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Computational barrier at Sandia

• CFD model

• 100 million cells
• 200,000 time steps

• High simulation costs

• 6 weeks, 5000 cores
• 6 runs maxes out Cielo

Barrier

• Fast-turnaround design • Uncertainty quantification

Objective: break barrier via nonlinear model reduction
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Surrogate modeling

inputs µ
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o
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Alb
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3) Reduced-order
models (ROMs)

+ Physics based

+ High speedups

+ Preserve
structure

+ Rigorous error

analysis

Unproven for

nonlinear
dynamical
systems
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ROM: state of the art [Benner et al., 2015]
• Linear time-invariant systems: mature [Antoulas, 2005]
• Balanced truncation [Moore, 1981]
• Empirical balanced truncation

[Willcox and Peraire, 2002, Rowley, 2005, Or and Speyer, 2010, Ma et al., 2011]

• Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]

• Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
• Reduced-basis method

[Prud'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]

• Subsystem-based reduced-basis method
[Maday and Rpnquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]

+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds

• Nonlinear dynamical systems: unproven
• Proper orthogonal decomposition (POD)—Galerkin
- Not reliable: Stability and accuracy not guaranteed
Not certified: error bounds not shar



My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

• Improve projection technique [C. et al., 2011a, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

• Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification

• Error bounds [C et al., 2015a]
• Statistical error modeling [Drohmann and C. 2015]

+ Reliability

• A posteriori h-refinement [C., 2015]
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
• Improve projection technique [C. et al., 2011a, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost
• Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
• Leverage time-domain data [C. et al., 2015b]

+ Certification
• Error bounds [C et al., 2015a]
• Statistical error modeling [Drohmann and C., 2015]

+ Reliability
• A posteriori h-refinement [c., 2015]

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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POD—Galerkin: offline data collection

dx
f(x; t, µ); x(0, ti) = x°(µ), t E [0, T] , µ E

dt

1 Collect 'snapshots' of the state
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POD—Galerkin: offline data collection

2 Data compression

• Compute SVD: [X1 X2 X3] =

ii
• Truncate: 0= [ui • • • up]
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POD—Galerkin: online projection

Full-order model:
dx

f(x; t, p,), x(0, p) = (p)
dt

1 x(t) = Ok(t)

ii
=

Galerkin ROM:

1
2 (DT (f t, p) —

dz T = Tx0Ga)
  =
dt 

f(Ox; t, p,), /(0,p)
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Cavity-flow problem. Collaborator: M. Barone (SNL)

• Unsteady Navier—Stokes

• DES turbulence model

• 1.2 million degrees of

freedom

• Re = 6.3 x 106

• Moo = 0.6

• CFD code: AERO-F

[Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD—Galerkin failure

2.8

2.6

2.4

1.4
0

—FOIVI, At = 6.0015
—0 =9.375e-05

=0.0001875
=0.000375
=0.00075
=0.0015
=0.003
=0.006
0.012
0.015
0.024

1 2 3 4

time

- Galerkin ROMs unstable

6
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How to construct a ROM for nonlinear dynamical systems?

• Optimize then discretize? (Galerkin)

• Discretize then optimize? (Least-squares Petrov—Galerkin)

LSPG ROM )
IDAE 

optimal
projection

Full-order model  optimal

ODE projection

♦

time discretization

♦ 
44 Full-order model

time discretization

♦ 

Galerkin ROM
OAE OAE

• Outstanding questions:
El Which notion of optimality is better in practice?
El Discrete-time error bounds?
le Time step selection?
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Full-order model
ODE

time discretization

Full-order model
OAE
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Full-order model (FOM)

• ODE: time continuous

dx
f(x,t), x(0) =

dt 
t E [0, T]

