space to cause an
unintended physical action to take place within the system. One defense that could protect against
an attack where the adversary crafts and injects packets into the network could be to deploy an
MTD strategy randomizing application port numbers in the communication channel (the Modbus
standard port number is 502). Continuously changing this value in time would require the
adversary to constantly track and learn the new random mappings that are active. Another defense
that can be deployed would be to configure a secure communication channel between the endpoints
to prevent the adversary from maliciously observing and spoofing traffic. This solution would
require the adversary to compromise the underlying encryption algorithm or a cryptographic key.

The optimal solution that a defender should select depends on the capabilities of the end devices,
as well as the amount of delay that can be tolerated by the network. If the end devices are capable
of supporting more well-established modern encryption algorithms, such as the Advanced
Encryption Standard with at least a 128-bit key length (AES-128) [67], then that is the ideal
solution. However, the end devices may either not be capable of supporting AES or they may not
be able to afford the computationally expensive tasks, in terms of central processing unit (CPU)
utilization [68], to support an encrypted channel. The amount of CPU available depends on the
current load of the system. The other option is to deploy a gateway system capable of serving as a
proxy to harness the necessary security protections [69, 70, 71, 72]. This MTD approach follows
the gateway solution and is capable of minimally delaying the network communications, while
adding on an additional layer of defense into the network. The parameters of the MTD techniques
can then be adjusted to meet the criteria required by the ICS to maintain a high availability system,
while avoiding the computationally expensive price of encrypting all communication channels.

3.1.2. Constraints

One of the major challenges for new technologies to be deployed within ICS environments is that
legacy and embedded devices occupy a large portion of these systems. Some of the devices found
are decades old and do not have the processing or memory resources available to harness modern
security technologies. This can be attributed to the fact that many of these systems were developed
starting from the 1880's to the 1930's [73] and many legacy devices are still in place today.
Another constraint is that, even if the devices are modern and capable of harnessing new security
technologies, the software and specialized hardware are often both closed and proprietary [1]. The
proprietary nature creates a challenge for security researchers to understand, integrate, and test
new security protections directly into the end devices themselves. In this scenario, an additional
gateway system is typically introduced to proxy the end devices with the new security technologies
enabled. This proxy creates an additional hop that packets must traverse, which affects latency.

Another challenge is the diverse set of equipment that can be found within ICS environments.
These devices, from multiple vendors, must interoperate with one another, which is a challenge of
its own. Adding computer security protections into each of these devices directly in a vendor
neutral way requires agreement and collaboration between a number of competing parties. This is
a challenge that can oftentimes be the most difficult piece of the puzzle. These constraints cannot
be ignored as new security technologies must be retrofitted into the existing environment with
competing vendors working together, as completely replacing all of the equipment is not a valid
option.



3.1.3. Requirements

ICSs have several requirements, regulations, and standards that must be met. Perhaps the most
important requirements for ICS environments are to minimize the amount of delay introduced into
a system and to ensure the integrity of the commands communicated within these environments.
Latency is one of the primary metrics used and is typically constrained to 50 milliseconds and in
some cases can be in the nanosecond [74] scale. Any delays on the operational network can result
in instability of the power system [75]; therefore, new security protections must meet the strict
time requirements to be relevant and feasible within these systems. Integrity is also a key
requirement as data integrity attacks could manipulate sensors, control signals, or mislead an
operator into making a wrong decision [9]. Also, interoperability requirements, as mentioned in
the preceding subsection, must be met. The International Electrotechnical Commission 61850
(IEC-61850) [76] standard has outlined a general guide to achieve interoperability. To maximize
the benefit of new security features introduced into an ICS system, these requirements and
standards need to be met.

