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Computational barrier at Sandia

m CFD model m High simulation costs

m 100 million cells m 6 weeks, 5000 cores

m 200,000 time steps m 6 runs maxes out Cielo
m Fast-turnaround design m Uncertainty quantification

Objective: break barrier via nonlinear model reduction
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Surrogate modeling

inputs g — ‘full—order model \ — outputs y

inputs p — ‘surrogate model ’ — outputs ys

1) Data fits 2) Coarsened 3) Reduced-order

physics models (ROMs)
‘: :/ T + Physics based

— High speedups

output

+ Preserve

- Not physics structure

based

I + Rigorous error
+ High speedups - 5

analysis

- Unproven for
nonlinear
dynamical

- Low speedups systems
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ROM: state of the art [genner et al., 2015]

m Linear time-invariant systems: mature [Antoulas, 2005]
m Balanced truncation [Moore, 1981]
m Empirical balanced truncation
[Willcox and Peraire, 2002, Rowley, 2005, Or and Speyer, 2010, Ma et al., 2011]
m Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]
m Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
m Reduced-basis method
[Prud’'Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]
m Subsystem-based reduced-basis method
[Maday and Rgnquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]
+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Nonlinear dynamical systems: unproven
m Proper orthogonal decomposition (POD)—-Galerkin
- Not reliable: Stability and accuracy not guaranteed

- Not certified: error bounds not sharp
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al.,, 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b)

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement [C., 2015]
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015]
+ Low cost
m Sample-mesh approach [C. et al,, 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]
+ Certification
m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability

m A posteriori h-refinement [C., 2015]

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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POD-Galerkin: offline data collection

%:f(x;t,u); x(0, ) =x%p), te[0,T], peD

1 Collect ‘snapshots’ of the state
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POD-Galerkin: offline data collection

2 Data compression
m Compute SVD:  [X; X, X3] =

II I\ 1

m Truncate: ® = [ug -+ up)
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POD-Galerkin: online

projection

Full-order model:

x(t) ~ %(t) = O

Galerkin ROM:

&

% =f(x;t,p), x(0, ) =x(p)
2 ®T(F(%t,p) — %) =0
. —[\=0
%(0, ) = &7 x%(p)

= o7 f(®x;t, 1),

dt

Nonlinear model reduction
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CaVity—ﬂOW pr0b|em. Collaborator: M. Barone (SNL)

m Unsteady Navier—Stokes m Re =6.3 x 10°

m DES turbulence model m M=06

m 1.2 million degrees of m CFD code: AERO-F
freedom [Farhat et al., 2003]

Nonlinear model reduction Kevin Carlberg
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Full-order model responses

T

vorticity field

pressure field

Nonlinear model reduction
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POD-Galerkin failure

2 1AOOO—IXONDH
QESSSoSo——
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M19.0

14

- Galerkin ROMs unstable

12
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How to construct a ROM for nonlinear dynamical systems?

m Optimize then discretize? (Galerkin)

m Discretize then optimize? (Least-squares Petrov—Galerkin)

LSPG ROM
OAE

Full-order model optimal Galerkin ROM
ODE projection ODE

time discretization time discretization

| |

optimal Full-order model -

m Outstanding questions:
Which notion of optimality is better in practice?
Discrete-time error bounds?
Time step selection?

Nonlinear model reduction Kevin Carlberg 13



Nonlinear model reduction

Full-order model
ODE

|

time discretization

|

Full-order model
OAE

Kevin Carlberg
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Full-order model (FOM)

m ODE: time continuous

C:I: =f(x,t), x(0)=x° +tel0,T]
m OAE, linear multistep schemes: , n=1,...,N
K
r"(x) = aox — AtBof(x, t") + Y ajx" AtZﬁ f(x", ")
j=1
m OAE, Runge-Kutta: | r] (x7,...,xJ) =0 ‘ i=1,..,s

s
ri(x1, ..., xs) == x; — F(x"! + Atz ajixj, t"1 + ciAt)
j=1

s
x"=x""14 Atz bix? (explicit state update)
i=1
This talk focuses on linear multistep schemes.