• OAE, linear multistep schemes:

r" (x) := aox — Atf3of(x, t") +

• OAE, Runge—Kutta:

rn (xn) = 0 , n = 1, , N

k k

n-i - At /3_if (Xn-i  tn-i)

j=1 j=1

, i = 1, ...,s

r7 , xs) := xi — f (x"—1 + At aiix tn-1 ciAt)

xn xn-1+ At>_, bi _n
Xi (explicit state update)

i=1
This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model
ODE

'1'

time discretization

Full-order model
0.6.E

Galerkin
projection

r-
Galerkin ROM

ODE
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Galerkin: first optimize, then discretize

Full-order model
ODE

time discretization

Full-order model
0.6.E

Galerkin
projection

time discretization

Galerkin ROM
0.6,E
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Galerkin ROM
• ODE

dX 
= 

dt 
4)7 f(1)k , t), k(0) = (1)Tx°, t E [0, T]

+ Continuous velocity 2 is optimal
Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:

(x,t) = arg min v f(x, t) 122dt vErange(0)

• OAE
in (kn) = 0, n = 1, , N

k k

(1() := aoji— At,1300)Tf(Oji, tn)+ ct1kn-j-At
j=1 1=1

- Discrete state Sin is not generally optimal

Can we fix this? Will doing so help?

T f j tn—j)
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Galerkin ROM: Commutativity

Theorem

Projection and time discretization are commutative for Galerkin ROMs:
( Jo T rn (co

Full-order model
ODE

time discretization

Full-order model
OAE

 J

Galerkin
projection

Galerkin
projection

time discretization

Galerkin ROM
OAE
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LSPG ROM: first discretize, then optimize

LSPG ROM )
OAE 

Petrov—Galerkin
projection

Full-order
model
ODE

♦

time discretization

♦
Full-order
model
OAE

Galerkin
projection

time discretization

Galerkin Galerki ROM
projection OAE
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LSPG ROM

• FOM OAE

rn (xn) = 0, n = 1, , N

• LSPG ROM OAE:

kn = arg rnin lArn (01) 112
2
.2ERP

n(kn)T rn (okn) 0, Wn(k) . ATAar: kij (0300

• A = I: LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

+ Discrete solution is optimal
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Does the LSPG ROM have a time-continuous representation?

LSPG ROM )
OAE 

Petrov—Galerkin
projection

Full-order
model
ODE }

♦

time discretization

♦
Fu I I-order
model
OAE

Galerkin
projection

Galerkin
projection

time discretization

Galerki ROM
OAE
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Does the LSPG ROM have a time-continuous representation?

Sometimes.

LSPG ROM
ODE

Petrov—Galerkin
projection —4 —

Full-order
model
ODE

Galerkin
projection

♦
time discretization time discretization

Petrov—Galerkin
projection

♦
Full-order
model
OAE j

Galerkin
projection

time discretization

Galerki ROM
OAE
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LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov—Galerkin projection to
the FOM ODE with test basis

if

Of
I , t) = AT A (a0I — At/30—(x° + (1)3i, t))

ax

H = 0, j > 1 (e.g., a single-step method),

El the velocity f is linear in the state, or

II 0o = 0 (i.e., explicit schemes).

Time-continuous test basis depends on

time-discretization parameters!
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Are the two approaches ever equivalent?

• Galerkin:

• LSPG:

(DT rn ow) 0

tr(xn)Trn (05(n)

Does klin(kn) = ever?

Yes.

rn
tie (1c) := AT A 

OX 
(01c)(1) = AT A (crol — Ati3o

OX

f
(01c , tn)) 0

Theorem

The two approaches are equivalent (Iiin() =

il in the limit of At 0 with A = 1/A/aol,
Ei if the scheme is explicit Po = 0) with A = 1[Vaol, or

p if 5, is positive definite with [5:]-1 = AT A.
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Discrete-time error bound

Theorem

lf the following conditions hold:

f(•, t) is Lipschitz continuous with Lipschitz constant lc, and

El At is such that 0 < h := 104 — PolkAt,

then

k 
115XG11 

At

h 
El/3E111(i -v) f (x0 + 4,1(0 11+—hE (lodkAt + lad) 116xV11t=0

118x211 <
=c,

10e111 - ll'")r (xo + 01(2-1 II - (10dicAt + lad) 1154-'11,
E=1

with

■ 45xt := x,rn — 4:0*.

