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Abstract—In anagram games, players are provided with letters
for forming as many words as possible over a specified time du-
ration. Anagram games have been used in controlled experiments
to study problems such as collective identity, effects of goal-
setting, internal-external attributions, test anxiety, and others.
The majority of work on anagram games involves individual
players. Recently, work has expanded to group anagram games
where players cooperate by sharing letters. In this work, we
analyze experimental data from online social networked exper-
iments of group anagram games. We develop mechanistic and
data-driven models of human reasoning to predict detailed game
player actions (e.g., what word to form next). With these results,
we develop a composite agent-based modeling and simulation
platform that incorporates the models from data analysis. We
compare model predictions against experimental data, which
enables us to provide explanations of human reasoning and
behavior. Finally, we provide illustrative case studies using agent-
based simulations to demonstrate the efficacy of models to
provide insights that are beyond those from experiments alone.

I. INTRODUCTION

A. Background and Motivation

In one form of an individual anagram game, a player
is provided with a set of alphabetical letters to form as
many words as possible in a prescribed time duration. The
performance of a player is often quantified based on the
number of words formed.

In a group anagram game (GrAG), multiple players col-
laborate. Each player is given letters and forms words with her
own letters, and can share letters with her neighbors to enable
everyone to form more words. Figure 1 provides a schematic
of a 3-player GrAG. Each player (v1, v2, and v3) is initially
provided with nl = 3 letters as shown. A player may form
words, and through the communication channels in gray, may
request letters and reply to letter requests.

request “u”

u, r, k

b, g, s c, t, o

form “cot” reply “u”

u, r, k

b, g, s, u c, t, orequest
“g”

form “bug”

time t time t+1

v3v2

v1

v3v2

v1

Fig. 1. Simplified view of a networked group anagram game (GrAG), with
illustrative actions among n = 3 players that communicate and share letters
through the gray channels. Each player is initially given nl = 3 letters. Letters
that a player has “in-hand” to form words are shown in boxes. Player actions
are shown in blue. At time t, v2 requests a “u” from v1 and v3 forms the
word “cot.” At the next time, v2 receives a “u” from v1, forms the word
“bug,” and receives a request from v3.

Overwhelmingly, research on anagram games considers the
individual setting. It has been extensively studied (over 20
published works) for more than 60 years to analyze phe-



nomena such as goal-setting, compensation types, internal-
external attributions, and test anxiety (e.g., [1], [2]). Other
names for anagram game are word formation game and word
construction game.

There are several reasons to study GrAGs. A face-to-face
GrAG has recently been played. In particular, [3] used them
to study experimentally the formation of collective identity
(CI), defined in social psychology as an individual’s cognitive,
moral, and emotional connection with a broader community,
category, practice, or institution [4]. A second motivation is
their relevance to other types of group dynamics, notably inter-
group and intragroup cooperation and competition (e.g., [5]).
A third motivation is that many of the phenomena listed above
for the individual anagram game (e.g., goal-setting) could be
studied in group settings with models of group behavior.

Overall, researches involving anagram games encompass a
broad range of disciplines like sociology, economics, man-
agement science, and (social) psychology [1], [2], [6]. It
is clear that using anagram games is valuable in various
fields of research. With all of this experimental work on
anagram games, it is surprising that very little work has been
done in modeling and simulating these games. The first and
only work on modeling GrAGs was recently completed [7].
We enumerate the differences between our work and [7] in
Section I-B immediately below.

B. Our Work Scope and Differentiators from Previous Work

Work scope. Our work starts with data from online social
network GrAGs. (The game platform and online experiments
are not the focus in this work.) With these data: (i) data analyt-
ics are performed to support model development; (ii) different
models for different player actions in the GrAG are developed;
(iii) the models are evaluated against experimental data; and
(iv) these models are then recast as agent-based models
and executed within an agent-based modeling and simulation
(ABMS) platform to produce computational results that go
beyond the experiments.

Based on this work scope, all of the following are com-
pletely different in this work, compared to that in [7]: data
analytics, the aspects of the game that are being modeled, the
types of modeling techniques used, the models themselves, and
the quantities that the models predict. We address particular
differences between [7] and our work now.
Work in Ref. [7]. Figure 2 serves to emphasize our models
and to differentiate our work from that in [7]. The action type
and time (ATAT) model of the figure is the subject of [7],
which builds the model using multinomial logistic regression.
In that work, the goal was to develop models to predict the
type of action taken in time, e.g., predictions of the form:
player vi takes action type “form word” at time t. Also, if
a player action is form word, and the player has letters that
cannot form a word (e.g., letters q, z, and r) then that model
will nevertheless form an unspecified (unrealistic) word from
these letters. Moreover, the models of [7] do not consider the
particular letters assigned to players in a game and hence have
no heterogeneity. Consequently, all player behaviors will tend

toward the same mean behavior in agent-based simulations
(ABSs).
Our work. In contrast, our work focuses on the three compo-
nent models of Figure 2. Different models are developed for
the actions “form word,” “request letter,” and “reply to (letter)
request.” Our models account for network structure, letter
assignments and letters in-hand (i.e., letters that a player has
to form words), and particular player parameter assignments
(detailed below)—all of which can vary among players—so
results will remain distinct across agents. That is, we capture
heterogeneity in several ways.

