Analyzing the Suitability of Contemporary 3D-Stacked PIM
Architectures for HPC Scientific Applications

Ivy B. Peng
Oak Ridge National Laboratory
pengb@ornl.gov
Rakshit Joydeep
Intel Labs

joydeep.rakshit@intel.com

ABSTRACT

Scaling off-chip bandwidth is challenging due to fundamental
limitations, such as a fixed pin count and plateauing signaling
rates. Recently, vendors have turned to 2.5D and 3D stacking
to closely integrate system components. Interestingly, these
technologies can integrate a logic layer under multiple memory
dies, enabling computing capability inside a memory stack. This
trend in stacking is making PIM architectures commercially viable.
In this work, we investigate the suitability of offloading kernels
in scientific applications onto 3D stacked PIM architectures. We
evaluate several hardware constraints resulted from the stacked
structure. We perform extensive simulation experiments and in-
depth analysis to quantify the impact of application locality in
TLBs, data caches, and memory stacks. Our results also identify
design optimization areas in software and hardware for HPC
scientific applications.

CCS CONCEPTS

« Hardware — Emerging architectures; Memory and dense
storage.

KEYWORDS

processing-in-memory, 3D stacked memory, PIM

ACM Reference Format:

Ivy B. Peng, Jeffrey S. Vetter, Shirley Moore, Rakshit Joydeep, and Stefano
Markidis. 2019. Analyzing the Suitability of Contemporary 3D-Stacked PIM
Architectures for HPC Scientific Applications. In Proceedings of the 16th
conference on Computing Frontiers (CF ’19), April 30-May 2, 2019, Alghero,
Italy. ACM, New York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/
3310273.3322831

1 INTRODUCTION

The on-chip core count continues growing after the era of
Dennard scaling [10]. “Bandwidth wall” becomes a profound
problem when the available off-chip bandwidth per core/thread is
actually decreasing [31]. Recently, vendors have turned to 2.5D/3D
stacking for efficient integration of system components; in fact,

ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor, or affiliate of the United States government. As such, the United
States government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for government purposes only.

CF ’19, April 30-May 2, 2019, Alghero, Italy

Jeffrey S. Vetter
Oak Ridge National Laboratory
vetter@computer.org

Shirley Moore
Oak Ridge National Laboratory
mooresv@ornl.gov

Stefano Markidis
KTH Royal Institute of Technology
markidis@kth.se

several 3D stacked memory devices like HBM and HMC are
commercially available [2, 26, 33]. However, even this approach
has fundamental limitations, including a fixed pin count and
plateauing signaling rates [28], when moving data from memory
to compute engines across global links (Figure 1a).

Alternative architectures that reorganize compute and memory,
e.g., processing-in-memory (PIM), compute-in-memory (CIM),
compute-near-memory (CNM), may address some of these
challenges. PIM has been extensively studied over the last two
decades [11, 20, 25]. Recent advances in 3D stacking technology
have revived interests in PIM because these devices can integrate
additional functionality on a logic layer under multiple memory
dies, enabling computing capability inside a memory stack
(Figure 1b). However, these benefits could be workload dependent.
Prior research has explored PIM architectures for data analytics
workloads [12, 15, 17, 34, 36] or for specific memory devices [7,
16, 24]. Thus, it is important to understand how HPC scientific
applications can benefit from such architectures.

Our work aims to investigate major design tradeoffs to enable
offloading kernels of scientific applications onto PIM subsystem,
which is formed by interconnected memory stacks with computing
capability and acts as a part of main memory (Figure 1c).
We foresee that memory-intensive kernels will be offloaded to
PIM subsystem similarly to today’s compute-intensive kernels
being offloaded to GPUs, likely by taking advantage of directive
programming models like OpenMP and OpenACC. To facilitate
such adoption, we choose programmable cores other than fixed
functional units to be embedded into a stack. We also assume that
offloaded kernels have execution time long enough to trigger the
host processors into power-saving idle states. Finally, offloading
at kernel instead of instruction level significantly ease cache
coherence between PIM cores and host cores.

The evaluation results show that the 3D integrated PIM
architecture can improve the scalability of low and medium
arithmetic-intensive applications by proportionally increasing
bandwidth and compute capability as estimated by the roofline
model (Figure 2). We also quantify application locality and
sensitivity to several architectural constraints: translation
lookaside buffers (TLBs), memory stacks, and data caches. The
evaluated applications sustain over 90% hit rates in 16-entry
TLB on PIM subsystem. There exists a crossover point in hit rate,
below which significant performance degradation is observed.
Accesses to remote stacks result in up to 90% performance loss, but
applications with moderate arithmetic intensity and data locality

[DRAM Die 0

Aoway diyo-yo

DRAM Die 1

DRAM Die 2

DRAM Die 3

DRAM Die 4
DRAM Die 5

[oramvies

DRAM Die 7

DataBus -

Host Processor

Icache

PIM
Subsystem

N
/\

(a) A conventional architecture connects (b) A memory cube with a logic layer composed of (c) Inter-connected memory cubes form a

processors to memory with off-chip buses. processing units and load/store units.