Nonlinear model reduction Kevin Carlberg
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Galerkin ROM: first optimize

Full-order model Galerkin
ODE projection

time discretization

|

Full-order model
OAE

Nonlinear model reduction

Galerkin ROM
ODE

Kevin Carlberg
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Galerkin: first optimize, then discretize

Full-order model Galerkin
‘ ODE P projection e

|

time discretization

|

Full-order model
OAE

Nonlinear model reduction

Galerkin ROM
ODE

!

time discretization

'

Galerkin ROM
OAE

Kevin Carlberg
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Galerkin ROM

m ODE
dx T A ~ T,0
EZCD f(®x,t), x(0)=d'x", te]|0,T]
+ Continuous velocity ‘c’I—’;‘ is optimal

Theorem (Galerkin ROM: continuous optimality)
The Galerkin ROM velocity minimizes the time-continuous FOM residual:

e t) = arg min v = F(x, 0

s OAE

k k
P (%) = aok—Ath® F(0%, t")+Y k"I -At> | 5o F (a»?"—f , t"_j)
j=1 j=1
- Discrete state X" is not generally optimal

Can we fix this? Will doing so help?

Nonlinear model reduction Kevin Carlberg
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Galerkin ROM: Commutativity

Projection and time discretization are commutative for Galerkin ROMs:
P(%) =T (d%)

Full-order model Galerkin s Galerkin ROM
ODE projection ODE
time discretization time discretization
Full-order model Galerkin - Galerkin ROM
OAE projection OAE

Nonlinear model reduction Kevin Carlberg
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LSPG ROM: first discretize, then optimize

Full-order Galerkin
model
ODE

Galerkin ROM
projection ODE

time discretization time discretization

. Full-order .
LSP(;SAITEOM Petrov‘ Gglerkm riodel Ga_lerk_ln ROM
projection OAE projection OAE
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LSPG ROM

m FOM OAE
r"(x"y=0, n=1,..,N
m LSPG ROM OAE:
sn . n 3\ (|12
%" = arg min [|Ar" (92) 2
(¥

wEN T (X7 =0, W(R) = ATA%LX

m A = I: LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

()

+ Discrete solution is optimal

Nonlinear model reduction Kevin Carlberg
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Does the LSPG ROM have a time-continuous representation?

| 7 | Fill ordler Galerkin [ Galerkin ROM
( ) ) né%é projection ODE
time discretization time discretization

|

LSPG ROM Petrov-Galerkin F”““;'dle’ Galerkin Galerkin ROM
OAE projection mOOAE projection OAE
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Does the LSPG ROM have a time-continuous representation?

Sometimes.

Full-order Galerkin

' LSPGROM ! Petrov—Galerkin Galerkin ROM
‘ ODE i projection model projection ODE
,,,,,,,,, ! ODE
1
Y

time discretization firmaiseretization time discretization

1
' |
Y
LSPG ROM Petrov-Galerkin Full-order Galerkin Galerkin ROM
OAE projection projection OAE

model
OAE
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LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov—Galerkin projection to
the FOM ODE with test basis

V(% t)=ATA (aol — Atﬁoaf

8—X(XO + ¢')?, t)) ¢

if
Bj=0,j>1 (eg., asingle-step method),
the velocity f is linear in the state, or

Bo =0 (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!

Nonlinear model reduction Kevin Carlberg
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Are the two approaches ever equivalent?
m Galerkin: o7 (bx") =0
= LSPG: W (£") 7P (0K") =0
Does W"(x") = ® ever?
Yes.

o (©x,1)) ®

The two approaches are equivalent (W"(x) = ®)
in the limit of At — 0 with A =1/,/aql,
A if the scheme is explicit (5o = 0) with A = 1/\/%1, or
B if 2 is positive definite with [22]7! =

f

(%) = A

(bx)d = A" A <aol — Atﬁoa

Nonlinear model reduction Kevin Carlberg 25



Discrete-time error bound

If the following conditions hold:

f(-, t) is Lipschitz continuous with Lipschitz constant k, and

At is such that 0 < h := |ag| — |Bo|kAL,
then

k
At -
18X < 5= D7 1811 = V) F (x0 + 085
=0

k
1 e n—4¢
)45 3 (vt ¢ o i
At & Ly
Xzl < S5 D18l (1 = PP (xo + @R77%) [l S (1Belwre + fauel) 6~
=0

=1

with
m Ox% = x] — OXL.

V=0T

m Ox] = x" — KT m PP = o (W)To) (w7

Nonlinear model reduction
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LSPG ROM vyields a smaller error bound
Theorem (Backward Euler)

If conditions (1) and (2) hold then

n—1

lloxg|l < AtY -V f (xo + w'{f) I
E”*f
llox7]l < Ari I (1-Pi) F (%0 + oz ) |
5241.

Il

k= ||loxk — Atf (xo + o&g) oxk1|
-

k= o tf (xo 4 Of(’[) — 0%{ 1| = min [ ®y — Atf (xo + ®y) oxk1|
Corollary (LSPG smaller error bound)

Ak 1_ ok—1 _k
If x =X theneL<

Nonlinear model reduction Kevin Carlberg




LSPG ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define
NN
n AxJL = xj,_ — xJL -
m AX/: full-space solution increment from X -1
Then, the LSPG error can also be bounded as

||5XLHSAt(1+ﬂAt)Z(hy+1llf(xJ +Ax" )|
Jj=0

with 1 = |®AK] — A% /|| A%I].

