

SAND2016-6867PE

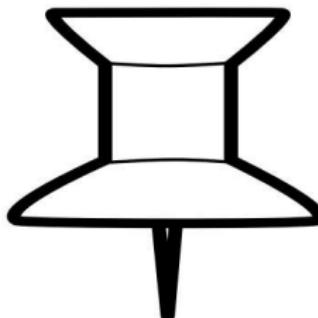
Nonlinear model reduction: discrete optimality and time parallelism

Kevin Carlberg

Sandia National Laboratories
Livermore, California

Techincal University of Berlin
July 28, 2016

Computational barrier at Sandia



- CFD model
 - 100 million cells
 - 200,000 time steps
- High simulation costs
 - 6 weeks, 5000 cores
 - 6 runs **maxes out Cielo**

Barrier

- Fast-turnaround design
- Uncertainty quantification

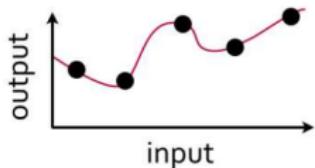
Objective: break barrier via nonlinear model reduction

Surrogate modeling

inputs $\mu \rightarrow$ **full-order model** \rightarrow outputs \mathbf{y}

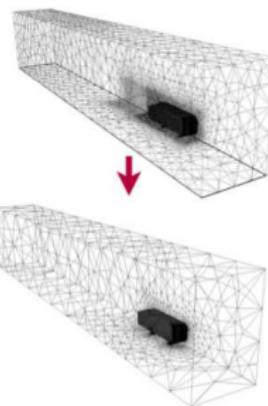
inputs $\mu \rightarrow$ **surrogate model** \rightarrow outputs \mathbf{y}_s

1) Data fits



- Not physics based
- + High speedups

2) Coarsened physics



- + Physics based
- Low speedups

3) Reduced-order models (ROMs)

- + Physics based
- + High speedups
- + Preserve structure
- + Rigorous error analysis
- **Unproven for nonlinear dynamical systems**

ROM: state of the art [Benner et al., 2015]

- Linear time-invariant systems: **mature** [Antoulas, 2005]
 - Balanced truncation [Moore, 1981]
 - Empirical balanced truncation
 - [Willcox and Peraire, 2002, Rowley, 2005, Or and Speyer, 2010, Ma et al., 2011]
 - Moment matching
 - [Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]
 - Loewner framework [Lefteriu and Antoulas, 2010, Ionita and Antoulas, 2014]
 - + *Reliable*: guaranteed stability, *a priori* error bounds
 - + *Certified*: sharp, computable *a posteriori* error bounds
- Elliptic/parabolic PDEs (FEM): **mature** [Rozza et al., 2008]
 - Reduced-basis method
 - [Prud'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]
 - Subsystem-based reduced-basis method
 - [Maday and Rønquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]
 - + *Reliable*: *a priori* error bounds
 - + *Certified*: sharp, computable *a posteriori* error bounds
- Nonlinear dynamical systems: **unproven**
 - Proper orthogonal decomposition (POD)–Galerkin
 - *Not reliable*: Stability and accuracy not guaranteed
 - *Not certified*: error bounds not sharp

My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

- + Accuracy
 - Improve projection technique [C. et al., 2011a, C. et al., 2015a]
 - Preserve problem structure [C. et al., 2012, C. et al., 2015c]
- + Low cost
 - Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
 - Leverage time-domain data [C. et al., 2015b]
- + Certification
 - Error bounds [C. et al., 2015a]
 - Statistical error modeling [Drohmann and C., 2015]
- + Reliability
 - *A posteriori* h -refinement [C., 2015]

My research goal

Nonlinear model-reduction methods that are accurate, **low cost**, **certified**, and **reliable**.

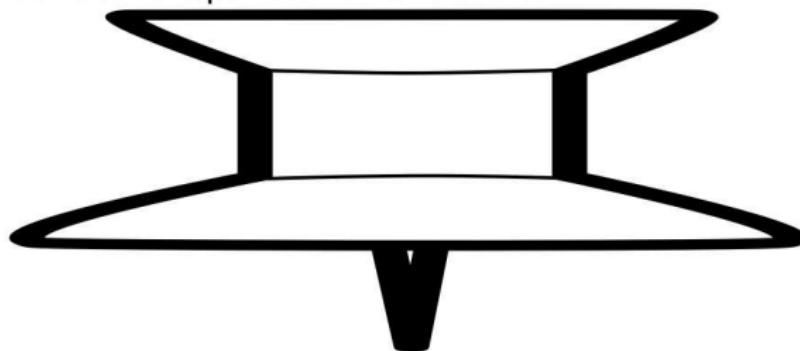
- + Accuracy
 - Improve projection technique [C. et al., 2011a, C. et al., 2015a]
 - Preserve problem structure [C. et al., 2012, C. et al., 2015c]
- + Low cost
 - Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
 - Leverage time-domain data [C. et al., 2015b]
- + Certification
 - Error bounds [C. et al., 2015a]
 - Statistical error modeling [Drohmann and C., 2015]
- + Reliability
 - *A posteriori* h -refinement [C., 2015]

Collaborators: M. Barone (Sandia), H. Antil (GMU)

POD–Galerkin: offline data collection

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu); \quad \mathbf{x}(0, \mu) = \mathbf{x}^0(\mu), \quad t \in [0, T], \quad \mu \in \mathcal{D}$$

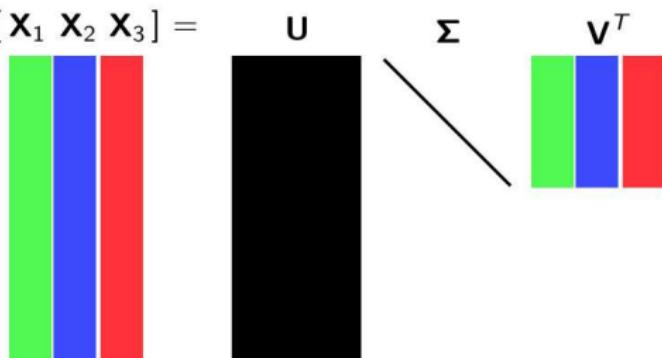
- 1 Collect 'snapshots' of the state



POD–Galerkin: offline data collection

2 Data compression

- Compute SVD: $[\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3] =$



- Truncate: $\Phi = [\mathbf{u}_1 \ \cdots \ \mathbf{u}_p]$

POD–Galerkin: online projection

Full-order model:

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu), \quad \mathbf{x}(0, \mu) = \mathbf{x}^0(\mu)$$

1 $\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \Phi \hat{\mathbf{x}}(t)$

$$\begin{array}{c|c|c} \mathbf{x}(t) & \approx & \tilde{\mathbf{x}}(t) \\ \hline \mathbf{x}(t) & \approx & \Phi \hat{\mathbf{x}}(t) \end{array}$$

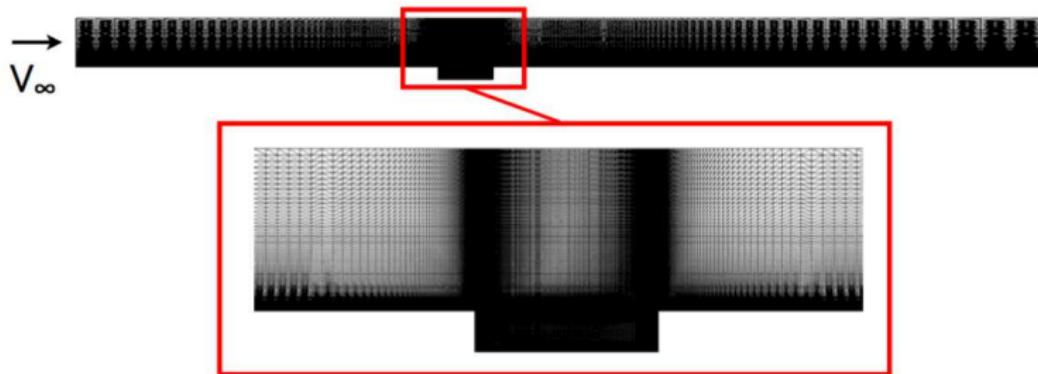
2 $\Phi^T(\mathbf{f}(\tilde{\mathbf{x}}; t, \mu) - \frac{d\tilde{\mathbf{x}}}{dt}) = 0$

$$\begin{array}{c|c|c} \Phi^T(\mathbf{f}(\tilde{\mathbf{x}}; t, \mu) - \frac{d\tilde{\mathbf{x}}}{dt}) & = & 0 \\ \hline \Phi^T(\mathbf{f}(\tilde{\mathbf{x}}; t, \mu)) & - & \frac{d\tilde{\mathbf{x}}}{dt} \\ \hline \text{Yellow} & \text{Green} & \text{Red} \end{array}$$

Galerkin ROM:

$$\frac{d\hat{\mathbf{x}}}{dt} = \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}; t, \mu), \quad \hat{\mathbf{x}}(0, \mu) = \Phi^T \mathbf{x}^0(\mu)$$

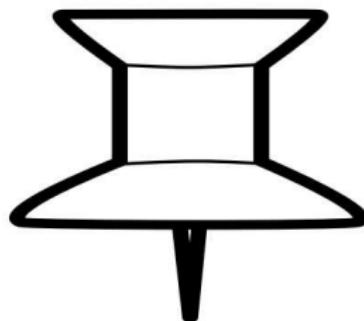
Cavity-flow problem. Collaborator: M. Barone (SNL)



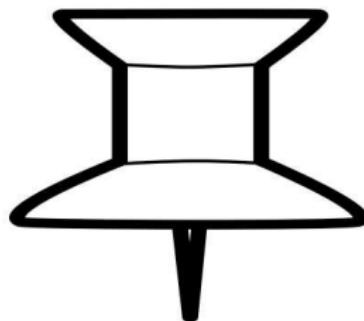
- Unsteady Navier–Stokes
- DES turbulence model
- 1.2 million degrees of freedom
- $Re = 6.3 \times 10^6$
- $M_\infty = 0.6$
- CFD code: AERO-F

[Farhat et al., 2003]

Full-order model responses

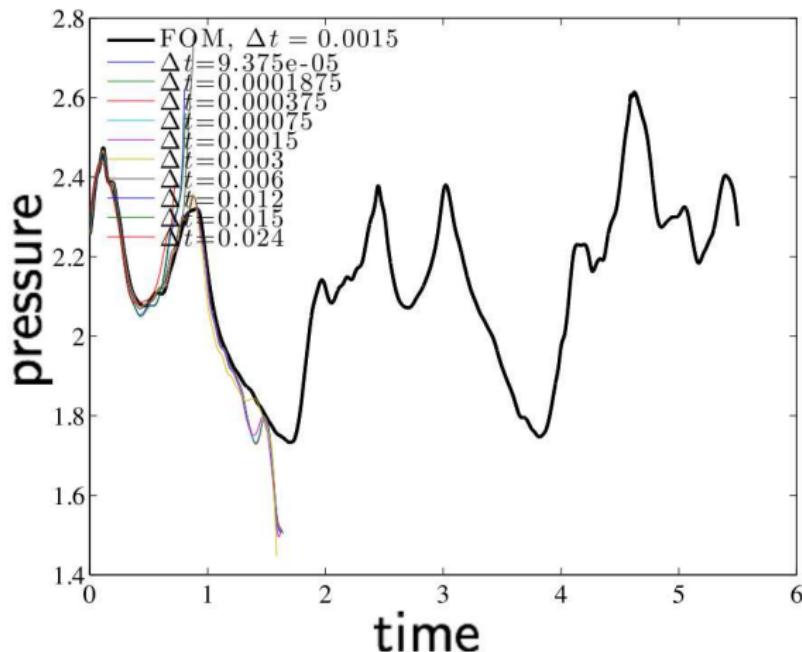


vorticity field



pressure field

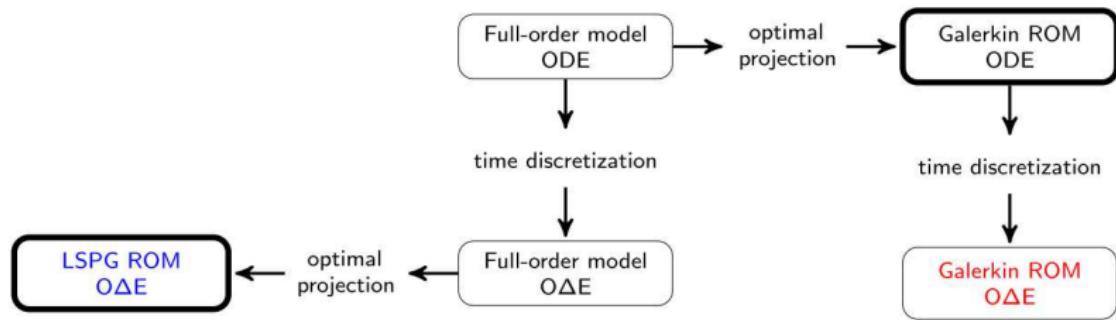
POD–Galerkin failure



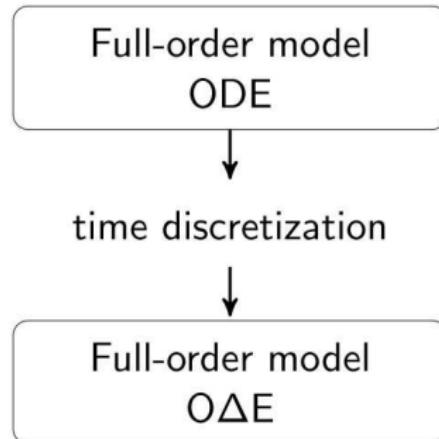
- Galerkin ROMs unstable

How to construct a ROM for nonlinear dynamical systems?