Per Figure 2, our ABMS framework uses a composite
model: a combination of the ATAT model (to determine what
action types players take in time) and the three component
models developed herein (to predict the specifics of each ac-
tion). The composite model is our agent-based model (ABM).
This ABMS system simulates GrAG scenarios beyond those
of the experiments.

Form Word
Component Model

Request Letter
Component Model

Reply to Request
Component Model

Composite Model

ATAT model:  Model for Action Selection at Each Time

(player action specifics) = (human reasoning) x (aptitude) x (data objects)

Unifying theme across three models for the actions
form word, request letter, reply to request:

Fig. 2. Structure of the composite (agent-based) model. At each time in a
group anagram game, a player takes one of four actions, consistent with the
online game: “form word,” “request letter,” “reply to letter request,” or “think.”
The selection of each action is determined by a multinomial logistic regression
model from [7], which we call the action type and time (ATAT) model. Each
of the first three actions requires a component model (and software module)
that simulates human reasoning and outputs the specifics of an action. These
are expanded on in Figure 3 below. These component models in this figure are
the focus of this work. The algorithms for these three actions are in Figure
7, Figure 9, and in [8], Figure 16. “Thinking” is an idling action, no model
is needed. The common theme across these models is given in blue. Aptitude
is described in Section IV.

C. Novelty of Our Work

First, our work is an exemplar of a detailed procedure
for combining mechanistic and data-driven models to form
single models of human reasoning and decision-making that
output human actions in a game. Mechanistic models, for our
purposes, have the following characteristics: (i) the models are
based on first principles and are not tied to any particular do-
main; and (ii) the models are specified, implemented, and exe-
cuted without any experimental data. To augment mechanistic
models by accounting for variability in player behaviors, data-
driven models are constructed from analyses of experimental
data. Second, because the mechanistic models capture player
behavior, these models explain behaviors, as described in our
contributions below. Third, our mechanistic models are novel:
Levenshtein Distance (LD) [9] (see Section IV-A) and a greedy
optimization procedure describe human decision-making and
have not been used in anagrams contexts (we could not find
LD used in any modeling of human behavior, as we do here).
Fourth, with these models, we develop an ABMS platform to



model the detailed actions of players in GrAGs beyond the
experiment conditions.

As called for in the social sciences, our focus is on model
construction and predictions, and explanations of human be-
havior [10], [11].

D. Contributions

1. A process for combining mechanistic and data-driven
approaches to build models of human reasoning. We
provide the details of our process in Section IV. See Figure 3.
First, mechanistic models are conjectured and evaluated by
comparing their predictions to experimental data. This does
three things: (i) enables comparisons of model predictions
with experimental data, and if these comparisons are favorable
(which they are), then (ii) the structures of the models
provide explanations for human decision-making [12], [13],
and (iii) the mechanistic models form the basis of the ABMs.
Second, because the mechanistic models can be improved by
including data from experiments, we use data-driven modeling
approaches to introduce stochasticity to account for variability
across human subject game players. Hence we utilize these two
modeling approaches in a well-defined process.
2. Mechanistic models. We use concepts such as LD, word
corpora, word proximity networks (WPNs), and a greedy
optimization algorithm (all defined in Section IV) to develop
mechanistic models for two of the three player actions (see
Figure 3). The LD model, used for word formation, could be
used within any agent that is required to form words, and
the greedy optimization algorithm, used for requesting letters,
could be used by agents to make a choice from among a
finite set of options. That is, these models are not tied to our
GrAG. But the next contribution presents their utility within
the GrAG.
3. New experimental findings and explanations of player
behaviors based on cognitive and economic theories. The
analyses focus on data for three types of player actions:
(1) form a word; (2) request a letter; and (3) reply to a letter
request. A summary of some explanations follows. A word
w2 that a player forms is explained by considering (i) the
letters that the player has in-hand (i.e., in her possession)
and (ii) LD [9] between the most recently formed word w1