Effect of decreasing At:
+ The terms At(1 + kAt) and 1/(hY*! decrease
- The number of total time instances n increases

? The term 11"~/ may increase or decrease, depending on the
spectral content of the basis ®

Nonlinear model reduction Kevin Carlberg
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Galerkin and LSPG responses for basis dimension p = 204

—FOM, At|= 0.0015
—Af=0.
28 :§§i°° %
—4=
—Ai
260 —ar=
==
24 )
(2]
0
Vs,
o
2
18
1.4 1.4
0 1 2 3 4 5 6 0 2 4 6 8 10 12
time time
(a) Galerkin (b) LSPG

- Galerkin ROMs unstable for long time intervals
+ LSPG ROMs accurate and stable (most time steps)

Nonlinear model reduction Kevin Carlberg
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LSPG ROM: superior performance

£10 - £10 - £10 -
] ——Galerkin . = ——Galerkin . = ——Galerkin R
3 ——Minimum residual 2 ——Minimum residual 2 ——Minimum residual
= =2 =
&107 G107 / 107 i/
= : \/ .
= b bt
o o o
> = =
@ @ 3
. : :
E10? E10? E10?
pe] g pe]
=) = 8
= ~.‘ [
=] =] [=}
a = 2
% 10 S Chty

107 107 107 10°

At At At
() 0<t<055 (do<t<11 (e) 0<t<154

v" LSPG ROM vyields a smaller error for all time intervals and
time steps.
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Limiting equivalence

1072,

o -
O
® o
o
¢
3 g
[}
EB
A
o
Wﬁw ] 10 102 107! Wxir v 1073 1072 101 Wl:r' BT 107 107!
At At t
(f) p=204 (g) p =368 (h) p =564

Galerkin/LSPG difference in the stable Galerkin interval 0 <t < 1.1.

v" The LSPG ROM converges to Galerkin as At — 0.

Nonlinear model reduction Kevin Carlberg
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LSPG performance (t < 12.5 sec)
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V" An intermediate At produces the lowest error and better speedup.

p = 564 case:

m At = 1.875 x 10~ sec: relative error = 1.40%, time = 289 hrs

m At =15 x 1073 sec: relative error = 0.095%, time = 35.8 hrs

Nonlinear model reduction

Kevin Carlberg
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Summary: Improve projection technique

Galerkin: projection and time-discretization are commutative

m LSPG: a continuous representation sometimes exists

m Equivalence conditions

Limit of At — 0

Explicit schemes

Positive definite residual Jacobians
Discrete-time error bounds

m LSPG ROM vyields smaller error bound than Galerkin

m Ambiguous role of time step At
Numerical experiments

m LSPG ROM vyields a smaller error than Galerkin

m Equivalent as At — 0

m Error minimized for intermediate At
Reference: C., Barone, and Antil. Galerkin v. least-squares
Petrov—Galerkin projection in nonlinear model reduction.
arXiv e-print, (1504.03749), 2015.

Nonlinear model reduction Kevin Carlberg
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability

m A posteriori h-refinement [C., 2015]

Collaborators: C. Farhat, J. Cortial (Stanford)

Nonlinear model reduction Kevin Carlberg
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LSPG performance (t < 2.5 sec)

[

/i

0 i
2 == 0=
5 1 h =368 =
] —p =564 ?g
30! 810
B g
= 20
902 S10°
7 =
= 2
G073 =10
2 E
o 175)
g0+l 103
10771071 107 1072 1071 10" 1074

-+ Always sub-3% errors
- More expensive than the FOM
m FOM simulation: 1 hour, 48 CPU

1073 1072

m LSPG ROM simulation (fastest): 1.3 hours, 48 CPU

Nonlinear model reduction

Kevin Carlberg
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Hyper-reduction via Gappy POD (ewerson and Sirovich, 1005]
" — arg min || Ar" (®2) ||3.
ZeRP

Can we select A to make this inexpensive?