- Optimize then discretize? (Galerkin)
- Discretize then optimize? (Least-squares Petrov–Galerkin)



- Outstanding questions:
 - 1 Which notion of optimality is better in practice?
 - 2 Discrete-time error bounds?
 - 3 Time step selection?



Full-order model (FOM)

- ODE: time continuous

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{x}^0, \quad t \in [0, T]$$

- OΔE, linear multistep schemes: $\boxed{\mathbf{r}^n(\mathbf{x}^n) = 0}, n = 1, \dots, N$

$$\mathbf{r}^n(\mathbf{x}) := \alpha_0 \mathbf{x} - \Delta t \beta_0 \mathbf{f}(\mathbf{x}, t^n) + \sum_{j=1}^k \alpha_j \mathbf{x}^{n-j} - \Delta t \sum_{j=1}^k \beta_j \mathbf{f}(\mathbf{x}^{n-j}, t^{n-j})$$

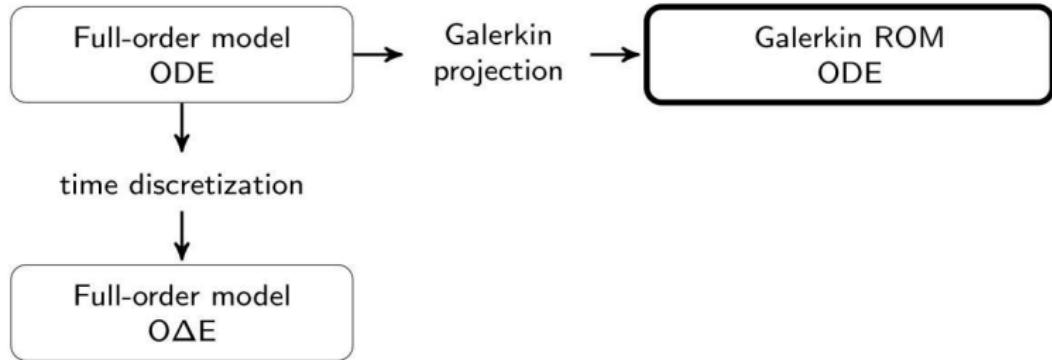
- OΔE, Runge–Kutta: $\boxed{\mathbf{r}_i^n(\mathbf{x}_1^n, \dots, \mathbf{x}_s^n) = 0}, i = 1, \dots, s$

$$\mathbf{r}_i^n(\mathbf{x}_1, \dots, \mathbf{x}_s) := \mathbf{x}_i - \mathbf{f}(\mathbf{x}^{n-1} + \Delta t \sum_{j=1}^s a_{ij} \mathbf{x}_j, t^{n-1} + c_i \Delta t)$$

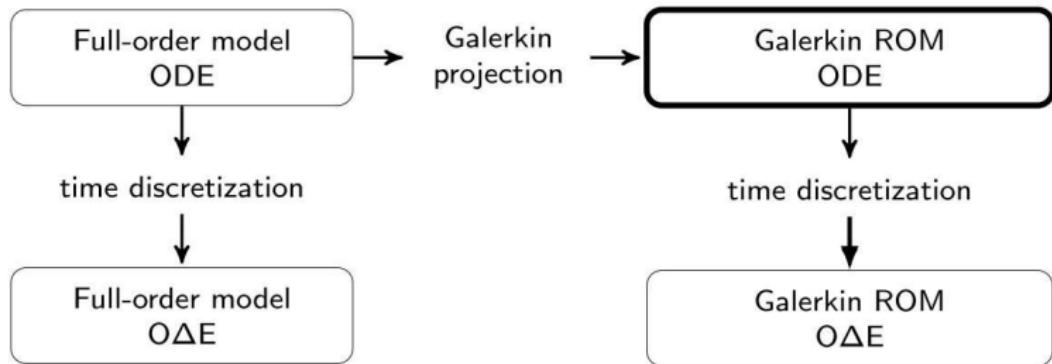
$$\mathbf{x}^n = \mathbf{x}^{n-1} + \Delta t \sum_{i=1}^s b_i \mathbf{x}_i^n \text{ (explicit state update)}$$

This talk focuses on linear multistep schemes.

Galerkin ROM: first optimize



Galerkin: first optimize, then discretize



Galerkin ROM

■ ODE

$$\frac{d\hat{\mathbf{x}}}{dt} = \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}, t), \quad \hat{\mathbf{x}}(0) = \Phi^T \mathbf{x}^0, \quad t \in [0, T]$$

+ Continuous velocity $\frac{d\hat{\mathbf{x}}}{dt}$ is optimal

Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:

$$\frac{d\tilde{\mathbf{x}}}{dt}(\mathbf{x}, t) = \arg \min_{\mathbf{v} \in \text{range}(\Phi)} \|\mathbf{v} - \mathbf{f}(\mathbf{x}, t)\|_2^2$$

■ OΔE

$$\hat{\mathbf{r}}^n(\hat{\mathbf{x}}^n) = 0, \quad n = 1, \dots, N$$

$$\hat{\mathbf{r}}^n(\hat{\mathbf{x}}) := \alpha_0 \hat{\mathbf{x}} - \Delta t \beta_0 \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}, t^n) + \sum_{j=1}^k \alpha_j \hat{\mathbf{x}}^{n-j} - \Delta t \sum_{j=1}^k \beta_j \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}^{n-j}, t^{n-j})$$

- Discrete state $\hat{\mathbf{x}}^n$ is not generally optimal

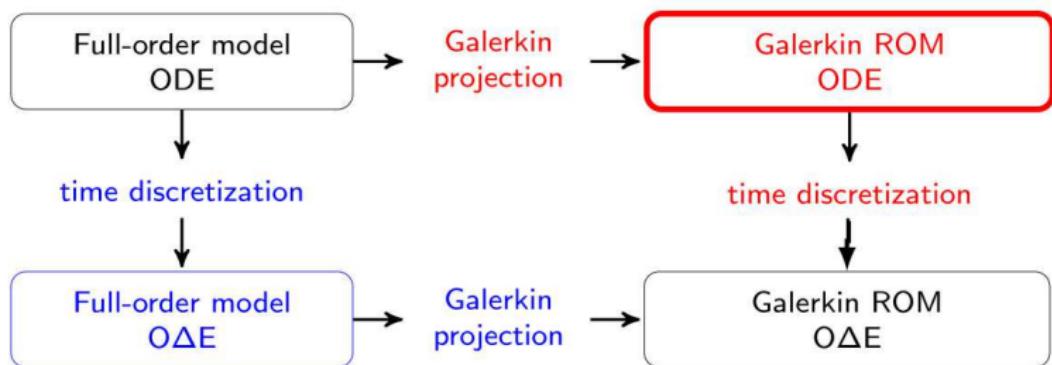
Can we fix this? Will doing so help?

Galerkin ROM: Commutativity

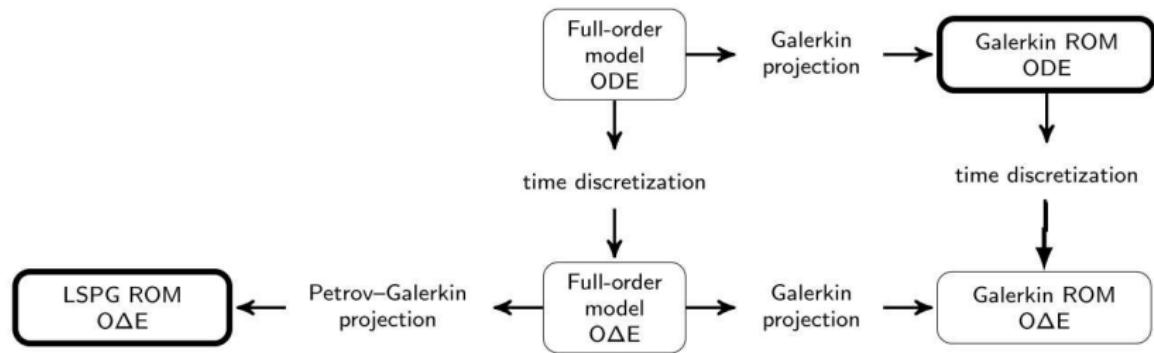
Theorem

Projection and time discretization are commutative for Galerkin ROMs:

$$\hat{r}^n(\hat{x}) = \Phi^T r^n(\Phi \hat{x})$$



LSPG ROM: first discretize, then optimize



- FOM OΔE

$$\mathbf{r}^n(\mathbf{x}^n) = 0, \quad n = 1, \dots, N$$

- LSPG ROM OΔE:

$$\hat{\mathbf{x}}^n = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\mathbf{A}\mathbf{r}^n(\Phi\hat{\mathbf{z}})\|_2^2.$$

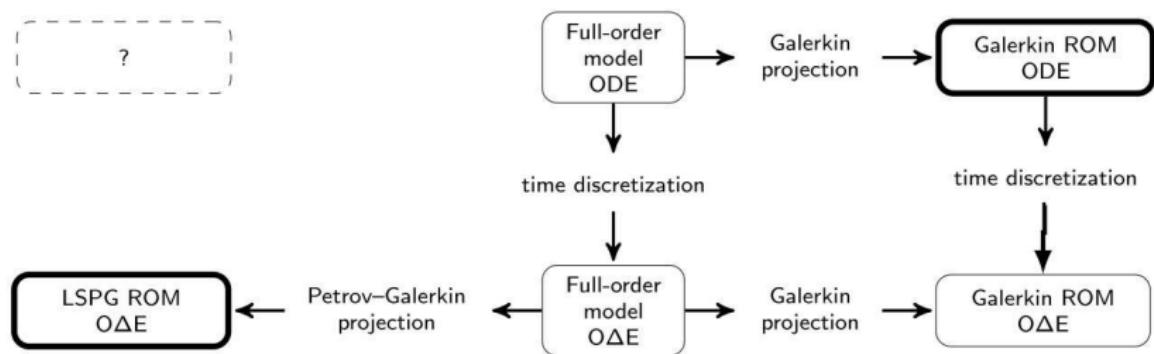
↔

$$\Psi^n(\hat{\mathbf{x}}^n)^T \mathbf{r}^n(\Phi\hat{\mathbf{x}}^n) = 0, \quad \Psi^n(\hat{\mathbf{x}}) := \mathbf{A}^T \mathbf{A} \frac{\partial \mathbf{r}^n}{\partial \mathbf{x}}(\Phi\hat{\mathbf{x}}) \Phi$$

- $\mathbf{A} = \mathbf{I}$: LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

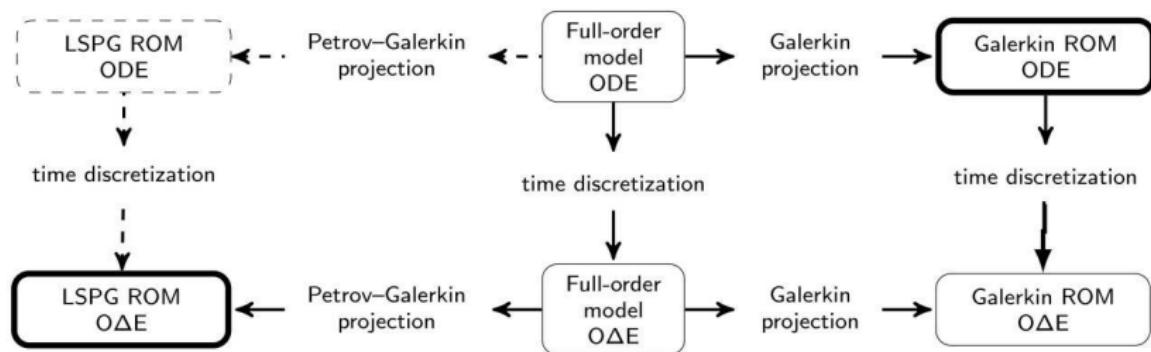
- + Discrete solution is optimal

Does the LSPG ROM have a time-continuous representation?