and the next word to be formed w2 from a candidate set of
words (Section IV-B). This is motivated by, and consistent
with, cognitive load theory [14] in that people try to reduce
cognitive load during learning. Here, the closer the next word
formed is to the previously formed word—as measured by
LD—the lesser the cognitive load in forming a new word.
For letter requests, we use the idea that player action is based
on rational choice theory [15]. Our analyses (Section IV-C)
demonstrate that the letter that a player requests from her
neighbors is explained by identifying the letter that maximally
increases the number of words that the player can form,
when also considering the letters that the player has in-hand
(greedy optimization algorithm). This behavior is consistent
with rational choice theory. This is because players’ earnings
in games are proportional to the number of words formed,

so it is rational for a player to choose a letter to maximize
the size of their candidate word set. It is interesting that our
explanation means that players are reasoning beyond more
naive approaches, such as simply requesting some “most
frequently” used letter (e.g., preferring e over z). (We have
modeled this naive approach—results not shown here—and
this model’s results are not consistent with the data.) Finally,
we also show that there are four types of behavior in replying
to letter requests (Section IV-D).
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Fig. 3. Component models (i.e., combined mechanistic and data-driven
models) for the three player actions in the GrAG. These are models of human
reasoning, which output specific player actions in the game. The particulars
of the mechanistic and data-driven models are given in the respective boxes
under the actions and are detailed in Section IV. Mechanistic models are
built first, and then augmented with data-driven models. The player actions
and component models map onto those in Figure 2.

4. Agent-based models and results. A family of ABMs are
developed, yielding a composite model, where each ABM is
comprised of a distinct model for each of the three actions,
with user-specified parameter values for player/agent charac-
teristics, such as the agent’s vocabulary and their aptitude, i.e.,
the degree to which they perform optimally. See Figure 2.
The multi-logit regression model based on [7] is adopted to
determine which action type each agent selects at each discrete
time in a simulation (time granularity is seconds). The selected
action type then determines the appropriate model developed
herein to predict details of the action. Note that there is a fourth
action, a no-operation (no-op), where the agent does nothing at
particular times, which represents agent thinking and requires
no model. We also provide new insights from exercising the
ABMs (see Section V), such as demonstrating how player
performance decreases with decreasing player aptitude and the
effects of heterogeneous initial letter assignments to players.

II. RELATED WORK

By far, the most relevant study to our work is the modeling
in [7], which is agent-based modeling of anagram games.
To the best of our knowledge that is the only work prior to
ours that models the GrAG [7]. That work was discussed in
detail in relation to our work in Sections I-A and I-B. We now
address other topics related to our work.
Anagram experiments. Over 20 experiment works (e.g., [1],
[2]) use single player anagram games. The only cooperative
GrAG, which is face-to-face, is reported in [3]. The game is
used to foster CI among teammates.
Networked experiments and modeling. There are several
other online (e.g., [16]) and in-person (e.g., [3]) experiments



with interacting participants that can be represented as net-
works, and analyses of network populations (e.g., [17], [18]),
where edges represent interaction channels.
Mechanistic and data-driven modeling. Several works use
AI methods and data to model behavior (e.g., tutoring and
learning [19]). Also, neuroscientists are using neuro-imaging
to understand human decision-making; [20] discusses opti-
mization methods, such as the one we use in the model for
requesting letters.
Explanatory modeling. There are many works (e.g., [12],
[13]) that describe different definitions of explanations, differ-
ent types of explanations that models provide, and procedures
for arriving at explanations. We follow ideas from [12], [13]:
that the structure of mechanistic models that adequately predict
human behavior can be used to explain behavior.

III. ONLINE SOCIAL-NETWORKED GROUP ANAGRAM
GAME

We built a customized web application (web app) for an on-
line GrAG. Players are recruited through Amazon Mechanical
Turk (MTurk), are provided game instructions, participate in
the GrAG through their web browsers, and are paid based on
their performance. A total of 48 experiments were performed
using a total of 367 players, with numbers of players per game
ranging from 3 to 17. The game duration is 5 minutes. In the
following, we describe the GrAG/experiment.

Figure 1 provides a description of the game setup and
actions. A game begins with n players, v1 through vn. Each
player has a degree d that specifies the number of connections
to other players. A connection (edge) between two players
denotes a communication channel where a letter ` can be
requested and sent (sending a letter is a reply). Thus, an
experiment configuration is a graph G(V,E) with player set
V and communication channels E. In experiments, G is a k-
regular random graph (k ≡ d), with uniform degree 2 ≤ k ≤ 8.
Each player starts the game with n` initial letters, which they
can use to form words or share among their neighbors, when
requested. At the beginning of a game, a word corpus CW is
defined with a list of words a player can form during the game.
The three major player actions in a game are now described.
Player action: forming a word. At any point during a game,
a player vi can form a word wi. All letters in the word wi must
come from the set of letters vi has in-hand Lih