1. r(x) =~ " P'(x) = arg mm |P®rF — Pri(x)l

d)Rr E
| | I —argmln I .
2

X" = arg min |7 (®2) |3 = arg min [|® " (®2) |3 = arg min [P (®2) [|3

=arg min || (POz)" Pr" (® Z) I3
2€RP T e —
A
+ GNAT: A= (P®%)" P leads to low-cost

m Offline: Construct ®; (POD) and P (greedy method)

Nonlinear model reduction Kevin Carlberg
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Sample mesh: HPC implementation

R = in || (P®R)" Pr"(®2) |3
X" = arg min || (P®g)" Pr (®2) |3

m Key: GNAT samples only a few entries of the residual Pr”

m /dea: Extract minimal subset of the mesh

m Sample mesh: 4.1% nodes, 3.0% cells

-+ Small problem size: can run on many fewer cores

Nonlinear model reduction Kevin Carlberg



GNAT performance (t < 12.5 sec)

vorticity field

GNAT
ROM

pressure field

FOM

+ < 1% error in time-averaged drag
-+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
m GNAT ROM: 32 min x 2 CPU

Nonlinear model reduction

Kevin Carlberg
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]
+ Low cost
m Sample-mesh approach [C. et al,, 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]
+ Certification
m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]
+ Reliability

m A posteriori h-refinement [C., 2015

Collaborators: L. Brencher, B. Haasdonk, A. Barth (U Stuttgart)

Nonlinear model reduction Kevin Carlberg
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GNAT performance

vorticity field pressure field

FOM

m FOM: 5 hour x 48 CPU

m GNAT ROM: 32 min x 2 CPU.

+ 229x CPU-hour savings. Good for many query.
- 9.4x walltime savings. Bad for real time.

Why?

Nonlinear model reduction Kevin Carlberg
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GNAT: strong scaling (Ahmed body) (c. 201

)

)/(
Trom/ Trom

IS

10 12 14 16 0

0 2 4 6

2 cPu
(e) CPU-hour savings (f) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)
- Modest walltime savings (max: 7 for 12 CPU)
Spatial parallelism is quickly saturated!
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Time—pa rallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

to —H— tym
t t h

|—o1—|2—'—o—|—o—}'—'v—v‘—'1—4—|—o—|—ﬂ\ \H—|—|—¢—H—H—¢—|

To T1 T> Tl\—/l—l TI\7I

m Fine propagator: time step At
.F(X; 71, 7'2)
m Coarse propagator: time step AT

G(x; 1, 72)

m Parareal iteration k (sequential and parallel steps):
XTfll — g(XT+1; va Tm+1) + ]:(XT; Tm: Tm+1) - g(ka; me Tm+1)

n Interpretations [Gander and Vandewalle, 2007, Falgout et al., 2014]:
m Deferred/residual-correction scheme B(xx+1) = B(xx) — A(xx)
m Multiple shooting method with FD Jacobian approximation
m Two-level multigrid

Nonlinear model reduction Kevin Carlberg



Parareal: sequential and parallel steps ftions et al. 20014

17 17
16 16 s e
%5 %5 /
< <
‘L4 ‘T4
< ]
13 3
2 2

w w

11 11

X 10 20 (jaQeep 40 50 60 15 10 20 (jpaQeep 40 50 60

m+1 m.
g(xo i Tm+1) ]:(XO ; Ty Tm+1)

17 17
1.6 :/_,/—~ 1.6 7;>-
g Ay
2 i
L4 L4
13 13
£2 g2
11 11

1 1

0 60 0 10 20 timé%ep 20 50 60

10 20 timé%tep 40 50

Bl T T )

+g(xin; Tm, Tm+1)_g(X6n; Tm, Tm+1)

Nonlinear model reduction
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

m Existing coarse propagators

m Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

m Coarse spatial discretization
[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

m Simplified physics model [Baffico et al., 2002, Maday and Turinici, 2003,
Blouza et al., 2011, Engblom, 2009, Maday, 2007]

m Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]

m Reduced-order model (on the fly) [Farhat et al., 2006,
Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

ROM context: can we leverage offline data to improve the coarse
propagator?

Nonlinear model reduction Kevin Carlberg



Revisit the SVD

[X: X2 X3] =

II I 0 % M
time step

First row of VT

jth row of VT contains a basis for time evolution of Xj

m Construct =;: global time-evolution basis for X;

[EJ £ntra|n] , E‘; — [VM(f*1)+1,j e VM,'J]T

Nonlinear model reduction Kevin Carlberg
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First attempt (c etar, 20150]

compute global forecast by gappy POD in time domain:

%J: ___"—#////f \\

0 time step

X1 so far; memory « = 4; forecast; temporal basis

zj=argmin||Z(m—1,0)=jz— Z(m — 1, a)g(X)]2
zeR%
m Time sampling: Z(k, ) := [ex—p --- ek]T
m Time unrolling: g(%) : & — [Xi(to) -+ K(tm)] "

T= ... as initi 2t ) |
use e, =;z; as initial guess for Xj(tm) in Newton solver

Nonlinear model reduction Kevin Carlberg



First attempt: structural dynamics c etai, 2015]

1o

PRRSE - CE

o

Newton-it
reduction
speedup

v

memory « memory «

+ Newton iterations reduced by up to ~2x
+ Speedup improved by up to ~1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?