Does the LSPG ROM have a time-continuous representation?

Sometimes.



LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov–Galerkin projection to the FOM ODE with test basis

$$\Psi(\hat{\mathbf{x}}, t) = \mathbf{A}^T \mathbf{A} \left(\alpha_0 \mathbf{I} - \Delta t \beta_0 \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}^0 + \Phi \hat{\mathbf{x}}, t) \right) \Phi$$

if

- 1 $\beta_j = 0, j \geq 1$ (e.g., a single-step method),
- 2 the velocity \mathbf{f} is linear in the state, or
- 3 $\beta_0 = 0$ (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!

Are the two approaches ever equivalent?

- Galerkin: $\Phi^T \mathbf{r}^n(\Phi \hat{\mathbf{x}}^n) = 0$
- LSPG: $\Psi^n(\hat{\mathbf{x}}^n)^T \mathbf{r}^n(\Phi \hat{\mathbf{x}}^n) = 0$

Does $\Psi^n(\hat{\mathbf{x}}^n) = \Phi$ ever?

Yes.

$$\Psi^n(\hat{\mathbf{x}}) := \mathbf{A}^T \mathbf{A} \frac{\partial \mathbf{r}^n}{\partial \mathbf{x}}(\Phi \hat{\mathbf{x}}) \Phi = \mathbf{A}^T \mathbf{A} \left(\alpha_0 \mathbf{I} - \Delta t \beta_0 \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\Phi \hat{\mathbf{x}}, t^n) \right) \Phi$$

Theorem

The two approaches are equivalent ($\Psi^n(\hat{\mathbf{x}}) = \Phi$)

- 1 *in the limit of $\Delta t \rightarrow 0$ with $\mathbf{A} = 1/\sqrt{\alpha_0} \mathbf{I}$,*
- 2 *if the scheme is explicit ($\beta_0 = 0$) with $\mathbf{A} = 1/\sqrt{\alpha_0} \mathbf{I}$, or*
- 3 *if $\frac{\partial \mathbf{r}^n}{\partial \mathbf{x}}$ is positive definite with $[\frac{\partial \mathbf{r}^n}{\partial \mathbf{x}}]^{-1} = \mathbf{A}^T \mathbf{A}$.*

Discrete-time error bound

Theorem

If the following conditions hold:

- 1 $\mathbf{f}(\cdot, t)$ is Lipschitz continuous with Lipschitz constant κ , and
- 2 Δt is such that $0 < h := |\alpha_0| - |\beta_0| \kappa \Delta t$,

then

$$\|\delta \mathbf{x}_G^n\| \leq \frac{\Delta t}{h} \sum_{\ell=0}^k |\beta_\ell| \|(\mathbf{I} - \textcolor{red}{V}) \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_G^{n-\ell})\| + \frac{1}{h} \sum_{\ell=1}^k (|\beta_\ell| \kappa \Delta t + |\alpha_\ell|) \|\delta \mathbf{x}_G^{n-\ell}\|$$
$$\|\delta \mathbf{x}_L^n\| \leq \frac{\Delta t}{h} \sum_{\ell=0}^k |\beta_\ell| \|(\mathbf{I} - \textcolor{blue}{P}^n) \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_L^{n-\ell})\| + \frac{1}{h} \sum_{\ell=1}^k (|\beta_\ell| \kappa \Delta t + |\alpha_\ell|) \|\delta \mathbf{x}_L^{n-\ell}\|,$$

with

- $\delta \mathbf{x}_G^n := \mathbf{x}_*^n - \Phi \hat{\mathbf{x}}_G^n$
- $\delta \mathbf{x}_L^n := \mathbf{x}_*^n - \Phi \hat{\mathbf{x}}_L^n$
- $\textcolor{red}{V} := \Phi \Phi^T$
- $\textcolor{blue}{P}^n := \Phi ((\Psi^n)^T \Phi)^{-1} (\Psi^n)^T$

LSPG ROM yields a smaller error bound

Theorem (Backward Euler)

If conditions (1) and (2) hold, then

$$\|\delta \mathbf{x}_G^n\| \leq \Delta t \sum_{j=0}^{n-1} \frac{1}{(h)^{j+1}} \underbrace{\|(\mathbf{I} - \mathbb{V}) \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_G^{n-j})\|}_{\varepsilon_G^{n-j}}$$

$$\|\delta \mathbf{x}_L^n\| \leq \Delta t \sum_{j=0}^{n-1} \frac{1}{(h)^{j+1}} \underbrace{\|(\mathbf{I} - \mathbb{P}^{n-j}) \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_L^{n-j})\|}_{\varepsilon_L^{n-j}}$$

$$\varepsilon_G^k = \|\Phi \hat{\mathbf{x}}_G^k - \Delta t \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_G^k) - \Phi \hat{\mathbf{x}}_G^{k-1}\|$$

$$\varepsilon_L^k = \|\Phi \hat{\mathbf{x}}_L^k - \Delta t \mathbf{f}(\mathbf{x}_0 + \Phi \hat{\mathbf{x}}_L^k) - \Phi \hat{\mathbf{x}}_L^{k-1}\| = \min_{\mathbf{y}} \|\Phi \mathbf{y} - \Delta t \mathbf{f}(\mathbf{x}_0 + \Phi \mathbf{y}) - \Phi \hat{\mathbf{x}}_L^{k-1}\|$$

Corollary (LSPG smaller error bound)

If $\hat{\mathbf{x}}_L^{k-1} = \hat{\mathbf{x}}_G^{k-1}$, then $\varepsilon_L^k \leq \varepsilon_G^k$.

Corollary (Backward Euler)

Define

- $\Delta \hat{x}_L^j := \hat{x}_L^j - \hat{x}_L^{j-1}$ and
- $\Delta \bar{x}^j$: full-space solution increment from \hat{x}_L^{j-1} .

Then, the LSPG error can also be bounded as

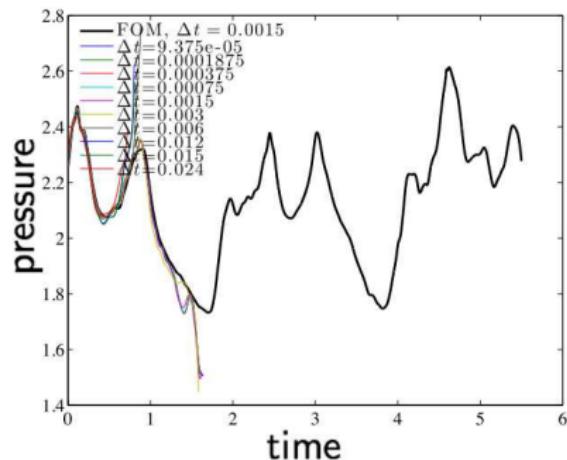
$$\|\delta x_L^n\| \leq \Delta t(1 + \kappa \Delta t) \sum_{j=0}^{n-1} \frac{\mu^{n-j}}{(h)^{j+1}} \|\mathbf{f}(\hat{x}_L^{j-1} + \Delta \bar{x}^{n-j})\|$$

with $\mu^j := \|\Phi \Delta \hat{x}_L^j - \Delta \bar{x}^j\| / \|\Delta \bar{x}^j\|$.

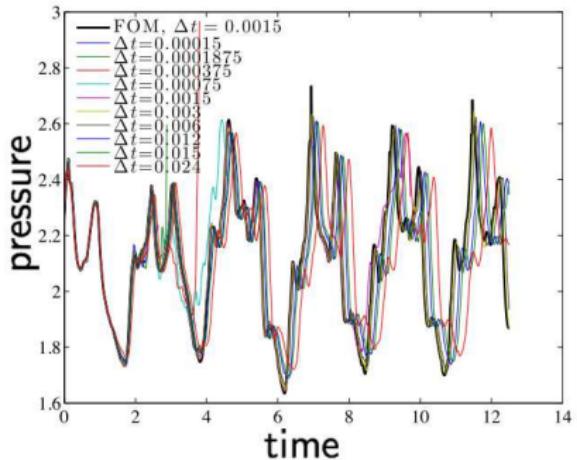
Effect of decreasing Δt :

- + The terms $\Delta t(1 + \kappa \Delta t)$ and $1/(h)^{j+1}$ decrease
- The number of total time instances n increases
- ? The term μ^{n-j} may **increase** or **decrease**, depending on the spectral content of the basis Φ

Galerkin and LSPG responses for basis dimension $p = 204$



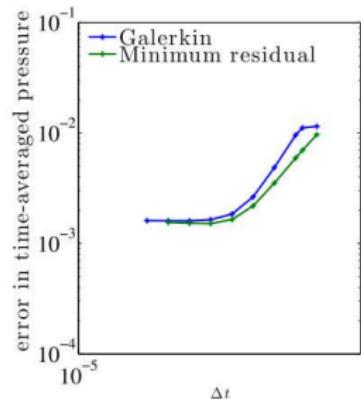
(a) Galerkin



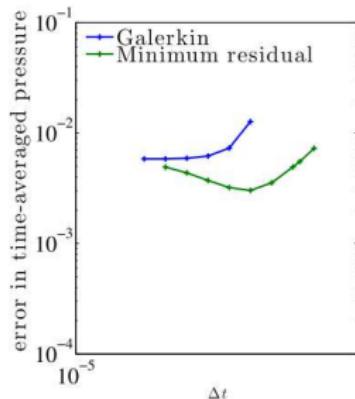
(b) LSPG

- Galerkin ROMs unstable for long time intervals
- + LSPG ROMs accurate and stable (most time steps)

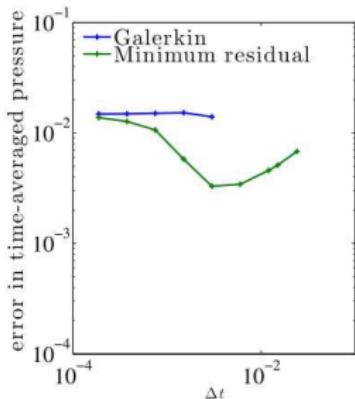
LSPG ROM: superior performance



(c) $0 \leq t \leq 0.55$



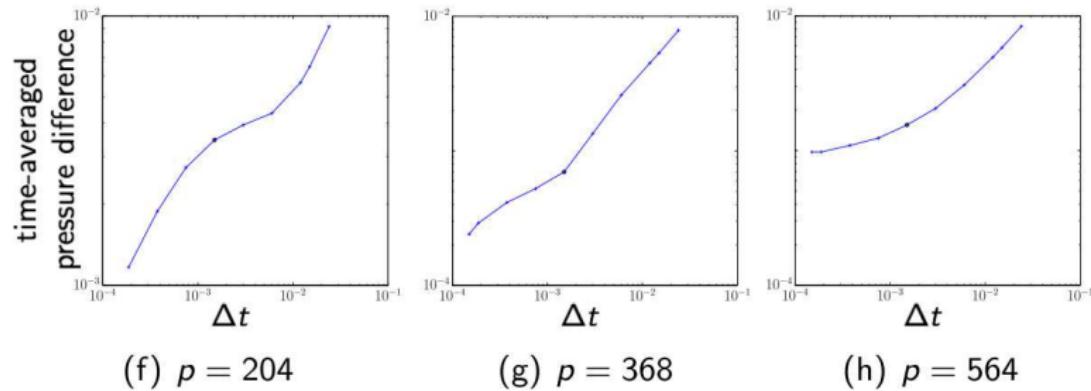
(d) $0 \leq t \leq 1.1$



(e) $0 \leq t \leq 1.54$

- ✓ LSPG ROM yields a **smaller error** for all time intervals and time steps.