■ 45x7:= x,1/47 — 01c2

■ V := 04)T
• Ton (019T0)-1 (pti)T
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LSPG ROM yields a smaller error bound

Theorem (Backward Euler)

lf conditions (1) and (2) hold, then
n-i 

1
116,cH < At 

(" 
. 
+ 

(i — f (xo + oxG
cG

n-1 

116411 At E  (h1 (i — Pn-i) f (x0 + ("21
j=0

= Atf (x0 +01(0 — 4)1(171 11

=11051i Atf (x0 + 04) — osirl H = min HOY — Atf (xo + 0y)-

Corollary (LSPG smaller error bound)

ir "4-1 -k-1
ir x = ;cc , then 5k < --kL - G •
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LSPG ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define

• := — iciL-1 and

• Aki: full-space solution increment from

Then, the LSPG error can also be bounded as
n_j

116Xa < At(1 + kAt)>_, (h

ii

)J+1- + A)-(11-i)11
i=o

with pi :=11(1)Alki

Effect of decreasing At:

+ The terms At(1+ icAt) and 1/(h)j+1 decrease

- The number of total time instances n increases

? The term may increase or decrease, depending on the

spectral content of the basis 0
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Galerkin and LSPG responses for basis dimension p = 204

1 2 3 4

time
(a) Galerkin

5 6

2.8

2.6
13.)
L-

2.4

In

112

2

1.60 

—F6M, At = 0.0015
— t=0 00115

0 0011
3
875
75

5
5t;t=

time
(b) LSPG

- Galerkin ROMs unstable for long time intervals

LSPG ROMs accurate and stable (most time steps)

10 4
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LSPG ROM: superior performance

110-

O

10 5

--Minimum residual

At

(c) 0 < t < 0.55

O

-

11:0
—Minimum residual

10
At

(d) 0 < t < 1.1

A le
!
O

—Galerkin
—Minimum residual

10
At

(e) 0 < t < 1.54

✓ LSPG ROM yields a smaller error for all time intervals and

time steps.
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Limiting equivalence

10- 10-
At

(f) p = 204

10- 10- 10-~
At

(g) p = 368

10-1 1°10--. io io
At

(h) p = 564

Galerkin/LSPG difFerence in the stable Galerkin interval 0 < t < 1.1.

✓ The LSPG ROM converges to Galerkin as At O.
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LSPG performance (t < 12.5 sec)

.io°

1

a)

0•-
1.0

-3

s.
0

4o-4
10-5

—p = 204

—p
—p 368
= 564 
= 

10-3 10-2
At

10-1 10,
103
10-4 10-3 10-2 10-1

At

V An intermediate At produces the lowest error and better speedup.

p = 564 case:

• At = 1.875 x 10-4 sec: relative error = 1.40%, time = 289 hrs

• At = 1.5 x 10-3 sec: relative error = 0.095%, time = 35.8 hrs
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Summary: Improve projection technique

• Galerkin: projection and time-discretization are commutative

• LSPG: a continuous representation sometimes exists

• Equivalence conditions

El Limit of At 0
El Explicit schemes
la Positive definite residual Jacobians

• Discrete-time error bounds

• LSPG ROM yields smaller error bound than Galerkin
• Ambiguous role of time step At

• Numerical experiments

• LSPG ROM yields a smaller error than Galerkin
• Equivalent as At —> 0
• Error minimized for intermediate At

• Reference: C., Barone, and Antil. Galerkin v. least-squares

Petrov—Galerkin projection in nonlinear model reduction.

arXiv e-print, (1504.03749), 2015.
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

■ Improve projection technique [C. et al., 2011a, C. et al., 2015a]
■ Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

■ Sample-mesh approach [c. et al., 2011b, C. et al., 2013]
■ Leverage time-domain data [C. et al., 2015b]