i (superscript
ih). A single letter ` in Lih

i can appear any number of times
in a word. For a word submission to be accepted in the game,
the word has to be in the game word corpus CW . A player
can submit a word only once; multiple players can form the
same word.
Player action: requesting a letter. At any point during a
game, a player vi can request a letter `reqij from a neighbor
vj’s set of n` initial letters Linit

j . The anagram game screen
shows all neighbors’ initial letters as available for request. A
letter received by vi is put into the set Lih

i .
Player action: replying with a letter. At any point during a
game, a player vi can reply with a letter `repij to a neighbor

vj’s request (`repij must be in Linit
i ). The anagram game screen

for vi shows all of the letters requested of vi.
To encourage cooperation, any letter in Lih

i can be used
any number of times in forming words, and the letter is not
lost; the letter bestows an infinite supply of use. Similarly, if
vi requests a letter ` from vj , and vj replies with it, vj still
retains a copy of the letter and can use it. Also, earnings for
the team are based on the total number of words formed, and
all players receive (1/n) of the total earnings. Typical player
earnings are $7 to $10 per game.

IV. DATA ANALYSIS AND MODEL DEVELOPMENT

Figure 3 provides the roadmap for building the models for
the three player actions, which is the focus of this section.
Ultimately, our goal is to use these models as ABMs (see
Figure 2) in an ABMS framework to study GrAGs well beyond
those of experiments.

For each action—which is a component model of the
ABM—we provide: (i) our premise for understanding player
behavior and the key concepts for this premise, (ii) experi-
mental analyses and results for these key ideas that construct
and justify (i.e., give evidence for) the component model of
the composite ABM, and (iii) a formal algorithm for the
component model for the action in Figure 3. Note that the
steps of algorithms that we specify below are not focused on
efficient implementation, but rather on conveying the steps of
the algorithms as they relate to the data analyses. First, we
address preliminaries.

A. Preliminaries

We introduce two concepts used in data analysis and
modeling. Levenshtein distance (dL) [9], an edit distance, is
prominent in our work and the work’s novelty, and is motivated
by work in linguistics and bioinformatics [21]. It quantifies the
difference in letters of two words. In starting with one word
to obtain a second word, a letter substitution counts as one, as
does each of letter insertion and letter deletion. Hence, going
from had to hats requires dL = 2: one to substitute t for d
and one for inserting an s.

A word proximity network (WPN) is a clique graph
H(VH , EH) where vertices VH are words that can be formed,
according to a word corpus CW , with the letters that a player
currently has in-hand and EH is the set of edges between pairs
of words, labeled with the dL between the two words.

Each player is assigned a word corpus CW . For this we
use a list of the top 5000 words from the 450 million word
Corpus of Contemporary American English, the only large and
balanced corpus of American English [22].

B. Player Action: Form Word

Basic premise and key concepts. We seek to identify a
method that explains the process of players selecting words to
form. Our premise is that given the last word w1 that vi has
formed, the next word w2 that vi will form will be one with
minimal dL from w1 because this requires a minimal number
of letter manipulations (i.e., lesser cognitive load [14]). For the



first word, vi selects the most frequent word from the corpus
that can be formed with its letters in-hand Lih

i . We note that
for each player vi, there is a set Lih

i of letters that she has
in-hand and a corresponding set W ih

i ⊆ CW of words that vi
can form from the entire corpus CW of words, based on the
letters in Lih

i . As vi requests and receives more letters from
her neighbors, the cardinalities of Lih

i and W ih
i will (typically)

increase. Also note that for a given word w1 formed by vi in
a game, W ih

i can be partitioned based on dL(w1, w2) for each
w2 ∈ W ih

i using the WPN. Let W ih
i (w1, d

L) ⊆ W ih
i be the

set of words at dL from w1 that vi can form.
Our data analysis is based on two central ideas, for each

player vi. First, we compare dL values between two consecu-
tive words formed (w1 and then w2), both the actual value
dLi,act(w1, w2) measured from experiments and the optimal
(i.e., minimal) value of dL, denoted dLmin(w1, w

∗), for some
w∗ in W ih

i that is at a minimum LD from w1. Both dL values
are based on vi’s set Lih

i . (We drop the arguments when they
are obvious from context.) Second, for a given set of words
at some dL from w1, denoted W ih

i (w1, d
L), we select w2

based on the popularity of words as provided by the rank
(frequency of use) from [22]. All of these parameters are either
inputs (e.g., CW ), measured in experiments, or computed
from experimental data. These high-level steps enable us to
understand players’ behavior in forming words, as described
next.
Data analysis. Analysis step 1. For each player vi in the
game, we consider pairs of consecutive words formed,
(w1, w2). From this, we compute dLi,act(w1, w2), the actual dL.
Also from these data and from Lih

i at the time w2 was formed,
we can compute dLmin and the word set W ih

i (w1, d
L
min). We

compute ∆dL = dLi,act − dLmin. A value of zero means that
the player is performing optimally according to our premise;
a value > 0 means that vi is performing suboptimally—vi
is making more letter edits (expending greater effort) than is
required by the data.