4. EXPERIMENTATION

We evaluated network-based moving target defense strategies applied to a representative control
system environment. The environment consisted of nine buildings with inverters communicating
with a central server. The system evaluated will harness a 2.5 megawatt microgrid system and our
tests were performed before end devices were introduced into the network to evaluate the MTD
strategies independently. Figure 2 shows the configuration of the network where IP randomization
and port randomization were integrated. These MTD strategies continuously modified IP addresses
and port numbers at varying frequencies from one second to completely static configurations. Our
testing involved three buildings where we were able to successfully demonstrate the MTD
technologies. Prior to introducing the MTD technologies, each of the three buildings included a
Software Defined Networking (SDN) capable switch to manage the MTD techniques. The three
SDN capable switches are shown in Figure 2 and labeled as "SDN Switch Flow Forwardine in
the lighter blue rectangles in each of the buildings. An end device was included in Building #1
labeled as "Host 1" to represent an end device within the network. An additional Linksys router
was added to the network to support an out-of-band communication channel for the SDN
OpenFlow control traffic. The dashed green lines show the out-of-band communications.
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To manage the randomized flows installed on the SDN switches, the "SDN Randomizer
ControlleC was also added to the network. This system is responsible for periodically
communicating the randomized IP addresses to each of the SDN switches to create the moving
target defense solution. The same "SDN Switch Flow Rewrites" SDN-capable switch was also
introduced into Building #3. Additionally, a second host, labeled "Host 2", was added to
Building #3 to show communications between two end points within the network. Building #2



only has an SDN capable switch, labeled "SDN Switch Flow Forwarding," which has flows
configured to forward both control and data traffic between Building #1 and Building #3.

"Host 1" and "Host 2" are then able to communicate with one another with IP randomization
enabled. Additionally, "Host 1" and "Host 2" have machine-learning dynamic defense algorithms
enabled to detect anomalous behavior on the network. Flows with the source IP address of the
"SDN Randomizer Controllee" are identified as management communications and are forwarded
to the correct ports of the "SDN Switch Flow Rewrites," which are both shown as port "F" in the
diagram.

4.1. Adversarial Scenario

We showed that if an adversary were to be introduced into the network either as: (1) an insider; or
as (2) a result of a successfully launched MITM attack anywhere between the two "SDN Switch
Flow Rewrites," then we could detect a network scan and automatically respond by randomizing
the IP addresses to invalidate the information gained from the network scan. In our specific
scenario, the adversary was introduced in building #1 in the link with "B3" and "C2" as the end
point ports. The adversary then launched the following nmap scan:

nmap -sP x.y.z.0/24

where x.y.z is the network address configured in the system. The network in this case was
configured as a 24-bit network mask with the last 8-bits reserved for host IP addresses. The nmap
command above will scan the entire IP address space of the x.y.z network and report back the hosts
that are active. In this scenario, once the adversary receives the results, they would then attempt to
open a secure shell (ssh) session with the hosts in the network. The goal of the MTD technology
is to detect the initial network scan and randomize IP addresses so that information gained about
active hosts within the network would no longer be valid. To accomplish this goal, we launched
the MTD strategy upon detection of the network scan. The described use case was successfully
deployed within our testbed.

4.2. Metrics

Metrics were captured when the randomization schemes were performed independently and when
combined with one another. The metrics collected include round trip time, bandwidth, throughput,
TCP retransmits, and dropped packets. The randomization schemes evaluated include a baseline
measurement without any randomization schemes enabled, IP address randomization with a
frequency interval of three seconds, port randomization with a frequency interval of three seconds,
and port randomization with a frequency interval of one second with encryption. The results are
shown in Figure 3 through Figure 8.

Figure 3 and Figure 4 show the results of the Internet Control Message Protocol (ICMP) round trip
times measured using the OpenDaylight controller as applied towards the scenario, as shown in
Figure 2, where "Host 1" is issuing the following command to "Host 2":

ping -c 300 host2.