PIM subsystem as part of main memory.

Figure 1: Conceptual diagrams of memory cube, conventional architecture, and a PIM subsystem (drawn not to scale).

Conventional PIM

Figure 2: The roofline model for conventional and PIM
systems when scaling bandwidth. The dashed lines indicate
low and medium arithmetic intensities.

are tolerant of such loss. Finally, the reduced cache hierarchy
on the PIM subsystem may cause dramatic changes in memory
traffic, and we provide an analytical model for estimation.

2 PIM ARCHITECTURES

In this section, we introduce various types of logic integration in
PIM architectures. Then, we focus on a specific architecture that
interconnects multiple memory stacks to form a part of the main
memory. Our evaluation is based on this kind of architecture.

2.1 Logic Integration

PIM architectures embed logics inside memory to perform
computation or data manipulation operations without moving
data across off-chip buses. For the efficacy of supported operations,
logics can be integrated into different parts. Generally speaking,
the closer the logics are placed to the memory cells, the less
flexible functionalities they can support due to the limited area
budget and scope of data, e.g., logic in the row buffer may only
have access to data stored in specific rows/columns. For instance,
logics are integrated into memory sub-arrays to perform latency-
sensitive and energy-expensive data copy and value initialization
operations [9]. On the other hand, when logics are embedded
closer to memory controllers, they could perform more complex
operations on a relatively large scope of data. For instance, [7]
added accelerators to the data buffer devices on DDR4 LRDIMM
to exploit the high internal bandwidth. However, these logics may
have higher latency and energy overhead compared to logics near
memory cells.

With the advances of 3D stacking technology, 2D planer
memory chips can be integrated vertically atop a logic layer,
forming a memory stack (cube) with computing capability.
Figure 1b illustrates a stack of eight memory dies, each consisting
of multiple memory banks. These dies are integrated by Through-
Silicon Vias (TSVs), which are more energy efficient and
performant than conventional links [28]. Each memory cube is
partitioned vertically to form a group of partitions (vaults) that
function as independent memory channels. These vaults operate
in parallel to enable high aggregate internal bandwidth. In this
study, we focus on PIM subsystems composed of such 3D stacked
memory stacks, where computing units on the logic layer are
grouped by vaults and attach to a vault controller.

2.2 PIM Core

The computing units on the logic layer could be either
fixed-functional or general programmable. Our study chose
programmable cores.The inset on Figure 1b presents a possible
layout, where each vault controller connects to more than two
cores. The peak bandwidth of a PIM subsystem is the sum of
internal bandwidth of all memory cubes. Although powerful out-
of-order cores can exploit high bandwidth and hide latency, we
choose simpler, slower, and energy-efficient in-order cores as [8]
due to the thermal limitation of 3D stacked structure. JEDEC
standard limits DRAM to a thermal envelope of 85°. In contrast,
high-performance out-of-order cores can operate at 110° [23,
37]. When cores are close to memory, the increased heat will
require higher DRAM refresh rate to retain data, increasing energy
consumption.

3D stacked structure also imposes constraints on the area. For
instance, a DRAM die in HMC is approximately 68mm? [2]. This
area is expected to further decrease when fabrication processes
improve. Besides cores, the logic layer needs to accommodate
controllers and interconnects. Thus, configuring PIM cores with
low area overhead is critical. In this work, we focus on the design
tradeoffs in arithmetic units and caches in PIM cores because
they are area-consuming and performance critical. A complex
arithmetic logic unit like floating-point unit (FPU), can take up
as much as 0.68mm?2 [36]. Large caches like L2 caches have an
area overhead of 5mm? per megabyte. Many PIM designs eliminate
these units to reduce energy and area footprint for data analytics
workloads [6, 24]. However, for HPC scientific applications,

Table 1: The simulation parameters of systems

‘ Baseline ‘
CPU Configuration 16 x86-64 cores, 2.6 GHz
Core Parameter 128-entry ROB, 6-wide out-of-order
TLB 16 entries per core, 4KB page, 200-cycle miss penalty
Lli 32 KB per core, 4-way associative, 3-cycle latency
Lid 32 KB per core, 8-way associative, 4-cycle latency
L2 256 KB per core, 8-way associative, 12-cycle latency
L3 shared, 20 MB, 20-way associative, 28-cycle latency