We rank the players by their average ∆dL, ∆dLave, over all
pairs of words (w1, w2) that they form in a game. We partition
the ranking of players into five equi-sized bins, P1 through P5,
such that players in P1 (resp., P5) have the smallest (resp.,
largest) values of ∆dLave. That is, the players in P1 perform
closest to optimal. A player vi’s aptitude bwf

i in forming words
takes a value from P1 through P5. We take this player-centric
approach because we want to produce agent models based on
individual player and groups of players’ behaviors.

Analysis step 2. For each of the five groups of players
Pj (1 ≤ j ≤ 5), we plot all data points (x, y) =
(dLmin, d

L
i,act(w1, w2)) for each person in that group, in Fig-

ure 4. In each plot, for each dLmin on the x-axis (the mech-
anistic model prediction), there is a range of dLi,act(w1, w2)
(from the data) for all vi in a particular 20% bin. If we break
the players down into 10% bins (instead of the 20% bins),
the top 30% of players perform such that the median value of
dLi,act(w1, w2) equals dLmin. That is, in a median sense, these
top 30% of players form words w2 such that dLi,act(w1, w2) =

dLmin, and hence w2 is formed optimally (i.e., according to the
mechanistic model). Moreover, if we look at the top 80% of
players, then dLmin ≤ dLi,act(w1, w2) ≤ dLmin + 1. These data
for |CW | = 5000 substantiate our premise that players form
word w2 based on dL. Although not shown, similar results are
generated for |CW | = 1000, 2000, 3000, and 4000, if we take
these sets as the 1000, 2000, 3000, and 4000 most frequently
used words in the original corpus of 5000 words.

Fig. 4. Comparison of mechanistic model predictions against data for the form
word model. Mechanistic predictions are the values on the x-axis (dLmin);
data are on the y-axis (dLi,act). We use the |CW | = 5000 word corpus.
Each plot corresponds to a grouping of players by 20% bins of player
performance in forming words according to dL, and represents, in turn, Pj ,
j ∈ {1, 2, 3, 4, 5}, moving left to right. Numbers are numbers of observations
in the data. If dLi,act(w1, w2) = dLmin, then the experimental data correspond
exactly with the mechanistic model.

Analysis step 3. For each box plot in Figure 4, we form
a frequency distribution DdL

as a function of the triple
(CW

i , bwf
i , dLmin). Figure 5 provides one such distribution. In

this way, given a CW
i , an aptitude bwf

i for forming words, and
a dLmin, one can sample an actual LD, dLi,act, in forming w2

from w1.

Fig. 5. For (CW
i , bwf

i , dLmin) =
(5000 words, P1, 1), the distribution
DdL of dLi,act from experiments is
shown. For a given dLmin computed
for optimal behavior, the appropri-
ate distribution is sampled to obtain
dLi,act for vi. These distributions are
formed from the data in Figure 4 and
they are part of the data-driven model
of form word.

Analysis step 4. For a given w1 and dLi,act,
W ih

i (w1, d
L
i,act) ⊆ W ih

i is the candidate set of words
that vi can form as w2. The issue is how players extract a
particular word from W ih

i (w1, d
L
i,act) as w2. Figure 6 provides

the answer. For each vi, we rank the words in W ih
i (w1, d

L
i,act)

in decreasing order of frequency of occurrence (which is
obtained from the word corpus itself), such that the first
ranked word is the most frequently used word. This plot
shows the number of times the chosen word w2 is of a
particular rank. It is clear that players select w2 based on
the frequency of the word’s use, e.g., the top-ranked word
is selected almost 700 times from the corpus. This result
also holds over different corpus sizes from 1000 to 5000
words. These data support our use of a mechanistic model of
selecting the word with highest frequency of use in a word
corpus from the candidate set of words.
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|CW

i | = 5000. Log-log scale plot
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Input: Agent vi ∈ V . Agent word-forming aptitude bwf
i . Word corpus or

vocabulary CW
i for vi. Letters in-hand Lih

i . Most recent word formed by
vi, w1. Words W f

i formed up to now by vi. Distribution Dwr of word
frequencies from CW

i and distribution DdL of dLi,act frequency as a
function of tuple (CW

i , bwf
i , dLmin).

Output: Next word w2 that vi forms, if any.
Steps:

1) From letters in-hand Lih
i , construct the set W ih

i of words that vi
can form (and that vi has not yet formed). Set VH = W ih

i and let
H be the WPN network induced by VH . Let the edge set be EH ,
with edge labels of dL.

