
SANDIA REPORT
SAND2018-14238
Unlimited Release
Printed December 2018

Creating an Interprocedural
Analyst-Oriented Data Flow
Representation for Binary Analysts (CIAO)

Michelle Leger, Karin M. Butler, Denis Bueno, Matthew Crepeau, Christopher Cuellar, Alex
Godwin, Michael J. Haas, Timothy Loffredo, Ravi Mangal, Laura E. Matzen, Vivian Nguyen,
Alessandro Orso, Geoffrey Reedy, John T. Stasko, Mallory Stites, Julian Tuminaro, Andrew
T. Wilson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories,
a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2018-14238
Unlimited Release

Printed December 2018

Creating an Interprocedural Analyst-Oriented Data Flow
Representation for Binary Analysts (CIAO)

Michelle Leger
Threat Intelligence Center

maleger@sandia.gov

Denis Bueno
Matthew Crepeau

Christopher Cuellar
Michael J. Haas

Timothy Loffredo
Laura E. Matzen
Vivian Nguyen
Geoffrey Reedy
Mallory Stites

Julian Tuminaro
Andrew T. Wilson

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Karin M. Butler
Quality Assurance Center

kbutle@sandia.gov

Alex Godwin
Ravi Mangal

Alessandro Orso
John T. Stasko

Georgia Institute of Technology
North Avenue NW
Atlanta, GA 30332

3

Abstract

National security missions require understanding third-party software binaries, a key element
of which is reasoning about how data flows through a program. However, vulnerability analysts
protecting software lack adequate tools for understanding data flow in binaries. To reduce the hu-
man time burden for these analysts, we used human factors methods in a rolling discovery process
to derive user-centric visual representation requirements. We encountered three main challenges:
analysis projects span weeks, analysis goals significantly affect approaches and required knowl-
edge, and analyst tools, techniques, conventions, and prioritization are based on personal prefer-
ence. To address these challenges, we initially focused our human factors methods on an attack
surface characterization task. We generalized our results using a two-stage modified sorting task,
creating requirements for a data flow visualization. We implemented these requirements partially
in manual static visualizations, which we informally evaluated, and partially in automatically gen-
erated interactive visualizations, which have yet to be integrated into workflows for evaluation.
Our observations and results indicate that 1) this data flow visualization has the potential to enable
novel code navigation, information presentation, and information sharing, and 2) it is an excellent
time to pursue research applying human factors methods to binary analysis workflows.

4

Acknowledgments

We would like to thank Danny Loffredo, Chris Leger, Todd Jones, Doug Ghormley, Tiemoko
Ballo, Bryan Kennedy, Ben McBride, Kerstan Cole, Eric Moyer, Chris Wampler, Nasser Salim,
Josh Maine, Adam Vail, and the many binary analysts who supported this work. Their regular
interactions, thought-experiments, suggestions for references and approaches, and novel ideas have
been invaluable. We could not have attempted this research without their amazing support.

This work was supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multi-mission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell In-
ternational, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

The format of this report is based on information found in [73].

Declaration

All studies within this research were performed with the approval of the Sandia National Labora-
tories Human Subjects Review Board.

5

6

Contents

Preface 15

Summary 17

1 Introduction: the Problem 19

2 Approach: Using Human Factors Methods to Derive Visualization Requirements 21

2.1 Applying Human Factors Methods . 21

2.1.1 Overview of Participants . 22

2.1.2 Selected Data Flow Use Case . 23

2.1.3 Preliminary Requirements from Cognitive Task Analysis 23

2.1.4 Requirements Developed from Modified Sorting Task 24

2.2 Cognitive Task Analysis . 25

2.2.1 Experimental Setup . 25

2.2.2 Results . 26

2.2.3 Discussion . 27

2.3 Applied Cognitive Task Analysis . 27

2.3.1 Experimental Setup . 27

2.3.2 Results . 27

Hacks, Scripts, and Tools . 29

Critical Knowledge about Functions . 30

2.3.3 Discussion . 30

2.4 Cognitive Walkthroughs . 30

7

2.4.1 Experimental Setup . 30

2.4.2 Results . 32

2.4.3 Discussion . 37

2.4.4 Conclusions . 39

2.5 Modified Sorting Task . 39

2.5.1 Experimental Setup . 40

2.5.2 Results . 41

2.5.3 Discussion . 43

2.6 Initial Requirements . 44

3 Visualization 47

3.1 Initial Instantiation . 48

3.1.1 Experimental Setup . 48

3.1.2 Results . 50

3.1.3 Discussion . 50

3.2 Refinement . 54

3.2.1 Experimental Setup . 54

3.2.2 Results . 54

3.2.3 Discussion . 54

4 Evaluation 67

4.1 Proof of Principle . 68

4.1.1 Experimental Setup . 68

4.1.2 Results . 69

4.1.3 Discussion . 70

4.2 Analytical Principle . 73

4.2.1 Experimental Setup . 73

8

4.2.2 Results . 75

4.2.3 Discussion . 75

5 Workflow Integration 77

5.1 Automatic Generation . 78

5.2 Interactive Presentation . 78

5.2.1 Proof-of-Concept Interactive Visualization . 79

5.2.2 Interesting Layout Ideas for Data Flow Understanding 83

5.3 Analyst Usage during Analysis . 84

6 Future Work 85

6.1 Completing our Data Flow Visualization . 85

6.2 Explorations of Binary Analysis Workflows . 86

7 Related Work 89

7.1 Insights from Storey’s Studies . 90

8 Conclusion 93

References 94

Appendix

A Selecting a Data Flow Task to Study 105

A.1 Goal-oriented Data Flow Task Definition . 105

A.2 Task-oriented Data Flow Task Definition . 106

A.3 Data Flow Task Selection . 107

B Designing a Cognitive Walkthrough: Analyzing the Impact of a Vulnerability 109

9

B.1 Experimental Setup . 109

B.2 Observations . 110

C Designing an A/B Comparison 113

C.1 Experimental Setup . 113

C.2 Observations . 113

D Comparative Visualizations of Small Cyber Grand Challenge (CGC) Binaries 117

E Example json Specification of sums Data Flow Graph. 121

F IDA Pro Plugin: Ponce Plus Colocations View for Rapid Judgments Based on Taint 125

F.1 Usage . 125

F.2 TaintedInstanceListView.py . 126

G Binary Analysis, Symbolic Execution, and Situational Awareness 131

H Testing and Evaluation of Software Tools for Binary Auditing 133

I Literature Review of Eye Tracking for Understanding Code Review 135

10

List of Figures

2.1 Recruitment message for identified binary analysis domain subject matter experts
(SMEs). 22

2.2 Interview protocol for our first round of semi-structured interviews, which identi-
fied the process steps, tools, and some of the cognitive challenges associated with
binary reverse engineering and data flow understanding. 25

2.3 Data flow analysis diagram for attack surface characterization process developed
from semi-structured interviews. The bulk of the work is in the center box, tracing
a data input. 26

2.4 Primary questions (knowledge audit) from interview protocol for our second round
of semi-structured interviews, an Applied Cognitive Task Analysis knowledge audit. 28

2.5 Backup questions (knowledge elicitation) from interview protocol for our second
round of semi-structured interviews, an Applied Cognitive Task Analysis knowl-
edge audit. 29

2.6 Other raw data (besides hacks/scripts/tools and function prioritization heuristics)
from our second round of semi-structured interviews, the Applied Cognitive Task
Analysis. 31

2.7 Instructions provided to analysts for attack surface characterization cognitive walk-
through. 33

2.8 Questions we ask analysts before and during our attack surface characterization
cognitive walkthrough. 34

2.9 Pain points observed during attack surface characterization cognitive walkthroughs. 34

2.10 Initial list of data flow analysis elements created based on results of cognitive walk-
throughs. 38

2.11 Instructions provided to analysts for the first stage of the modified sorting task,
extracting categories of label names from analyst artifacts. 40

2.12 Set 1, describing data flow relationships identified by the modified sorting task. . . . 41

2.13 Set 2, describing high level data flow relationships identified by the modified sort-
ing task. 42

11

2.14 Sets 3a and 3b, describing phases of analyses and categories of reasons for catego-
rization as identified by the modified sorting task. 42

2.15 Set 4, describing axes over which data might be characterized as identified by the
modified sorting task. 42

2.16 Set 5, describing other types of categories identified by the modified sorting task. . 43

2.17 Initial requirements for information conveyed by nodes in a directed graph data
flow visualization. 45

2.18 Initial requirements for information conveyed by edges in a directed graph data
flow visualization. 46

3.1 First straw man attempt at assigning visualization elements to data flow elements
in the context of an analysis. This graph represents incomplete data flow under-
standing related to triggering of vulnerability 2 of the DARPA CGC challenge
CROMU 00034. 49

3.2 Feedback about our first straw man data flow graph. 51

3.3 Second straw man attempt at assigning visualization elements to data flow ele-
ments in the context of an analysis of vulnerability 2 of the DARPA CGC challenge
CROMU 00034. 52

3.4 Individual layers pulled from second straw man visualization. These figures show
how toggle-able layers can help an analyst to pare down the information in the
graph to focus on specific types of locations and influence. 53

3.5 Observations about the current state of the practice provided by analysts. 55

3.6 Features desired by analysts in a data flow visualization tool as described by ana-
lysts in a group walkthrough of our straw man data flow visualization. 56

3.7 Summary key of final selected visualization elements. 64

3.8 Final visualization of vulnerability 2 of the DARPA CGC challenge CROMU 00034. 65

3.9 Visualization of simple sums function. 65

4.1 A data flow graph manually constructed from the TrailOfBits port of CGC chal-
lenge binary CROMU 00065 by a novice using our intermediate data flow require-
ments. 70

4.2 A data flow graph manually constructed from the TrailOfBits port of CGC chal-
lenge binary KPRCA 00052 by a novice using our intermediate data flow require-
ments. The source for this binary was written in C++. 71

12

4.3 A data flow graph manually constructed using our data flow requirements and final
assignment to visual design elements. Generated from the TrailOfBits port of CGC
challenge binary EAGLE 0005, this graph encapsulates all instructions from the
binary except those from libraries. 72

4.4 The portion of the EAGLE 0005 data flow graph showing the two vulnerabilities
known to be exhibited by that binary: a stack buffer overflow vulnerability, and a
format string vulnerability. 73

4.5 Evaluation questions for analytical principle testing of EAGLE 0005. 74

5.1 These figures show portions of the graph view as an analyst explores and interacts
with two functions, cgc clearBoard and cgc reset, that do not directly share any
nodes. 81

5.2 Full screenshot of visualization environment, including all default panes and views
and zoomed view of graph generated automatically from the TrailOfBits port of
CGC challenge binary EAGLE 0005. In this screenshot, after all steps in Fig-
ure 5.2.1, an analyst has added the note #priority:high to node205, has saved three
hypotheses that start at node205 (two are identical), and has moused over node83
to see related flows. 82

B.1 Instructions provided to analysts for vulnerability impact cognitive walkthrough. . . 110

B.2 Questions we ask analysts before and during our vulnerability impact cognitive
walkthrough. 111

C.1 Evaluation questions for binary analyst pre-test of EAGLE 0005. 114

D.1 Call graph representation of analyst discovery of vulnerability 2 in the DARPA
CGC challenge CROMU 00034. 117

D.2 These figures show control flow abstractions of DARPA CGC challenge CROMU -
00034 as displayed by Gephi v.0.9.2. 118

D.3 These figures compare a program dependence graph (PDG) for the main function
of EAGLE 0005 to our graph of the full binary. 120

F.1 Screen shots of the inspiration for displaying colocations and the IDA Pro plugin. . 127

13

List of Tables

2.1 Detailed process steps identified in cognitive walkthroughs of attack surface char-
acterization data flow analysis task. This task asked analysts to focus on “pulling
on a thread” or tracing data flows. 35

2.2 Decision requirements table for data flow analysts . 36

3.1 Requirements for information to be conveyed through value and location nodes. *
denotes types expected to be updated. 57

3.2 Requirements for information to be conveyed through aggregate, code, and com-
munication nodes, and through annotations on nodes. * denotes types expected to
be updated. 58

3.3 Requirements for information to be conveyed through value flow, points-to, com-
parison, and control influence edges and function boundary annotations. * denotes
types expected to be updated. 59

3.4 Requirements for length, sequencing, code influence, synchronization, colocation,
and lifetime relationship information. * denotes types expected to be updated. 60

3.5 Interactivity requirements for a data flow visualization to support binary vulnera-
bility analysis. 61

3.6 Examples of annotations to support vulnerability analysis of binaries. Analyst
judgments convey information about decisions analysts are making about data or
a flow; analysts might use judgment scales to help guide analysis steps. Analyses
similarly can use annotations to share information. 62

3.7 Roles might convey summary information about interpretation of specific groups
of data or influence, e.g., through glyphs or other simple additions. Here, we show
how some common roles might be identified in the current graph. 63

14

Preface

We analyze binaries to understand and mitigate potential vulnerabilities. We each have our own
approaches, our pet techniques, our specialties in source code type and vulnerability type. Some
of us are really good at using dynamic instrumentation; some of us prefer static analysis. Some of
us know fuzzers like AFL [115], or symbolic execution engines like angr [94], or broad classes of
techniques like abstract interpretation [107] or machine learning [39]. We all work together, all the
time, because realistic software poses hard problems – often undecidable problems – and we need
the skills of our peers to find solutions quickly. And we are always behind.

We have realized that, without some drastic improvement, we will continue to fall further and
further behind. For example, take static binary analysis – our only fallback when we have no
way to execute some code. For static binary analysis, we have a plethora of reverse engineering
frameworks and program understanding tools at our fingertips [55][3][12][33][70]. We have a
plethora of techniques and tools implementing them, and we have platforms that combine these
techniques in incredibly clever ways [100][27][25][86]. We even have fantastic data flow analyses,
usually designed to support compiler optimizations, that iteratively compute to a fixed-point to
make high fidelity global models of code [65][45][59][99][103][57]. But when we sit down to an
analysis, it still takes us weeks to months to years to come to incomplete conclusions about the
binaries we need to analyze, and we are rarely able to use these excellent tools as much as we
would like.

Again, take an example: static analysis of code that has a data flow vulnerability, an insidious
flaw described in [24] and automatically exploited in [60]. A data flow vulnerability exhibits
unexpected data relationships along expected control paths. It is surprisingly difficult to fully
understand these vulnerabilities in code you did not write, i.e., to create accurate mental models
of the code that help to understand and mitigate the vulnerabilities. The tools and techniques
described above often fail to scale to real-world binaries, and we are left to understand the binaries
manually. Our binary analysis tools have excellent visualizations for control flow; the control flow
graph (CFG) [2] provides a beautiful mid-level abstraction between instructions and the call graph,
and the primitives are easy to describe.1 We use the CFGs all the time to derive information about
binary code; nodes with lots of children or “wide” parts of the graph may indicate a dispatcher, a
tall and narrow CFG may indicate lots of library calls, and a “c” or “z” shape may indicate a series
of initialization code with error handling. However, these heuristics do not help in understanding
a data flow vulnerability. How can we recognize and understand such vulnerabilities quickly?

More broadly, many of our vulnerability analysis tasks require deep understanding of data flow
and data relationships. Our best data flow visualizations tend to do one of the following:

1Though CFG definitions can differ slightly between tools, conceptually each node represents a group of instruc-
tions such that all of the instructions are executed if one of them is, and each edge represents the relationship “may
transfer control to”.

15

• They display the data flow by overlaying data flow information onto a control flow or call
graph [86], where control-based abstractions interfere with graph interpretation at anything
other than a very course-grained level. Data flow is tied to instructions, which are difficult to
separate at control abstractions above the instruction level.

• They offer understanding through a text-based visualization [56][114][113] where analysts
still have to parse the code to discover relationships, or they display limited relationships
such as taint [8] or pre-computed metrics [9] (note that more recent visualizations are simi-
lar).

• They display the data flow graphs produced for and by automated data flow analyses, on
source code, to provide a one-shot global summary [103][112][31]. When binaries can be
shoe-horned into the tools that produce these graphs (which often fails due to uncertainty
introduced when semantically lifting the binary), and when human analysts try to view these
graphs (which may fail, either because visualization tools are not usually tuned to handle
the millions of nodes and edges or because layouts are not sufficient to convey the required
information), the displays are overwhelming. We do not have ways to filter, organize, and
abstract these graphs.

We use these visualizations (and related tools) to get answers to specific sub-problems about ex-
plicit relationships, and we stitch those answers together in an end-to-end analysis using additional
knowledge about implicit relationships imposed through programming paradigms.

Intuitively we feel that something is wrong with the current state of the practice. In response,
we continually identify problems, and we request and build automated tools to make our lives
better. However, our intuition is failing us – with few exceptions, the tools we make do not seem
to change things all that much. They are not widely adopted, they are difficult to use for non-
developers, and they interfere with the limited time we have to get our analyses done.

Can we have a useful representation that helps analysts integrate knowledge from many places
(like a symbolic execution engine summarizing path information, an abstract interpretation fixed-
point engine providing global summary information, an analyst’s own observations, and knowledge
from that guy down the hall)? Can we effectively represent data flow to the human brain, allowing
us to really exercise our strengths in pattern recognition and judgment? Can we augment human
binary analysts with the right kind of information from automated analyses, helping us to answer
important questions involving data flow and create mission solutions faster?

This is what we want to find out. This time, we are not going to try to start from the data flow
information and abstractions that we already have. They might be great, but we do not know which
ones are best. Instead, we are going to try to understand how the human analysts are thinking about
data flow, and we are going to try to help them externalize their own mental models.2

2This report was written primarily by binary analysts and cognitive psychologists. We try to make the report
accessible to everyone, especially as we have spent these past two years learning each other’s language, but it is likely
that in many places we assume an audience that is expert in both fields. Please accept our apologies and bear with us
through this report.