Off-chip interconnect

16 GB/s per link, 8 cycle latency

PIM |

PIM Configuration 4 cores per valut, 1 GHz

Core Parameter single-issue in-order

TLB 16 entries per core, 4KB page, 120-cycle miss penalty
L1i 32 KB per core, 4-way associative, 3-cycle latency
Lid 32 KB per core, 8-way associative, 4-cycle latency

On-chip interconnect

16 bytes per cycle, 4 cycle

Memory Subsystem

Memory Cube 4 GB, 16 vaults x 8 layers

Topology Fully connected

Timing tcx = 1.6ns, tras = 22.4ns, tpep = 11.2ns
Parameters tcas = 11.2ns, tyr = 14.4ns, tgp = 11.2ns

floating-point operation and data locality are common, and thus
we keep an FPU and small cache in each core.

2.3 PIM Subsystem

In this work, memory cubes are interconnected [16, 36] to form a
subsystem inside the main memory, which can still be linked to
host processors with off-chip buses as a conventional architecture
(Figure 1a). We use a fully connected topology for PIM subsystems.
Note that such topology is only feasible for a small number of cubes
because the required pin count scales linearly with the number of
cubes. Other topologies, such as daisy-chain and dragonfly, have
been proposed for architectures composed of a large number of
cubes [12, 36].

Data movement inside the PIM subsystem is hierarchical. The
lowest latency occurs when a PIM core needs to access data
within its local vault. If a PIM core needs to access data in
other vaults, extra latency is incurred for routing inside the cube.
Finally, if accessing data stored in a different cube, PIM needs
to bear even higher latency for transferring data through one
or multiple global links. In this case, PIM architecture has little
advantage compared to conventional architectures. One important
optimization is to increase accesses to local vaults. Although
compiler transformation and data re-organization techniques may
work for specific workloads, this is not always achievable. Our
experiments quantify the impact of remote cube accesses in
common HPC scientific applications.

3 METHODOLOGY

We use zsim [32] simulator to model host cores and PIM cores.
Zsim uses the Intel Pin [21] for dynamic instrumentation and can
simulate thousand-core systems at high speed [32]. We extended
zsim to model TLB, interconnect of memory cubes, and integrated
with nvmain simulator [19, 27] to model 3D stacked memories. We
also developed offloading interfaces for initializing and finalizing
a kernel execution on PIM subsystem. We use the MESI protocol
for cache coherence. Our execution model assumes complete
offloading onto PIM subsystem to avoid concurrent data accesses

Table 2: Evaluated workloads

Workloads Description Input Problem Load| Store] MPKI
triad [22] stream triad benchark 8.2-107 array 24% [12% |59.3
jacobi2d [29] | a 2D jacobi solver 163842 matrix 29% |12% |30.1
stencil3d [29] | 7-point stencil operation 256° matrix 51% | 6% |30.7
miniFE [14] a finite-element mini-app 266x264x132 grid 38% |1% |27.7
xsbench [1] macroscopic crosssection lookup | 15 mil lookups 26% | 8% [31.4
conv [13] 2d convolution with 3x3 filter 163842 matrix 51% |3% [10.3
pennant [3] rad-hydro unstructured mesh sedovflat 1920x2160 mesh |33% |7% |24
dgemm [29] dense linear algebra 81922 matrix 40% |19% |24
quicksilver [30]| monte carlo particle transport Coral2 Problem1 30% |11% |0.05

from host and PIM cores. We summarize the simulation parameters
in Table 1. The baseline system uses a conventional architecture
that connects the host processor to the memory subsystem with
multiple off-chip global links. We use the timing parameters
derived from [12] to model 3D stacked memory. Simple in-order
cores are embedded on the logic layer. Routing among PIM cores
incurs four cycle latency while traversing a global link has eight
cycle latency.We use McPAT [18] to estimate the area overhead,
peak power and dynamic power of cores in 20 nm technology node.
We conservatively modified ARM Cortex-A9 core configuration to
assess PIM cores.

Our experiments use a set of scientific applications (Table 2)
from MachSuite [29], PolyBench [13], and ECP proxy application
catalog [4]. We report application characteristics, i.e., the
percentage of load and store instructions out of total instructions,
and misses per kilo-instructions (MPKI) by HPCToolkit [5]. We
run applications with one thread per core for all experiments. We
use the maximum simulated core cycles as the execution time of a
kernel and exclude the kernel launching overhead.

4 EVALUATION

In this section, we first establish the base configuration of
PIM cores and then compare application scalability on the
PIM subsystem and baseline system. We focus on quantifying
application locality in TLB, memory stacks, and data caches to
draw design insights.