In Figure 3, each of the randomization schemes are measured independently and when combined
with one another. The impacts vary slightly and are within the noise of network traffic as each
scheme fluctuates outperforming and underperforming the other schemes depending on when the



measurement is taken. This can be seen more clearly in Figure 4 where the raw averages and
standard deviations closely resemble one another across each of the randomization schemes. The
impacts of each of the randomization schemes in our test environment proved to be minimal from
our experimental results obtained.
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Figure 3. ICMP Round Trip Time measurements when enabling each randomization scheme independently and when

combined with one another over a 300 second interval.
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Figure 4. The averages and standard deviation for the round trip times when enabling each of the randomization schemes

independently and in combination of each other over a 300 second interval of time.

Figure 5 and Figure 6 measure the effects that each of the randomization schemes have on the
transfer rates and the bandwidth. Since we were working with 100 megabits per second links, the
maximum amount of data that can be transferred is 12.5 megabytes (100/8). Our results show that



most of the schemes, including the baseline, achieve -11.2 megabytes of data transferred. The
exceptions to this are the schemes that use the port randomization with encryption involved where
ports are randomized and encrypted every second. Since we are randomizing at each of the
endpoints in software and the cost for AES encryption is significant, the transfer rates were
significantly impacted and yielded -0.1 megabytes of data transferred. These results indicate that
in environments where large amounts of data need to be transferred quickly, that encrypting and
randomizing ports every second may not be a suitable option. However, the impacts on round-trip
time were minimal so if small amounts of data are transferred, as is typically the case within control
system communications, then any of the schemes may be appropriate. The metrics captured for
transfer rates and bandwidth were captured with the following command.

iperf3 -c host2 1 -t 300 -p 999 -V.

This command was issued for the client to connect to "Host 2" on port 999 and report back results
every second over a 300 second total interval in verbose mode.
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Figure 6. The measured bandwidth when enabling each randomization scheme independently and in combination of each
other over one second increments in a 300 second interval of time.

Figure 7 and Figure 8 show the results of the number of retransmits incurred when each of the
randomization schemes were enabled independently and in combination with one another. When
measuring the baseline configuration without any of the randomization schemes enabled, 124
retransmits were recorded, or —0.005% of the total number of packets. When enabling the IP
randomization scheme and the port randomization every 60 seconds scheme independently, there
were fewer retransmits and a fewer percentage of overall retransmits. This may be a result of a
more congested network during the time that the baseline measurements were recorded. It would
be expected that the baseline would be similar or better than when enabling each of the
randomization schemes. The remaining three schemes all produced a higher percentage of
retransmits, although only two had a higher number of total retransmits. This is due to fewer
packets being transmitted when randomizing port numbers every second. Although the
percentages in all cases are low, it should be considered whether these percentages are acceptable
to be applied within an operational setting. The results obtained were captured using the same iperf
command that was specified for the bandwidth and throughput measurements, as shown in Figure
7 and Figure 8. The number of dropped packets were also measured as part of these tests. All of
the schemes reported no dropped packets.
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Figure 7. The total number of TCP retransmits recorded when each of the randomization schemes were enabled
independently and in combination of each other over a 300 second interval of time.
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5. CONCLUSIONS

The evaluated network-based MTD approaches have been shown to be effective within an ICS
environment. We performed several experiments with a variety of configurations for each MTD
technique. The techniques presented, although effective individually, are meant to be a piece of
the larger computer security puzzle. These MTD techniques can be thought of as additional layers
of defense to help protect a system from an adversary attempting to gain an understanding of a
system in the early stages of an attack. Additional defenses can be deployed alongside the MTD
techniques to create an even more secure system. Deploying an individual MTD technique or a
suite of MTD techniques alongside other computer security protections will depend on the
application. For example, the MTD techniques may provide a way to mitigate a "hitlist" type of
attack [77], but the MTD techniques themselves do not provide the ability to detect the hitlist
attack. Intrusion detection systems (IDSs), firewalls, security information and event management
(SIEM) systems, and virus scanners, for example, should all be included as part of the overall
security protection, as well. In this scenario, we used machine-learning algorithms to detect the
hitlist attack and trigger the MTD schemes. The MTD strategies by themselves are not meant to
be a comprehensive security solution that protects against all threats, but rather should be applied
as an additional layer of defense in general.
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