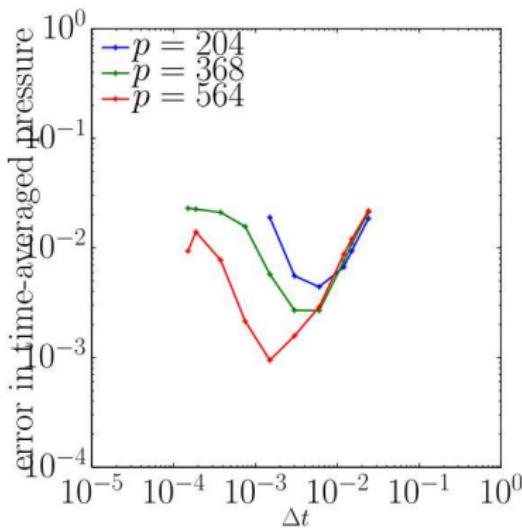
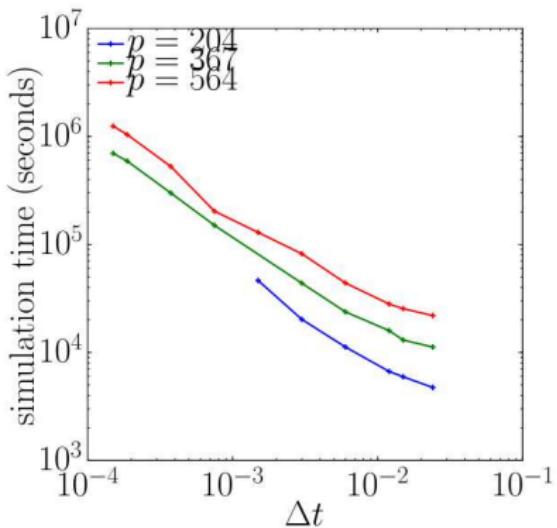
Limiting equivalence



Galerkin/LSPG difference in the stable Galerkin interval $0 \leq t \leq 1.1$.

- ✓ The LSPG ROM converges to Galerkin as $\Delta t \rightarrow 0$.

LSPG performance ($t \leq 12.5$ sec)



- ✓ An intermediate Δt produces the **lowest error** and **better speedup**.

$p = 564$ case:

- $\Delta t = 1.875 \times 10^{-4}$ sec: relative error = **1.40%**, time = **289 hrs**
- $\Delta t = 1.5 \times 10^{-3}$ sec: relative error = **0.095%**, time = **35.8 hrs**

Summary: Improve projection technique

- *Galerkin*: projection and time-discretization are commutative
- *LSPG*: a continuous representation sometimes exists
- Equivalence conditions
 - 1 Limit of $\Delta t \rightarrow 0$
 - 2 Explicit schemes
 - 3 Positive definite residual Jacobians
- Discrete-time error bounds
 - LSPG ROM yields **smaller error bound** than Galerkin
 - Ambiguous role of time step Δt
- Numerical experiments
 - LSPG ROM yields a smaller error than Galerkin
 - Equivalent as $\Delta t \rightarrow 0$
 - Error minimized for intermediate Δt
- **Reference**: C., Barone, and Antil. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. *arXiv e-print*, (1504.03749), 2015.

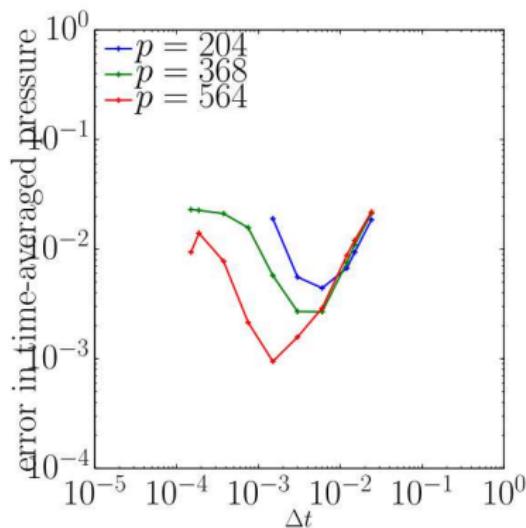
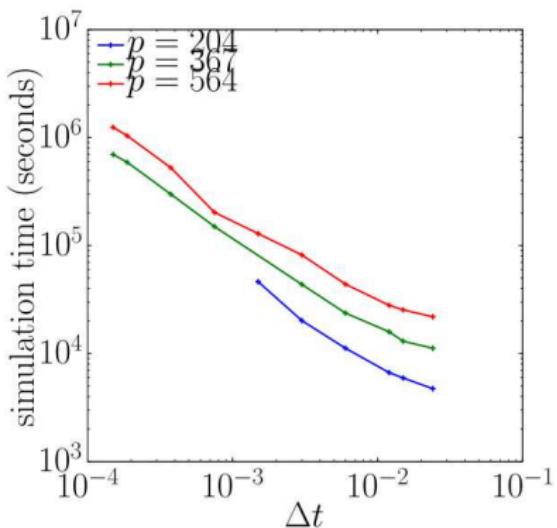
My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

- + Accuracy
 - Improve projection technique [C. et al., 2011a, C. et al., 2015a]
 - Preserve problem structure [C. et al., 2012, C. et al., 2015c]
- + Low cost
 - Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
 - Leverage time-domain data [C. et al., 2015b]
- + Certification
 - Error bounds [C. et al., 2015a]
 - Statistical error modeling [Drohmann and C., 2015]
- + Reliability
 - *A posteriori* h -refinement [C., 2015]

Collaborators: C. Farhat, J. Cortial (Stanford)

LSPG performance ($t \leq 2.5$ sec)



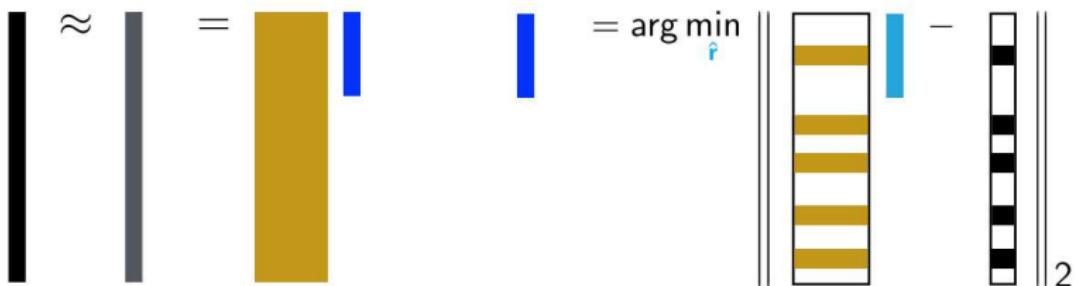
- + Always sub-3% errors
- More expensive than the FOM
 - FOM simulation: 1 hour, 48 CPU
 - LSPG ROM simulation (fastest): **1.3 hours, 48 CPU**

Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

$$\hat{\mathbf{x}}^n = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\mathbf{A} \mathbf{r}^n(\Phi \hat{\mathbf{z}})\|_2^2.$$

Can we select \mathbf{A} to make this inexpensive?

$$1. \mathbf{r}^n(\mathbf{x}) \approx \tilde{\mathbf{r}}^n(\mathbf{x}) = \Phi_R \hat{\mathbf{r}}^n(\mathbf{x}) \quad 2. \hat{\mathbf{r}}^n(\mathbf{x}) = \arg \min_{\hat{\mathbf{r}}} \|\mathbf{P} \Phi_R \hat{\mathbf{r}} - \mathbf{P} \mathbf{r}^n(\mathbf{x})\|_2$$



$$\hat{\mathbf{x}}^n = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\tilde{\mathbf{r}}^n(\Phi \hat{\mathbf{z}})\|_2^2 = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\Phi_R \hat{\mathbf{r}}^n(\Phi \hat{\mathbf{z}})\|_2^2 = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\hat{\mathbf{r}}^n(\Phi \hat{\mathbf{z}})\|_2^2$$

$$= \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \|\underbrace{(\mathbf{P} \Phi_R)^+ \mathbf{P}}_A \mathbf{r}^n(\Phi \hat{\mathbf{z}})\|_2^2.$$

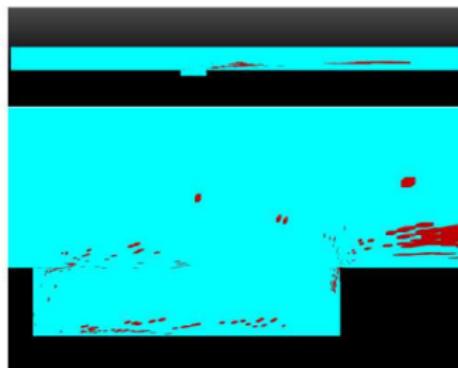
+ GNAT: $\mathbf{A} = (\mathbf{P} \Phi_R)^+ \mathbf{P}$ leads to low-cost

■ Offline: Construct Φ_R (POD) and \mathbf{P} (greedy method)

Sample mesh: HPC implementation

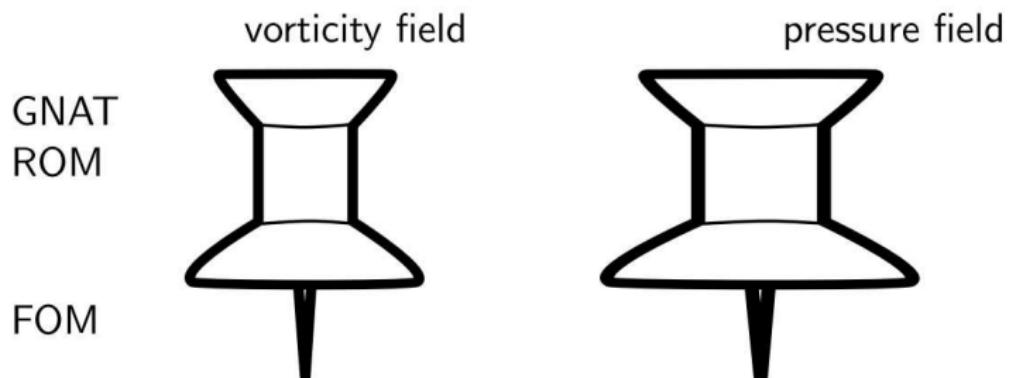
$$\hat{\mathbf{x}}^n = \arg \min_{\hat{\mathbf{z}} \in \mathbb{R}^p} \| (\mathbf{P} \Phi_R)^+ \mathbf{P} \mathbf{r}^n (\Phi \hat{\mathbf{z}}) \|_2^2$$

- Key: GNAT samples only a few entries of the residual $\mathbf{P} \mathbf{r}^n$
- Idea: Extract minimal subset of the mesh



- Sample mesh: 4.1% nodes, 3.0% cells
- + Small problem size: can run on many fewer cores

GNAT performance ($t \leq 12.5$ sec)



- + < 1% error in time-averaged drag
- + 229x CPU-hour savings
 - FOM: 5 hour x 48 CPU
 - GNAT ROM: 32 min x 2 CPU

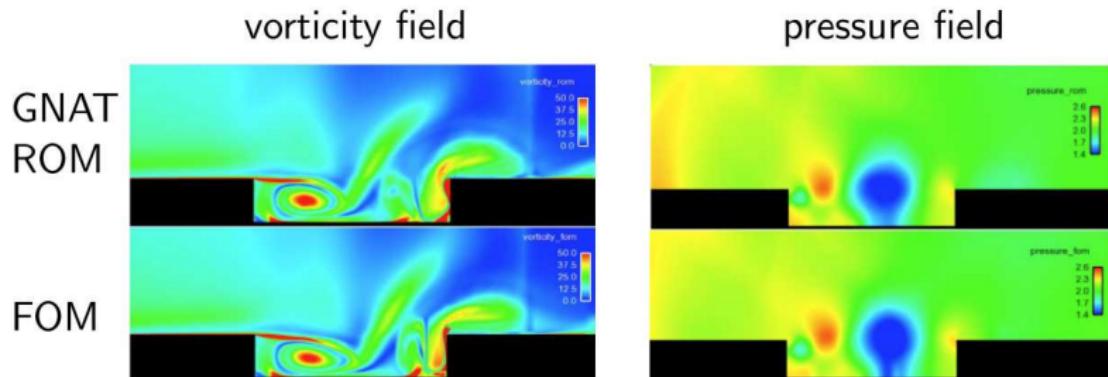
My research goal

Nonlinear model-reduction methods that are
accurate, **low cost**, **certified**, and **reliable**.