4.1 Core Configuration

Cores on the logic layer are essential for exploiting the internal
bandwidth of a memory cube. We select the basic configuration by
balancing performance and area constraints. In this experiment,
we scale the number of cores and measure the sustainable
bandwidth using the STREAM triad benchmark [22]. Each vault
controller has the same number of attached cores, and we sweep
the number of cores per vault from one to eight. The bandwidth
scales nearly linearly from 30 to 100 GB/s when increasing from
16 to 96 cores (Figure 3). Beyond 96 cores, the scaling slows down
and saturates at 110 GB/s. Further increasing the number of cores
beyond 112 only brings minimal improvement. Ideally, we would
have chosen 112 cores for a memory cube. However, we also need
to consider the area overhead.

We calculate the area overhead of cores and present the
breakdown of main components, such as caches and arithmetic
units, in Figure 3. We assume a total area budget of 100 mm? [12,
28] for the logic layer, among which peripheral units are estimated
to take up 35% area. Thus, we set a 65 mm? area budget for all cores.
From Figure 3, we determine each logic layer to integrate a total of

n
o

® o
o o

Bandwidth (GB/s)
3

40
20
0
16 32 48 64 80 96 112 128
Core Count
150 T T T T T
& I Cache [mILSQ ALY
€ ypo | HEEEN 1B] [FPU 4
3 I Decoder [————]DTlb . MUL/DIV
© [DCache [Others
© 90|
<<
[l
5 60
(&)
T 30
(s}
F 0
16 32 48 64 80 96 112 128
Core Count

Figure 3: Measured bandwidth (top) and estimated core area
(bottom) for different numbers of cores per logic layer.

64 cores, which take up 58 mm? and provide 80 GB/s sustainable
bandwidth.

From the breakdown of the core area, we find that data
caches require approximately 30.4% of the total area. Instruction
caches and arithmetic units take up 20.5% and 41.2% respectively.
Among these components, floating-point units (FPU) have the
highest overhead in the area, taking up as much as 32.5% of the
total budget. As explained before, FPUs are more important to
many scientific applications compared to data analytics workloads.
Thus, we conservatively include an FPU per core. We use a 64-
core configuration as the basic configuration for the remaining
experiments in this work.

4.2 Application Scalability

We compare the scalability of applications on PIM and baseline
systems when memory bandwidth increases. On the baseline
system, we change the memory bandwidth by increasing the
number of off-chip links from one to eight, at a doubling rate.
We normalize the performance to that on the system with only
one link. On PIM subsystems, we scale up the memory bandwidth
by increasing the number of memory cubes. We normalize the
performance to that on the system with only one cube. We
calculate the speedup in execution time on the PIM system of four
cubes to that on the baseline system of four links. Figure 4 presents
the results with applications in ascending order of their arithmetic
intensities.

The experimental results demonstrate the strength of PIM
subsystem in scaling applications with both low and medium
arithmetic intensities. On the PIM subsystem, applications
achieved 1.76x to 10.97x speedup. The performance improvement
can be categorized into two types. The first type of applications
has low arithmetic intensities, i.e., outside the annotated region.
They show speedup mainly due to the higher memory bandwidth
on the PIM subsystem than the baseline. The other type of
applications has relatively higher arithmetic intensities, i.e.,
inside the annotated region. As explained by the roofline model
(Figure 2), PIM subsystem proportionally increases bandwidth

Baséline

Norm. Perf.(x)

Triad Jacobi Stencil3D miniFE XSBench Conv Pennant ~ Dgemm QuickSilver
6 T T T T PIM T T T T
[Cubex1
[Cubex2
a4l [Cubex3 i
[Cubex4

N

<+

Norm. Perf.(x)

o

Triad Jacobi Stencil3D miniFE XSBench Conv Pennant Dgemm QuickSilver
T T T T T T

T T
[Speedup

- w o N o =

Triad Jacobi Stencil3D miniFE XSBench Conv Pennant Dgemm QuickSilver

Figure 4: Scalability w.r.t bandwidth (top two) and speedup
on PIM subsystem (bottom).

and computing capability when adding a memory stack. On the
baseline system, applications with higher arithmetic intensity
saturate scaling after the bandwidth is doubled. On the contrary,
on the PIM system, these applications continue scaling. The
difference in scalability indicates that PIM systems could benefit a
broader range of applications by providing a balanced bandwidth
and computing capability improvement.

4.3 Impact of TLB Locality

In this experiment, we quantify the impact of TLB locality on
PIM subsystems. PIM subsystem in this work will propagate
TLB-miss handling to the host side as in [36] to avoid complex
virtual memory management on the PIM side. Thus, each miss
will result in high latency. Understanding application sensitivity to
TLB misses is essential for optimizing designs. We first determine
whether TLB locality in applications changes when offloaded onto
PIM subsystem. Then, we calculate application performance loss
due to misses.