16

Summary

National security missions require understanding third-party software binaries, a key element of
which is reasoning about how data flows through a program. Our research goal in the CIAO LDRD
project (creating an interactive, analyst-oriented data flow representation) was to significantly re-
duce the human time burden for binary software reverse engineering and vulnerability analysis
by allowing humans to intuitively interact with data flow in static binaries. We used human fac-
tors methods to design visual representation requirements, resulting in two primary research and
development accomplishments.

First, we designed a revolutionary user-centric representation of data flow. We captured our
data flow representation in a spreadsheet detailing requirements for a representation and design
choices for implementing those requirements in a visual graph. We produced a handful of example
static visualizations by manually applying our requirements to specific DARPA Cyber Grand Chal-
lenge (CGC) binaries. Our representation, if implemented per our developed requirements, may
significantly reduce the human time burden in binary vulnerability analysis by enabling novel code
navigation, information presentation supporting rapid decision-making, and information sharing
between human analysts and automated binary analyses. This representation still requires imple-
mentation to achieve impact, but it may support alternate and significantly more efficient workflows
for binary vulnerability analysts.

In this report, we describe specific tests and human factors methods designed to extract these
representation requirements from analysts and to begin to evaluate the utility of these require-
ments. In addition to standard human factors methods, we used a two-stage modified sorting task
to generalize our task-specific requirements across diverse analysis tasks. To overcome 1) the ex-
tended duration of analysis projects (weeks) and 2) the diversity in data flow element names and
categories introduced by varying analysis goals, we first asked analysts to identify categories de-
scribing variable names from their own completed projects, and then we asked different analysts
to collaboratively analyze these categories. The modified sorting task used analyst descriptions of
data flow from diverse, previously analyzed binaries to produce many of our visualization require-
ments.

Second, we describe potential workflow modifications and other insights about vulnerability
analysis workflows. Our Georgia Tech Academic Alliance collaborators began to prove out some
of these workflow modifications, creating a proof-of-concept automatic generator and a proof-
of-concept visualization for interactive exploration, annotation, and update of such graphs. We
describe both efforts briefly in this report.

More generally, we established a new knowledge base at Sandia in applying human factors
methods to binary software reverse engineering. We are growing collaborations between human
factors specialists and software reverse engineers. We are beginning to explore basic workflows,

17

we have identified human factors methods from other domains that may be applicable, and we have
identified some ways in which current human factors methods may need to be modified to apply
to the variety of goal-driven reverse engineering workflows.

In this report, we present our findings within the context of the project trajectory. Where we
cannot include these findings within the general story line, appendices provide this documentation.

18

Chapter 1

Introduction: the Problem

Society increasingly relies on software that both interacts with security-critical data and communi-
cates with external networks (e.g., in the military, in medicine, in education, and at home). Further,
software complexity, size, variety, and modification rate continue to increase. Concern about how
we will assure that software does not have vulnerabilities is growing [96].

Ideally, automated tools would assess and protect binary software statically, without executing
the program. Static binary analysis avoids needing access to all the supporting systems required to
run the binary, missing vulnerabilities introduced during the translation from source code to binary
[36], and introducing threats from actually running the code. Unfortunately, automatic static binary
analyses do not scale to real-world software [97].

Currently, experts assess and protect systems by performing static binary vulnerability analysis
(VA) manually with assistance from automated tools [95] and then mitigating discovered vul-
nerabilities. These experts use extensive domain knowledge of binary code, operating systems,
hardware platforms, programming languages, and vulnerabilities; they engage in reverse engineer-
ing (RE) [101] to understand binary programs [66][43], combining their extensive knowledge and
that of their colleagues with automated tool results and line-by-line analysis. Binary vulnerability
analysis is cognitively demanding, requires persistent attentional resources, and lacks prescribed
approaches or tools. Binary code analyst support tools must be effectively integrated into their
workflows to support their decision-making processes [6].

Finding and fixing vulnerabilities requires understanding how data, passing through program
functions, influences other program data and program decisions. Unfortunately, data flow is dif-
ficult to understand, particularly when working from a binary. Programmers write source code,
using comments and variable and function names to explain the purpose of parts of the code and to
help model the data flow and control flow. When translating from source to binary code, compilers
remove these comments, they may remove all names, and they change the code to make it faster
or smaller or safer — and usually less understandable. Vulnerability analysts, modeling how the
computer would run a binary, have to rediscover the data flow and control flow that are actually
present in the binary.

Analysts find that the current set of tools for understanding data flow is inadequate. Data
flow information is often projected onto a control flow visualization, which shows the order of
instructions in a program. Analysts find such visualizations confusing, even for small functions,
and data flow questions tend to span several functions together. Current tools that provide such

19

visualizations do not support interprocedural static views that allow analysts to view data flow
through several functions at once [55][86][83][117][52][12]. Although some source (not binary)
analysis tools do provide interprocedural views unhampered by projection onto control flow repre-
sentations, these views were designed for automated tools and tend to be too complex for human
analysts [103][112][31].

Our goal in this research was to derive the requirements for an analyst-centric interprocedural
data flow visualization to assist binary reverse engineers in identifying and mitigating vulnerabili-
ties in code. Rather than trying to produce a new tool, or to integrate or abstract across the varied
representations that current data flow analysis tools produce1, we tried to infer the human analysts’
mental models and create a way for them to express their mental models explicitly. Our require-
ments needed to inform a visualization of information dense collections2: supporting anthropolog-
ical interpretation that is difficult for technology to do, guided by decisions that the information
dense data will be used to make, and supporting the development of situational awareness as data
is collated.

To derive our requirements, we used a rolling discovery process with experienced binary ana-
lysts. We used several standard cognitive task analysis methods and introduced a modified sorting
task to derive our requirements. We evaluated our requirements using proof of principle and ana-
lytical principle testing. Our primary contributions include

• a taxonomy of required features to support vulnerability analyst understanding of data flow
in static analysis of binary code (Section 3.2.3),

• a description of a modified sorting task, a human factors method to achieve consensus about
mental models used across diverse tasks (Section 2.5),

• and a preliminary implementation of a visualization of these requirements to be integrated
into vulnerability analysis workflows.

Additionally, we provide an initial evaluation of a subset of our developed requirements through
proof of concept and analytic evaluation [63]. Unfortunately, we were unable to implement a fully-
featured interactive visualization during this research, and our evaluation is necessarily lacking. We
describe our informal evaluation in Section 4, providing evidence that further evaluation, at least,
is warranted.

Note, our ultimate goal is not to remove humans from the loop; rather, we want to make easier
for analysts to spend their time on the creative aspects of analysis. We hope that this effort will
make binary analysis more accessible to novice analysts as well.

1This is the approach that we have taken, unsuccessfully, in the past.
2This is as opposed to re-plotting, which presents existing data, untransformed, in a different form to aid decision

making. A CFG is an example of re-plotting.

20

Chapter 2

Approach: Using Human Factors Methods
to Derive Visualization Requirements

2.1 Applying Human Factors Methods

To begin to understand the different ways that vulnerability analyses are performed, and to derive
some initial requirements for a data flow visualization, we used standard cognitive task analysis
methods, including semi-structured interviews, Applied Cognitive Task Analysis, and cognitive
walkthroughs. These activities identified both interactive requirements, supporting an analyst in
building up and capturing knowledge about the binary under analysis, and static requirements,
presenting facts or conclusions about data flow elements and their relationships. These activities
showed that vulnerability analysts use data flow to identify 1) where specific data influences the
code, 2) how data is parsed and manipulated through the code, 3) how the code controls and checks
data to prevent problematic effects, and 4) unintended or obfuscated data flow paths.

To derive requirements that would support a visualization of data flow across these tasks, we
then focused on gathering information about analyst mental models from artifacts of their own
projects, which spanned these data flow tasks. We developed a two-stage modified sorting task to
help us gather this information from across the analysts’ own diverse tasks without requiring the
analysts to evaluate the same binaries or types of binaries. 1

This section describes our human factors methods in more detail, resulting in our list of re-
quirements for a data flow visualization for binary reverse engineers. We try to cleverly iterate
on design and evaluation to overcome major challenges with this approach: that binary analyst
workflows, tools, and approaches differ by analysis goal and analyst, that data flow analysis spans
several days to weeks and is intermingled with other binary analysis tasks, that understanding the
most important data flow for vulnerability analysis requires integrating information gathered across
long intervals of time, that these human factors techniques usually are not applied in exactly this
way, and that, locally at Sandia and globally, we have a very small pool of expert individuals to
test.

1We believe that our two-stage modified sorting task may help to achieve consensus about mental models across
diverse tasks in domains that deal with complex, variable targets, such as those often encountered in discovery-based
analysis. However, we have not been able to evaluate this.

21

You have been identified as someone with expertise in extracting information from binary code about how data values
flow through the code. Our team is working on an LDRD to develop a representation and visualization tool to aid in
binary code analysis. Your participation in this research is completely voluntary. Would you be willing to spend two
hours providing some insight into what you do? You will be provided with a project and task for your time.

Figure 2.1. Recruitment message for identified binary analysis
domain subject matter experts (SMEs).

2.1.1 Overview of Participants

The knowledge in this SAND report is built on results gleaned from 1) experts that volunteered
to participate in our interviews, cognitive walkthroughs, and sorting task, and 2) the experience of
our team members and other expert and novice colleagues.

Our research participants are volunteers who are adult colleagues from the Sandia National
Labs Threat Intelligence Center. Human Subjects Research Protection protocols, approved by the
Sandia National Laboratories Human Subjects Review Board, were used in collecting these data.

Because our goal was to determine effective representations for solving data flow problems,
the research team identified individuals with considerable experience in this domain – a small pool
of selected participants. These potential participants were contacted face-to-face or through email
with a brief description of the purpose and requirements of participation (see recruitment message
in Figure 2.1). Participants were not required to participate as a condition of their employment or
work within their organization, and decisions to participate did not affect evaluations.

These experts are colleagues or team members who have 5 to 20 years of experience analyzing
binaries and source code for national security vulnerability assessments or malware characteriza-
tion. Many of these experts analyzed binaries for optimization purposes for 5 to 10 years before
their security-focused analyses.

In addition to these formal research participants, our research was informed by expert team
members, expert non-team member analysts, and novice analysts. We relied on knowledge from
our 6 team member analysts who have worked in binary and source analysis for between 6 and 20
years, specifically performing reverse engineering and vulnerability analysis of a wide variety of
systems using many techniques. We also relied on feedback from expert non-team member ana-
lysts (i.e., individuals not invited to project meetings) specializing in different analysis techniques,
code representations, or mission questions. Finally, we incorporated feedback from 8 novices, stu-
dent interns (advanced undergraduate or masters students) who have analyzed binaries for security
purposes for less than a year and who have not often analyzed binaries for other purposes.

Note that we do make claims throughout this report about how analysts work in this field; we
base these claims on our own experience and on that of the other 20 expert analysts who engaged
with the team throughout this research.

22

2.1.2 Selected Data Flow Use Case

Standard cognitive task analysis methods are most effective when applied to a well-scoped, repre-
sentative use case. See Appendix A for a discussion of our use case selection, including examples
of goal- and relationship-oriented data flow tasks in binary reverse engineering, and Appendix H
for considerations when designing tests and evaluations of software tools to support binary audit-
ing.

To focus our cognitive task analysis methods, our initial interviews and cognitive walkthroughs
focused on the attack surface characterization task [74], a task that is both representative of many
analyst considerations when evaluating data flow and amenable to a two-hour cognitive walk-
through. For these studies, we defined attack surface characterization as determining which
aspects of program input reach locations or control actions that are security sensitive, including
determining how well the binary protects those locations. Essentially, we asked analysts to assume
that they were ranking portions of the binary for further vulnerability analysis and mitigation de-
velopment given limited resources. For our cognitive walkthroughs, analysts were asked to assume
that all input from the command line or an input-specified file is attacker-controlled, and that all
non-attacker-controlled data is security sensitive.

We used results from our studies on attack surface characterization to define a preliminary rep-
resentation. We then used our two-stage modified sorting task, performed with artifacts created
across a variety of analysis goals and binaries, to generalize our results from attack surface char-
acterization. However, we did not attempt to evaluate our resulting requirements generally; further
work will need to explore other use cases besides attack surface characterization to determine the
impact of our initial scoping decisions.

2.1.3 Preliminary Requirements from Cognitive Task Analysis

As mentioned, our rolling discovery process used several cognitive task analysis (CTA) methods
to determine what support experienced binary analysts need when performing binary vulnerability
analysis. The CTA included semi-structured interviews, applied cognitive task analysis (ACTA),
and cognitive walkthroughs of a data flow RE task. We used results from these methods to generate
our preliminary list of requirements for a data flow visualization. This research was reviewed and
approved by Sandia National Laboratories Human Subjects Review Board.

To begin to identify tasks, subtasks, important cognitive processes, and data flow elements, we
conducted two rounds of semi-structured interviews with separate sets of experienced binary code
analysts in individual sessions.

In the first round of semi-structured interviews, three experienced analysts identified the pro-
cess steps, tools, and some of the cognitive challenges associated with binary reverse engineering in
general. Subsequent interviews and cognitive walkthroughs focused on the attack surface charac-
terization task [74], a task that is both representative of many of the considerations when evaluating
data flow and amenable to a two-hour cognitive walkthrough.

23

In the second round of semi-structured interviews, three different experienced analysts an-
swered questions from an applied cognitive task analysis knowledge audit [76]. The knowledge
audit revealed the most important goals of attack surface characterization, cues in the binary code
that indicate possible vulnerability or that contribute to program understanding, judgments being
made during analysis, and tools used to support the work.

Building on results from these interviews, we designed a cognitive walkthrough task to capture
information, in situ, about the cognitions, decisions and processes used by analysts during attack
surface characterization.

We compiled the results of the interviews and cognitive walkthrough into a description of the
process steps in attack surface characterization and a preliminary list of static data flow elements
and interaction requirements for our data flow visualization.

2.1.4 Requirements Developed from Modified Sorting Task

Next, we used a modified sorting task of analyst artifacts to identify categories of data flow ele-
ments. We used results from this task to more fully develop requirements for a data flow visual-
ization. This research was also reviewed and approved by Sandia National Laboratories Human
Subjects Review Board.

In binary analysis projects, vulnerability analysts record the essential elements they use for
understanding data flow; they assign meaningful names to variables and functions to record this
information. We hypothesized that binary analysts might reveal general purpose data flow elements
through a sorting task [92] over their own meaningful data variable and value names.

A standard sorting task provides insight into the mental models of users, and it is generally
used to inform the grouping and naming of those categories in an interface [92]. In a typical
sorting task, the elements (e.g., words or functions) to be sorted are known before the task is
conducted. Each participant sorts the same elements into groups; consensus grouping, if revealed,
reflects similarities in how the participants think about the given elements.

In our case, however, we were attempting to derive analysts’ mental models from elements
that were not known beforehand and that varied by analyst. We thus needed to overcome two main
challenges: analysts name both data flow elements and categories of elements according to analysis
goals and personal preference, making it difficult to find commonalities; and analysis projects span
weeks, making it infeasible for analysts to independently analyze the same binaries.

To address these challenges, we created a two-stage modified sorting task. Our approach used
analyst descriptions of data flow taken from diverse, previously analyzed binaries for the sorting
task followed by a second stage of evaluation to hone the list of data flow elements. We used the
results of the second stage to derive our list of initial requirements for a data flow visualization.

24

Introduction Today I am going to ask you to describe, at a high level of abstraction, the steps you take when you
are analyzing a binary to determine the attack surface. You should not have to describe the identifying details of any
attack surface characterization projects that you are working on.

1) Does your current work involve analyzing data flow for VA and RE?
2) How long have you been doing work that required this type of analysis?
3) When you think about doing data flow analysis for attack surface in your work, would you say that the problems

that you work on are the same (similar code from similar sources, compilers, parent languages)? Or are they
different?

4) For attack surface data flow analysis, what tools are useful?

ATTACK SURFACE Think about when you do VA and RE and you are trying to understand the attack surface
of the problem.

5) a) What are the 3-6 steps that you use when working with the code to discover the attack surface?
b) What determines the order of these subtasks?
c) For each of the subtasks, what are the cognitive skills that you are using? For example, judgments,

assessments, problem-solving, decision-making?
6) Do novices approach these problems differently than an expert like yourself?
7) For data flow analysis, what sorts of kludges and work-arounds do you use or has your team created?
8) How might new tools or decision aids help make the work both more effective and easier by eliminating

needless capability gaps?

Figure 2.2. Interview protocol for our first round of semi-
structured interviews, which identified the process steps, tools, and
some of the cognitive challenges associated with binary reverse en-
gineering and data flow understanding.

2.2 Cognitive Task Analysis

The first round of semi-structured interviews, cognitive task analysis interviews with three experi-
enced analysts, identified the process steps, tools, and some of the cognitive challenges associated
with binary reverse engineering in general and data flow understanding in specific. We wanted to
answer the following questions: What process describes an analyst’s workflow when performing
attack surface characterization? What cognitive processes are analysts using (e.g., judgments,
assessments, problem solving, decision making), and where do they need help?

2.2.1 Experimental Setup

In this first round, we interviewed three expert analysts experienced in binary reverse engineering
and/or vulnerability analysis for mission problems. Figure 2.2 shows the interview protocol for
these semi-structured interviews.

25

Construct hypotheses about
what language code is written

in, what the code is intended to
do, and potential vulnerabilities.

In binary/assembly/decompiled code,
examine data input for problems with logic,

code, math, security mitigations and
constraints, tracing backward or forward.

No
Evaluate if currently analyzed

data input is understood
sufficiently.

Yes

End Attack Surface
Characterization/Begin
within function analysis

Based on knowledge, hypotheses
about the code, and goals of analysis,

choose a data input that is likely to
cover relevant part of the attack

surface.

Find cues of data flow features
in binary/assembly/decompiled

code

Evaluate if attack surface
is understood sufficiently. YesNo

Figure 2.3. Data flow analysis diagram for attack surface charac-
terization process developed from semi-structured interviews. The
bulk of the work is in the center box, tracing a data input.

2.2.2 Results

We compiled the results of these interviews into a description of the process steps in attack surface
characterization, Figure 2.2.2. Analysts spend most of their time in the central box, examining data
flows for potential problems. We focused on decomposing this step in later interviews.