- + Accuracy
 - Improve projection technique [C. et al., 2011a, C. et al., 2015a]
 - Preserve problem structure [C. et al., 2012, C. et al., 2015c]
- + Low cost
 - Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
 - Leverage time-domain data [C. et al., 2015b]
- + Certification
 - Error bounds [C. et al., 2015a]
 - Statistical error modeling [Drohmann and C., 2015]
- + Reliability
 - *A posteriori* h -refinement [C., 2015]

Collaborators: L. Brenner, B. Haasdonk, A. Barth (U Stuttgart)

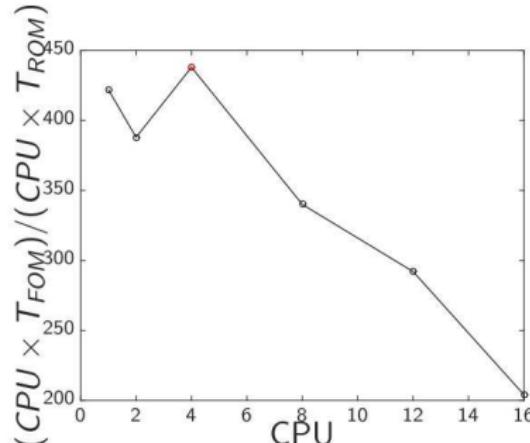
GNAT performance



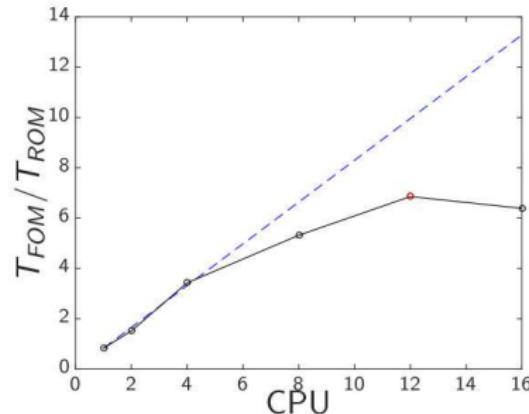
- FOM: 5 hour x 48 CPU
- GNAT ROM: 32 min x 2 CPU.
- + 229x CPU-hour savings. Good for many query.
- 9.4x walltime savings. Bad for real time.

Why?

GNAT: strong scaling (Ahmed body) [C., 2011]



(e) CPU-hour savings



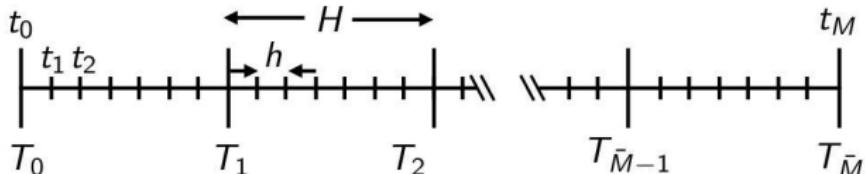
(f) Walltime savings

- + Significant CPU-hour savings (max: 438 for 4 CPU)
- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!

Time-parallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime



- Fine propagator: time step Δt

$$\mathcal{F}(\mathbf{x}; \tau_1, \tau_2)$$

- Coarse propagator: time step ΔT

$$\mathcal{G}(\mathbf{x}; \tau_1, \tau_2)$$

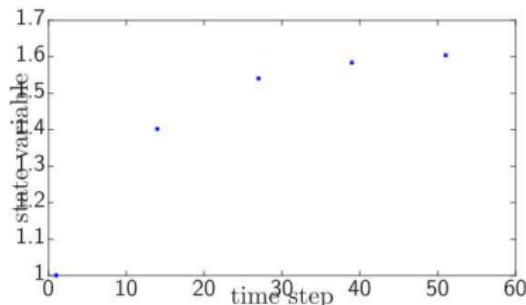
- Parareal iteration k (**sequential** and **parallel** steps):

$$\mathbf{x}_{k+1}^{m+1} = \mathcal{G}(\mathbf{x}_{k+1}^m; T_m, T_{m+1}) + \mathcal{F}(\mathbf{x}_k^m; T_m, T_{m+1}) - \mathcal{G}(\mathbf{x}_k^m; T_m, T_{m+1})$$

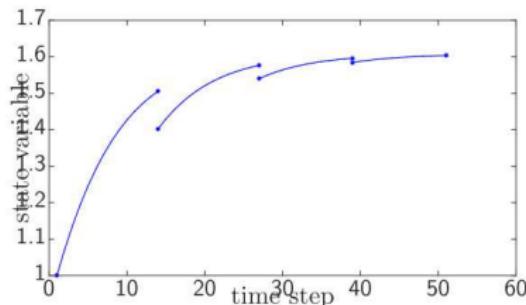
- Interpretations [Gander and Vandewalle, 2007, Falgout et al., 2014]:

- Deferred/residual-correction scheme $\mathcal{B}(\mathbf{x}_{k+1}) = \mathcal{B}(\mathbf{x}_k) - \mathcal{A}(\mathbf{x}_k)$
- Multiple shooting method with FD Jacobian approximation
- Two-level multigrid

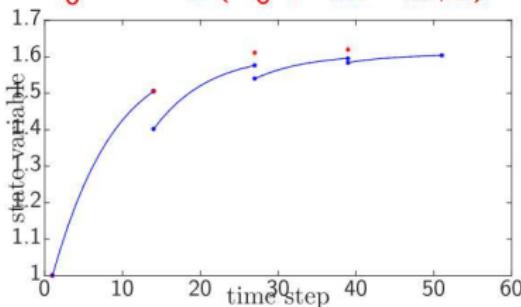
Parareal: sequential and parallel steps [Lions et al., 2001a]



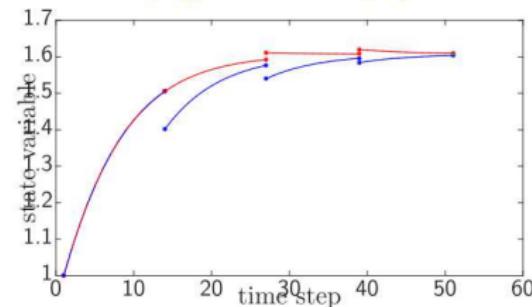
$$\mathbf{x}_0^{m+1} = \mathcal{G}(\mathbf{x}_0^m; T_m, T_{m+1})$$



$$\mathcal{F}(\mathbf{x}_0^m; T_m, T_{m+1})$$



$$\mathbf{x}_1^{m+1} = \mathcal{F}(\mathbf{x}_0^m; T_m, T_{m+1}) + \mathcal{G}(\mathbf{x}_1^m; T_m, T_{m+1}) - \mathcal{G}(\mathbf{x}_0^m; T_m, T_{m+1})$$



$$\mathcal{F}(\mathbf{x}_1^m; T_m, T_{m+1})$$

Coarse propagator

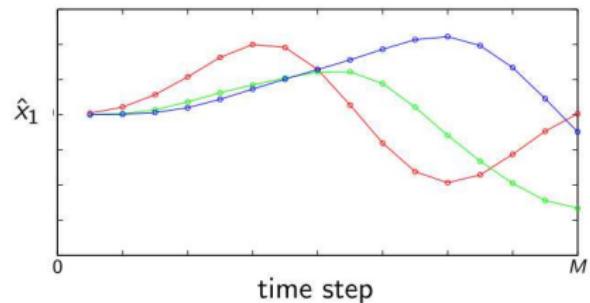
Critical: coarse propagator should be **fast, accurate, stable**

- Existing coarse propagators
 - Same integrator [Lions et al., 2001b, Bal and Maday, 2002]
 - Coarse spatial discretization
[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]
 - Simplified physics model [Baffico et al., 2002, Maday and Turinici, 2003, Blouza et al., 2011, Engblom, 2009, Maday, 2007]
 - Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
 - Reduced-order model (on the fly) [Farhat et al., 2006, Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

ROM context: can we leverage offline data to improve the coarse propagator?

Revisit the SVD

$$[\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3] = \mathbf{U} \ \Sigma \ \mathbf{V}^T$$



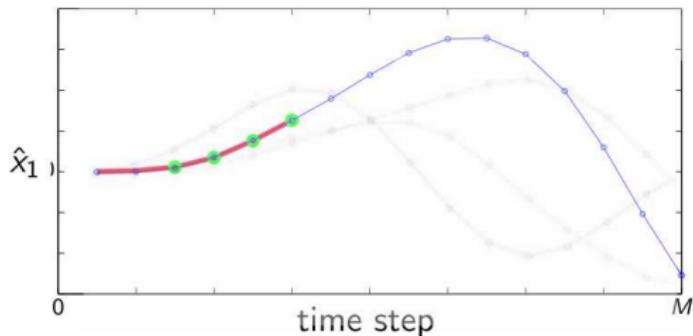
First row of \mathbf{V}^T

jth row of \mathbf{V}^T contains a basis for time evolution of \hat{x}_j

- Construct Ξ_j : **global time-evolution basis** for \hat{x}_j

$$\Xi_j := [\xi_j^1 \ \cdots \ \xi_j^{n_{\text{train}}}], \quad \xi_j^i := [v_{M(i-1)+1,j} \ \cdots \ v_{Mi,j}]^T$$

- 1 compute **global forecast** by gappy POD in time domain:



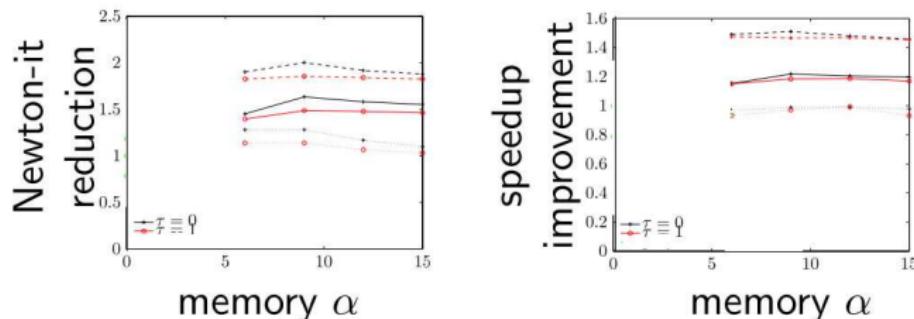
\hat{x}_1 so far; memory $\alpha = 4$; forecast; temporal basis

$$z_j = \arg \min_{z \in \mathbb{R}^{a_j}} \|Z(m-1, \alpha) \Xi_j z - Z(m-1, \alpha) g(\hat{x}_j)\|_2$$

- Time sampling: $Z(k, \beta) := [\mathbf{e}_{k-\beta} \ \cdots \ \mathbf{e}_k]^T$
- Time unrolling: $g(\hat{x}_j) : \hat{x}_j \mapsto [\hat{x}_j(t_0) \ \cdots \ \hat{x}_j(t_M)]^T$

- 2 use $\mathbf{e}_m^T \Xi_j z_j$ as initial guess for $\hat{x}_j(t_m)$ in Newton solver

First attempt: structural dynamics [C. et al., 2015b]

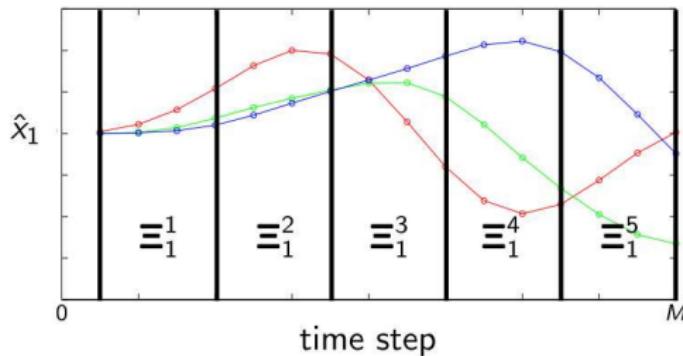


- + Newton iterations reduced by up to $\sim 2x$
- + Speedup improved by up to $\sim 1.5x$
- + No accuracy loss
- + Applicable to any nonlinear ROM
- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?