+ Certification

■ Error bounds [C. et al., 2015a]
■ Statistical error modeling [Drohmann and C., 2015]

+ Reliability

■ A posteriori h-refinement [c., 2015]

Collaborators: C. Farhat, J. Cortial (Stanford)
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LSPG performance (t < 2.5 sec)

ria
ci)

4o-1
a.)
b.0cd
4o-2

4o-4
io-5

—
p— 
= 5364 

68
p 

io-4 10 —3 10-2
At

10-1 10°

10

8106-

.( 11:15

0
.z-4"104

io-4 10-3 10-2 10-1
At

+ Always sub-3% errors

- More expensive than the FOM

• FOM simulation: 1 hour, 48 CPU
• LSPG ROM simulation (fastest): 1.3 hours, 48 CPU
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

= arg rnin 1lArn 0)1)113-iERP

Can we select A to make this inexpensive?

1. rn(x),, (x) = an(x) 2. r(x) = arg min — Prn(x)112

= arg mjn

2

17 2 ,,  2x = arg min Il in (4*)112 = arg rnin 114)Rr
n 
(4)z) 11 = arg min

2ERP 
11 i." ((Di') 113

lERP 1ERP

= arg rnin 11 (P(DR)E P rn(4)2) 113.
2E RP \—....,—...

A

+ GNAT: A = (POO+ P leads to low-cost

• Offline: Construct (1)., (POD) and P (greedy method)
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Sample mesh: HPC implementation

sin= arg min II 
2ERP (POO+ Prn (02)11Z

• Key: GNAT samples only a few entries of the residual Pr'

• ldea: Extract minimal subset of the mesh

• Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance (t< 12.5 sec)

vorticity field pressure field

GNAT

ROM

FOM

▪ < 1% error in time-averaged drag
+ 229x CPU-hour savings

• FOM: 5 hour x 48 CPU
• GNAT ROM: 32 min x 2 CPU
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
• Improve projection technique [C. et al., 2011a, C. et al., 2015a]
• Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost
• Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
• Leverage time-domain data [c. et al., 2015b]

+ Certification
• Error bounds [C. et al., 2015a]
• Statistical error modeling [Drohmann and C., 2015]

+ Reliability
• A posteriori h-refinement [c., 2015]

Collaborators: L. Brencher, B. Haasdonk, A. Barth (U Stuttgart)
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GNAT performance

vorticity field

GNAT

ROM

FOM

pressure field

•

• FOM: 5 hour x 48 CPU

• GNAT ROM: 32 min x 2 CPU.

+ 229x CPU-hour savings. Good for many query.

- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) , 2011]

0450

l•-••

X 400

(13350

Z300
O

k. 250
X

Q.200
j 2 4 6 u 10 12

(e) CPU-hour savings

14

12

Z 10
O

8

6
O 

4 -

14 16 0 2 4 
6 08 " 

12 14 16

(f) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)

- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!
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Time-parallel algorithrns [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

to
tj. t2
111111h11111111\\\\1111111111

To Tl T2 T-A4-1 Tm

• Fine propagator: time step At

T(x; Tl, T2)

• Coarse propagator: time step AT

g(x; T2)

• Parareal iteration k (sequential and parallel steps):
xm+1k+1 = g(xrkn+1; Tm, Tm+1)+T(xnkl; Tm, Tm+i) — g(xnkl; Tm, Tm+i)

• Interpretations [Gander and Vandewalle, 2007, Falgout et al , 2014]:
• Deferred/residual-correction scheme B(xk+1) = B(xk)— A(xk)
• Multiple shooting method with FD Jacobian approximation
• Two-level multigrid
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Parareal: sequential and parallel steps [Lions et al , 2001a]

1.7

1.6

10 20 tinAtep 50

xo = g(xT; Tm, Tm+i)
1.7

1.6

1.5
1.4

1.1

1
0 10 20 timAtep 40

Xmi +1=1-(XcTi Tm, Tm+i)