We quantify TLB locality by comparing hit rates on the PIM
and baseline systems. Each host core and PIM core has the same
number of TLB entries, but the PIM subsystem has a larger number
of cores. Application locality in TLB remains nearly unchanged
when moving from the baseline to the PIM system (Figure 5).
Five applications show high locality, reaching over 99% hit rates.
The others show relatively lower locality, among which Pennant
has the lowest rate of 92.5%. We quantify the performance loss
due to TLB misses in two sets of experiments. First, we set up
a baseline and PIM system, on which TLB miss penalty on PIM
system has an extra 112 cycle latency [36]. Then, we set up an
ideal baseline and PIM system, where TLB miss does not impose
any additional penalty. We calculate the performance loss as the
ratio of additional execution time on the two systems compared to
their respective ideal systems. The results show that TLB locality
has a significant impact, i.e., above 20%, on the performance. There
exists a crossover point, as indicated by the dashed line in Figure 5.
When TLB hit rates are high, i.e., the left side of the dashed line,
applications can sustain 60% to 80% performance. Once TLB hit

T
I Bascline
=P

TLB Hit Rate (%)

Conv Stencil3D miniFE Jacobi Triad lQuickSilver dgemm XSBench Pennant
100 T T T T T

[Baseline
8o |- | = PIM

60 -

40|

Perf. Loss (%)

Conv Stencil3D miniFE Jacobi Triad QuickSilver dgemm XSBench Pennant

Figure 5: TLB hit rates (top) and performance loss (bottom)
on PIM and baseline systems.

rate decreases below the crossover point, i.e., the right side of the
dashed line, the performance loss considerably increases.

Overall, these applications exhibit good locality in TLBs. Since
TLBs only require a small area overhead (Figure 3), further
reducing its size will bring little reduction in the overall area. Also,
the high TLB hit rate indicates limited potential for optimization
from larger TLBs. Under this consideration, TLB is not a priority
optimization area for the evaluated applications.

4.4 Impact of Remote Cube Access

PIM subsystem has high aggregate internal bandwidth. Still, the
interconnects between memory stacks use global links with low
bandwidth and high latency. Typical HPC workloads have large
memory footprints that require the capacity of multiple memory
cubes. Thus, data transfer across interconnects directly affects the
efficiency of PIM subsystems. We quantify the performance loss
due to remote cube accesses in two sets of experiments. First,
we set up a realistic PIM subsystem that consists of four fully
connected memory stacks. Next, we set up an ideal PIM system
with the same topology but no delay on interconnect links. We
calculate the performance loss as the increased execution time on
the realistic system compared to the ideal system.

The applications demonstrate different sensitivity to remote
accesses (Figure 6). Three applications are insensitive to the
long latency of remote accesses. Dgemm manages to retain over
90% of its performance. Convolution and quicksilver retain over
80% of their performance. These applications have relatively
high arithmetic intensities and good data localities as reported
in Figure 4 and Table 3. In contrast, XSBench, triad, and
stencil, are more sensitive to remote accesses. They lost as
much as 50% to 90% performance. These applications are
relatively memory-intensive with lower arithmetic intensities. The
remaining applications sustain reasonable performance with 21%
to 32% performance degradation.

The results indicate remote accesses as an obstacle in exploiting
PIM systems. Applications with lower arithmetic intensity and
data reuse are more susceptible to remote accesses. Software
optimizations, such as co-location data and computation in the
same memory cube, become particularly valuable for applications
with regular access patterns. For applications with irregular access

Perf. Loss (%)

Triad Jacobi StencilaD miniFE XSBench Conv. Pennant Dgemm QuickSilver

Figure 6: Performance loss from accesses to remote stacks.

patterns, collective operations similar to collective communication
on distributed-memory systems could be useful for mitigating
these costs. Finally, read-only shared-caches for PIM cores inside
one cube can eliminate redundant memory requests issued by
different cores to fetch the same data from a remote cube.

4.5 Impact of Reduced Cache Hierarchy

Caches in PIM subsystem impose additional overhead in area
and coherence. However, they are critical for the performance of
scientific applications that often exhibit good data locality. We
quantify the impact of cache configurations in this section and
provide an analytical model to guide design.

We first compare application locality in data caches on the PIM
and baseline systems. We configure each core with a 32 KB private
L1 data cache. Note that the PIM system has larger aggregated
L1 caches than the baseline system. The baseline host system also
has 256 KB private L2 caches and a shared 20 MB L3 cache. From
column L1r and L1w of Table 3, we conclude that data locality in
L1 cache remains unchanged when moving to the PIM system.