Coarse propagator via local forecasting

- **Offline:** Construct **local time-evolution basis** Ξ_j^m



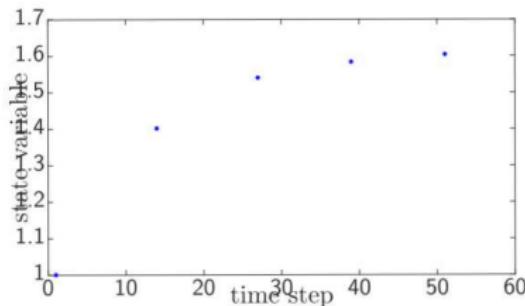
- **Online:** Coarse propagator \mathcal{G}_j^m defined via forecasting:
 - 1 Compute α time steps with fine propagator
 - 2 Compute **local forecast** via gappy POD
 - 3 Select last timestep of **local forecast**

$$\mathcal{G}_j^m : (\hat{\mathbf{x}}_j; T_m, T_{m+1}) \mapsto \mathbf{e}_{\Delta T / \Delta t}^T \Xi_j^m [\mathbf{Z}(\alpha+1, \alpha) \Xi_j^m]^+ \begin{bmatrix} \mathcal{F}(\hat{\mathbf{x}}_j; T_m, T_m + \Delta t) \\ \vdots \\ \mathcal{F}(\hat{\mathbf{x}}_j; T_m, T_m + \Delta t \alpha) \end{bmatrix}$$

Initial seed

$$\mathbf{x}_{k+1}^{m+1} = \mathcal{G}(\mathbf{x}_{k+1}^m; T_m, T_{m+1}) + \mathcal{F}(\mathbf{x}_k^m; T_m, T_{m+1}) - \mathcal{G}(\mathbf{x}_k^m; T_m, T_{m+1})$$

How to compute initial seed \mathbf{x}_0^m , $m = 0, \dots, \bar{M}$?



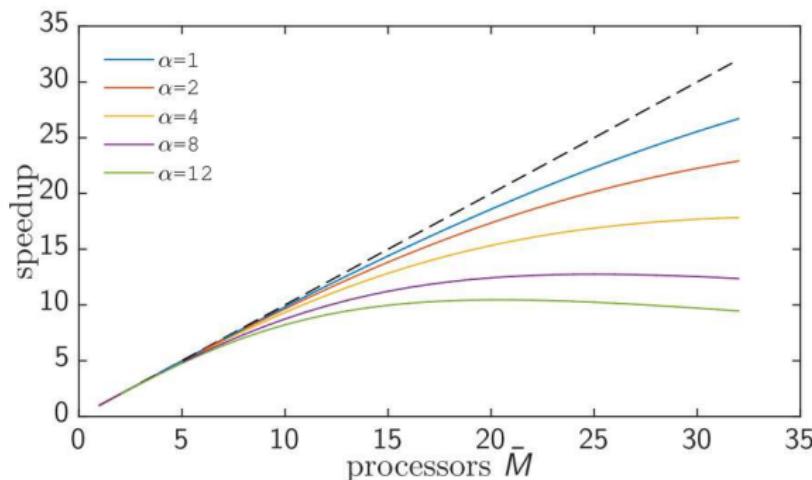
- 1 Typical time integrator
- 2 Local forecast
- 3 Global forecast

Ideal-conditions speedup

Theorem

If $g(\hat{x}_j) \in \text{range}(\Xi_j)$, $j = 1, \dots, p$, then the proposed method converges in one parareal iteration and realizes a speedup of

$$\frac{\bar{M}}{\bar{M}(\bar{M}-1)\alpha/M+1}.$$



Ideal-conditions speedup for $M = 5000$

Ideal-conditions speedup with initial guesses

Corollary

If \mathbf{f} is nonlinear, $g(\hat{x}_j) \in \text{range}(\Xi_j)$, $j = 1, \dots, p$, and the forecasting method also provides Newton-solver initial guesses, then

- 1 the method converges in **one parareal iteration**, and
- 2 only α nonlinear systems of algebraic equations are solved in each time interval.

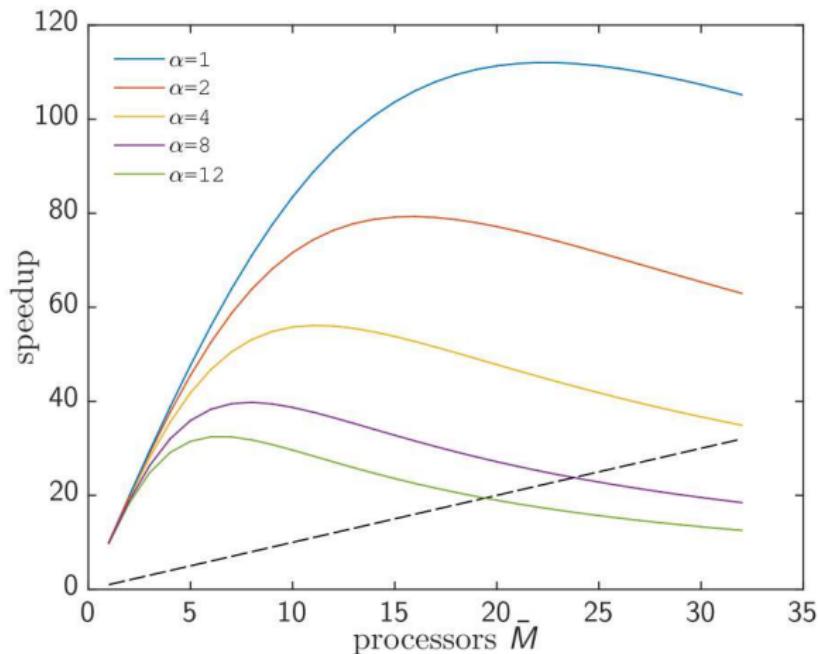
The method then realizes a theoretical speedup of

$$\frac{M}{(\bar{M}\alpha) + (M/\bar{M} - \alpha)\tau_r}$$

relative to the sequential algorithm without forecasting. Here,

$$\tau_r = \frac{\text{residual computation time}}{\text{nonlinear-system solution time}}.$$

Ideal-conditions speedup with initial-guesses



Ideal-condition speedup for $M = 5000$, $\tau_r = 1/10$

Significant speedups possible by leveraging time-domain data!

Stability

Theorem

If the fine propagator is stable, i.e.,

$$\|\mathcal{F}(\mathbf{x}; \tau, \tau + \Delta T)\| \leq (1 + C_{\mathcal{F}} \Delta T) \|\mathbf{x}\|, \quad \forall 0 \leq \tau \leq \tau + \Delta T$$

then the proposed method is also stable, i.e.,

$$\|\hat{\mathbf{x}}_{k+1}^m\| \leq C_m \exp(C_{\mathcal{F}} m \Delta T) \|\hat{\mathbf{x}}^0\|.$$

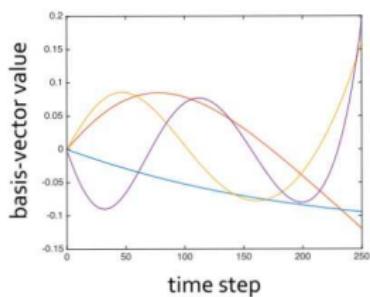
- $C_m := \sum_{k=1}^m \binom{k}{m} \beta_k \gamma^m \alpha^k (\Delta T / \Delta t)^{m-k}$
- $\beta_k := \exp(-C_{\mathcal{F}} k (\Delta T - \Delta t \alpha)) \leq 1$
- $\gamma := \max(\max_{m,j} 1/\|\mathbf{Z}(\alpha+1, \alpha) \Xi_j^m\|, 1/\sigma_{\min}(\mathbf{Z}(\alpha+1, \alpha) \Xi_j^m))$

Example: inviscid Burgers equation [Rewienski, 2003]

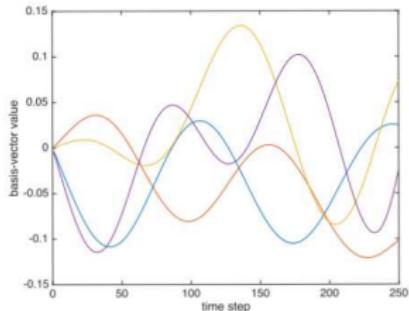
$$\frac{\partial u(x, \tau)}{\partial \tau} + \frac{1}{2} \frac{\partial (u^2(x, \tau))}{\partial x} = 0.02e^{\mu_2 x}$$
$$u(0, \tau) = \mu_1, \quad \forall \tau \in [0, 25]$$
$$u(x, 0) = 1, \quad \forall x \in [0, 100],$$

- Discretization: Godunov's scheme
- $(\mu_1, \mu_2) \in [2.5, 3.5] \times [0.02, 0.03]$
- $\Delta t = 0.1, M = 250$ fine time steps
- FOM: $N = 500$ degrees of freedom
- ROM: LSPG [C. et al., 2011a], POD basis dimension $p = 100$
- $n_{\text{train}} = 4$ training points (LHS sampling); random online point
- **2 coarse propagators:** Backward Euler and local forecast
- **3 initial seeds:** Backward Euler, local forecast, global forecast