Binary analysts use the following cognitive processes when characterizing an attack surface:

Updating mental models, working memory, episodic memory Correlating dynamic instrumen-
tation results with the static binary code. Because we are focused on static analysis, this is
less relevant for our goals.

Working memory, episodic memory, and maintaining a mental model Keeping track of what
assumptions were made and where they were made earlier in the analysis.

Inductive reasoning Selecting correct knowledge to help understand the system.
Deductive reasoning Judging and refining mental models and hypotheses about the program.
Pattern recognition Identifying libraries, design patterns, data flow types, vulnerability types,

mitigation types, and so on.
Planning Selecting next goals. This selection often depends on analyst preferences and experi-

ence, including knowledge of programming error patterns, familiarity with code or program
type, interest in the technology, accessibility of exterior surface, and specific assessment
goals and assumptions.

26

2.2.3 Discussion

Throughout this process, analysts create, test, refine and discard hypotheses about potential vul-
nerabilities, programming language, program goals, and likely sources of errors. We will need to
provide categories of data manipulation that can be used as descriptive labels associated with data
elements, supporting easy annotation. To help analysts answer mission questions faster, we will
need to help analysts to express and manipulate their hypotheses significantly faster.

2.3 Applied Cognitive Task Analysis

In the second round of semi-structured interviews, three experienced analysts (one who had been
interviewed previously) answered questions from an Applied Cognitive Task Analysis knowledge
audit [76]. Our goal was to expand the central box in our initial attack surface process chart, under-
standing in more detail how analysts look for problems when tracing data flow through functions
(i.e., “pulling on a thread” or focusing on a specific data flow). These 1.5-hour interviews focused
on the knowledge and tools used when analyzing a binary to identify the attack surface.

We used our knowledge audit to catalogue the explicit and implicit knowledge that is critical
for performing attack surface characterization. We asked analysts to think about this process as
we asked a set of questions to identify analyst abstractions and idioms. These questions focused
on when, why, and how analysts search for, identify, classify, and abstract data input elements and
relationships (Figure 2.4). However, sometimes people find it difficult to answer specific questions
when thinking abstractly. To help in these cases, we used backup knowledge elicitation questions
to provide the analyst with a foundation by having them actually retrieve episodic memories. These
questions focused on places where expertise is demonstrated, e.g., when answers “pop out” or ways
in which analysts “work smart”.

2.3.1 Experimental Setup

In these interviews, we asked analysts to focus on the central stage of the process identified pre-
viously, “pulling a thread” or tracing a specific data flow. Figures 2.4 and 2.5 show the interview
protocol for these semi-structured interviews.

2.3.2 Results

We present here our raw data from these interviews, removing binary- and analysis-specific details.
We focus on analyst aids and heuristics, but we present the rest of the raw data as well in Figure 2.6.

27

Round 2 Interview Knowledge audit to determine what “information/primitives/connections” are used in attack
surface characterization.
ANALYST NAME
DATE
IF INTERVIEWING SOMEONE NEW

1) Does your current work involve analyzing data flow for VA and RE?
2) How long have you been doing work that required this type of analysis?
3) When you think about doing data flow analysis for attack surface in your work, would you say that the problems

that you work on are the same (similar code from similar sources, compilers, parent languages)? Or are they
different?

4) For attack surface data flow analysis, what tools are useful?

Introduction Today, I would like you to talk about one stage of identifying the attack surface in code: when
you are examining the static code. In binary/assembly/decompiled code, it is my understanding that you choose a data
input stream, or “thread”, and then you “pull on that thread”. You trace it backward and/or forward through the code,
examining the data input for problems with logic, code, math, security mitigations, and constraints. I want you to
think about this process as you answer my question.

Primary Questions When doing this task:
5) How are you classifying and/or identifying the data inputs as you pull on a thread?
6) What relationships to the data are you looking for? (Between data input elements? Between data inputs and

parts of the algorithm? Between data inputs and the knowledge that you have about programs?)
7) At times you may have a mental model of the data flow and then get new knowledge that needs to be considered

in the model. In these cases, the model may need to be updated.
• What types of information/new knowledge might you get that require an update?
• How will the model need to be updated in these instances? Will relationships between elements need to

be updated? Will types need to be updated?
• Will the primitives or the relationships between them need to be updated?

8) Are you looking for access to specific parts of memory? Which parts of memory?
9) Are you looking for the use of operating systems objects like mutexes, pipes, events, ...?

10) How do you decide that a break point analysis is needed? What are you looking for when you do this analysis,
while the code is running, when it hits the breakpoint, and when it progresses past the breakpoint?

11) Do novices approach these problems differently than an expert like yourself?
12) For understanding data relationships, what sorts of kludges and work-arounds do you use or has your

team created?
13) What have you scripted to find data relationships?
14) Can you describe how you might have to go about reverse engineering a linked list?

Figure 2.4. Primary questions (knowledge audit) from interview
protocol for our second round of semi-structured interviews, an
Applied Cognitive Task Analysis knowledge audit.

28

Questions to Inventory Task-specific Expertise (BACKUP Questions)
1) Was there a time when you opened up an analysis project and knew exactly where a vulnerability was, or how

to find or fix it?
2) Have you had experiences while doing data flow analysis where part of a situation just “popped” out at you –

where you noticed things going on that others didn’t catch? What is an example?
3) When you analyze code to characterize the attack surface, are there ways of working smart or accomplishing

more with less that you have found especially useful?
4) Can you think of a time when you were working with code to determine the attack surface and then realized

that you would need to change the way you were performing in order to get the job done?
5) Can you describe an instance when you spotted a deviation from the normal process of data flow analysis or

knew something was amiss?
6) Have there been times when the software pointed in one direction, but your own judgment told you to do

something else? Or when you had to rely on experience to avoid being led astray by the software?

Figure 2.5. Backup questions (knowledge elicitation) from inter-
view protocol for our second round of semi-structured interviews,
an Applied Cognitive Task Analysis knowledge audit.

Hacks, Scripts, and Tools

We list the hacks, scripts, and tools that analysts described during the interviews.

• Functions and variables are named to indicate what they do and the knowledge available
about them. For example,

– Analysts might identify several memory locations (including registers) as the same, or
identifying the same location as holding several distinct variables at different times.

– Analysts use their own conventions to identify uncertainty about information conveyed
in such names, e.g., prepending a “?” or “ ”.

• A script pulls out debugging text strings to help identify what the function does.

• Identifying type information for a structure requires a lot of work using current tools, but
this information can be automatically propagated.

• Often analysts use a wiki for documentation. Two interviewees described the same scenario
for the wiki use. When investigating a single data input in a single function, the data input is
used in many different ways (e.g., a case statement) and passed to different functions. The
wiki is used to document each “fanning out” point and to keep track of whether each path or
branch has been investigated. Unfortunately, the wiki is cumbersome and time-consuming;
it could be more helpful than it is. It is usually easier to draw pictures in a notebook than in
the wiki.

• A database of known data structures, objects, or library calls for an executable type can be
automatically propagated through the program.

• Careful notes about choice points and decisions made allow efficient back-pedaling if nec-
essary.

29

• Memory visualizations help analysts understand particular vulnerability types.

• Complicated loading processes, such as import resolution, need to be modeled correctly.

Critical Knowledge about Functions

These are indicators that further analysis of a function may be warranted. They are heuristics that
the analysts use to help identify and rank potentially problematic functions.

• The function is either large or complex, or has simple errors often together [67], or is difficult
to get right in the first place.
• The function lacks security or integrity checks, e.g., that data is of the expected size.
• The function performs lots of logic around the data (as opposed to lots of math).
• The function interacts with lots of data inputs (as opposed to just one).

2.3.3 Discussion

The knowledge audit revealed the most important goals of attack surface characterization, cues in
the binary code that indicate possible vulnerability or that contribute to program understanding,
judgments being made during analysis, and tools used to support the work.

2.4 Cognitive Walkthroughs

Building on results from these interviews, we designed a cognitive walkthrough task to capture
information, in situ, about the cognitions, decisions and processes used by analysts during attack
surface characterization. We observed and questioned analysts performing a crafted attack surface
characterization task, focusing our data collection on the cognitions and processes used for attack
surface characterization. That is, we used this run-time assessment to observe how explicit and
implicit knowledge are used during this task; experts who have automated parts of their workflows
tend to gloss over certain parts of their process when they are not actually performing a concrete
task. In our results below, we list the cognitive challenges that were noted by analysts and observed
during the cognitive walkthrough; we discuss these challenges later.

2.4.1 Experimental Setup

We selected the UNIX file utility version 5.10 [47][46] for analysis, choosing from the AFL fuzzer
bug-o-rama trophy case [115].2 We chose file version 5.10 because 1) the core processing library

2Selecting a vulnerability found by AFL gives us the opportunity to control further testing by, e.g., providing an
initial problematic input to guide the analyst. Further, programs listed in the AFL bug-o-rama trophy case have some

30

• How are data inputs classified?
– Structure specifications (semantic meaning, length, type, allocation location), though these are often

incomplete, especially for large structures
– Structure, function, and variable names
– Size, which could be specified in variable name if uncertain or as type information when certain
– Definition of large data structures may include only a few knowns

• What relationships to the data input elements are you looking for?
– Logical relationships, e.g., “If this byte is this, then that byte is that or could prevent this other thing

from happening.” This type of knowledge is hard to propagate. Examples include checking the size or
sign of a field.

– Loop structures repeated through code. When they look different in one implementation, this signals a
possible vulnerability.

– Relationships to privilege mode (e.g., user, kernel).
– Is this data element checked/sanitized?
– Data parsing, especially fixed vs. variable length (often difficult to get right)
– How data are terminated, e.g., appropriately null-terminated

• What relationships to the data input and algorithms are you looking for?
– Complicated code
– Paths that are not as frequently exercised (more likely problematic)
– Can a particular data element at a certain place in the code be passed from the periphery by an attacker?
– What security mitigations are in place?
– Code practices that are susceptible to errors, e.g., memcpy with math

• What relationships to the data input and the knowledge that you have are you looking for?
– Debug text strings
– “Creative” use of relationships
– Linked lists can look like pointer manipulations when you focus on a single element

• During analysis, what happens to cause you to change/update your mental model of what is happening in the
program?

– Updating is required when memory space is reused by the compiler, especially when the type of the data
element changes.

– Updating is required when the number of elements in a structure is unknown; may believe there is one
when there are many.

– A model may change when an element in a structure determines the type of the next element.
– Memory size and how memory is used affect mental models.

• How is breakpoint analysis used?
– Might assign breakpoints to many functions to see which ones runs. Used vs. not used helps with

function labeling and informs choice of focus: unused functions may not be as important.
• What things do novices have difficulty with?

– Standard library function names may mislead, e.g. Windows’ FileCreate is often used to open a file.
– Many kernel drivers do the same thing, but this needs to be learned.
– Abstraction from math to code is difficult.

Figure 2.6. Other raw data (besides hacks/scripts/tools and
function prioritization heuristics) from our second round of semi-
structured interviews, the Applied Cognitive Task Analysis.

31

libmagic is vulnerable to CVE-2012-1571 [77]3; 2) many functions in the library are involved in
parsing input data from multiple sources; 3) a successful analysis requires understanding interpro-
cedural data flow; 4) we had access to source code for both the vulnerable version 5.10 and the
fixed version 5.11;4 and 5) file is one of the smallest UNIX utility binaries listed, making it more
likely that a meaningful analysis could be completed in less than two hours.

Three experienced binary analysts completed the attack surface characterization task with the
file binary in their preferred binary analysis environment. The binary was compiled on a ma-
chine running Ubuntu 16.04 with llvm, creating a 32-bit binary with symbols. To focus our data
collection on the cognitions and processes used in understanding data flow, we asked analysts
to begin analysis at the file buffer function in libmagic, treating the array argument and length as
attacker-controlled, i.e., as the “inputs” for the exercise. We did not require analysts to discover
the vulnerability; rather, we asked analysts to produce, as if for future analysis, 1) a ranked list of
(internal) functions or program points where the inputs are processed and may affect the security
of the system, including specific concerns at each point, and 2) any comments, notes, or diagrams
that might support a formal report for a full vulnerability analysis. We asked analysts to focus on
depth over breadth (i.e., following data flow) and to think aloud while performing analysis. Our
human factors specialist took notes about task performance and asked for additional details to un-
derstand the thought process of the analyst, including asking for reasoning behind judgments and
decisions, and asking for clarification about sources of frustration. We provide our instructions to
analysts and questions for analysts in Figures 2.7 and 2.8.

Walkthroughs lasted two hours including the time to set up the analysis environment. Analysts
created the list of functions and concerns, but they produced few comments and no diagrams or
additional notes. Although analysts often use two to four screens, we captured only the primary
screen of each analyst. These artifacts were not analyzed separately.

2.4.2 Results

We compiled the results of the interviews and walkthroughs into a more detailed description of
the process steps in attack surface characterization, a list of pain points and a cognitive decision
matrix, and a preliminary list of data flow elements and interaction requirements for our data flow
visualization.

We capture the process steps of analysts performing attack surface characterization on file in
Table 2.1. We describe pain points observed in Figure 2.9. We present decision and cognitive
requirements from this activity, including some descriptions of difficulties and potential solutions,
in Table 2.2.

claim to providing “real” programs for analysis rather than small designed programs provided by, e.g., the Cyber
Grand Challenge challenge binaries.

3This known CVE in the binary could allow us to perform cognitive walkthroughs of other binary analysis tasks,
e.g., determining the risk of or mitigating a known vulnerability.

4Having source for both versions allowed us to control the binaries analyzed, e.g., whether we provided symbols
or reduced optimizations.

32

Today I am going to ask you to describe, at a high level of abstraction, the steps you take when you are analyzing a
binary to characterize the attack surface and related data flow. This exercise is not intended to be a full vulnerability
analysis. I am asking you to focus on characterizing an attack surface so that I can observe you doing a part of the
work that you typically do and can understand what types of cues and relationships you use in that part of your work.
I will not be evaluating your work, nor should you have to describe details about any similar projects that you are
working on.
To guide this description, I will provide you with a binary to analyze. If you have analyzed this binary in the past,
please let me know and I will provide you with another. I will ask you to describe aloud how you are assessing the
binary, why you take certain actions in assessing the binary, what cues or information you use that lead you to take
certain actions, and how you are categorizing different parts of the binary. I may interrupt with questions to help you
explain and think aloud. If such interruptions drastically disrupt your work, please let me know and we can arrange
for you to complete the analysis exercise first and then talk through your analysis afterward.
By “characterizing an attack surface”, I mean determining what aspects of inputs reach locations that are security
sensitive and how well the binary protects those locations. For this binary, please:
• Begin at the identified function/interface file buffer; arguments to this function are the “inputs” for this exercise,

and one input is named for you.
– You may explore anywhere in the binary to gain context, but your goal is to characterize the binary as if

this function were an external interface.
• Produce a ranked list of (internal) functions or program points where inputs are processed and may affect the

security of the system.
• Characterize these functions or program points – and the paths that reach them – with respect to the inputs and

any other data sources.
• Focus on depth over breadth in your characterization: follow data down into internal functions and chase the

path(s) of interest.
• Keep notes, comments, and diagrams as though you were going to complete a full vulnerability analysis,

including a formal report characterizing the attack surface (you will not actually create this report).
– Please take any written notes in our provided notebook.
– Please leave us with a copy of any electronic artifacts created or modified during this activity.

Figure 2.7. Instructions provided to analysts for attack surface
characterization cognitive walkthrough.

33

Background Questions Before beginning the exercise, we ask each analyst the following questions:
1) For how long have you been doing work that required analysis of binary code?
2) For how long have you been doing work that required analysis of attack surface of a binary?
3) For how long have you been doing work that required analysis of attack surface of source code?

Questions to Ask during Analysis We interrupt each analyst as needed with the following questions:
1) What are you trying to do or learn right now?
2) What did you need to do to learn about that code?
3) What are you thinking about right now?
4) In the section of code that you are working on right now, what are you thinking about?
5) Why did you jump to this section of code?
6) Why did you decide to name this?
7) What does the name mean?
8) Why did you decide you should make a comment here?
9) What does the comment mean?

10) Where are you looking on the screen? Why?
11) In the section of code that you are working on right now, what information are you thinking about?
12) Does the data that you are currently analyzing relate to other analysis that you have already done? How?

Figure 2.8. Questions we ask analysts before and during our
attack surface characterization cognitive walkthrough.

1) Must find a reference to an argument within the assembly before it can be selected. The string cannot be
searched for.

2) Even when a reference is highlighted throughout a function, must scroll through the entire function to find the
yellow highlighting, and it is hard to know for sure you have seen all of them.

3) Tools are designed to be used in a top-down way. Decompiler propagates some specifications down into code,
but does not propagate things, like structures, up to earlier calls. This leads to a problem when a structure is
identified deep in the code one day, and the next person to work on the code does not know or forgets and starts
in a different part of the code where structure is used again.

4) Fighting with the decompiler: a) stack buffer that the decompiler did not know about and was hard to follow;
b) in a data structure editor, different fields like size are tweaked differently; c) structures within an array;
complex types.

5) Need better ways of keeping track of how the analysis has proceeded and what has been learned. Two
analysts explicitly noted memory failures. The failures were of two types: episodic and prospective. Episodic
memory failures were failures to remember that a function had been previously evaluated. Prospective memory
failures were failures of remembering that only attack surface was being characterized. Analysts wanted to go
further.

6) Need better way of transmitting learning to other analysts on team.

Figure 2.9. Pain points observed during attack surface character-
ization cognitive walkthroughs.

34

Ta
bl

e
2.

1.
D

et
ai

le
d

pr
oc

es
s

st
ep

s
id

en
tifi

ed
in

co
gn

iti
ve

w
al

k-
th

ro
ug

hs
of

at
ta

ck
su

rf
ac

e
ch

ar
ac

te
ri

za
tio

n
da

ta
flo

w
an

al
ys

is
ta

sk
.