2) If VH is empty, terminate algorithm and return no word.
3) From the values of the edge labels dL(w1, wj), for all edges
{w1, w∗} ∈ EH of WPN H , where w1, w∗ ∈ VH , determine the
minimum LD, dLmin.

4) For the triple (CW
i , bwf

i , dLmin), sample from the distribution DdL

to obtain the actual LD, dLi,act, that vi will use to form the next
word. (Example provided in Figure 5.)

5) From the set W dLi,act ⊆ VH of words at dLi,act from w1, order the
words from most frequently used word to least (CW provides this
ranking).

6) From the frequency distribution Dwr of words in W dLi,act , draw a
rank ri of a word. Select the unique word w2 that corresponds to
rank ri. Return w2.

Fig. 7. Steps of the Algorithm FORM WORD. This algorithm returns a word
that an agent forms.

Remark: These data analyses substantiate our claim that our
models are explanatory. The data are consistent with the
explanation that humans reason about what word to form using
LD and word frequency (familiarity), consistent with cognitive
load theory [14].
Remark: It is emphasized that players in the experiments are
not given a word corpus, frequency of letter use, dL concepts
and values, etc. Our construction and procedures presented
here are our representation of the mental reasoning processes
that players engage in, resulting in human behavior in the
form of detailed actions. In experiments, players are only given
letters and the ability to share them. This remark holds for the
next two models, too.
Algorithm for form word. The algorithm is in Figure 7, and
follows directly from the above data analysis. This is cast as
the agent model in the ABMS.

C. Player Action: Request Letter

Basic premise and key concepts. Our goal is to uncover
a process that explains how players select the next letter to
request from their neighbors. Our premise is that player vi
will select the next letter to request as the letter from the set
of candidate neighboring letters L′i that produces the greatest
increase in the number of words that vi can form. The key

idea is to examine each candidate letter ` and determine the
number of new words |W ih`

i | that can be formed with existing
letters in Lih

i and the requested letter combined (this word set
is W ih`

i ), rank these letters in decreasing order of |W ih`
i |, and

select the letter to request based on this ranking. This is a
greedy process—in the sense of selecting the best letter (i.e.,
the letter that ranks first), one at a time—and is our mechanstic
model. This is a rational choice approach [15] because players
are incentivized to form as many words as possible, so it is
rational to select a letter that maximally increases the number
of words that can be formed. Note that as more letters have
been requested and received, the number of letters to request,
|L′i|, decreases because once a player has a letter, she can
use it any number of times. We now provide the evidence for
behavior that is aligned with this premise.
Data analysis. Analysis step 1. We rank all players by their
performance in requesting letters in the GrAG, as follows.
For each vi, and for each actual letter request, we rank the
candidate letters to request in L′i according to our greedy
model (given immediately above), and then identify the rank
ri,act of the letter `i,act actually requested. Then we compute
an average rank of letter requests ri,ave for each vi, over the
first 1/2 of all vi’s requests. We use only the first 1/2 of
requests in computing ri,ave because as |L′i| decreases, the
selected rank and the top-ranked letters will be more closely
aligned because there are so few letters left; hence, in order
to not bias the results, we use only the first 1/2 of letter
requests. The players vi are ranked by ri,ave, smallest to
largest value, and the players are partitioned into five equi-
sized bins Q1 through Q5, where players in Q1 (resp., Q5)
select letters to request that are most (resp., least) conformant
to our mechanistic model. A player vi’s aptitude breqi in
requesting letters takes a value from Q1 through Q5. This
partitioning is to ensure a sufficient number of observations
for each bin. Again, we partition based on players because we
want to develop agent behaviors based on player behavior.

Analysis step 2. We analyze each Qj , j ∈ {1, 2, 3, 4, 5},
separately, as follows. We take each vi ∈ Qj , note each ri,act
corresponding to each letter request in the first 1/2 of requests,
count the number of occurrences of the ranks of each requested
letter, and sum the counts over all players. Results are shown
in the left-most plot of Figure 8 for breqi = Q1 = 20%.
(Note that player vi’s aptitude breqi in requesting letters may
take values Q1 through Q5.) These data are for comparison
against our mechanistic model (in green), which predicts all
letter requests will be of rank 1 in this plot. Note that for
the breqi = Q1 = 20% data, the number of occurrences of a
selected rank generally increases as the rank decreases, though
the effect is sometime less pronounced for some cases. See
Figures 11 and 13 of [8] for more data. We claim that the data
support our premise, i.e., our model explains the data. That
is, players select letters to request that generate the greatest
increase in the number of words that they can form.

