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Limited Thermal Stability of Epoxy Materials Chemical-Mechanical Property Correlations

e Amine-cured €POXy materials have traditiona”y been used in high-performance adhe5ive, encap5u|ati0n, Coating, e All major chemical and physica' property Changes studied (OH lOSS, HZO formation, 2° amine formation’ total
and fiber-reinforced structural composite applications for moderate temperature service environments owing to weight loss and volume contraction) exhibited similar activation energies ranging from 167-173 kJ/mol.
thEIr rEIat|V6|y lOW COSt, exce”ent meChan|Ca| propertles, and favorable prOCESSIng CharaCterIStICS. ° Physical and mechanica' property Changes are Clearly Correlated W|th primary degradation Chemistry (OH IOSS)

* These materials have limited high temperature (>180°C) application however, due in large part to their * Weight loss and volume contraction occur at a similar rate resulting in very little change in density until
susceptibility towards nucleophilic-initiated pyrolytic degradation as a result of the relatively strong relatively late in the degradation process (~*60% OH remaining) when weight loss exceeds contraction.
nucleophilicity of tertiary amine groups generated during cure. * This appears to occur in parallel with a shift in mechanical property degradation trends, namely a levelling-off

E/CHZ—CHQ)H H,0 2Hy WQ,E,H . HgC—CH:CH-OQW in Tg, compressive elastic modulus, flexural failure strain (not shown) and K, fracture toughness (not shown).
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Pyrolytic degradation scheme proposed by Patterson-Jones et al. for aromatic amine cured epoxy materials. Nucleophilic o %A A 4a e 2207 = T | ' é’
chain breaking (bottom) appears to predominate at T’s below ~350°C § g - AR X a? o _ ..% 200 .El fi 1 - . - 450 o
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* Primary degradation kinetics were evaluated for an epoxy material (1:1 Epon828/1031/4,4’-DDS) using an FTIR E , .‘@899 o £ : . § |2 i % ) 100 3
volatile analysis technigue to monitor water evolution as function of time and temperature. wﬂb D% : 180 0 = QE}} ¢ . ¢ w
* Water is the main degradation product, accounting for 30-50% of observed weight loss at 240-210°C. 0 Fﬁ @Dﬁg&m@n%% og 3 1P modulus ®
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Dehydration of OH groups gives a theoret_lcal water yield of 6:9 %. | | o o 100 80 60 40 20 100 80 60 40 20
* Near-IR measurements were conducted in parallel to quantify decreases in hydroxyl and increases in 2° and 1 Remaining Hydroxyl [%] Remaining Hydroxyl [%]