T
hi

s
ta

sk
as

ke
d

an
al

ys
ts

to
fo

cu
s

on
“p

ul
lin

g
on

a
th

re
ad

”
or

tr
ac

-
in

g
da

ta
flo

w
s.

Pr
oc

es
sS

te
ps

Q
ue

st
io

ns
A

na
ly

st
is

A
sk

in
g

ab
ou

t
C

od
e

O
bs

er
va

tio
ns

of
In

te
re

st
N

ot
es

C
og

ni
tiv

e
Pr

oc
es

si
ng

C
ha

lle
ng

es
1.

C
on

st
ra

in
th

e
do

m
ai

n
kn

ow
le

dg
e

of
co

ns
id

er
at

io
n

an
d

ac
tiv

at
e

re
le

va
nt

kn
ow

le
dg

e

W
ha

tp
la

tf
or

m
s

w
as

th
e

co
de

w
ri

tte
n

fo
r?

W
ha

td
oe

s
th

is
co

de
do

?
W

ill
I

lo
ok

,p
ri

m
ar

ily
,a

td
is

as
se

m
bl

ed
or

de
co

m
pi

le
d

co
de

?
W

ha
tf

un
ct

io
ns

of
co

de
do

es
th

e
cu

st
om

er
w

an
ta

ss
es

se
d?

E
xp

ec
ta

tio
ns

ab
ou

tw
ha

tt
he

co
de

do
es

w
ill

ac
tiv

at
e

kn
ow

le
dg

e
of

a
su

bs
et

of
co

m
m

on
vu

ln
er

ab
ili

ty
ty

pe
s.

K
no

w
le

dg
e

of
pl

at
fo

rm
m

ay
al

so
co

ns
tr

ai
n

co
m

m
on

vu
ln

er
ab

ili
ty

ty
pe

co
ns

id
er

at
io

ns
.

T
hi

s
co

de
w

as
id

en
tifi

ed
as

pa
rs

in
g

co
de

w
hi

ch
co

ns
tr

ai
ne

d
w

he
re

an
al

ys
ts

lo
ok

ed
fo

rv
ul

ne
ra

bi
lit

ie
s.

H
ow

m
an

y
di

ff
er

en
t

”t
yp

es
”

ar
e

th
er

e?
Fo

re
xa

m
pl

e,
on

e
an

al
ys

ts
ug

ge
st

ed
th

at
th

ei
ra

tta
ck

su
rf

ac
e

pr
oc

es
s

is
di

ff
er

en
tf

or
w

eb
se

rv
er

ho
st

ed
pr

og
ra

m
s

an
d

fo
r

br
ow

se
r-

ba
se

d
pr

og
ra

m
s.

H
yp

ot
he

si
s

G
en

er
at

io
n

an
d

K
no

w
le

dg
e

R
et

ri
ev

al

2.
Pl

an
th

e
sc

op
e

of
th

e
w

or
k

H
ow

fr
eq

ue
nt

ly
an

d
w

he
re

in
m

em
or

y
is

in
pu

td
at

a
us

ed
?

D
oe

s
in

pu
td

at
a

ge
t

pa
ss

ed
w

ith
fu

nc
tio

n
ca

lls
?

D
oe

s
in

pu
t

da
ta

ge
tw

ri
tte

n
to

ot
he

rm
em

or
y

lo
ca

tio
ns

?
W

ha
ta

re
as

of
co

de
or

da
ta

flo
w

s
do

es
th

e
cu

st
om

er
w

an
ta

ss
es

se
d?

1)
H

ig
hl

ig
ht

in
g

st
ri

ng
s

as
so

ci
at

ed
w

ith
da

ta
lo

ca
tio

ns
is

us
ed

as
a

w
ay

of
he

lp
in

g
to

m
ov

e
at

te
nt

io
n

to
on

ly
re

le
va

nt
in

fo
.

2)
Fr

eq
ue

nc
y

of
hi

gh
lig

ht
in

g
is

a
qu

ic
k

qu
al

ita
tiv

e
as

se
ss

m
en

to
fc

om
pl

ex
ity

of
ch

ar
ac

te
ri

zi
ng

at
ta

ck
su

rf
ac

e.
3)

C
o-

oc
cu

rr
en

ce
of

hi
gh

lig
ht

ed
ar

ea
w

ith
as

se
ss

m
en

to
f

w
he

th
er

da
ta

is
pa

ss
ed

to
an

ot
he

rm
em

or
y

lo
ca

tio
n

(r
ea

d-
w

ri
te

)w
er

e
no

te
d.

4)
C

o-
oc

cu
rr

en
ce

of
hi

gh
lig

ht
in

g
w

ith
fu

nc
tio

n
ca

lls
w

er
e

no
te

d.
5)

C
o-

oc
cu

rr
en

ce
of

hi
gh

lig
ht

in
g

w
ith

m
em

or
y

lo
ca

tio
n

of
fs

et
sp

ec
ifi

ca
tio

ns
w

er
e

no
te

d.

(1
)T

hi
s

in
te

ra
ct

io
n

co
ul

d
be

m
ad

e
m

or
e

ef
fic

ie
nt

by
a

be
tte

rm
et

ho
d

of
fin

di
ng

al
l

hi
gh

lig
ht

ed
lo

ca
tio

ns
an

d
th

ei
r

co
-o

cc
ur

re
nc

e.
Fo

re
xa

m
pl

e,
in

M
S

W
or

d
w

he
n

yo
u

se
ar

ch
on

a
w

or
d

or
ph

ra
se

,t
he

na
vi

ga
tio

n
pa

ne
pr

ov
id

es
yo

u
lis

to
fc

lic
ka

bl
e

m
at

ch
es

al
on

g
w

ith
so

m
e

co
nt

ex
ta

ro
un

d
th

em
.

A
tte

nt
io

na
lC

on
tr

ol
to

Se
ar

ch
fo

r
R

el
ev

an
tP

ar
ts

of
C

od
e

3.
A

ss
ig

n
pr

io
ri

ty
to

di
ff

er
en

tp
at

hs
of

in
ve

st
ig

at
io

n

W
ha

tf
un

ct
io

n
or

pa
th

w
ay

w
ill

be
th

e
m

os
tl

ik
el

y
ca

nd
id

at
e,

w
hi

le
st

ill
be

in
g

ac
ce

ss
ib

le
or

m
an

ag
ea

bl
e?

W
ha

t
fu

nc
tio

n
or

pa
th

w
ay

w
ill

pr
ov

id
e

th
e

m
os

tp
ro

gr
am

kn
ow

le
dg

e
th

at
w

ill
ge

ne
ra

liz
e

to
th

e
re

m
ai

nd
er

of
th

e
pr

oj
ec

t?

In
th

e
ab

se
nc

e
of

a
pr

ev
ie

w
of

a
fu

nc
tio

n,
th

is
ju

dg
m

en
ti

s
ba

se
d

on
1)

th
e

na
m

es
of

th
e

fu
nc

tio
n

or
te

xt
st

ri
ng

s
re

la
te

d
to

th
e

ca
lli

ng
fu

nc
tio

n
th

at
in

di
ca

te
po

ss
ib

ili
ty

of
co

m
pl

ex
ity

,
sp

aw
ni

ng
a

pr
oc

es
s,

kn
ow

n
vu

ln
er

ab
ili

tie
s;

an
d/

or
2)

si
ze

in
nu

m
be

ro
fb

yt
es

of
fu

nc
tio

n
th

at
is

ca
lle

d;
an

d/
or

3)
ho

w
th

e
re

tu
rn

ed
va

lu
es

ar
e

us
ed

.

Fo
re

xa
m

pl
e,

cu
e

w
or

ds
:M

ag
ic

,F
ile

ty
pe

in
di

ca
to

rs
(A

SC
,E

L
F,

C
D

F)
.A

SC
no

te
xp

ec
te

d
to

re
qu

ir
e

a
lo

to
f

ev
al

ua
tio

n,
m

os
td

id
no

tk
no

w
w

ha
ta

C
D

F
w

as
,a

nd
on

ce
th

e
na

m
e

of
th

e
C

D
F

w
as

fo
un

d
in

te
xt

st
ri

ng
s

it
w

as
ex

pe
ct

ed
to

re
qu

ir
e

a
lo

to
fp

ar
si

ng
.

E
pi

so
di

c
M

em
or

y
fo

rA
na

ly
si

s
Pa

th
C

ho
ic

es

4.
W

ith
in

a
fu

nc
tio

n
or

al
on

g
a

pa
th

w
ay

th
at

us
es

in
pu

td
at

a,
fin

d
po

te
nt

ia
l

pr
ob

le
m

s

D
oe

s
th

is
fu

nc
tio

n
po

ss
ib

ly
do

an
yt

hi
ng

pr
ob

le
m

at
ic

w
ith

th
e

da
ta

Ia
m

in
te

re
st

ed
in

?

C
ue

s:
1)

fu
nc

tio
n

na
m

es
kn

ow
n

to
be

a
pr

ob
le

m
at

ic
,e

.g
.,

fil
e

pr
in

t
f;

2)
fu

nc
tio

n
na

m
es

in
di

ca
tin

g
sp

aw
ni

ng
an

ot
he

r
pr

oc
es

s,
e.

g.
,f

un
ct

io
n

na
m

es
w

ith
”e

xe
c”

in
th

em
;

3)
fu

nc
tio

ns
w

ith
a

lo
to

fa
rg

um
en

ts
;4

)f
un

ct
io

ns
th

at
ha

ve
C

FG
th

at
ar

e
“t

al
la

nd
na

rr
ow

”
su

gg
es

tin
g

a
w

id
e

va
ri

et
y

of
ca

lls
to

lib
ra

ri
es

;5
)m

em
or

y
ca

lls
an

d
co

m
pa

ri
so

ns
lik

e
m

ge
t,

m
em

cp
y,

m
al

lo
c,

fre
e;

6)
in

pu
t/o

ut
pu

tfl
us

hi
ng

;7
)f

or
ki

ng
an

d
cr

ea
tin

g
pi

pe
s

“w
hi

ch
ar

e
co

m
pl

ic
at

ed
”.

1)
V

ar
ia

tio
n

in
ho

w
co

m
pl

et
el

y
th

is
ta

sk
w

as
co

m
pl

et
ed

w
ith

in
a

fu
nc

tio
n.

So
m

e
fo

un
d

a
fe

w
po

ss
ib

le
pr

ob
le

m
s,

so
m

e
w

an
te

d
to

id
en

tif
y

al
la

tt
hi

s
le

ve
la

nd
th

en
in

ve
st

ig
at

e
de

ep
er

in
.2

)S
om

e
fu

nc
tio

ns
(e

.g
.,

pr
in

t
f)

kn
ow

n
to

be
a

pr
ob

le
m

.

Pa
tt

er
n

R
ec

og
ni

tio
n;

K
no

w
le

dg
e

R
et

ri
ev

al

U
se

d
pa

tte
rn

re
co

gn
iti

on
of

co
m

m
on

pr
og

ra
m

m
in

g
id

io
m

s
an

d
ot

he
rf

ea
tu

re
s

to
ex

cl
ud

e
so

m
e

bl
oc

ks
of

th
e

fu
nc

tio
n

fr
om

co
ns

id
er

at
io

n
ba

se
d

on
fa

m
ili

ar
ity

/b
oi

le
rp

la
te

m
at

er
ia

l.
5.

M
or

e
de

ta
ile

d
ev

al
ua

tio
n

of
fu

nc
tio

ns
an

d
su

b-
fu

nc
tio

ns

H
ow

lik
el

y
ar

e
th

e
id

en
tifi

ed
co

nc
er

ns
to

le
ad

to
pr

ob
le

m
s?

1)
H

ow
m

uc
h

of
th

e
m

em
or

y
th

at
ha

s
in

pu
td

at
a

is
be

in
g

us
ed

,e
.g

.,
si

ze
of

of
fs

et
s;

2)
H

ow
m

an
y

di
ff

er
en

tl
oc

at
io

ns
w

ith
in

m
em

or
y

of
in

te
re

st
ar

e
be

in
g

us
ed

,e
.g

.,
va

ri
at

io
n

in
th

e
of

fs
et

s
us

ed
to

ac
ce

ss
th

e
m

em
or

y;
3)

m
em

or
y

op
er

at
io

ns
,e

.g
.,

m
al

lo
c

ev
al

ua
tio

n;
4)

ex
ec

;5
)c

al
lt

o
fu

nc
tio

n
th

at
ca

lle
d

th
is

on
e

(r
ec

ur
si

on
)6

)c
he

ck
in

g
of

by
te

s
at

of
fs

et
w

ith
in

da
ta

m
em

or
y

lo
ca

tio
n

of
in

te
re

st
.

A
na

ly
st

s
in

di
ca

te
d

th
at

w
ith

an
ac

tu
al

pr
oj

ec
tt

he
y

w
ou

ld
sp

en
d

m
or

e
tim

e
in

tr
ac

in
g

an
d

ve
ri

fy
in

g
th

at
th

e
su

sp
ec

te
d

pr
ob

le
m

at
ic

pr
oc

es
si

ng
is

ha
pp

en
in

g.

W
or

ki
ng

M
em

or
y:

M
ai

nt
ai

ni
ng

St
at

e;
Pa

tt
er

n
R

ec
og

ni
tio

n

35

Table 2.2. Decision requirements table for data flow analysts

Decision and Cognitive Requirements Why Difficult Visualization Solution
Locate functions that are vulnerable if
“critical” values are different than the
expectation.

Large number of functions and values. Not
clear how much detailed knowledge of
program purpose, and what individual
functions do, is necessary.

Visual indicators to denote as much
irrelevant/less important code as possible.
For example, with visualization of the entire
binary, graying out of irrelevant code.

Following input values through code,
assumptions are made about what code is
doing that are sometimes incorrect and need
to be remembered.

Quick, easy method of keeping track of
assumptions and uncertainty about the
constraints on the data values and functions
while allowing for propagation through
code. This is informally done with naming
and use of uncertainty indicators like “ ” and
“?” in names.

Following input values through code,
assumptions are made about what code is
doing that are sometimes incorrect and need
to be remembered and revised.

Quick, easy method of keeping track of
assumptions. A function-based/data-based
bread-crumb trail generated by user for
current thread where elements can be
categorized to indicate assumptions made or
choice points.

Following input values through code, choices
are made about what path to follow that are
sometimes dead ends. Choice points need to
be remembered to investigate other paths.

Quick, easy method of keeping track of
choice points. (Same bread-crumb trail.)

Identify what code does within the “critical”
function that could lead to a vulnerability.

Values associated with binary must be
identified from earlier code.

Locate the functions along the paths leading
into “critical” functions.
Evaluate whether values from data on these
leading paths could be manipulated to
influence “critical” values in “critical”
function.
Evaluate whether values from data on these
leading paths are sanitized by checking or
manipulating, ensuring that values are within
the range that is expected by “critical”
function.

36

As a direct result of pain point 2 (Figure 2.9), we explored one way to help analysts quickly
make judgments about data when they are assessing every instance of a symbol in the code. In-
spired by Microsoft Word co-location information displayed in source, we hypothesized that we
could reduce analysts’ cognitive overhead by providing a search and decision tool to make naviga-
tion easier. In the cognitive walkthroughs, the analysts performed a text string search for a symbol
of interest, and the tool highlighted examples of the string. However, the cognitive overhead was
high: the analyst still had to search out each highlighted string, make a judgment about whether it
needed further analysis, remember the judgment, remember which instances had been evaluated,
and search through the code to find the next instance of the string. A tool that lists each instance of
a variable along with some context information, and recorded some basic decisions about each in-
stance, could help analysts to make priority judgments more quickly and address memory failures
by having a taint-informed colocation (summary) view of variables.

Two novice analysts developed a proof-of-concept IDA Pro [55] plugin to display co-location
information for instructions identified as tainted by the Ponce plugin. We did not test this proof-
of-concept visualization; focusing our limited resources on developing data flow visualization re-
quirements, we leave further development and testing to future work. Appendix F describes our
IDA Pro plugin.

2.4.3 Discussion

These results informed our initial lists of elements of data flow analysis, presented in Fig-
ure 2.10. Interestingly, different elements are important at different stages of vulnerability assess-
ments. Elements that are included in a visualization would need to be different depending on the
stage of the assessment. For example, elements of algorithmic descriptions and diagrams provided
during an end-of-project report would provide the most abstract data flow elements that are useful
for understanding. These diagrams are usually one-off creations, but if they were standardized and
saved as artifacts with previously-worked projects, they could help with gaining context for new
projects. For our goal, creating a visualization to help analysts gain understanding in the first place,
we need to consider how analysts generate these diagrams.

We also noted a cross-cutting issue for visualizations developed to help analyze data flow:
uncertainty about hypotheses about elements needs to be represented. Sometimes these uncertain
hypotheses about a data input or data process may be used for mental simulation of program
execution. Sometimes these hypotheses have been partially verified. Sometimes these hypotheses
represent knowledge-based judgments of likelihoods, e.g., that programmers typically use a given
design pattern for a specific reason. In any case, visualizations will need to support representing
these uncertainties.

37

Sources of Data
• direct data (user) input
• network
• file
• internal program data
• pointers to data

Program Representation of Data
• type / structure
• size possible
• size expected
• storage in memory (addresses in pointers, registers, buffers, stack, heap)

Data Flow Operation Categories
• copy (implies new location and variable name)
• subset
• manipulate multiple sources to create a single new data source (e.g., concatenate different sources)
• manipulate one input data to create new data
• manipulate to obfuscate (may be same as previous)
• compare two data inputs
• access data (read) (Is this operation ever done in the absence of another operation?)
• write to unused memory
• write to previously used memory (implies overwriting previous data)

– partial overwrite
– full overwrite

• erase from memory; complexity here is related to scope of the operation (e.g., is all of memory erased?)
• constraint

– check length
– check type
– check content

• relationship to privileged operations, e.g., exec

Relationships between Data
• co-occurrence

– structures
– arrays

• memory access patterns
• structures, e.g., linked lists, doubly-linked lists, red-black trees
• values, e.g., hashed locations

Figure 2.10. Initial list of data flow analysis elements created
based on results of cognitive walkthroughs.