We quantify the impact of a reduced cache hierarchy on the PIM
system by comparing its memory traffic to that on the baseline
system. We find that the changes in memory traffic on PIM system
are determined by both read and write locality in post-L1 caches.
The applications in green rows have similar memory traffic on
both systems. These applications have low hit rates on L2 and L3
caches for both read and write accesses. Thus, the reduced cache
hierarchy is more effective because it avoids the overhead of these
two cache levels. Second, the applications in yellow rows have
a moderate increase in memory traffic. These applications have
higher hit rates in L2 than the first group while their hit rates
in L3 remain low. Finally, the applications in red rows exhibit
the highest locality in L2 and L3 caches for both read and write
accesses. Consequently, they experience dramatically increased
memory traffic when moving to the PIM system.

We provide an analytical model in Eq. 1 for predicting the
change in memory traffic. We find that write access patterns and
write intensity both play critical roles in the memory traffic on
the PIM system. For instance, pennant has nearly 30% memory
requests resulted from write misses because each write miss results
in a request-for-ownership request. Also, due to MESI protocol,
more writes can result in higher coherence traffic. We report the
estimated memory traffic by Eq. 1, and the measured results in
Table 3. The results in the last two columns validate Eq. 1 in
approximating changes in memory traffic.

. plm ms
RRW RLl +RL1

. plm plm Im ms . pms ms
Rrw - RpY - Ry * Rz + Ry - Ry = Rpg

1

Incmem =

Table 3: Cache Hit Rates (%)

App. R/W Baseline(%) PIM(%) | Exp.| Sim.

(x)|L1r|L2r|L3r|L1iw|L2w|L3w |L1r|L1w |Inc.(x) | Inc.(x)
stencil3d 32| 94| 0| o0 87 0 0 95| 87 0.9 0.8
triad 200 76| 0| 0| 75 0 0 75| 75 1.0 1.0
conv 18.0| 98 0| 87 0 0 98| 87 1.0 1.0
miniFE 25.9| 92| 11 0| 85 (1] 0 92| &5 1.1 1.1
jacobi2d 2.5 80| 48| 0| 75 0 0 80| 75 1.5 1.4
xsbench 3.2 83| 12| 18| 100| 20| 18 83| 100 1.4 1.4
pennant 44| 96| 74| 33| 92| 10| 33 96| 92 3.5 3.3
dgemm 2.1] 90| 0| 94| 100 0| 94 90| 100 16.9 16.9
quicksilver| 2.8 97| 87| 96| 100/ 20| 96 97| 100| 145.9| 110.7

W WO EImes C4ke
‘

AT
Ikl

0 L L1
QulckSﬂver Conv Pennant Stencil3d miniFE dgemm XSBench jacobi2d Triad

Read Hit Rate(%)

Write Hit Rate(%)

E—

Figure 7: Cache hit rates on PIM subsystem v.s cache sizes.

Our second experiment quantifies the impact of cache sizes
on application performance and area overhead. We set up five

PIM systems with cache sizes decreasing from 64KB to 4KB.

Figure 7 reports the measured read and write hit rates in the
data caches. Performance loss is calculated relative to that on the
system with 64KB caches. Read and write accesses in applications
exhibit different sensitivity to the change of L1 cache size. For read
accesses, four applications, i.e., miniFE, dgemm, jacobi, and triad,
sustain their hit rates across the five systems. The remaining five
applications, however, show decreasing read hit rates as the cache
size decreases. Among them, four applications only have a gradual
decrease in hit rates, reaching up to 10%. In contrast, stencil3d
dramatically decreases its hit rate from 95% to 61% when the cache
size is smaller than 16KB. For write accesses, quicksilver, dgemm,
xsbench, jacobi, and triad, are insensitive to the change in cache
size. Other applications show either gradual or dramatic decrease
in hit rate as the cache size decreases.

One interesting observation is that the largest cache size does
not always bring the highest performance. Convolution, miniFE,
dgemm, and jacobi2d all demonstrate higher performance on the
system with 32 KB cache than the one with 64 KB cache. One
possible reason is that changes in row buffer hit rates resulted from
the changed data cache size. For instance, in convolution, we find
that its row buffer misses on the system with 64 KB cache is about
1.9x higher than that on the system with 32 KB cache, on which
the performance is about 2.7x higher than the former one.