amine groups in the solid material. As expected, OH loss is clearly correlated with H,0 formation.
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é | g 1 . HO : 0/// % é e Several aromatic diamines were screened as alternative -E-H:";
T 607 = gu I| o Amine-n Ogo L //f 5 curatives, although the currently used 4,4’-DDS curative <, 35
3 s _' 2 < ° & /// o 60 proved to be the most thermally stable which we attribute § 3.0
o _ = = . Pl _ § to its relatively low basicity and therefore decreased = S |
£ - g s 7 ] %%///"‘ s £ propensity towards nucleophilic initiated degradation o
s, 30_' °';' g_ . SNAd '.‘o F40 X  Aromatic acid anhydrides such as pyromellitic dianhydride s 201
_§ - o e 0% ‘2// " o S were also screened as alternative curatives, however, these & 1.5 -
5 2- g 2 &%30// .‘,'po" —2o§ materials proved to be less thermally stable and much :_9 a0
E 15, s g = ® 9 ..\" ° E more difficult to process due to their very high melting -
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Bismaleimide (BMI) and cyanate ester (CE) materials have intrinsically better thermal stability than epoxies. 1.0 - “ P | |
Homopolymerized BMI is very brittle and therefore BMI’s are typically toughened with a variety of co-curatives o ' - NN _ o E@
including diallyl, dipropenyl, and diamine compounds. CE’s can be co-cured with epoxies or BMI’s (BT resins), 5 0.8 1 '[*)?\BPA’ 16000 cP (25(32) DAE%PA’ 100 cP (ZSOC)O TMlB’ZOﬂenmg ot. a5
although homopolymerized di-functional CE’s have comparable toughness to epoxies without needing a co-curative. ‘g . B 5 5 5
o 0.6 - 7 Ny \
R@O—CEN ¥ HO@R' i Cyanate ester polymerization is initiated by the né qQ /@/@ qp
¢ reaction of a phenolic hydroxyl with a cyanate E 04 | TM123 " © 0 o °© ° °
ester group to form an iminocarbonate g s— BMPF, m.p. 165°C Pl TEP-198 &
R@O_E_OOR j)\ intermediate  which  then  undergoes a & %27 272 Srirto o catayst i diy LGN C=N]  __o=N
TH — )N\:JN\ * R'@OH cyclotrimerization reaction with two more cyanate 0.0_' L. oEpmE '» ©f©n® . .
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OCN NCO 07" "N~ 0 ester groups to form a triazine ring in a reaction =SS S ——
/©/ \©\ /©/ \Q that regenerates the initiator. 0.001 0.01 0.1 1 10 100 XU371 (n~1), 500 cP (82°C)  AroCy L10, 100 cP (25°C)
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BMI’s are typically co-cured with diallyls which react via a 5 R E R B E _  Cure kinetics were evaluated isothermally at 200, 175 and 150°C (plot shown) using near-IR transmission
step-wise “ene” addition of the allyl to the maleimide double m © S 0 i °© R spectroscopy for BMI’s and mid-IR-ATR spectroscopy for CE’s.
bond, forming a propenyl group which then reacts with |)I O \V\Z/V/ O=\=d * BMI mixes were formulated in a 1.2:1 molar ratio of BMI/curative. The slowest BMI co-curative, DAEBPA, was found
another maleimide group in a radical chain-growth < H X & 8 to be an effective reactive diluent for faster systems such as TM123.
mechanism. Homo- polymerization of maleimide groups also OH OH OH A transition metal chelate (Co(ll)AcAc) dissolved in nonylphenol was used to catalyze the cure of 1:1 (mass)
N occurs to some extent although is quite limited below 200°C. - - . =N XU371/AroCyL10. CE resins were stored in a drybox to minimize the potential for hydrolysis of CE groups. |
g Temperature [°C] b
2 & 8 § R S232838 3  Thermal stability was assessed with isothermal TGA at Aged 28 days at 240°C  Anomalous aging behavior: As an example of the inherent limitations
o6 —t 11 R - 300, 325, and 350°C under nitrogen. of simple extrapolations from high to low T’s, a CE matl. (AroCy L10)
£ 1e+5 4| © 828/1031/DDS :  All BMI and CE materials displayed significantly better was found to have highly variable weight retention and dimensional
S te+s : 23:;322;’;\ thermal performance compared to the reference epoxy. stability at 240°C which deviated significantly from the predicted
§ letdq o gmg’)’gﬁ;m * Extrapolations of weight retention behavior to the behavior based on extrapolations of TGA data.
— le+2 BMPP/TM123 intended  use-temperature indicates performance  Samples 1 and 2 were aged in nearly identical clean ampoules for IR
£ ey e f\t’jg;ﬁg“” predictions that are several orders of magnitude better gas analysis while sample 3 was aged in an ampoule containing three
g ::0 than the reference material. other materials (two BMI’s and one XU371 bar).
§ 1.2 * However, it must be noted that extrapolations from very * The aging behavior of sample 3 was clearly accelerated by the
9 1e3 - high to much lower T’s should be used as initial guidance presence of the 3 other materials as evidenced by its substantial
dé 1e-4 only since mechanistic changes in aging behavior are Ampoule 1 Ampoule 2 Ampoule 3 volume expansion, char formation, and weight loss. By comparison,
= 1e-5 1 Y NN SO SOOIV O SO O NN I e known to exist for many materials, causing significant  weight Loss: 0.5% 1.8% 6.7% the 3 other materials did not exhibit any unexpected aging behavior.
1i6 17 18 19 20 21 22 23 deviations from Arrhenius behavior at lower Ts. CO, formation:  0.3% 0.4% -
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Impact and Future Work
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modulus Flexural Failu.re Elastic Fracture C.ure viscosity | Time (min? to 50% | Weight Loss | Shrinkage « An optimized amine-cured epoxy material (Epon828/1031/DDS) was

Te (°C) (GPa) at Stren.gth Stzam MOdlflus Toughn*es% L(“ tm,‘e los Pa;S convoersmn 2k (20 dz:\ys) (20 dfys) thoroughly characterized in terms of degradation behavior by monitoring

150°C (ksi) (%) (ksi) (Mpa*m™) (min) at 155°C 150°C (FTIR) 280°C 240°C changes in chemical, physical, and mechanical properties as a functionof t & T

828/1031/DDS 253 0.85 22 5 360 22.5 0.7 25 45 10.5% -2.3% * Given the inherent thermal stability limitations of the reference material,
BMI/DABPA 285 1.01 e 4.2 444 29 § 1.2 96 180 0.1% Stable several BMI and CE alternative materials were screened as replacements

BMI/DAEtherBPA 245 1.10 ) ) ) ) ) > 60 1200 0.04% Stable * All BMI and CE materials. that were scr.eened showed substantially bet.ter

BMI/TM-123 - e e = e o= g - e pp— T thermal 'Stcj:\blhty and similar mechanical pgrformance and processing

characteristics compared to the reference. material
BMPP/DABPA - - 2 e S| 22 L2 - A - ) « The 3 best performing materials (BMI/DABPA, BMPP/TM123/DAEBPA, &
BMPP/TM-123/DAEBPA  242*  0.78* 29 7 390 22.5 1.55 23 - 0.06% 0.06% XU371/AroCyL10) were selected for an accelerated aging study at 260-200°C to
XU371/AroCy L-10 323 0.92 23 3.6 360 26.5 0.7 15 132 0.31% -0.24% assess chemical and mechanical property stability
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