+G(xj.n; Tm, Tm+1)—G(x(j; Tm, Tm+1)

50

60

60

1.7

1.6

15
*E.4

3
1.2

1.1

1
o

1.7

1.6

14

1.1

10

10 20 timAtep 40 50

.F(x(T; Tm, Tm+i)

10 20 timAtep 40

-F(x77; Tm, Tin+i)

50

60

60
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

■ Existing coarse propagators

■ Same integrator [Lions et al., 2001b, Bal and Maday, 2002]
■ Coarse spatial discretization

[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

■ Simplified physics model [Baffico et al., 2002, Maday and Turinici, 2003,
Blouza et al., 2011, Engblom, 2009, Maday, 2007]

■ Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
■ Reduced-order model (on the fly) [Farhat et al., 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

ROM context: can we leverage offline data to improve the coarse

propagator?
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Revisit the SVD

[X1 x2 x31 = vT

M
time step

First row of VT

jth row of VT contains a basis for time evolution of )?.i

• Construct global time-evolution basis for )-ci

Ei C./train

LI/114(i-1)+1,j ' ' ' vA//ijT
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First attempt [C. et al., 2015b]

U compute global forecast by gappy POD in time domain:

54 I

time step

1(1 so far; memory a = 4; forecast; temporal basis

zi = arg minlIZ(m — 1, a)Ejz — Z(m — 1, cOg(xi)112
zeRai

• Time sampling: Z(k, ,(3) := [ek_o • • • ek
T

• Time unrolling: g(k)) : ki(to) • • • Rj(tA4)]T

El use eff,TEizi as initial guess for ".i(tm) in Newton solver
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First attempt: structural dynamics [C et al , 201513]

2.5

10

memory a memory a

+ Newton iterations reduced by up to —2x

+ Speedup improved by up to —1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator via local forecasting

• Offline: Construct local time-evolution basis En'

___._

,-------

,.

=1 =2 —3— — 4_ —5_
—1 —1 —1 —1 —1

0 M

time step

• Online: Coarse propagator giT defined via forecasting:
Compute a time steps with fine propagator

El Compute local forecast via gappy POD
18 Select last timestep of local forecast

1-(k j; T,„ + At)

: (kj; Tm+i) eIT/AtEIT [Z(a + 1, a)E71+

T(k j; Tm, Tm + Ata)
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Initial seed

xkin++11 = g(xkm+1; Tm, Tm+i) + T(41"; Tm, Tm+i) — g(xnkj; Tm, Tm+i)

How to compute initial seed x(T, m = 0, ..., A4?

1.7

1.6

E3
742

1.1

10
10 ZO timAtep 50 60

El Typical time integrator

Ei Local forecast

la Global forecast
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Ideal-conditions speedup
Theorem

lf g(M E range(E1), j =1, , p, then the proposed method
converges in one parareal iteration and realizes a speedup of

M

M(M — 1)a/M 1

35

30

25

20

1415

10

5

0 
0

—a-1

—a=2

—0=9

—a=8

—11=12

5 10 15 20 _ 25
processors M

Ideal-conditions speedup for M = 5000

30 35
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Ideal-conditions speedup with initial guesses
Corollary

If f is nonlinear, g(10 E range(E1), j = 1, , p, and the
forecasting method also provides Newton-solver initial guesses,
then

El the method converges in one parareal iteration, and

El only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M

(Ma) + (M/ M — a)yr

relative to the sequential algorithm without forecasting. Here,

residual computation time
Tr =  

nonlinear-system solution time
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Ideal-conditions speedup with initial-guesses
120

100

80

CL

60

40

20

0
0 5 10 15 20 _ 25

processors M

Ideal-condition speedup for M = 5000, Tr = 1/10

- a=1

- a=2

- - 0=4

- a=8

- a-12

30 35

Significant speedups possible by leveraging time-domain data!
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Stability

Theorem

lf the fine propagator is stable, i.e.,

11.F(X; T , T A T) < (1 + AT)11X!1, VO <T<T —FAT

then the proposed method is also stable, i.e.,

Cm exp( CFmAT)Ilk°11.