We further analyze the tradeoff between cache sizes and area
overhead. From Figure 8, we find that the area overhead of
caches, as indicated in dark and light blue bars, does not change

: . ; : . :
ke EEENceKs [N teKe [Cjske [C]4ke

Rel. Perf.(x)
o
T
L

OulckS\lver Conv Pennant Stencilad miniFE dgemm XSBench jacobi2d Triad

_ \Cache [Decoder [==1LSQ :| DT AU EEEMULDIV
RF

60 [[E==IDCache [1T E=SIFFU [Others —|
C 50l
3
Lo
gt
230}
4
520
o

10 -

0

Figure 8: Impact of cache size on application performance
and core area in PIM systems.

proportionally to their capacity. For cache size 4 KB, 8 KB, and 16
KB, the difference in their estimated area is minimal. From 32 KB
to 64 KB caches, the cache area increases by 8mm?, resulting in
14% increase in the total area. As the previous results show little
improvement or even degradation in performance from using 64
KB caches, we choose 32 KB cache for the evaluated applications.

5 RELATED WORK

Prior works have explored near-memory architectures for data
analytics workloads. Pugsley, et al. [28] implement a near-
data computing architecture using Hybrid Memory Cube for
MapReduce workloads. Gao, et al. [12] propose hardware and
runtime co-design to optimize coherence and communication.
Zhang, et al. [36] focus on a memory-centric topology and
data structure re-organization to reduce remote data accesses
for graph workloads. Thottethodi, et al. [34] propose hardware
optimizations based on the characteristics of big data applications.
Our work targets scientific applications, which require different
design considerations based on their characteristics.

Previous works proposed different approaches to address
coherence and fixed operations in near-memory architectures.
Vermij, et al [35] proposed user-enhanced coherence for reducing
the overhead of maintaining coherence between NDP cores and
CPU cores. Nair, et al [24] propose Active Memory Cube (AMC)
that consists of vectorized computing units to perform several
fixed instructions and does not include data caches. Ahn, et al [6]
propose special instructions that can execute on either host or
memory side depending on the location of requested data to
improve data locality and coherence. Kim, et al. [17] use hybrid
page granularity to accommodate different thread block access to
pages. Our work targets easier adoption in applications so that we
consider programmable cores and assume a kernel is completely
offloaded to run on PIM subsystem and host cores will not update
data concurrently.

6 CONCLUSIONS

We investigated the suitability of offloading kernels of HPC
scientific applications onto PIM subsystem. Our results show that
such architecture can scale low to medium arithmetic-intensive
applications. We also quantified application locality in TLB,
memory cubes, and data caches to draw general design insights.

REFERENCES

(1]

=

(10]

[11

[12

(14

(15

(17

[18

[19

™
=

[21

2017. XSBench: The Monte Carlo macroscopic cross section lookup benchmark.
https://github.com/ANL-CESAR/XSBench. [Online; accessed 01-January-2017].
2018. HMC Gen2 (HMC-15G-SR) Data Sheet. https://www.micron.com/~/media/
documents/products/data-sheet/hmc/gen2/hme_gen2.pdf. [Online; accessed 19-
Feb-2018].

2018. The PENNANT Mini-App. https://github.com/lanl/PENNANT. [Online;
accessed 15-Oct-2018].

2019. ECP Proxy Applications Catalog. https://proxyapps.exascaleproject.org/
app. [Online; accessed 15-Dec-2018].

Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel
Marin, John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools
for performance analysis of optimized parallel programs. Concurrency and
Computation: Practice and Experience 22, 6 (2010), 685-701.

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-
enabled instructions: a low-overhead, locality-aware processing-in-memory
architecture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on. IEEE, 336-348.

Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
2016. Chameleon: Versatile and practical near-DRAM acceleration architecture
for large memory systems. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1-13.

Omid Azizi, Aqeel Mahesri, Benjamin C Lee, Sanjay J Patel, and Mark Horowitz.
2010. Energy-performance tradeoffs in processor architecture and circuit design:
amarginal cost analysis. ACM SIGARCH Computer Architecture News 38, 3 (2010),
26-36.

Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K
Qureshi, and Onur Mutlu. 2016. Low-cost inter-linked subarrays (LISA):
Enabling fast inter-subarray data movement in DRAM. In High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium on. IEEE, 568—
580.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974.
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits 9, 5 (1974), 256-268.

Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, et al. 2002. The
architecture of the DIVA processing-in-memory chip. In Proceedings of the 16th
international conference on Supercomputing. ACM, 14-25.

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical near-data
processing for in-memory analytics frameworks. In Parallel Architecture and
Compilation (PACT), 2015 International Conference on. IEEE, 113-124.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In
Innovative Parallel Computing (InPar), 2012. IEEE, 1-10.

Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K
Thornquist, and Robert W Numrich. 2009. Improving Performance via Mini-
applications. Technical Report SAND2009-5574. Sandia National Laboratories.
Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler. 2016.
Transparent offloading and mapping (TOM): Enabling programmer-transparent
near-data processing in GPU systems. ACM SIGARCH Computer Architecture
News 44, 3 (2016), 204-216.

Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. 2013. Memory-centric
system interconnect design with hybrid memory cubes. In Proceedings of the
22nd international conference on Parallel architectures and compilation techniques.
IEEE Press, 145-156.

Hyojong Kim, Ramyad Hadidi, Lifeng Nai, Hyesoon Kim, Nuwan Jayasena,
Yasuko Eckert, Onur Kayiran, and Gabriel Loh. 2018. CODA: Enabling Co-
location of Computation and Data for Multiple GPU Systems. ACM Transactions
on Architecture and Code Optimization (TACO) 15, 3 (2018), 32.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on. IEEE, 469-480.
Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long Zheng,
and Rentong Guo. 2017. Hardware/software cooperative caching for hybrid
dram/nvm memory architectures. In Proceedings of the International Conference
on Supercomputing. ACM, 26.

G.H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani, D.P. Zhang,
and M. Ignatowski. 2013. A processing in memory taxonomy and a case for
studying fixed-function pim. In Workshop on Near-Data Processing (WoNDP).
Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Acm sigplan notices, Vol. 40. ACM, 190-200.

[22]

[23

[24

[25

[27

[28

™
20,

[30

[31

[32

[34

(35]

[36

@
=

John D McCalpin. 1995. A survey of memory bandwidth and machine balance
in current high performance computers. IEEE TCCA Newsletter 19 (1995), 25.
Lifeng Nai, Ramyad Hadidi, He Xiao, Hyojong Kim, Jaewoong Sim, and Hyesoon
Kim. 2018. CoolPIM: Thermal-Aware Source Throttling for Efficient PIM
Instruction Offloading. In Proc. International Parallel and Distributed Processing
Symposium.

Ravi Nair, Samuel F Antao, Carlo Bertolli, Pradip Bose, Jose R Brunheroto, Tong
Chen, C-Y Cher, Carlos HA Costa, Jun Doi, Constantinos Evangelinos, et al.
2015. Active memory cube: A processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development 59, 2/3 (2015), 17-1.

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. 1997. A
case for intelligent RAM. IEEE micro 17, 2 (1997), 34-44.

I B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis.
2017. Exploring the Performance Benefit of Hybrid Memory System on HPC
Environments. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 683-692. https://doi.org/10.1109/IPDPSW.
2017.115

Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters 14, 2 (2015), 140-143.

Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,
Vijayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li.
2014. NDC: Analyzing the impact of 3D-stacked memory+ logic devices on
MapReduce workloads. In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 190-200.

Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. Machsuite: Benchmarks for accelerator design and customized
architectures. In Workload Characterization (ISWC), 2014 IEEE International
Symposium on. IEEE, 110-119.

David F Richards, Ryan C Bleile, Patrick S Brantley, Shawn A Dawson,
Michael Scott McKinley, and Matthew J O’Brien. 2017. Quicksilver: A Proxy App
for the Monte Carlo Transport Code Mercury. In Cluster Computing (CLUSTER),
2017 IEEE International Conference on. IEEE, 866—873.

Brian M Rogers, Anil Krishna, Gordon B Bell, Ken Vu, Xiaowei Jiang, and Yan
Solihin. 2009. Scaling the bandwidth wall: challenges in and avenues for CMP
scaling. In ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 371-382.
Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate
microarchitectural simulation of thousand-core systems. In ACM SIGARCH
Computer architecture news, Vol. 41. ACM, 475-486.

JEDEC Standard-JESD235A. 2013. High Bandwidth Memory (HBM) DRAM.
JEDEC Solid State Technology Association (2013).

Mithuna Thottethodi, TN Vijaykumar, et al. 2018. Millipede: Die-Stacked
Memory Optimizations for Big Data Machine Learning Analytics. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 160—
171.

Erik Vermij, Leandro Fiorin, Christoph Hagleitner, and Koen Bertels. 2017.
Boosting the efficiency of HPCG and Graph500 with near-data processing. In
2017 46th International Conference on Parallel Processing (ICPP). IEEE, 31-40.
Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu,
Kang Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing
Communication for PIM-based Graph Processing with Efficient Data Partition.
In High Performance Computer Architecture (HPCA), 2018 IEEE International
Symposium on. IEEE, 544-557.

Yuxiong Zhu, Borui Wang, Dong Li, and Jishen Zhao. 2016. Integrated Thermal
Analysis for Processing In Die-Stacking Memory. In Proceedings of the Second
International Symposium on Memory Systems. ACM, 402-414.