Analysis step 3. We break down each plot of the type in
Figure 8, at the left, to account for CW

i , breqi , and the number
rnum of the letter request in the three right-most plots of the



Fig. 8. Comparison of mechanistic model predictions (in green) against
data (the distributions) for the request letter model. Our mechanistic model
predicts all letter requests will be of rank-1 in each of the four plots. (LEFT)
Experimental data are for the 5000-word corpus, aptitude breqi = Q1 = 20%
for letter requests (plots for Qj , j ∈ {2, 3, 4, 5} are not shown). For aptitude
Q1, the frequency of the rank of the chosen letter is plotted. These data show
that players most often choose letters with lower rank, meaning that they
choose letters that can form relatively more words. (RIGHT) These three
plots break down the left-most plot by showing distributions for different
request numbers rnum by vi. These distributions D`r are used to sample
ri,act based on (CW

i , breqi , rnum).

Input: Agent vi ∈ V . Agent letter requesting aptitude breqi . Word corpus
CW

i . Letters in-hand Lih
i . The set L′i of letters that vi’s neighbors were

initially assigned that vi has not yet requested; this is the candidate set of
letters to request. The request number rnum. Distributions D`r of letter
ranks for triples (CW

i , breqi , rnum).
Output: Next letter `∗ that vi requests, if any.
Steps:

1) If L′i is empty, terminate and return no letter.
2) For each candidate letter to request ` ∈ L′i that has yet to be

requested, determine the new words W ih`
i that can be formed from

CW with the letters in set Lih
i ∪ {`} (include only words that have

not yet been formed).
3) If every word set W ih`

i for all ` is empty, remove an arbitrary letter
`∗ from L′i, terminate this algorithm and return `∗.

4) Rank the letters in ` ∈ L′i in decreasing values of |W ih`
i |. Let r(`)

be the rank of `.
5) Determine the rank ri,act of the letter to select for requesting by

sampling from distribution D`r using as input (CW
i , breqi , rnum).

(See Figure 8 for three examples.)
6) Select the letter `∗ such that r(`∗) = ri,act. Break ties arbitrarily.

Remove `∗ from L′i. Return `∗.

Fig. 9. Steps of the Algorithm REQUEST LETTER. This algorithm returns a
letter that an agent requests.

figure. By sampling from frequency distributions D`r based on
(CW

i , breqi , rnum) for vi, we obtain the rank of the actual letter
requested ri,act in the model. This provides finer modeling
granularity by accounting for the number of the letter request.
Algorithm for request letter. The algorithm is in Figure 9
and follows directly from the data analysis just presented. This
algorithm is presented in the form of an agent model.
Remark: These analyses and data provide evidence for our
claim that this model is explanatory. Players generally request
letters by (roughly) maximizing the increase in number of
words that they can form, which follows rational choice
theory [15].

D. Player Action: Reply to Letter Requests

Unlike the previous two models, this model is purely data-
driven. A mechanistic-based model is under development. For

space reasons, we provide an abbreviated description here; a
fuller treatment is in [8].
Basic premise, key ideas, and data analysis. The goal is to
produce a model that explains how players respond to letter
requests from their neighbors. The basic premise is that players
can be partitioned into categories of behavior. We determined
from the data these four categories: (1) those players that
respond to all queued (pending) letter requests in their buffer
(called FB for full buffer); (2) those that respond to some
fraction of all pending letter requests in their buffer (called
LTFB for less than full buffer); (3) those that sometime behave
as FB and sometimes as LTFB (called Mixed); and (4) those
that never reply to letter requests (called NR). The key ideas
are that for each category, we need to determine: (i) how
many replies to letter requests are made uninterrupted (i.e.,
contiguously) for categories LTFB and Mixed, and (ii) for
each number of letter replies, the time duration over which
these letter replies are made (for categories FB, LTFB, and
Mixed). See [8] for results. These are the four values for a
player vi’s aptitude brpli in replying to letter requests.
Algorithm for reply to (letter) request. Owing to space
limitations, the algorithm is not provided here, but is provided
in a web-accessible version in [8], Figure 16.

Remark: In these various algorithms, elements of sets are
returned, or a distribution corresponding to particular inputs
is sampled. In some cases, there are no data for specified
conditions. For these types of situations, we implement a
recursive search technique to sample from the distribution or
set with the closest set of inputs.