• Cm := Ek=i (mk)fik-ymak(6, T/At)m-k

• i3k := exp( — C.Fk(P T — Ata)) < 1

• y := max(maxmi 1/IIZ(a+1, a)E7 II , Vamm(Z(a+1, a)Er))
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Example: inviscid Burgers equation [Rewienski, 2003]

a u(x , T) 1 a (u2 (x, T))

aT 
0.02e2x

+ 2 Ox
u(0, T) = µ1, VT e [0, 25]

u(x , 0) = 1, VX E [0,100] ,

• Discretization: Godunov's scheme

• (Th., [12) G [2.5, 3.5] x [0.02,0.03]

• At = 0.1, M = 250 fine time steps

• FOM: N = 500 degrees of freedom

• ROM: LSPG [C. et al , 2011ab POD basis dimension p = 100

• ntrain = 4 training points (LHS sampling); random online point

• 2 coarse propagators: Backward Euler and local forecast

• 3 initial seeds: Backward Euler, local forecast, global forecast
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Global temporal bases
15

0.05

-OM

TOO 160

time step

(a) coordinate 1

203

P.

100 150 200

time step

(c) coordinate 10

150
MOP

(b) coordinate 5

203

Iii i i1111 1 1 1 111i11 1111111 ,

50 ISO 200

time step

(d) coordinate 100

250

Higher-index generalized coordinates not 'forecastable'
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Forecasting 'high-frequency' coordinates is dangerous

ti
me

-p
ar

al
le

l 
er

ro
r 

1015

1010

105

100

105

101

-forecas 1
-forecast 5
-forecast 10
-forecast 15
-forecast 20
-for,ecast 100,

2 3 4 5 6 7 8

time-parallel iteration

Proceed by forecasting the first 10 coordinates
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Comparison: Initial seed and coarse propagator

1at

o'
',37)

1 6

- Seed: backward Euler, Propagator: backward Euler
— — Seed: backward Euler, Propagator: local forecast
- Seed: local forecast, Propagator: backward Euler
— — Seed: local forecast, Propagator: local forecast
- Seed: global forecast, Propagator: backward Euler
— — Seed: global forecast, Propagator: local forecast

2 3 4 5 6 7

time-parallel iteration
• Initial seed:

+ best performance: global forecast
- worst performance: local forecast (error accumulation)

• Coarse propagator:
+ local forecast outperforms backward Euler

Forecasting improves improves initial seed and coarse propagator!
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100 150
time step

o 1.8
o

'2 1.6

1.4

iC
Tf5 1.2

200 250 0 50 100 150
time step

(e) Seed: Euler, Prop: Euler

o 1.8
o

1.6

ia
T8 1.2 -

50 100 150 200
time step

(g) Seed: glob forecast, Prop: Euler

250

200 250

(f) Seed: Euler, Prop: local forecast

2

11 1.6 -
cci

> 1.4 -

0 100 150 200
time step

250

(h) Seed: glob forecast, Prop: loc fore-
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Parareal performance

co 25
c
o

c_10
o

45 5
_o
E

0
0

backward Euler
forecasting
worst case

5 10 15 20
number of processors

25

+ Forecasting: minimum possible iterations

- Backward Euler: often close to worst-case performance
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Conclusions

Use temporal data to reduce ROM simulation time

■ offline: time-evolution bases from right singular vectors
■ online:

El global forecast as initial seed
El local forecast as coarse propagator

+ theory: excellent speedup and stability

+ ideal parareal performance observed

+ significant improvement over Backward Euler

+ no additional error introduced
■ References:

■ K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth.
"Data-driven time parallelism with application to
reduced-order models," in preparation.

■ K. Carlberg, J. Ray, and B. van Bloemen Waanders.
"Decreasing the temporal complexity for nonlinear, implicit
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79-103 (2015).
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