38

2.4.4 Conclusions

Our interviews and cognitive walkthroughs showed that data flow analysis is a cognitively demand-
ing task requiring extensive domain knowledge and focused attentional resources. It is performed
by a small group of experts using different tools and no prescribed approach. Current tools are
not usually integrated into these current, individualized workflows. Analysts often do not have the
cognitive bandwidth to stop their analysis and look for or learn new tools.

These observations have guided our goals for this and future research:

How can we design binary analysis tools to minimize the time human analysts spend doing
work that software is better at, and maximize human analyst access to relevant knowledge for
extracting meaning from code and making good judgments, while integrating with existing work-
flows and providing benefits to outweigh the costs to users.

2.5 Modified Sorting Task

Next, we needed to develop the list of requirements, or a list of essential data flow elements and
relationships, that generalized across diverse binary programs and analysis goals. We considered
conducting additional cognitive walkthroughs5, but we decided instead to analyze analyst artifacts
via a modified sorting task, described below, for three reasons. First, our requirements were to
enable a new type of visualization, not an analysis environment; walkthroughs of other data flow
tasks required more understanding of and interaction with the analysis environment and would have
yielded little specific data flow information. Second, we wanted to capture information critical to
understanding data flow across a wider array of program types. Third, we wanted to utilize an
analysis technique that would rely less on recall and explicit reporting of thought processes and,
perhaps, reveal automatic processing associated with data flow analysis and understanding.

We hypothesized that binary analysts might reveal general purpose data flow elements through
a sorting task [92] over their own meaningful data variable and value names. When binary analysts
work, they use specialized reverse engineering tools to discover program behavior and record what
they discover. These tools allow analysts to add comments and to rename code elements like
functions and variables, propagating assessment-relevant names through the code base. When
they encounter a previously-renamed element in other contexts, they can know what important
information has already been discovered about that element.

Unfortunately, analysts name both data flow elements and categories of elements according to
analysis goals and personal preference, making a typical sorting task unable to reveal mental mod-
els shared across analysts and projects. Further, analysis projects span weeks, making it infeasible
for analysts to independently perform the same analysis. To address these challenges, we added

5We did design and dry-run an additional cognitive walkthrough focused on determining the impact of a known
vulnerability by understanding a CVE in file. However, the dry-run indicated that significantly more work would be
needed to design an effective cognitive walkthrough. See Appendix B for more details.

39

We would like to better understand how analysts categorize data flow elements when they are working on a VA or RE
project. We are examining whether the symbols that you have assigned to various programming elements in a binary
can reveal how you were thinking about data flow through the binary.
In order to do this, we have created a script that will scan a project file and extract the symbols that you gave to
functions, data, and variables.
The script is named GroupRenamedVariables.
Using this script, I am going to ask you to sort the symbols that you assigned into categories in a couple of different
ways. More details are provided below. Try to sort the symbols into 7-10 different categories. The program has
extracted all of the symbols that you assigned, but we are only interested in your categorizations of data value symbols
and variable symbols. To focus on these types of symbols, please sort the symbol list by type of symbol. Just ignore
the function symbols.
You will be able to change and review your category assignments as you like. You can assign symbols to more than
one category. You can change the name of a grouping at any time. You can split a grouping into more than one group.
Once you have completed the sorting task, we will ask you to provide descriptions of each of your categories.
Imagine that you are teaching someone else about how data values within a binary flow through a program. Organize
the symbols that you have given to these variables into grouping that would help you teach that person. Try to sort the
symbols into 7-10 different categories.

Figure 2.11. Instructions provided to analysts for the first stage
of the modified sorting task, extracting categories of label names
from analyst artifacts.

a second stage to the sorting task, allowing us to derive our static requirements for our data flow
visualization.

2.5.1 Experimental Setup

The first stage of the modified sorting task consisted of analysts sorting the products of one of their
own past projects into categories important for understanding data flow. To help the analysts in
this sorting task, we created a program that pulled analyst-assigned variable names from a code
base, presenting the names and allowing analysts to request their decompiled context by clicking
on a name. The program displayed the entire list of names and allowed the names to be sorted into
analyst-defined categories one by one or in groups.

We asked seven analysts to select a completed project with data flow considerations for the
sorting task. Figure 2.11 shows the instructions given to these participants. Projects included a
variety of applications and operating system drivers. The selected programs provided anywhere
from 200 to over 500 names. We asked analysts to spend up to 40 minutes going through the
names they had assigned and binning them into groups based on how they would teach someone
else about how data values flow in the code. As expected given the time constraints, analysts were
only able to categorize between 72 and 110 names into 6 to 11 categories. To ensure that the
important categories of data elements had been captured, we asked analysts to review the entire list
at the end of the sorting period for missed categories; no analyst felt that categories were missing.
Analysts then assigned category names to each of their groups and explained why that group was

40

SET 1: Data Flow Relationships
1) Data flow represents initial data configuration.
2) Data flow represents communication from system and from user(s).
3) Data values influence control flow, usually through static data elements such as a list of things that direct control

(e.g., magic values).
4) Data flows in isolated parts of a program that talk to each other.
5) Data values that represent states, e.g., where the data is. These values tend to be dynamically updated.
6) Special global variables that store data that reach into other parts of system, e.g., large complex globals, mail-

boxes.
7) Data values that live inside functions, e.g., loops, and iterators. (This type of category was not identified by

many of the projects.)

Figure 2.12. Set 1, describing data flow relationships identified
by the modified sorting task.

important for understanding data flow. Our collected data consisted of these category names and
their descriptions. The analyst-created sorting task category names varied across analysts; program
type and analysis goal had a significant impact on the created categories. Because category names
and descriptions were derived from proprietary assessments, we will not share these intermediate
results.

To determine which category names described similar data flow elements and which names
described unique aspects of data flow, we added a second stage: an additional level of categoriza-
tion by a separate group of analysts. A panel of six experienced binary analysts (one of whom
had participated in the original categorization task) and one experienced source code developer
reviewed the sorting task categories and descriptions; each member of the panel categorized the
analyst-created categories, and then, working together, the panel identified similarities and dif-
ferences across the analyst-created categories that were important for understanding data flow in
binaries. We added these important similarities and differences to our preliminary list of data flow
elements, creating a list of required data flow elements to be represented in our static data flow
visualization.

2.5.2 Results

Again, because category names and descriptions were derived from proprietary assessments, we
will not share the intermediate first stage results.

The second stage results consisted of sets of categories represented by the category names and
types from the first stage. These sets are presented in Figures 2.12, 2.13,2.14, 2.15, and 2.16. Note
that these sets describe different views of data and data relationships. The panel came to consensus
about these different views of how to organize the categories provided by the first stage.

The panel claimed, during the discussion, that a visualization that provides a summary of these
types of data flow relationships would not be helpful. However, we note that we do not yet know

41

SET 2: High Level Data Flow Relationships
1) Inputs
2) Outputs
3) Does this data influence something else?
4) Is this data influenced by something else?
5) How much does this data value change?
6) Other relationships between data values (e.g., value of datum1 is the length for datum2)

Figure 2.13. Set 2, describing high level data flow relationships
identified by the modified sorting task.

SET 3a: Phases of Analysis
1) Finding boundaries for where to investigate.
2) Identifying uncertainty and trying to reduce that uncertainty.
3) Asking question of what role does this have initially, and within the system?
4) Re-evaluation leads to filtering that takes you back to Phase 1.

SET 3b: Axes Many labels are combinations of these axes, e.g., low-level semantics, high-level semantics,
search notes)

1) Some things are used for the analysis; they are specific to the goals of the analysis. E.g., critical, debug info,
overwritable, static, boring.

2) Some things define the meaning of the structure, e.g., https structure, gif.
3) Some things are simply RE notes or low-level semantics; e.g., unknown, complex, potentially unsafe.

Figure 2.14. Sets 3a and 3b, describing phases of analyses and
categories of reasons for categorization as identified by the modi-
fied sorting task.

SET 4: Axes
1) What the data semantically/syntactically is, e.g., string, gif, html.
2) How the data is structured or laid out in memory.
3) Who “owns” the data and can update it, free it, and see it.
4) Where the data comes from/goes to (flow), e.g., from users, network.
5) What the data is for.
6) How the data is used, e.g., lookup tables, whether it is transient or modified or constant.
7) Where the data lives or the scope, e.g., global, task-specific.
8) Uncertainty analysis conclusions.
9) Relationships among things.

Figure 2.15. Set 4, describing axes over which data might be
characterized as identified by the modified sorting task.

42

SET 5
1) Special global or ambient information
2) Communication outside system
3) Communication within a program
4) State/input to control decisions
5) About the analyst’s process (not data flow)
6) Control as data
7) Initial data or configuration

Figure 2.16. Set 5, describing other types of categories identified
by the modified sorting task.

if there are ways of measuring these categories that would be informative in a visualization. For
example, frequency information about each of these elements cross-referenced with control flow
or proximity information about each element may be useful.

2.5.3 Discussion

The two-stage modified sorting task is designed to understand and help specify essential elements
of user mental models. It differs from a typical sorting task in which elements to be sorted are
defined beforehand. In a typical sorting task, participants each sort the same elements to reveal,
through consensus grouping, similarities in mental models.

In the two-stage modified sorting task, we relied on the domain experts, i.e., our binary reverse
engineers, to identify the relevant elements, i.e., the names related to data flow. In our task, each
participant sorted different elements from extended, large projects analyzing different types of
binaries for different analysis goals. While the task was straight-forward for the analysts, resulting
category names reflected personal preference and analysis goals. Distilling the sets of category
names and descriptions into visualization requirements required a second stage of abstraction,
with domain experts, to identify the similarities and differences between the categories described
in the first stage. The collaborative second-stage grouping revealed important sets of elements and
similarities in how participants think about data flow elements.

Artifact analysis, such as this modified sorting task, can be powerful for understanding the
mental models of experts in a domain: artifacts can be systematically analyzed without incurring
the cost of devising controlled but realistic projects with different goals. Additional artifacts that
might be explored similarly include analysts’ change history for names and analysts’ comments in
the binary code, which summarize their discoveries.

It is difficult to assess the replicability of the results generated from this work. Several factors
may make it difficult to reproduce our results. Our preliminary interviews and walkthroughs tested
only a few people under each protocol and focused on a single type of data flow task, i.e., attack
surface characterization. Further, the results of the modified sorting task may have been biased
by the functionality of the programs selected or the range of potential vulnerabilities, and the

43

judgments of our panel of experts may have been skewed by their work. Despite these concerns,
we incorporated several strategies to increase the likelihood that our results are replicable. We used
a range of approaches: interviews, walkthroughs, and the modified sorting task. We captured the
essential data flow elements from a range of projects with different analysis goals.

2.6 Initial Requirements

We used the results from the modified sorting task, augmented with results from the semi-structured
interviews and cognitive walkthroughs, to derive a data flow taxonomy. This taxonomy, or set of
static visualization requirements, describes types of data elements to be represented, types of rela-
tionships to be represented, and types of information to be conveyed via a data flow visualization
to support binary analysts. Figures 2.17 and 2.18 provide this set of initial requirements.

We did not attempt to address the outstanding question: how can we capture the RE process
in the creation of these data flow graphs? Analysts identified a major pain point in that they
lack good ways to diagram data flow patterns in binaries (as distinct from algorithmic data flow),
and they lack good ways to mark whether each branch has been explored yet or not. We describe
mechanisms for interacting with our data flow graphs in Section 5, but we do little to address this
question other than to claim that, if implemented with annotations per our requirements, our data
flow representation should help with capturing the RE process.

We next needed to evaluate the utility of our produced requirements. To do this, we assigned
visual design elements to the elements in our requirements (taxonomy). We then produced a visu-
alization of a binary and evaluated the utility of that visualization, improved the visualization, and
iterated. We describe this initial instantiation and iterative refinement in Section 3.

44

Nodes: What do analysts want to know about the data values? Information about the data value
might be conveyed by visual variation in node (fill effect, shape, outline effect, size, etc.). Color and outline color
are often used, too, but color is typically a redundant coding with some other feature because of prevalent color
discrimination variation in the population.

1) Where data come from
a) Input or communication: user-generated, from system, from file
b) Initial data configurations
c) Internally-generated: values replicate portions of existing data through concatenation or parsing from

other data
d) Internally generated: values are the result of evaluating data sources, e.g., returning a state variable from

a function call, or calculating from other data values
2) Data values that represent program states, i.e., where data is
3) Frequency (absolute number, number of functions, log normalized) of accesses – or numbers of reads and

writes; this feature functions differently early in RE as compared to later in the process;
4) Output; this information could be conveyed based on spatial layout. Canonically it is related to when the data

re-used, but we could consider other layouts. The output mechanisms are central to the goals that analysts
have, and evaluating paths; therefore, analysts may want output to be spatially displayed more prominently.

5) Special global variables that store data that reach into other parts of system, e.g., large complex globals, mail-
boxes

6) Types: GIF, string, html, and others from our categorization task
7) Value relationships between variables

Information about groups of data values that are consistently related in the program might be conveyed by a consistent
spatial grouping and alignment.

1) Data in isolated parts of a program that talk to each other
2) Given relationships, e.g., datum 1 value is the length of datum 2; there may need to be special visual depictions

in nodes for information like length
3) Can type information for a structure be conveyed in a similar way? Should consistent correlations between

fields in a structure be edges or a different visualization element?
4) Could templates for these consistent relationships be created and useful? Is there enough consistency and

frequency for templates to be useful for reducing the cognitive load of creating this component of the visual-
ization?

Information about data values that is boring might be conveyed by removal from the visualization or hiding within an
edge, e.g., local variables, data already proven safe.

Figure 2.17. Initial requirements for information conveyed by
nodes in a directed graph data flow visualization.

45

Edges: How are data values influencing or influenced by other program parts for RE or VA?
This includes intra- and interprocedural data.

1) Does this data influence something else? Represented by arrows going out. What are the types of influence?
a) Control Flow i) to new functions, usually through static data elements such as a list of things that direct

control, or ii) within functions, via loops and iterators.
b) Other Data.

2) Can this data value be influenced by something else? Represented by arrows coming in.
a) Types? updating, freeing, seeing it
b) How much can this data value change? Could be a categorical (e.g., not changeable, volatile)?
c) Are proper security and integrity checks already in place to prevent vulnerability?

3) Edge representations might help convey uncertainty about how this data will be influencing, transforming,
touching other data. Priority variation will aid in earlier RE activities.

a) High Priority: identify large, complex, sloppy, difficult functions; identify data with logic done around
the data and co-occurrences of things like spawning, known vulnerable functions (filled out based on
attack surface analysis).

b) Low Priority: Short functions with no return values and no memory functions (filled out based on attack
surface analysis).

Figure 2.18. Initial requirements for information conveyed by
edges in a directed graph data flow visualization.

46

Chapter 3

Visualization

Because binary analysts are very comfortable working with directed graph representations, and
because the data flow elements were consistent with this type of representation, we next iterated
on finding visualization design elements in an elaborated directed graph representation that could
convey the required information. As shown in Figures 2.17 and 2.18 previously, we assigned
data elements like data values and memory locations to types of nodes; we assigned information
about types of influence or relationship to edges. We assigned conveyance of other types of in-
formation to grouping, layout, or annotation, or left them to be determined. We specified visual
representations for our data flow taxonomy elements, the final versions of which are specified in
Tables 3.1, 3.2, 3.3, 3.4, and 3.5 at the end of this section.

These tables describe general requirements for a user-centered graph representation of data
flow. Graph elements include nodes (locations and values) and directed edges (influence). Al-
though the draft representation described here is a graph, the ultimate visual representation de-
signed is not constrained to be a graph. The two primary goals of this representation are: 1) to show
data locations and dependencies, including control dependencies or influence, possible values, and
relationship constraints (i.e., within and between procedures, what is influencing the data?), and
2) to make it easy to diagram data flow patterns, including indicating whether each branch has been
explored yet or not.

Again, these specifications delineate the types of information that we would like conveyed
about data flow in a data flow representation for binary analysts. The binary analysts we consider
are those performing reverse engineering (RE) for vulnerability analysis (VA), malware analysis,
and mitigation development. This representation is intended to help binary analysts transfer knowl-
edge about data flow to themselves (returning to the analysis task later) or to other analysts. This
representation is focused on transferring knowledge from static analysis of data flow and is not
currently intended to help transfer information about dynamic paths. We anticipate that an analyst
will create this graph through discovery and analysis, use this graph for navigation, and take some
working notes within the graph. We anticipate that the analyst will use multiple other tools (e.g.,
IDA Pro, dynamic evaluation) and representations (e.g., the CFG, call graph) in conjunction with
this representation.

In this section, in addition to providing the final versions of these specifications, we provide
example annotations and roles and interpretations in Tables 3.6 and 3.7. We also describe our
iterative development and design process, during which reverse engineers frequently reviewed the

47

adequacy of the data flow elements and the design choices made in our visualization. We do not
present all of the iterations from this phase of the development process. Instead, to give a sense
of our development and refinement process, we present the first evaluation in Section 3.1 and a
description of one round of refinement in Section 3.2.

3.1 Initial Instantiation

We further developed our data flow requirements list while manually creating a data flow visualiza-
tion for the Cyber Grand Challenge [50] binary CROMU 00034 (Diary Parser)1, choosing specific
instantiations of visual design elements.

3.1.1 Experimental Setup

For this experiment, one binary analyst manually RE’d the source code for CROMU 00034. The
analyst focused on understanding vulnerability 2 (described by CWE-121 [30]) and data flow re-
lated to how an attacker might trigger that vulnerability through specialized input. This vulnera-
bility is a simple buffer overflow that is only reachable when an attacker provides a “diary” that
meets five specified conditions. The relevant source code consisted of about 500 lines of code. The
analyst had not investigated this source code before, nor was the analyst familiar with the specified
vulnerability other than as described in the source README provided [104].