Nonlinear model reduction Kevin Carlberg
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Coarse propagator via local forecasting

m Offline: Construct local time-evolution basis EJ'-"

=1 =2 =3 =1 g
=1 =1 = =1 =1
0 - M
time step

m Online: Coarse propagator gjf" defined via forecasting:
Compute « time steps with fine propagator
Compute local forecast via gappy POD
Select last timestep of local forecast

F(Rj; Tom, T + At)
O™ : (%) T, Tont1) = €A 7/ac=r [Z(a+1,)Z]" :

F(Xj; Tmy T + Ata)

Nonlinear model reduction Kevin Carlberg 48



Initial seed

x;{n_:-ll = g(xT—l—l; Tm, Tm+1) +]:(x;<n; Tm, Tm+1) - g(XT; Tm, Tm+1)

How to compute initial seed x§', m =0, ..., M?

1.7

0 10 20 t‘imé%tep 40 50 60

Typical time integrator
Local forecast
Global forecast

Nonlinear model reduction Kevin Carlberg
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|deal-conditions speedup

If g(X;) € range(=;), j = 1,..., p, then the proposed method
converges in one parareal iteration and realizes a speedup of
M

M(M — 1)a/M 41

ed

0 5 10 15 20 _ 25 30 35
processors M

Ideal-conditions speedup for M = 5000

Nonlinear model reduction Kevin Carlberg
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|deal-conditions speedup with initial guesses

Corollary

If f is nonlinear, g(X;) € range(Z;), j=1,...,p, and the
forecasting method also provides Newton-solver initial guesses,
then

the method converges in one parareal iteration, and

only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M
(Ma) 4+ (M/M — a)7,

relative to the sequential algorithm without forecasting. Here,

residual computation time

Tr = B B B .
nonlinear-system solution time

Nonlinear model reduction Kevin Carlberg



|deal-conditions speedup with initial-guesses
120

100 +

80 -

15 20 _ 25 30 35
processors M

Ideal-condition speedup for M = 5000, 7, = 1/10

Significant speedups possible by leveraging time-domain data!

Nonlinear model reduction

Kevin Carlberg
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Stability

If the fine propagator is stable, i.e.,
|F(x;m, 7+ AT)|| < (1+ CFAT)||x||, VO<7<7+AT
then the proposed method is also stable, i.e.,

%71l < Comexp(CrmAT)||X°]].

m Cni= Y, (B)Bymak(AT/At)m—k
m Bx = exp(—Crk(AT — Ata)) <1
m v := max(maxm; 1/ Z(a+1, @)=, 1/omin(Z(a+1, a)=]"))

Nonlinear model reduction Kevin Carlberg



Example: inviscid Burgers equation [rewienski, 2003]

du(x,7) 10 (u2 (¢ 7’)) _ o
or + 5 I =0.02e

u(0,7) = 1, V7 € [0, 25]

u(x,0) =1, ¥x € [0, 100],

Discretization: Godunov's scheme

(p1, p2) € [2.5,3.5] x [0.02,0.03]

At = 0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [c. et al., 2011a], POD basis dimension p = 100

Ntrain = 4 training points (LHS sampling); random online point
2 coarse propagators: Backward Euler and local forecast

3 initial seeds: Backward Euler, local forecast, global forecast

Nonlinear model reduction Kevin Carlberg



Global temporal bases

W
=
o
> El
8
2 T
g
o £
g
2
o

e i

— e w W
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Forecasting ‘high-frequency’ coordinates is dangerous
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time-parallel iteration

Proceed by forecasting the first 10 coordinates
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Comparison: Initial seed and coarse propagator

10°

time-parallel error
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time-parallel iteration

m Initial seed:

+ best performance: global forecast

- worst performance: local forecast (error accumulation)
m Coarse propagator:

+ local forecast outperforms backward Euler

Forecasting improves improves initial seed and coarse propagator!
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Parareal performance
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+ Forecasting: minimum possible iterations

- Backward Euler: often close to worst-case performance
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Conclusions

Use temporal data to reduce ROM simulation time

m offline: time-evolution bases from right singular vectors
m online:
global forecast as initial seed
local forecast as coarse propagator
theory: excellent speedup and stability
ideal parareal performance observed
significant improvement over Backward Euler

no additional error introduced
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