V. AGENT-BASED SIMULATIONS AND RESULTS

Remark: Model evaluation is an important step and has been
performed. Figures 4, 5, and 8 are part of this process. We
refer the reader to Section VI of [8] for additional work.
Simulation model. We conduct discrete time agent-based
simulations (ABSs) of the GrAG. Each time unit is one
second of the 300-second GrAG. At each time and for each
agent, an action is selected. Based on the action chosen,
the corresponding model for that action, developed herein,
is executed (Figures 7 and 9 for “form word” and “request
letter,” respectively, and Figure 16 of [8] for “reply to request”;
the thinking action is a no-op). We run nruns = 100 runs or
simulation instances and average the results. We use the 5000-
word corpus CW . These are purely simulation studies and are
not tied to the experiments. The goal is to demonstrate that
the models alone provide insights into human behavior.
Study 1: Effects of model aptitude properties. We use a
game configuration G(V,E) consisting of six players that form
a circle, with each player having two neighbors. The initial
letter assignments are given in Table I. We systematically vary
the aptitudes of players in forming words bwf

i , in requesting
letters breqi , and in replying to letter requests brpli . See Table II.
Recall that these aptitudes correspond to the skill levels of
players.

Figure 10 (left) shows the average number of interactions
(requests sent, replies received, requests received, replies sent)



TABLE I
STUDY 1 INITIAL LETTER ASSIGNMENTS TO PLAYERS IN SIMULATIONS

FOR SIX PLAYERS ARRANGED AS 2-REGULAR GRAPH.

Player #: 1 2 3 4 5 6
Init. Ltrs: b, a, t m, e, n l, u, t s, o, p h, u, g r, i, e

TABLE II
PARAMETERS THAT ARE SYSTEMATICALLY VARIED IN THE SIMULATIONS

OF STUDY 1. THESE APTITUDE (bwf
i , breqi , brpli ) SETTINGS ARE THE

SAME FOR ALL AGENTS IN A SIMULATION.

Sim. No. bwf
i breqi brpli Sim. No. bwf

i breqi brpli
1 P1 Q1 FB 5 P5 Q5 FB
2 P2 Q2 FB 6 P5 Q5 LTFB
3 P3 Q3 FB 7 P5 Q5 NR
4 P4 Q4 FB − − − −

and the average number of words formed per player for the first
five simulation numbers (sim. no.) of Table II. There is a drop-
off in performance in going from bwf

i = P1 to P5, breqi = Q1

to Q5, for fixed brpli =FB. We observe that decreasing the
letter request aptitude breqi and the word formation aptitude
bwf
i decreases the quality of letters requested and hence the

number of words that can be formed.
To determine how brpli affects performance, we plot in

Figure 10 (right) results from simulation numbers 5, 6, and
7 of Table II. Using bwf

i = P5 and breqi = Q5 as a reference,
there is a large decrease in numbers of reply interactions in
going from brpli =LTFB to brpli =NR, as expected, since NR
means that agents do not reply to letter requests. There is a
small decrease in numbers of replies in reducing brpli from FB
to LTFB.

Fig. 10. (Left) Simulation results for Sim. nos. 1 through 5 of Table II. The
average number of words formed per player drops in going from bwf

i = P1

to P5, breqi = Q1 to Q5, for fixed brpli =FB. (Right) Simulation results for
Sim. nos. 5, 6, and 7 of Table II. Using bwf

i = P5 and breqi = Q5 as a
baseline, these results show a precipitous drop-off in replies to letter requests,
and to words formed, in going from brpli =LTFB to brpli =NR. Results in
counts for brpli =LTFB are slightly less than those for brpli =FB.
Study 2: Effects of heterogeneity: network connectivity
and quality of letter assignments to players. We use a
game configuration G(V,E) consisting of four players vi
(1 ≤ i ≤ 4) that form a star. The initial letter assignments are
given in Figure 11. All players have the following conditions
bwf
i = P1, breqi = Q1, and brpli =FB. Players are assigned

heterogeneous numbers and qualities of letters; see the figure
caption. The numbers of requests received and replies sent are
greatest for player v1 owing to its centrality; this affects the
number of words player v1 forms, which is less than those
for v2 and v3. Players v2 and v3 have more requests received
from v1 (compared to v4) because their letters (i.e., popular
consonants) create larger sets of possible words to form. The
number of words formed is least for player v4 because of the
poorer quality of assigned letters.

Fig. 11. Simulation for players vi (1 ≤ i ≤ 4), arranged in a star. All players
have the following conditions bwf

i = P1, breqi = Q1, and brpli =FB. Player
v1 is at the center with three neighbors. v1 is assigned the four most popular
vowels in the alphabet; v2, v3 are assigned the six most popular consonants,
and v4 is assgned the five least popular consonants. See text for discussion
of results.

VI. SUMMARY AND FUTURE WORK

We have developed mechanistic and data-driven models for
representing the decision-making and actions of humans in
online networked GrAGs. Our contributions are in Section I-D.
We would like to conduct more experiments with more net-
work structures. This would also (ideally) produce sufficient
data to more finely partition aptitudes—player behavior—
into ten 10% bins (currently, we have five 20% bins). These
experiments would be used to further evaluate the models and
improve them.
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