Using the taxonomy guidelines developed after the modified sorting task (Figures 2.17 and 2.18)
as a guideline, the analyst created a static visualization depicting discoveries about the data flow
related to understanding vulnerability 2. The analyst made solitary decisions about how to repre-
sent each feature in the graph over the course of about four hours. Figure 3.1 shows the first graph
produced; all manually created graphs in this document were created using The Omni Group’s
OmniGraffle diagramming tool, version 7.9. Note that this graph does not follow many of the de-
sign choices present in our final requirements; instead, it shows our initial straw man attempt at
assigning visualization elements, many of which were changed. Further, this graph does not depict
the entire program, nor does it depict all data flow related to vulnerability 2.

Next, eight binary analysts and a cognitive psychologist reviewed this graph with the original
analyst. Six of the other analysts were unfamiliar with the code base. The original analyst described
the vulnerability and trigger mechanism using this visualization.

1CGC Challenge binaries for DECREE are provided by DARPA [19]; versions ported to standard operating sys-
tems have been released by TrailOfBits.[20]. We use the DARPA challenge name for binaries, but we provide the
TrailOfBits name in parentheses.

48

Figure 3.1. First straw man attempt at assigning visualiza-
tion elements to data flow elements in the context of an analy-
sis. This graph represents incomplete data flow understanding re-
lated to triggering of vulnerability 2 of the DARPA CGC challenge
CROMU 00034.

next_offset
first_
offset

entry
1

0
8

3?offset_next_
entry

?0

verify_chapter

chapter
?

cg_memcpy

offset_data
>20 <11?

Sucess0 5
?

title IDEN
TITYPETS

JOBS
?verify_entry

entry

Successful[3]
10 -1

Successful[1]
10

Successful[0]
10

Successful[4]
10

Successful[2]
10

buffer
10

STDIN

max_len
25

buff_data
??

buff

offset_first_
entry

?0

entry_count
?0

NULL

Success0 5
?

parent_of_subtitle
first_
offset

Control flow-enabled

Data value flow Negative dependency

Points to

Dereference

Attacker controlled
data; color indicates

input point

Initial
value

Global
location

Local variable
location

Multiple direct writes

Structure field
location

Function call that may
modify encapsulated data

Aggregation of constraints
necessary to enable data
 assignment that is target
of “control-flow enabled”

edge (i.e. partial control path)

Function call boundary

location

possible
value

aggregate location
sizeInput location; color

indicates input id

size

location

?

Possible value
set is not
complete

49

3.1.2 Results

In Figure 3.2, we describe the evaluation team’s feedback and observations about this initial graph.
Recall that this visualization is intended to help convey understanding of the CGC vulnerability.

As a result of this feedback, we iterated on the visualization elements and presentation of
the data flow graph. The next version of the graph is shown in Figure 3.3. This second version
incorporated the idea of layers: the Memory layer showed locations and points-to relations, the
Taint layer added value flow edges, and the Influence layer showed values and influence edges.
These layers, pulled directly from the full graph, are shown in Figure 3.1.2.

3.1.3 Discussion

After this exercise, we began documenting our requirements and selected visualization elements
in a spreadsheet. We created two tables documenting requirements for nodes and requirements
for edges. This first pair of tables did cover most of our final node and edge types as well as
some annotation types. However, the tables were not self-consistent, and we changed many of
our visualization elements as we iterated. Tables 3.1 and 3.2 give our final requirements and
selected visualization elements for nodes. Tables 3.3 and 3.4 give our final requirements and
selected visualization elements for edges. The visualization elements, however, are just those that
we selected; other representations of these requirements may be significantly more effective.

Our taxonomy at this point consisted of guidelines that might have been incomplete or at the
wrong level of abstraction. We needed to gain confidence that we were on the right path to devel-
oping a visualization that would be useful for analysts. Thus, development going forward needed
to be iterative, taking into account subject matter expert (SME) feedback.

Further, we needed to begin to address several major issues:

Scalability Can this sort of representation be as effective and created for a larger binary? It may
be more fruitful to scale based on workflow rather than the whole binary: How could this
sort of visualization could be constructed within an analyst’s current workflows? How can
the analyst easily build up a representation like this? And how can we represent uncertainty
in edges?

Integration How would this sort of representation be created? It takes a couple of hours for about
500 lines of source(?) code. Can elements be easily added during initial program analysis?

Selectivity The current graph is selective, and the selectivity is based on the analyst’s understand-
ing of the vulnerability. What would happen if the structure of all the code was mapped, or
at least the structure for parts of code that had been previously analyzed?

50

• This graph appears to scale better than the corresponding static value flow (SVF) graphs showing how memory
is related [103], but it is not clear how well it will scale to realistic programs. This was never addressed.

• Analysts liked tags on the bubbles. They could see how lots of information about data variables could be
documented, e.g., interval, maximum, relationship between max length and in-depth constraints

• Nodes: clouds (functions), ovals (variables) and circles (data values)
– Visual depictions need to be more easily distinguishable
– Function clouds may not be necessary
– How does one indicate the type of data values, e.g., numeric, string, html, gif?
– Data type information, e.g., int or uint, should be specified via a toggleable layer.
– Should whether a data value is calculated be depicted in the type of influence, in the variable, or in the

data value itself?
– How does the graph depict that a data value is not-changeable? Is it captured by the lack of influencers

on the variable, the data value?
• Edges: influence

– The goal of this graph is to answer the question “what are the shenanigans to get to this point in pro-
gram?” Understanding edges and influence seems to allow analysts to answer that question.

– The graph is incomplete, e.g., check happen on chapter that are not represented.
– Definitions of the edges need to be about how they influence (either through control flow or in other

ways). There should not be a separate entity for designating control flow influence from the arrow itself.
– A negative dependency is currently depicted through a shadowed edge that branches from the constant

edge. Other analysts did not understand this type of constraint.
– What is the principled reason for distinguishing influence from data values from influence from a vari-

able? Why would an analyst want to depict one and not the other? Could the important distinction be
coded in the edge as well? Or as a constraint type?

– There should be a beginning state of influence uncertainty.
– Many types of influence that have been noted (like overwriting, freeing, checking) are not displayed.

• Consistency
– Why are there two bubbles called entry? One is a local variable called entry, the other is a structure

field called entry.
– Why are there two things in the entry blob? There are two different assignments to entry.
– How does the graph represent complicated or repeated data structures like the structure containing entry?.

It does not. But conventions from symbolic memory graphs [38] might help.
• Understanding

– Analysts expressed confusion about what exactly attacker-controlled means. The initial analyst stated,
“The attacker gave me those bytes.”

– There was significant ambiguity about whether the word “location” means data or program. This was
resolved to mean data location only in our requirements document.

– There is a desire to use color to show influenced data.
• What is most important is to show data locations and dependencies, including control dependencies; possible

values; constraints; and control flow. What is influencing the data?
• There are three things that this representation should communicate, and analysts might be better served by

allowing for different levels or layers and views:
– I have a program location; under what conditions do I arrive here?
– Where do the values that influence my arrival here come from?
– What are the values?

• Analysts wanted a data flow graph to help with different types of tasks:
– Show me everything that is possible (a static view). This is the focus of our requirements.
– Show a path that I care about, or a condition to arrive at a state.

• A path on this data flow graph is not really a trace; rather, it is a subset of the providence of a value or variable.
However, this distinction can be very confusing, as most analysts think about data flow dynamically.

• Analysts should be able to easily distinguish between data values and names given to program entities.

Figure 3.2. Feedback about our first straw man data flow graph.

51

Figure 3.3. Second straw man attempt at assigning visualization
elements to data flow elements in the context of an analysis of
vulnerability 2 of the DARPA CGC challenge CROMU 00034.

offset_first_
entry

??

next_offset

entry

offset_next_entry

chapter

offset_data

title

entry

Successful[3]Successful[1]Successful[0] Successful[4]Successful[2]

buffer

STDIN

max_len

buff_data

buff parent_of_subtitle

Attacker provided data;
color indicates input point

Global location

Local variable
location

Structure
field location

location

aggregate array
locationInput location; color

indicates input id

location

Possible value
set is not
complete

Success

? … ?

entry_
count

Structure field
location

Structure field
location

Data value flow

Multiple direct writes

!= 0

>20

<11?

?

8

!= 8 3 0? 1

10 -1101 1010!= 1 0

10

25

0

5?
1

!= 0 ?

?

IDEN
TITY PETS

JOBS?

NULL

!= 0
?

first_
offset

??

first_
offset

? ?

Initial
value

possible
value

?

Computed value

size
size

verify_
chapter?

verify_
entry? cg_mem

cpy?

<code> may
influence data

locations

Aggregation of constraints
(I.e. AND)

Control flow enabled

Function call boundary
Locals at end of arrow are parameters

Points to

Partial DRAFT Data Flow Graph Representation
of Cyber Grand Challenge (CGC) Challenge Binary CROMU_00034,

a.k.a. Trail of Bits Version Diary Parser

Generated from source
Describing vulnerability 2 (CWE-121) and data flow related to

how an attacker could reach that vulnerability through specialized input
as described here: https://github.com/trailofbits/cb-multios/tree/master/challenges/Diary_Parser

Shelley Leger, Karin Butler
Jan 3, 2018

52

Figure 3.4. Individual layers pulled from second straw man vi-
sualization. These figures show how toggle-able layers can help
an analyst to pare down the information in the graph to focus on
specific types of locations and influence.

offset_first_
entry

??

next_offset

entry

offset_next_entry

chapter

offset_data

title

entry

Successful[3]Successful[1]Successful[0] Successful[4]Successful[2]

buffer

STDIN

max_len

buff_data

buff parent_of_subtitle

Attacker provided data;
color indicates input point

Global location

Local variable
location

Structure
field location

location

aggregate array
locationInput location; color

indicates input id

location

Possible value
set is not
complete

Success

? … ?

entry_
count

Structure field
location

Structure field
location

Points to

Partial DRAFT Data Flow Graph Representation
of Cyber Grand Challenge (CGC) Challenge Binary CROMU_00034,

a.k.a. Trail of Bits Version Diary Parser

Generated from source
Describing vulnerability 2 (CWE-121) and data flow related to

how an attacker could reach that vulnerability through specialized input
as described here: https://github.com/trailofbits/cb-multios/tree/master/challenges/Diary_Parser

Shelley Leger, Karin Butler
Jan 3, 2018

Memory

(a) Memory layer shows locations and points-to rela-
tions.

offset_first_
entry

??

next_offset

entry

offset_next_entry

chapter

offset_data

title

entry

Successful[3]Successful[1]Successful[0] Successful[4]Successful[2]

buffer

STDIN

max_len

buff_data

buff parent_of_subtitle

Attacker provided data;
color indicates input point

Global location

Local variable
location

Structure
field location

location

aggregate array
locationInput location; color

indicates input id

location

Possible value
set is not
complete

Success

? … ?

entry_
count

Structure field
location

Structure field
location

Data value flow

Multiple direct writes

Points to

Partial DRAFT Data Flow Graph Representation
of Cyber Grand Challenge (CGC) Challenge Binary CROMU_00034,

a.k.a. Trail of Bits Version Diary Parser

Generated from source
Describing vulnerability 2 (CWE-121) and data flow related to

how an attacker could reach that vulnerability through specialized input
as described here: https://github.com/trailofbits/cb-multios/tree/master/challenges/Diary_Parser

Shelley Leger, Karin Butler
Jan 3, 2018

Taint

(b) Taint layer adds value flow edges.

!= 0

>20

<11?

?

8

!= 8 3 0? 1

10 -1101 1010!= 1 0

10

25

0

5?
1

!= 0 ?

?

IDEN
TITY PETS

JOBS?

NULL

!= 0
?

first_
offset

??

first_
offset

? ?

Initial
value

possible
value

?

Computed value

size
size

verify_
chapter?

verify_
entry? cg_mem

cpy?

<code> may
influence data

locations

Aggregation of constraints
(I.e. AND)

Control flow enabled

Function call boundary
Locals at end of arrow are parameters

Points to

Partial DRAFT Data Flow Graph Representation
of Cyber Grand Challenge (CGC) Challenge Binary CROMU_00034,

a.k.a. Trail of Bits Version Diary Parser

Generated from source
Describing vulnerability 2 (CWE-121) and data flow related to

how an attacker could reach that vulnerability through specialized input
as described here: https://github.com/trailofbits/cb-multios/tree/master/challenges/Diary_Parser

Shelley Leger, Karin Butler
Jan 3, 2018

Influence

(c) Influence layer shows values and influence edges.

53

3.2 Refinement

Using an iterative process similar to an Agile approach to software development, we further de-
veloped the data flow requirements list. Experienced binary reverse engineers frequently reviewed
design choices and accessibility of data flow information.

3.2.1 Experimental Setup

For this walkthrough demonstration [71], approximately 15 binary analysts, one source analysis
expert, three visualization experts (including expertise in sensemaking of intelligence information),
and two cognitive psychologists walked through the visualization together. Discussion was focused
around the questions “How do analysts discover things? What are they discovering?” The group
was asked to ignore the discovery process and instead focused on how data flows once there has
been sufficient discovery.

The group focused on the CROMU 00034 graph in Figure 3.3 as a specific example of the
requirements listed in our nodes and edges tables. In the visualization used, nodes represented data
values and locations, and edges (or arrows) represented influence. Spatial ordering in the boxes,
left to right and top to bottom, tended to map to instruction order. Data flow was represented left
to right in an attempt to reduce back edges.

3.2.2 Results

Discussions from the walkthrough demonstration resulted in observations about the current state
of the practice and a list of features that analysts asked for in a data flow visualization tool. Most of
the discussion focused on building on top of our straw man static visualization; very few changes to
the visualization elements were suggested other than as related to color and thickness. We present
the results of these discussions in Figures 3.5 and 3.6.

3.2.3 Discussion

Given this feedback, we extended our requirements to call out interactivity requirements. Addi-
tionally, we iterated on the visualization elements and presentation of the data flow graph. Further
iteration of the requirements also occurred during our evaluations (Section 4).

We represent our final requirements, including our data flow taxonomy and specific visual
instantiation choices, in tables describing interactivity requirements, example annotations, node
information, edge information, and example roles and semantic interpretations. Our data flow
taxonomy elements and interactivity requirements are given in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.

54

• Automated tools do provide data flow information, but they are not trustworthy and provide too much informa-
tion.

• Analysts are used to viewing and interacting with control flow graphs (CFGs), zooming in and out to answer
questions like “What value does j depend on?” They need to discover possible values and encode them once
they know them.

• In attack surface characterization, specific values are less important, but paths are very important.
• Uncertainty is not represented in these tools; rather, it is in analysts’ heads (probabilities).
• Scaling visualization is a challenge, even for simple programs.
• Specialized views, like hiding things, could help certain parts of the analysis but hinder others. Toggle-able

layers might help this.
• It is difficult to balance representation of what is important and what is too much information, particularly as

we do not know yet which features are most important for the analysts to key off of.
• This appears to be a classic sensemaking problem: it includes lots of hypotheses, uncertainty, and so on.

Figure 3.5. Observations about the current state of the practice
provided by analysts.

We provide example annotations and roles and interpretations in Tables 3.6 and 3.7 We summarize
many of the final selected visualization elements in a key in Figure 3.7.

We present our final visual representation of CROMU 00034, using this key, in Figure 3.8. For
those interested in working through a very simple example with many of the visualization features,
we provide the sums example graph in Figure 3.9.

55

• Analysts want to hide things that they understand, or at least the details that led to that understanding, but also
capture what they understood about it and how they knew it (evidence). They also may want to collapse the
display of unimportant information, particularly as a full binary would likely be overwhelming.

– Starting with everything collapsed changes information foraging, but this mechanism has worked well
in other scenarios [82][32]. Possible alternatives include collapsing influence edges and expanding on
demand, or providing a fish eye view [101].

– Code folding is really powerful, but many tools do not support it. For example, a tool might pull out the
code relevant to highlighted things and show them together.

– Detailed questions tend to be more local, although influence questions can be global; however, very local
questions are often easy enough to answer with the current tools and are “uninteresting”.

– Influence is very important (except in the case of related constraints, e.g., “with this value, this path
would never happen”).

• Analysts would like a data visualization tool integrated with data flow analysis tools.
– An API might run an automated analysis and then pop up a visualization at points of interest.
– The graph needs to help disentangle apparent flow from actual flow.
– The tool should let the analyst get under the hood to see the data flow. Questions might include 1) Does

this one thing (identified via a click, e.g.) go to places of concern? 2) Where have data structures been
copied multiple times? 3) Where have structures been passed by value versus passed by reference? 4) If
this element has the value 3, how would that affect the rest of the visualization? 5) Are there places
where data does not actually flow even though it appears to (i.e., there is no sink other than being passed
as a parameter)? 6) Do this set of values ever interact with this other set of values, or are they guaranteed
to be independent? 7) Between this source and sink, what data flows from here to there? What are the
paths from here to there? 8) Or, to a certain depth (e.g., “one step away”, what are the relevant flows?

• A tool should help analysts with both memory and communication of the progression of the analysis:
– keep track of hypotheses and allow analysts to go back and alter them when something is wrong.
– represent uncertainty about the accuracy of the analysis.
– provide a summary of high-level things and what has been touched, including encoding how long or how

often an element has been analyzed.
– represent the minimal amount of information to let an analyst know what he did.
– help transfer information to another analyst (very hard).
– fast-forward through past analysis or timeline to refresh memory, though it would be nice to be able to

hide or delete irrelevant explorations.
– provide support for investigation and bookkeeping, including annotations and bookmarks.
– provide externalizations of the current hypothesis under test and where analysts still need to look

• Effective layouts could help with context-switching, memory, and retention.
– Consistent spatial relations would help with memory. Specifically, an analyst would probably want the

same layout a week or a month later.
– A visualization could act as a memory aid: analysts could map their mental models onto a visualization

once they are familiar with it, and then the visualization itself can help refresh memory.
– Local changes (within a parent node, e.g.) are probably okay. Combining parent nodes may not be, as

the graph would have to be rearranged in such a case. However, animating rearrangement has worked in
other situations.

– What sequencing information is necessary? Can spatial layout be used to convey instruction order?
• Analysts need to express and move between multiple levels of abstraction, possibly seeing several at once.
• Analysts often work with multiple views and want to save them.
• Initially analysts may want things to stand out based on how much they are used in the program.