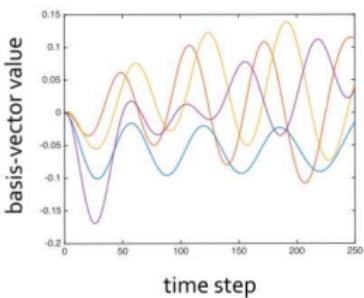
Global temporal bases



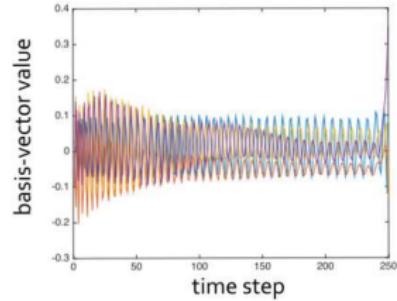
(a) coordinate 1



(b) coordinate 5



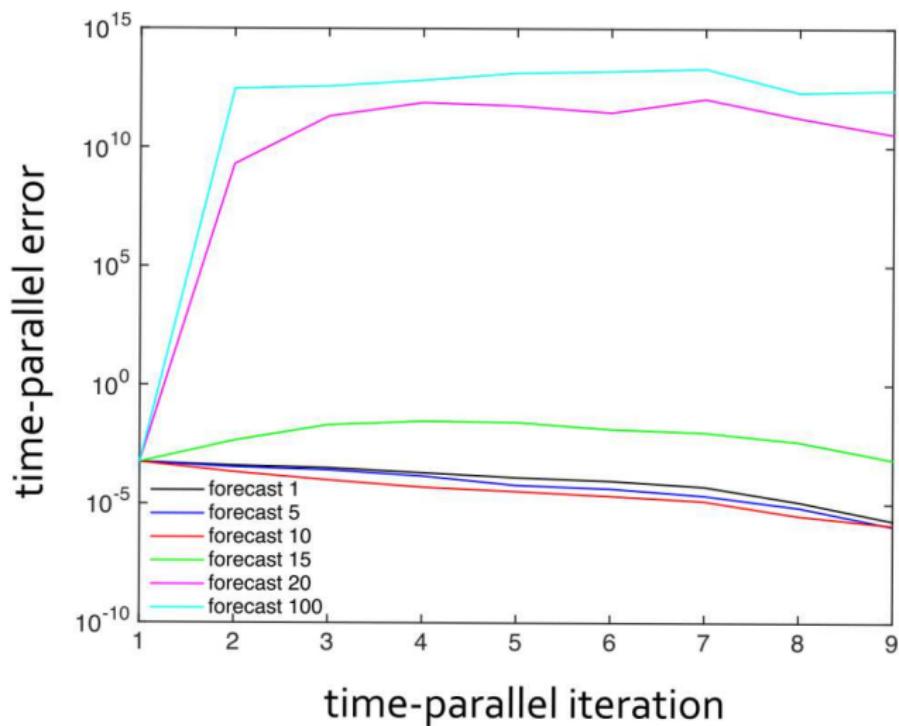
(c) coordinate 10



(d) coordinate 100

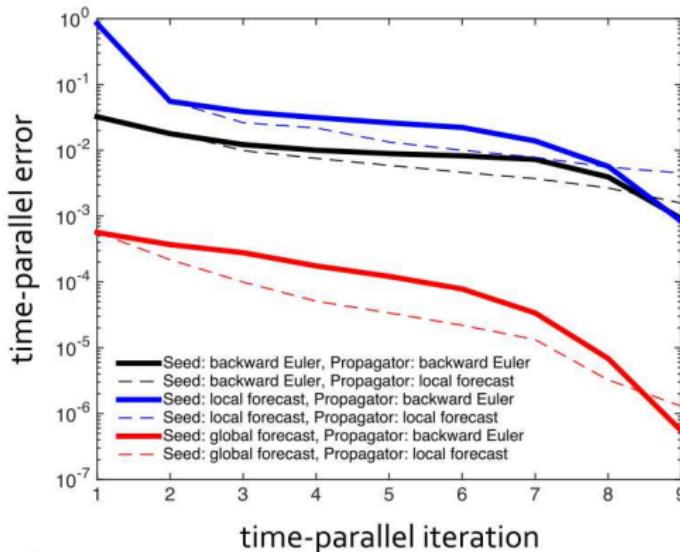
Higher-index generalized coordinates not 'forecastable'

Forecasting 'high-frequency' coordinates is dangerous



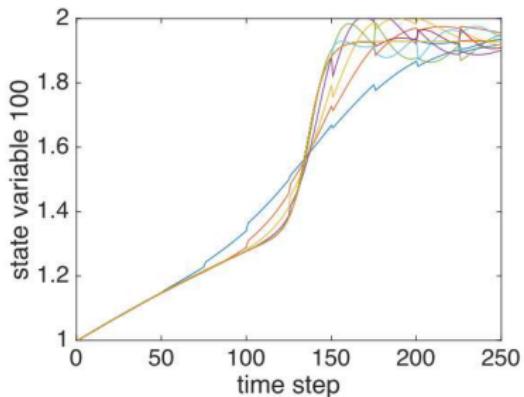
Proceed by forecasting the first 10 coordinates

Comparison: Initial seed and coarse propagator

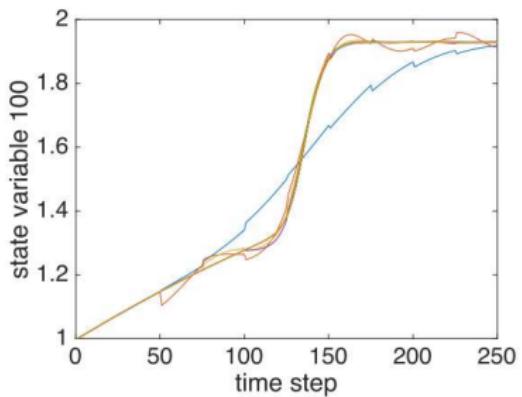


- Initial seed:
 - + best performance: global forecast
 - worst performance: local forecast (error accumulation)
- Coarse propagator:
 - + local forecast outperforms backward Euler

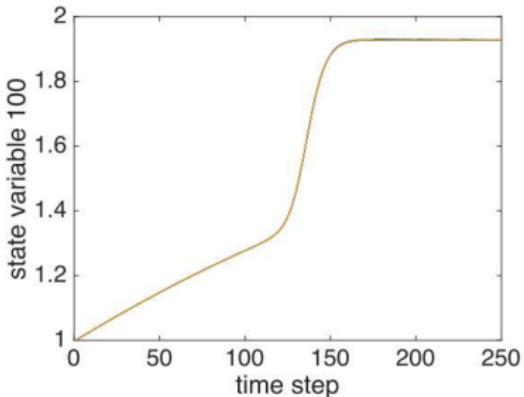
Forecasting improves improves initial seed and coarse propagator!



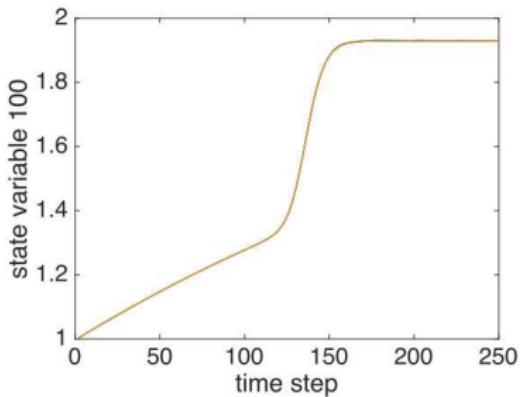
(e) Seed: Euler, Prop: Euler



(f) Seed: Euler, Prop: local forecast

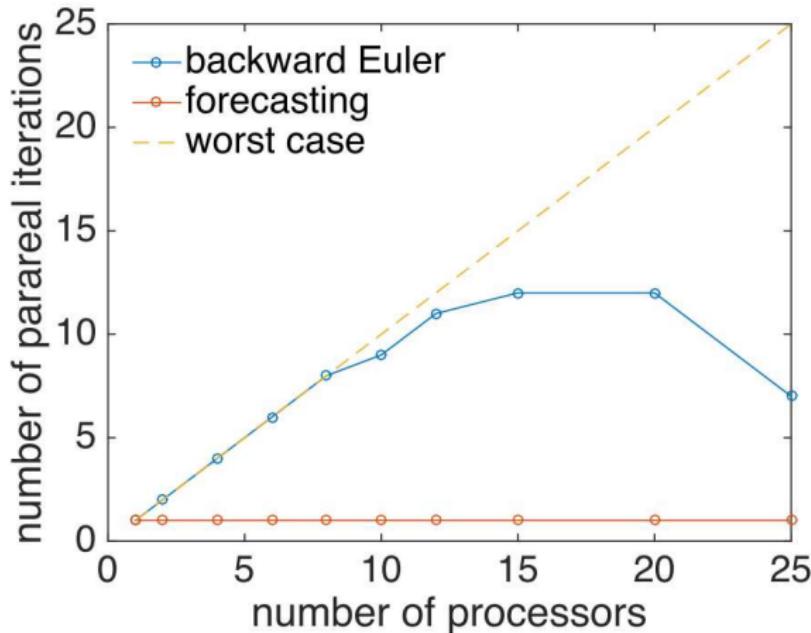


(g) Seed: glob forecast, Prop: Euler



(h) Seed: glob forecast, Prop: loc fore

Parareal performance



- + *Forecasting*: minimum possible iterations
- *Backward Euler*: often close to worst-case performance

Conclusions

Use temporal data to reduce ROM simulation time

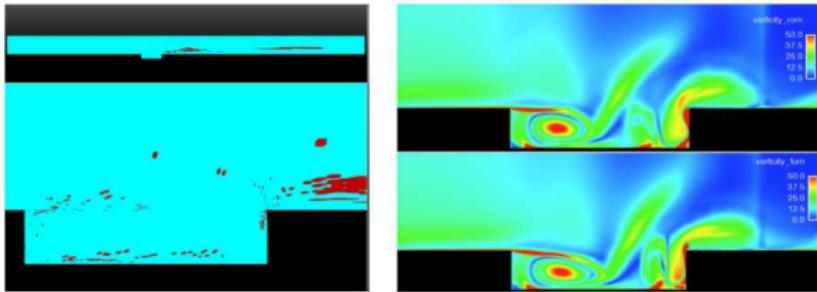
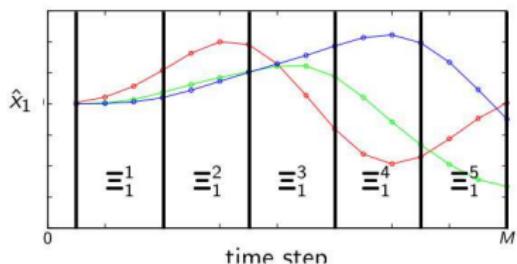
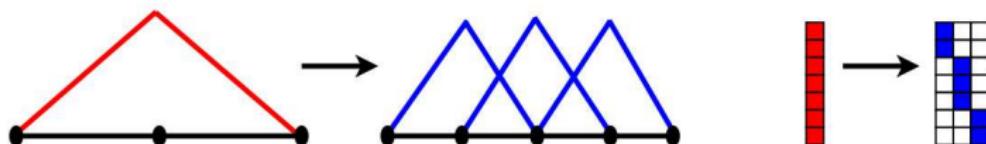
- **offline:** time-evolution bases from right singular vectors
- **online:**

- 1 global forecast as initial seed
- 2 local forecast as coarse propagator

- + theory: excellent speedup and stability
- + ideal parareal performance observed
- + significant improvement over Backward Euler
- + no additional error introduced

- **References:**
 - K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth.
“Data-driven time parallelism with application to
reduced-order models,” *in preparation*.
 - K. Carlberg, J. Ray, and B. van Bloemen Waanders.
“Decreasing the temporal complexity for nonlinear, implicit
reduced-order models by forecasting,” CMAME, Vol. 289, p.
79–103 (2015).

Questions?



Acknowledgments

- This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000.

- Amsallem, D., Cortial, J., C., K., and Farhat, C. (2009).
A method for interpolating on manifolds structural dynamics reduced-order models.
International Journal for Numerical Methods in Engineering,
80(9):1241–1258.
- Amsallem, D. and Farhat, C. (2008).
An interpolation method for adapting reduced-order models and application to aeroelasticity.
AIAA Journal, 46(7):1803–1813.
- Amsallem, D., Zahr, M. J., and Farhat, C. (2012).
Nonlinear model order reduction based on local reduced-order bases.
International Journal for Numerical Methods in Engineering,
92(10):891–916.
- Antoulas, A. C. (2005).
Approximation of Large-Scale Dynamical Systems.

- Arian, E., Fahl, M., and Sachs, E. W. (2000).
Trust-region proper orthogonal decomposition for flow control.
Technical Report 25, ICASE.
- Babuška, I. and Miller, A. (1984).
The post-processing approach in the finite element
method—part 1: Calculation of displacements, stresses and
other higher derivatives of the displacements.
International Journal for numerical methods in engineering,
20(6):1085–1109.
- Baffico, L., Bernard, S., Maday, Y., Turinici, G., and Zérah, G.
(2002).
Parallel-in-time molecular-dynamics simulations.
Physical Review E, 66(5):057701.
- Bai, Z. (2002).

Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems.

Applied Numerical Mathematics, 43(1):9–44.

Bal, G. and Maday, Y. (2002).

A “parareal” time discretization for non-linear pdes with application to the pricing of an american put.

In Recent developments in domain decomposition methods, pages 189–202. Springer Berlin Heidelberg.

Bangerth, W. and Rannacher, R. (1999).

Finite element approximation of the acoustic wave equation: Error control and mesh adaptation.

East West Journal of Numerical Mathematics, 7(4):263–282.

Bangerth, W. and Rannacher, R. (2003).

Adaptive finite element methods for differential equations.

Springer.

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004).

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations.
Comptes Rendus Mathématique Académie des Sciences,
339(9):667–672.