Figure 3.6. Features desired by analysts in a data flow visualiza-
tion tool as described by analysts in a group walkthrough of our
straw man data flow visualization.

56

Ta
bl

e
3.

1.
R

eq
ui

re
m

en
ts

fo
ri

nf
or

m
at

io
n

to
be

co
nv

ey
ed

th
ro

ug
h

va
lu

e
an

d
lo

ca
tio

n
no

de
s.

*
de

no
te

s
ty

pe
s

ex
pe

ct
ed

to
be

up
da

te
d.

Ty
pe

Su
b-

ty
pe

D
et

ai
ls

V
is

ua
lD

es
ig

n
E

le
m

en
t

In
st

an
tia

tio
n

in
C

ur
re

nt
R

ep
re

se
nt

at
io

n

So
ur

ce
A

rt
ifa

ct
E

vi
de

nc
e

N
ot

es
/E

xa
m

pl
es

va
lu

e
a

se
to

fv
al

ue
s

ir
re

sp
ec

tiv
e

of
w

he
re

th
os

e
va

lu
es

ar
e

st
or

ed
m

os
tt

yp
es

di
ff

er
en

tia
te

d
by

di
sp

la
y

na
m

e;
an

em
pt

y
ov

al
m

ay
in

di
ca

te
un

ce
rt

ai
nt

y
in

th
e

va
lu

e,
un

im
po

rt
an

ce
of

th
e

va
lu

e,
or

si
m

pl
y

an
as

-y
et

un
sp

ec
ifi

ed
va

lu
e

C
ur

re
nt

ly
,a

va
lu

e
ha

s
a

si
ng

le
de

fin
iti

on
an

d
is

th
us

as
so

ci
at

ed
w

ith
a

si
ng

le
in

st
ru

ct
io

n
/a

ss
ig

nm
en

t.
A

va
lu

e
is

as
so

ci
at

ed
w

ith
th

e
sp

ec
ifi

c
lo

ca
tio

n
in

w
hi

ch
it

is
st

or
ed

(o
ne

-t
o-

on
e)

;v
al

ue
no

de
s

ar
e

ch
ild

re
n

of
lo

ca
tio

n
no

de
s.

Fo
rs

im
pl

ic
ity

of
pr

es
en

ta
tio

n,
th

e
lo

ca
tio

n
ho

ld
in

g
th

e
va

lu
e

(t
he

pa
re

nt
lo

ca
tio

n
no

de
)m

ay
be

om
itt

ed
w

he
n

th
e

lo
ca

tio
n

is
no

t
re

le
va

nt
to

th
e

an
al

ys
t’s

an
al

ys
is

.

co
ns

ta
nt

a
sp

ec
ifi

c
co

ns
ta

nt
va

lu
e

or
na

m
ed

co
ns

ta
nt

ov
al

sh
ap

e
co

nt
ai

ni
ng

co
ns

ta
nt

or
na

m
e;

w
ill

ha
ve

no
in

co
m

in
g

va
lu

e
flo

w
ed

ge
s

in
st

ru
ct

io
n

an
d

co
ns

ta
nt

op
er

an
d

E
xa

m
pl

e
C

O
N

ST
A

N
T

VA
L

U
E

:a
no

de
m

ay
ha

ve
a

va
lu

e
8

or
a

na
m

ed
co

ns
ta

nt
su

ch
as

”P
E

T
S”

,a
nd

it
sh

ou
ld

be
po

ss
ib

le
to

ch
oo

se
,o

n
a

pe
r-

no
de

ba
si

s,
w

hi
ch

is
di

sp
la

ye
d.

co
m

pu
te

d
th

e
va

lu
e

re
su

lti
ng

fr
om

a
(p

os
si

bl
y

co
m

pl
ex

)c
om

pu
ta

tio
n

pl
us

-s
ig

n
sh

ap
e;

in
co

m
in

g
va

lu
e

flo
w

ed
ge

s
re

pr
es

en
tv

al
ue

s
us

ed
in

th
e

co
m

pu
ta

tio
n

in
st

ru
ct

io
n

se
ti

nv
ol

ve
d

in
co

m
pu

ta
tio

n,
in

st
ru

ct
io

n
pe

rf
or

m
in

g
th

e
de

fin
iti

on
(a

ss
ig

nm
en

t)
of

th
e

fin
al

co
m

pu
te

d
va

lu
e

D
et

ai
ls

of
th

e
co

m
pu

ta
tio

n
sh

ou
ld

be
vi

si
bl

e
w

he
n

se
le

ct
ed

or
re

qu
es

te
d.

T
he

no
de

its
el

fi
s

as
so

ci
at

ed
w

ith
th

e
fin

al
as

si
gn

m
en

ti
n

th
e

co
m

pu
ta

tio
n.

E
xa

m
pl

e
C

O
M

PU
TA

T
IO

N
:z

=
x

+
23

*y
w

ou
ld

be
as

so
ci

at
ed

w
ith

th
e

fin
al

as
si

gn
m

en
tt

o
z.

In
co

m
in

g
ed

ge
s

co
ul

d
be

ei
th

er
x

an
d

th
e

re
su

lt
fo

r2
3

*
y,

in
w

hi
ch

ca
se

th
e

co
m

pu
ta

tio
n

w
ou

ld
be

+,
or

in
co

m
in

g
ed

ge
s

co
ul

d
be

x,
y,

an
d

12
,i

n
w

hi
ch

ca
se

th
e

as
so

ci
at

ed
co

m
pu

ta
tio

n
w

ou
ld

be
x

+
23

*
y.

T
hi

s
is

an
ex

am
pl

e
w

he
re

th
e

ge
ne

ra
tio

n
al

go
ri

th
m

ha
s

m
ul

tip
le

op
tio

ns
,a

nd
tr

an
sf

or
m

at
io

ns
or

si
m

pl
ifi

ca
tio

ns
co

ul
d

be
us

ed
to

co
ns

tr
uc

ts
im

pl
er

or
ca

no
ni

ca
liz

ed
gr

ap
hi

ca
lr

ep
re

se
nt

at
io

ns
.

co
ns

tr
ai

nt
s*

a
ge

ne
ra

liz
at

io
n

of
a

co
ns

ta
nt

,
w

hi
ch

m
ay

be
a

va
lu

e
se

t,
a

na
m

ed
se

t,
an

un
ce

rt
ai

n
se

t,
or

th
e

co
m

pl
em

en
to

fs
uc

h
a

se
t

ov
al

sh
ap

e
di

sp
la

yi
ng

se
to

rc
on

st
ra

in
tn

am
e;

m
ay

w
an

tc
on

ci
se

or
gr

ap
hi

ca
lr

ep
re

se
nt

at
io

n
of

co
ns

tr
ai

nt
im

po
se

d
on

va
lu

e

br
an

ch
in

st
ru

ct
io

n
fo

r
co

ns
tr

ai
ne

d
va

lu
e;

se
t

of
in

st
ru

ct
io

ns
fo

rv
al

ue
se

ts

R
ep

re
se

nt
at

io
n

of
th

is
da

ta
m

ay
no

ts
ca

le
ni

ce
ly

.P
er

ha
ps

th
e

se
t/c

on
st

ra
in

ts
ho

ul
d

on
ly

be
vi

si
bl

e
w

he
n

se
le

ct
ed

or
as

ke
d.

E
xa

m
pl

e
C

O
N

ST
R

A
IN

T:
lo

ca
tio

n
y

ha
s

a
va

lu
e

th
at

m
us

tb
e

¡=
x,

e.
g.

,a
s

im
po

se
d

w
ith

in
a

lo
op

by
a

lo
op

ch
ec

k.

un
ce

rt
ai

n*
an

un
kn

ow
n

or
un

ce
rt

ai
n*

va
lu

e
or

va
lu

e
se

t
ov

al
sh

ap
e

di
sp

la
yi

ng
a

qu
es

tio
n

m
ar

k
se

to
fp

os
si

bl
e

de
fin

iti
on

in
st

ru
ct

io
ns

A
qu

es
tio

n
m

ar
k

in
di

ca
te

s
an

un
kn

ow
n

or
un

co
ns

tr
ai

ne
d

va
lu

e,
or

it
m

ay
in

di
ca

te
un

ce
rt

ai
nt

y
in

th
e

va
lu

e.
T

hi
s

m
ay

al
so

be
re

pr
es

en
te

d
by

le
av

in
g

th
e

no
de

di
sp

la
y

na
m

e
bl

an
k.

lo
ca

tio
n

a
lo

gi
ca

lm
em

or
y

lo
ca

tio
n

(r
eg

is
te

rs
m

ay
be

re
pr

es
en

te
d

if
sp

ec
ifi

ca
lly

re
qu

es
te

d)
;t

hi
s

se
td

oe
s

no
t

ne
ce

ss
ar

ily
m

ap
1:

1
on

to
th

e
ar

ch
ite

ct
ur

e
be

ca
us

e
lo

gi
ca

lly
di

st
in

ct
us

es
of

th
e

sa
m

e
ph

ys
ic

al
or

vi
rt

ua
ll

oc
at

io
n

ar
e

re
pr

es
en

te
d

as
se

pa
ra

te
no

de
s

re
ct

an
gu

la
rs

ha
pe

;
ty

pe
s

di
ff

er
en

tia
te

d
by

ou
tli

ne
or

fil
l

de
cl

ar
at

io
n

or
al

lo
ca

tio
n

si
te

s
(i

ns
tr

uc
tio

n
or

al
lo

ca
tio

n
fu

nc
tio

n
ca

ll
si

te
)

A
lo

ca
tio

n
m

ay
co

nt
ai

n
(b

e
pa

re
nt

of
)m

ul
tip

le
va

lu
e

no
de

s.
Fo

r
si

m
pl

ic
ity

of
pr

es
en

ta
tio

n,
w

he
n

a
lo

ca
tio

n
is

as
so

ci
at

ed
w

ith
on

ly
on

e
va

lu
e,

th
e

va
lu

e’
s

di
sp

la
y

na
m

e
m

ay
be

di
sp

la
ye

d
in

st
ea

d
of

th
e

lo
ca

tio
n’

s
di

sp
la

ye
d

na
m

e
an

d
th

e
va

lu
e

no
de

its
el

fm
ay

be
om

itt
ed

.
U

nl
ik

e
va

lu
es

,a
lo

ca
tio

n
m

ay
be

as
so

ci
at

ed
w

ith
m

ul
tip

le
co

de
lo

ca
tio

ns
.R

eg
is

te
rs

ar
e

no
tr

ep
re

se
nt

ed
un

le
ss

th
ey

ar
e

ne
ed

ed
to

un
ta

ng
le

co
m

pl
ic

at
ed

co
m

pu
ta

tio
ns

,i
n

w
hi

ch
ca

se
th

ey
ar

e
re

pr
es

en
te

d
as

st
ac

k
(t

em
po

ra
ry

)l
oc

at
io

ns
.

lo
ca

l
re

gi
st

er
or

st
ac

k;
te

m
po

ra
ry

lo
ca

tio
n

(l
if

et
im

e
w

ith
in

a
sp

ec
ifi

c
sc

op
e

or
co

nt
ex

t)

do
tte

d
ou

tli
ne

de
fin

iti
on

So
m

e
st

ac
k

lo
ca

tio
ns

m
ay

no
tb

e
re

pr
es

en
te

d,
in

pa
rt

ic
ul

ar
fo

r
pa

ra
m

et
er

s
or

vi
rt

ua
lr

eg
is

te
rs

,i
fn

ot
ne

ce
ss

ar
y

to
di

st
in

gu
is

h
th

e
va

lu
e

or
lo

ca
tio

n
fr

om
m

or
e

pe
rm

an
en

tl
oc

at
io

ns
.

he
ap

sh
ar

ed
,d

yn
am

ic
al

ly
al

lo
ca

te
d

lo
ca

tio
n;

co
nt

ex
t-

in
de

pe
nd

en
t

lif
et

im
e

so
lid

ou
tli

ne
al

lo
ca

tio
n

si
te

T
he

se
lo

ca
tio

ns
do

no
te

nd
th

ei
rl

if
et

im
e

(a
nd

th
us

th
eo

re
tic

al
ly

lo
se

th
ei

rv
al

ue
s)

on
ex

iti
ng

a
co

nt
ex

t.
L

if
et

im
e

ex
te

nd
s

fr
om

so
m

e
so

rt
of

al
lo

ca
tio

n
to

so
m

e
so

rt
of

de
al

lo
ca

tio
n.

gl
ob

al
st

at
ic

al
ly

al
lo

ca
te

d
lo

ca
tio

n
no

de
fil

le
d

w
ith

gr
ay

sp
ac

e
al

lo
ca

te
d

G
lo

ba
ll

oc
at

io
ns

ar
e

co
ns

id
er

ed
sh

ar
ed

ac
ro

ss
ev

er
yt

hi
ng

.
sh

ar
ed

m
em

or
y*

lo
ca

tio
n

ac
ce

ss
ib

le
ou

ts
id

e
th

e
pr

og
ra

m
un

de
ra

na
ly

si
s

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
al

lo
ca

tio
n

or
id

en
tifi

ca
tio

n
si

te
Sh

ar
ed

m
em

or
y

is
ex

pe
ct

ed
to

be
m

od
ifi

ed
ou

ts
id

e
th

e
co

nt
ex

to
ft

he
re

pr
es

en
te

d
pr

og
ra

m
.

57

Table
3.2.

R
equirem

ents
forinform

ation
to

be
conveyed

through
aggregate,code,and

com
m

unication
nodes,and

through
annota-

tions
on

nodes.*
denotes

types
expected

to
be

updated.

Type
Sub-type

D
etails

V
isualD

esign
E

lem
ent

Instantiation
in

C
urrent

R
epresentation

Source
A

rtifact
E

vidence
N

otes/E
xam

ples

aggregate
collections

ofnodes
N

O
T

Y
E

T
R

E
PR

E
SE

N
T

E
D

array
a

collection
ofadjacentlocations

of
the

sam
e

type
rectangle

(long
w

idth
to

heightratio)w
ith

double
lines

on
sides

allocation
site(s)

A
n

array
m

ay
orm

ay
notrepresentindividualindices

explicitly
inside

ofit(sub-locations
laid

outw
ithin

the
array

node),and
itm

ay
choose

to
representonly

a
subsetofindices.A

n
array

also
m

ay
orm

ay
nothave

individualindices
ortheirstructures

represented
as

separate
entities

in
the

graph
(e.g.,represented

separately
through

pointers).
structure

a
collection

ofadjacentlocations
of

potentially
differenttypes

vertically
stacked

locations
(rectangles)

representing
the

fields
ofthe

structure

allocation
site(s)

R
estating,the

fields
ofthe

structure
are

stacked,the
bottom

ofone
im

m
ediately

adjacent(in
layout)to

the
top

ofthe
next,and

no
explicit

edge
exists

betw
een

them
.To

supportuncertainty
in

the
w

idth
and

num
beroffields,a

structure
m

ay
contain

im
plicitaggregates

representing
an

unknow
n

num
beroffields

oran
unknow

n
size

offields.
N

ote
thatthis

particularrepresentation
does

notm
ap

to
source

code
analysis

as
itdoes

notexplicitly
representthe

uncertainty
ofthe

final
structure

layoutin
the

com
piled

binary.
and
constraints

a
collection

ofconstraints
thatall

m
ustbe

m
et

a
B

oolean
A

N
D

sym
bol

(shield)
conditionalbranches

E
ach

code-influence
edge

is
triggered

w
hen

the
constraints

are
m

et;all
inputedges

m
ustbe

satisfied
foroutputedges

to
be

satisfied.
orconstraints

a
collection

ofconstraints,any
of

w
hich

m
ay

be
m

et
a

B
oolean

O
R

sym
bol

(pointy
shield)

code
orbranches

A
ny

inputedge
m

ay
be

satisfied
foroutputedges

to
be

satisfied.

code
a

section
ofcode

thatm
ay

acton
(influence)a

location
orvalue

text-only
nodes

(no
edge

orfill)
code

orboundary
(function,m

odule)
E

xam
ple

C
O

D
E

:a
function,m

odule,orequation
m

ightm
odify

the
values

in
specific

locations,potentially
in

unknow
n

w
ays.T

his
is

nota
data

location,butcode
is

essentially
a

location
(large

group
oflocations)

thatcan
influence

the
values

in
anotherlocation.W

e
representthis

as
a

sum
m

ary
node

containing
the

nam
e

ofthe
code

(e.g.,the
function

nam
e)w

ith
an

influence
edge

to
the

location
itm

ightinfluence.
com

m
unic-

ation
data

values
com

e
from

orflow
to

som
ething

outside
the

binary
ST

D
IN

/ST
D

O
U

T
are

large
arrow

s;other
input/outputtypes

are
N

O
T

Y
E

T
R

E
PR

E
SE

N
T

E
D

evidence
W

e
m

ay
need

to
encode

differenttypes
orsources

ofinput/output
differently.

input*
data

values
com

e
from

som
ething

outside
the

binary
ST

D
IN

is
a

large
arrow

w
ith

an
outgoing

data
value

flow
edge

initialsource
E

xam
ple

IN
PU

T
SO

U
R

C
E

S:user-provided,from
the

system
,orfrom

a
file.

output*
data

values
leave

the
binary

ST
D

O
U

T
is

a
large

arrow
w

ith
incom

ing
data

value
flow

edges

uses
oflocations

in
outputfunctions

O
utputm

echanism
s

are
centralto

the
analysis

goals
and

path
evaluation

(e.g.,w
e

m
ay

w
antto

prove
thatthere

is
notan

inform
ation

leak),so
w

e
m

ay
w

antthe
outputto

be
spatially

displayed
m

ore
prom

inently.
E

xam
ple

O
U

T
PU

T:ST
D

O
U

T,file
w

rite,netw
ork

send.
annotation

additionalinform
ation

about
locations

orvalues
initial con-
figuration

initialvalue;the
firstdefinition

that
affects

a
location

value
nodes

filled
w

ith
yellow

firstdefinition
W

e
m

ay
need

to
encode

differentsources
ofinitialconfigurations

at
som

e
point,butw

e
haven’trun

into
thatyet.

data
type*

type
ofdata

stored
in

a
location

N
O

T
R

E
PR

E
SE

N
T

E
D

declaration
/evidence

Type
encodes

how
to

interpretthe
data

and
w

hatto
expect.E

xam
ple

T
Y

PE
:uint,short,string,htm

l,gif,binary
file.

size
num

berofbits
in

a
unit;forarrays

only,the
num

berofbits
in

one
index,notthe

size
ofthe

fully
allocated

array

N
O

T
R

E
PR

E
SE

N
T

E
D

declaration
/evidence

C
ould

be
represented

(and
in

som
e

cases
is)using

the
w

idth
offield

locations
in

aggregate
structures.Foraggregates

otherthan
arrays,the

size
should

be
the

sum
ofthe

sizes
ofthe

individuallocations
in

the
aggregate.