- Baur, U., Beattie, C., Benner, P., and Gugercin, S. (2011).
Interpolatory projection methods for parameterized model reduction.
SIAM Journal on Scientific Computing, 33(5):2489–2518.
- Becker, R. and Rannacher, R. (1996).
Weighted a posteriori error control in finite element methods,
volume preprint no. 96-1.
Universitat Heidelberg.
- Becker, R. and Rannacher, R. (2001).
An optimal control approach to a posteriori error estimation in finite element methods.
Acta Numerica 2001, 10:1–102.
- Benner, P., Gugercin, S., and Willcox, K. (2015).

A survey of projection-based model reduction methods for parametric dynamical systems.
SIAM Review, 57(4):483–531.

 Blouza, A., Boudin, L., and Kaber, S. M. (2011).
Parallel in time algorithms with reduction methods for solving chemical kinetics.
Communications in Applied Mathematics and Computational Science, 5(2):241–263.

 Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008).
Model reduction for large-scale systems with high-dimensional parametric input space.
SIAM Journal on Scientific Computing, 30(6):3270–3288.

 C., K. (2011).
Model Reduction of Nonlinear Mechanical Systems via Optimal Projection and Tensor Approximation.
PhD thesis, Stanford University.

 C., K. (2015).

Adaptive h -refinement for reduced-order models.

International Journal for Numerical Methods in Engineering,
102(5):1192–1210.

 C., K., Barone, M., and Antil, H. (2015a).
Galerkin v. discrete-optimal projection in nonlinear model reduction.
arXiv e-print, (1504.03749).

 C., K., Bou-Mosleh, C., and Farhat, C. (2011a).
Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations.
International Journal for Numerical Methods in Engineering,
86(2):155–181.

 C., K., Cortial, J., Amsallem, D., Zahr, M., and Farhat, C. (2011b).
The GNAT nonlinear model reduction method and its application to fluid dynamics problems.

- C., K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows.
Journal of Computational Physics, 242:623–647.
- C., K., Ray, J., and van Bloemen Waanders, B. (2015b).
Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting.
Computer Methods in Applied Mechanics and Engineering, 289:79–103.
- C., K., Tuminaro, R., and Boggs, P. (2012).
Efficient structure-preserving model reduction for nonlinear mechanical systems with application to structural dynamics.
In AIAA Paper 2012-1969, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii.

- C., K., Tuminaro, R., and Boggs, P. (2015c).
Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics.
SIAM J. Sci. Comput., 37(2):B153—B184.
- Chen, F., Hesthaven, J. S., and Zhu, X. (2014).
On the use of reduced basis methods to accelerate and stabilize the parareal method.
In Reduced Order Methods for Modeling and Computational Reduction, pages 187–214. Springer.
- Cortial, J. and Farhat, C. (2009).
A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems.
International Journal for Numerical Methods in Engineering, 77(4):451.
- Dihlmann, M., Drohmann, M., and Haasdonk, B. (2011).
Model reduction of parametrized evolution problems using the reduced basis method with adaptive time partitioning.

- Drohmann, M. and C., K. (2015).
The romes method for reduced-order-model uncertainty quantification.
SIAM/ASA Journal on Uncertainty Quantification,
3(1):116–145.
- Drohmann, M., Haasdonk, B., and Ohlberger, M. (2011).
Adaptive reduced basis methods for nonlinear convection–diffusion equations.
In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 369–377. Springer.
- Eftang, J. L., Knezevic, D. J., and Patera, A. T. (2011).
An hp certified reduced basis method for parametrized parabolic partial differential equations.
Mathematical and Computer Modelling of Dynamical Systems,
17(4):395–422.
- Eftang, J. L. and Patera, A. T. (2013).

Port reduction in parametrized component static condensation:
approximation and a posteriori error estimation.

International Journal for Numerical Methods in Engineering,
96(5):269–302.

- Eftang, J. L., Patera, A. T., and Rønquist, E. M. (2010).
An 'hp' certified reduced basis method for parametrized elliptic
partial differential equations.
SIAM Journal on Scientific Computing, 32(6):3170–3200.
- Eldred, M. S., Giunta, A. A., Collis, S. S., Alexandrov, N. A.,
and Lewis, R. M. (2004).
Second-order corrections for surrogate-based optimization with
model hierarchies.
In Proceedings of the 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, NY, number
AIAA Paper 2004-4457.
- Eldred, M. S., Weickum, G., and Maute, K. (2009).

A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization.

Structural and Multidisciplinary Optimization, 38(6):599–611.

Engblom, S. (2009).

Parallel in time simulation of multiscale stochastic chemical kinetics.

Multiscale Modeling & Simulation, 8(1):46–68.

Estep, D. (1995).

A posteriori error bounds and global error control for approximation of ordinary differential equations.

SIAM Journal on Numerical Analysis, 32(1):1–48.

Everson, R. and Sirovich, L. (1995).

Karhunen–Loëve procedure for gappy data.

Journal of the Optical Society of America A, 12(8):1657–1664.

Falgout, R. D., Freidhoff, S., Kolev, T. V., MacLachlan, S. P., and Schroder, J. B. (2014).

Farhat, C. and Chandresris, M. (2003).

Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications.

International Journal for Numerical Methods in Engineering, 58(9):1397–1434.

Farhat, C., Cortial, J., Dastillung, C., and Bavestrello, H. (2006).

Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses.

International Journal for Numerical Methods in Engineering, 67:697–724.

Farhat, C., Geuzaine, P., and Brown, G. (2003).

Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter.

- **Fidkowski, K. J. (2007).**
A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations.
PhD thesis, Massachusetts Institute of Technology.
- **Fischer, P. F., Hecht, F., and Maday, Y. (2005).**
A parareal in time semi-implicit approximation of the navier-stokes equations.
In Domain decomposition methods in science and engineering, pages 433–440. Springer.
- **Freund, R. (2003).**
Model reduction methods based on Krylov subspaces.
Acta Numerica, 12:267–319.
- **Gallivan, K., Vandendorpe, A., and Van Dooren, P. (2004).**
Model reduction of mimo systems via tangential interpolation.
SIAM Journal on Matrix Analysis and Applications, 26(2):328–349.

- Gander, M. and Vandewalle, S. (2007).
Analysis of the parareal time-parallel time-integration method.
SIAM Journal on Scientific Computing, 29(2):556–578.
- Guibert, D. and Tromeur-Dervout, D. (2007).
Adaptive parareal for systems of odes.
In Domain decomposition methods in science and engineering XVI, pages 587–594. Springer.
- Haasdonk, B., Dihlmann, M., and Ohlberger, M. (2011).
A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space.
Mathematical and Computer Modelling of Dynamical Systems, 17(4):423–442.
- Huynh, D. B. P., Knezevic, D. J., Chen, Y., Hesthaven, J. S., and Patera, A. T. (2010).
A natural-norm successive constraint method for inf-sup lower bounds.

- Ionita, A. and Antoulas, A. (2014).
Data-driven parametrized model reduction in the loewner framework.
SIAM Journal on Scientific Computing, 36(3):A984–A1007.
- Lefteriu, S. and Antoulas, A. C. (2010).
A new approach to modeling multiport systems from frequency-domain data.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(1):14–27.
- LeGresley, P. A. (2006).
Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods.
PhD thesis, Stanford University.
- Lions, J., Maday, Y., and Turinici, G. (2001a).
A “parareal” in time discretization of pdes.

Comptes Rendus de l'Academie des Sciences Series I
Mathematics, 332(7):661–668.

- **Lions, J.-L., Maday, Y., and Turinici, G. (2001b).**
Résolution d'edp par un schéma en temps “parareal”.
Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 332(7):661–668.
- **Lu, J. C.-C. (2005).**
An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method.
PhD thesis, Massachusetts Institute of Technology.
- **Ma, Z., Ahuja, S., and Rowley, C. W. (2011).**
Reduced-order models for control of fluids using the eigensystem realization algorithm.
Theoretical and Computational Fluid Dynamics, 25(1-4):233–247.
- **Maday, Y. (2007).**

Parareal in time algorithm for kinetic systems based on model reduction.

High-dimensional partial differential equations in science and engineering, 41:183–194.

- **Maday, Y. and Rønquist, E. M. (2002).**
A reduced-basis element method.
J. Sci Comput, 17(1-4):447–459.
- **Maday, Y. and Turinici, G. (2003).**
Parallel in time algorithms for quantum control: Parareal time discretization scheme.
International journal of quantum chemistry, 93(3):223–228.
- **Manzoni, A., Pagani, S., and Lassila, T. (2016).**
Accurate solution of bayesian inverse uncertainty quantification problems using model and error reduction methods.
- **Moore, B. (1981).**
Principal component analysis in linear systems: Controllability, observability, and model reduction.

Nemec, M. and Aftosmis, M. (2007).

Adjoint error estimation and adaptive refinement for embedded-boundary cartesian meshes.

In 18th AIAA CFD Conference, Miami. Paper
AIAA-2007-4187.

Ng, L. and Eldred, M. S. (2012).

Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation.

In AIAA 2012-1852.

Or, A. and Speyer, J. (2010).

Empirical pseudo-balanced model reduction and feedback control of weakly nonlinear convection patterns.

Journal of Fluid Mechanics, 662:36.

Park, M. A. (2004).

Adjoint-based, three-dimensional error prediction and grid adaptation.

- Patera, A. T. and Rozza, G. (2006).
Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations.
MIT.
- Peherstorfer, B., Butnaru, D., Willcox, K., and Bungartz, H.-J. (2014).
Localized discrete empirical interpolation method.
SIAM Journal on Scientific Computing, 36(1):A168—A192.
- Phuong Huynh, D. B., Knezevic, D. J., and Patera, A. T. (2013).
A static condensation reduced basis element method:
approximation and a posteriori error estimation.
ESAIM: Mathematical Modelling and Numerical Analysis,
47(01):213–251.
- Pierce, N. A. and Giles, M. B. (2000).

Adjoint recovery of superconvergent functionals from pde approximations.

SIAM review, 42(2):247–264.

- Prud'Homme, C., Rovas, D. V., Veroy, K., Machiels, L., Maday, Y., Patera, A. T., Turinici, G., et al. (2001). Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70–80.
- Rannacher, R. (1999). The dual-weighted-residual method for error control and mesh adaptation in finite element methods. MAFELEAP, 99:97–115.
- Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.
- Rewienski, M. J. (2003).

PhD thesis, Massachusetts Institute of Technology.

- Rowley, C. W. (2005).
Model reduction for fluids, using balanced proper orthogonal decomposition.
Int. J. on Bifurcation and Chaos, 15(3):997–1013.
- Rozza, G., Huynh, D., and Patera, A. T. (2008).
Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations.
Archives of Computational Methods in Engineering, 15(3):229–275.
- Ruprecht, D. and Krause, R. (2012).
Explicit parallel-in-time integration of a linear acoustic-advection system.
Computers & Fluids, 59:72–83.

- Ryckelynck, D. (2005).
A priori hyperreduction method: an adaptive approach.
Journal of Computational Physics, 202(1):346–366.
- Venditti, D. and Darmofal, D. (2000).
Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow.
Journal of Computational Physics, 164(1):204–227.
- Venditti, D. A. and Darmofal, D. L. (2002).
Grid adaptation for functional outputs: application to two-dimensional inviscid flows.
Journal of Computational Physics, 176(1):40–69.
- Veroy, K., Prud'homme, C., Rovas, D. V., and Patera, A. T. (2003).
A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations.

 Washabaugh, K., Amsallem, D., Zahr, M., and Farhat, C. (2012).

Nonlinear model reduction for cfd problems using local reduced-order bases.

In 42nd AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, AIAA Paper, volume 2686.

 Willcox, K. and Peraire, J. (2002).

Balanced model reduction via the proper orthogonal decomposition.

AIAA Journal, 40(11):2323–2330.

 Wirtz, D., Sorensen, D. C., and Haasdonk, B. (2012).

A-posteriori error estimation for DEIM reduced nonlinear dynamical systems.

Preprint Series, Stuttgart Research Centre for Simulation Technology.

Yano, M., Patera, A. T., and Urban, K. (2012).
A space-time certified reduced-basis method for Burgers' equation.
Math. Mod. Meth. Appl. S., submitted.