58

T a
bl

e
3.

3.
R

eq
ui

re
m

en
ts

fo
ri

nf
or

m
at

io
n

to
be

co
nv

ey
ed

th
ro

ug
h

va
lu

e
flo

w
,p

oi
nt

s-
to

,c
om

pa
ri

so
n,

an
d

co
nt

ro
li

nfl
ue

nc
e

ed
ge

s
an

d
fu

nc
tio

n
bo

un
da

ry
an

no
ta

tio
ns

.
*

de
no

te
s

ty
pe

s
ex

pe
ct

ed
to

be
up

da
te

d.

Ty
pe

Su
b-

ty
pe

D
et

ai
ls

V
is

ua
lD

es
ig

n
E

le
m

en
t

In
st

an
tia

tio
n

in
C

ur
re

nt
R

ep
re

se
nt

at
io

n

So
ur

ce
A

rt
ifa

ct
E

vi
de

nc
e

N
ot

es
/E

xa
m

pl
es

va
lu

e
flo

w
th

e
so

ur
ce

no
de

(v
al

ue
or

lo
ca

tio
n)

af
fe

ct
s

va
lu

e
at

th
e

de
st

in
at

io
n

so
lid

bl
ac

k
lin

e
fr

om
so

ur
ce

no
de

to
de

st
in

at
io

n
no

de

lis
to

fc
op

y
or

co
m

pu
ta

tio
n

in
st

ru
ct

io
ns

m
ov

in
g

th
e

da
ta

If
th

e
de

st
in

at
io

n
va

lu
e

is
a

co
m

pu
te

d
va

lu
e,

th
e

so
ur

ce
da

ta
is

us
ed

in
th

e
co

m
pu

ta
tio

n
(p

os
si

bl
y

by
co

py
in

g
a

pa
rt

of
th

e
va

lu
e)

.I
fa

ny
ot

he
r

ki
nd

of
va

lu
e,

th
is

ed
ge

re
pr

es
en

ts
a

co
py

of
th

e
so

ur
ce

va
lu

e
in

to
th

e
de

st
in

at
io

n
lo

ca
tio

n.
E

dg
es

ca
n

re
pr

es
en

ta
tr

an
sf

er
su

m
m

ar
y;

ea
ch

m
ay

be
as

so
ci

at
ed

w
ith

m
ul

tip
le

in
st

ru
ct

io
ns

in
vo

lv
ed

in
a

co
m

pu
ta

tio
n

an
d/

or
m

ul
tip

le
co

pi
es

fr
om

in
te

rm
ed

ia
te

lo
ca

tio
ns

;a
ll

of
th

es
e

in
st

ru
ct

io
ns

sh
ou

ld
be

as
so

ci
at

ed
w

ith
th

e
ed

ge
,e

sp
ec

ia
lly

as
un

im
po

rt
an

tn
od

es
ar

e
fo

ld
ed

in
to

su
rr

ou
nd

in
g

ed
ge

s.
fu

nc
tio

n
bo

un
da

ry
pa

ra
m

et
er

on
ly

on
va

lu
e

flo
w

ed
ge

s,
va

lu
e

is
pa

ss
ed

fr
om

a
ca

lle
ri

nt
o

a
fu

nc
tio

n
la

rg
e

do
to

n
ed

ge
fr

om
th

e
da

ta
no

de
in

th
e

ca
lle

rt
o

th
e

da
ta

lo
ca

tio
n

or
sp

ec
ifi

c
va

lu
e

in
th

e
ca

lle
d

fu
nc

tio
n;

no
di

st
in

ct
io

n
be

tw
ee

n
a

pa
ra

m
et

er
an

d
a

re
tu

rn
va

lu
e

do
ti

ts
el

fi
s

as
so

ci
at

ed
w

ith
fu

nc
tio

n
ca

ll
si

te
Fu

nc
tio

n
su

bg
ra

ph
s

m
ay

be
in

lin
ed

or
sh

ar
ed

,b
as

ed
on

th
e

an
al

ys
t’s

de
si

re
s

fo
re

ac
h

fu
nc

tio
n

an
d

in
iti

al
he

ur
is

tic
s.

W
he

n
fu

nc
tio

ns
ar

e
in

lin
ed

,t
he

sa
m

e
fu

nc
tio

n
is

re
pr

es
en

te
d

by
m

ul
tip

le
su

bg
ra

ph
s,

bu
tt

he
su

bg
ra

ph
s

ar
e

re
la

ta
bl

e
(i

fr
eq

ue
st

ed
by

th
e

us
er

),
th

ou
gh

by
de

fa
ul

t
ch

an
ge

s
to

on
e

su
bg

ra
ph

w
ill

no
tb

e
m

ad
e

to
ot

he
ri

ns
ta

nc
es

of
th

e
su

bg
ra

ph
.I

ft
he

fu
nc

tio
n

su
bg

ra
ph

s
ar

e
sh

ar
ed

,e
ac

h
pa

ra
m

et
er

ha
s

a
se

pa
ra

te
in

co
m

in
g

ed
ge

fr
om

ea
ch

ca
ll

si
te

.

re
tu

rn
va

lu
e

on
ly

on
va

lu
e

flo
w

ed
ge

s,
va

lu
e

is
pa

ss
ed

ba
ck

fr
om

a
fu

nc
tio

n
to

its
ca

lle
r

la
rg

e
do

to
n

ed
ge

fr
om

th
e

da
ta

no
de

in
th

e
ca

lle
d

fu
nc

tio
n

to
th

e
da

ta
lo

ca
tio

n
or

sp
ec

ifi
c

va
lu

e
in

th
e

ca
lle

r

do
ti

ts
el

fi
s

as
so

ci
at

ed
w

ith
fu

nc
tio

n
ca

ll
si

te
If

fu
nc

tio
n

su
bg

ra
ph

s
ar

e
sh

ar
ed

(n
ot

in
lin

ed
),

ea
ch

re
tu

rn
va

lu
e

ha
s

a
se

pa
ra

te
ou

tg
oi

ng
ed

ge
to

ea
ch

ca
ll

si
te

.T
he

re
is

cu
rr

en
tly

no
m

ec
ha

ni
sm

to
re

la
te

pa
ra

m
et

er
s

an
d

re
tu

rn
va

lu
es

fr
om

th
e

sa
m

e
ca

ll
si

te
ex

pl
ic

itl
y.

po
in

ts
-t

o
th

e
so

ur
ce

no
de

po
in

ts
to

(i
s

th
e

ad
dr

es
s

of
)t

he
de

st
in

at
io

n
lo

ca
tio

n
bl

ac
k

da
sh

ed
lin

e
co

ns
is

tin
g

of
a

lo
ng

da
sh

an
d

tw
o

sh
or

t
da

sh
es

as
so

ci
at

ed
de

fin
iti

on
s

of
th

e
so

ur
ce

no
de

E
xa

m
pl

e
PO

IN
T

S-
TO

:a
gl

ob
al

bu
ff

er
na

m
ed

cu
rr

en
th

as
an

in
co

m
in

g
po

in
ts

-t
o

ed
ge

fr
om

an
im

pl
ic

it
gl

ob
al

lo
ca

tio
n

w
ith

on
e

po
ss

ib
le

va
lu

e:
&

cu
rr

en
t.

co
m

pa
ri

so
n

th
e

de
st

in
at

io
n

co
ns

tr
ai

nt
va

lu
e

is
ge

ne
ra

te
d

th
ro

ug
h

co
m

pa
ri

so
n

ag
ai

ns
tt

he
so

ur
ce

no
de

(l
oc

at
io

n
or

va
lu

e)

bl
ac

k
do

tte
d

lin
e

w
ith

ve
ry

lo
ng

sp
ac

es
be

tw
ee

n
do

ts

co
m

pa
ri

so
n

in
st

ru
ct

io
n(

s)
T

he
co

m
pa

ri
so

n
va

lu
e

co
ul

d
be

pl
ac

ed
in

ei
th

er
lo

ca
tio

n
be

in
g

co
ns

tr
ai

ne
d

by
th

e
co

m
pa

re
.F

re
qu

en
tly

on
e

lo
ca

tio
n

is
us

ed
re

gu
la

rl
y

af
te

rt
he

co
m

pa
re

;w
e

pu
tt

he
co

m
pa

ri
so

n
va

lu
e

in
th

at
lo

ca
tio

n.
E

xa
m

pl
e

C
O

M
PA

R
IS

O
N

:l
oc

al
va

ri
ab

le
w

is
co

m
pa

re
d

to
th

e
re

su
lt

re
s

re
tu

rn
ed

fr
om

a
fu

nc
tio

n
ca

ll;
a

co
m

pa
ri

so
n

ed
ge

ru
ns

fr
om

re
s

to
w

be
ca

us
e

w
is

th
e

lo
ca

tio
n

us
ed

af
te

rt
he

co
m

pa
ri

so
n.

co
nt

ro
l

in
flu

en
ce

po
si

tiv
e

a
co

nt
ro

lfl
ow

de
ci

si
on

de
te

rm
in

es
th

at
th

e
de

st
in

at
io

n
no

de
is

us
ed

bl
ac

k
do

tte
d

lin
e;

th
e

de
st

in
at

io
n

of
th

e
ed

ge
is

us
ed

(o
ra

ct
iv

at
ed

)i
f

th
e

so
ur

ce
va

lu
e

is
us

ed
(i

s
ac

tiv
e)

br
an

ch
in

st
ru

ct
io

n
(b

in
ar

y
of

fs
et

)
If

th
e

de
st

in
at

io
n

is
a

va
lu

e,
th

en
th

e
va

lu
e’

s
lo

ca
tio

n
is

as
si

gn
ed

th
at

va
lu

e
w

he
n

th
e

so
ur

ce
co

ns
tr

ai
nt

is
ac

tiv
at

ed
(i

.e
.,

th
e

so
ur

ce
lo

ca
tio

n
ho

ld
s

th
e

so
ur

ce
va

lu
e)

.I
fa

lo
ca

tio
n,

th
en

th
e

lo
ca

tio
n

is
al

lo
ca

te
d

an
d

us
ed

if
co

ns
tr

ai
nt

s
ar

e
m

et
.E

xa
m

pl
e

C
O

N
T

R
O

L
IN

FL
U

E
N

C
E

:
PO

SI
T

IV
E

:i
fa

lo
ca

tio
n

x
is

as
si

gn
ed

1
w

he
n

y
is

8
an

d
0

ot
he

rw
is

e,
th

en
th

e
va

lu
e

no
de

1
th

at
is

a
ch

ild
of

lo
ca

tio
n

no
de

x
ha

s
an

in
co

m
in

g
po

si
tiv

e
co

nt
ro

li
nfl

ue
nc

e
ed

ge
fr

om
th

e
va

lu
e

no
de

8
th

at
is

a
ch

ild
of

lo
ca

tio
n

no
de

y.
ne

ga
tiv

e
ne

ga
tiv

e
br

an
ch

of
a

co
nt

ro
lfl

ow
de

ci
si

on
de

te
rm

in
es

th
at

th
e

de
st

in
at

io
n

no
de

is
us

ed

gr
ay

do
tte

d
lin

e;
th

e
de

st
in

at
io

n
of

th
e

ed
ge

is
us

ed
(o

ra
ct

iv
at

ed
)i

f
th

e
so

ur
ce

va
lu

e
is

no
t

us
ed

(i
s

in
ac

tiv
e)

br
an

ch
in

st
ru

ct
io

n
(b

in
ar

y
of

fs
et

)
A

s
ab

ov
e.

E
xa

m
pl

e
C

O
N

T
R

O
L

IN
FL

U
E

N
C

E
:N

E
G

A
T

IV
E

:i
fa

lo
ca

tio
n

x
is

as
si

gn
ed

1
w

he
n

y
is

8
an

d
0

ot
he

rw
is

e,
th

en
th

e
va

lu
e

no
de

0
th

at
is

a
ch

ild
of

lo
ca

tio
n

no
de

x
ha

s
an

in
co

m
in

g
ne

ga
tiv

e
co

nt
ro

l
in

flu
en

ce
ed

ge
fr

om
th

e
va

lu
e

no
de

8
th

at
is

a
ch

ild
of

lo
ca

tio
n

no
de

y.

59

Table
3.4.

R
equirem

ents
for

length,sequencing,code
influence,

synchronization,colocation,and
lifetim

e
relationship

inform
ation.

*
denotes

types
expected

to
be

updated.

Type
Sub-type

D
etails

V
isualD

esign
E

lem
ent

Instantiation
in

C
urrent

R
epresentation

Source
A

rtifact
E

vidence
N

otes/E
xam

ples

length
source

node
represents

the
length

of
a

destination
node

(usually,
aggregate

orallocation)

w
hen

clear,source
node

is
co-located

(top
center)w

ith
the

destination
location

to
w

hich
itapplies;

otherw
ise

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D

allocation
instruction(s)

U
sually

applies
to

aggregates,allocations,and
shared

m
em

ory.

sequencing
represents

specific
sequence

of
program

execution;like
an

instruction
levelcontrolflow

graph

SH
O

U
L

D
N

O
T

B
E

R
E

PR
E

SE
N

T
E

D
an

ordered
pairof

instruction
offsets

Sequencing
inform

ation
is

notintended
to

be
displayed,otherthan

loosely
as

described
in

the
elem

entdescription.T
hese

undisplayed
edges

m
ay

be
represented

in
the

underlying
graph

sim
ply

to
enable

queries
aboutcontrolflow

.N
ote

thatsuch
queries

are
bestputto

other
artifacts

such
as

the
disassem

bly
orcontrolflow

graph
(C

FG
).

code
influence

allocatable
from

a
code

node,the
location

can
be

allocated
code

node
has

points-to
edge

to
location

L
ifetim

e
inform

ation
is

generally
notyetrepresented.

freeable
from

a
code

node,the
location

can
be

freed
code

node
has

points-to
edge

to
location

L
ifetim

e
inform

ation
is

generally
notyetrepresented.

readable
from

a
code

node,the
location

can
be

read
code

node
has

value
flow

edge
from

location
V

isible
influence

(the
ability

ofcode
to

read
a

location)is
notusually

represented;itbecom
es

usefulw
hen

you
have

specific
locations

in
the

code
influenced

by
the

location
(i.e.,the

edges
are

to
m

ore
specific

nodes).
w

ritable
from

a
code

node,the
location

can
be

w
ritten

code
node

has
value

flow
edge

to
location

D
oes

the
code

have
perm

ission
to

w
rite

(oroverw
rite)the

location?
Is

it
expected

to?
synchro-
nization

lifetim
e*

tw
o

locations
orvalues

m
ay

have
a

value
relationship

thatholds
across

the
lifetim

e
ofthe

locations

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
other

than
im

plicitly
through

the
layoutoflength

nodes

setofrelevant
definitions

and
uses

show
ing

relationship

T
his

captures
relationships

thathold
across

the
lifetim

e
ofthe

locations.
E

xam
ple

L
IFE

T
IM

E
SY

N
C

H
R

O
N

IZ
A

T
IO

N
:a

bufferallocation’s
length

and
the

value
ofthe

length
variable

should
be

the
sam

e.E
xam

ple
L

IFE
T

IM
E

SY
N

C
H

R
O

N
IZ

A
T

IO
N

:ifthe
variable

age
is

less
than

12,
the

variable
grade

could
be

4
or

5
butcould

notbe
17

or
18.

som
etim

e*
tw

o
locations

orvalues
m

ay
have

a
value

relationship
thatonly

hold
at

specific
code

sections

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
setofrelevant
definitions

and
uses

show
ing

relationship

E
xam

ple
SO

M
E

T
IM

E
SY

N
C

H
R

O
N

IZ
A

T
IO

N
:a

block
is

guarded
by

the
value

check
x

==
y.In

thatblock,x
and

y
have

the
sam

e
value,but

outside
ofthatblock,thatvalue

synchronization
m

ay
nothold.

colocation
spatial*

tw
o

locations
m

ay
have

a
position

(location
in

m
em

ory
or

architecture)relationship
thatholds,

such
as

adjacentorw
ith

16
bytes

betw
een

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
setofrelevant
allocation

sites
and

related
instructions

(e.g.,the
allocation

function)

C
olocation

is
represented

above
forarrays

and
structures;this

additional
m

echanism
describes

otherrelationships.E
xam

ple
SPA

T
IA

L
C

O
L

O
C

A
T

IO
N

:structure
A

is
alw

ays
allocated

64
bytes

from
structure

B
(e.g.,because

ofspecialized
m

em
ory

m
anagem

ent).C
olocations

generally
encode

potentially
uncertain

inform
ation

such
as

vulnerabilities
thatm

ightbe
introduced

by
the

com
piler.

subset*
one

location
represents

a
subset,or

slice,ofanotherlocation
N

O
T

Y
E

T
R

E
PR

E
SE

N
T

E
D

setofrelevant
definition,calculation,
and

use
sites

E
xam

ple
SU

B
SE

T
C

O
L

O
C

A
T

IO
N

:a
node

represents
an

array
elem

ent,
butthe

index
ofthe

elem
entis

calculated
and

m
ay

change.V
isualization

m
ighthave

lines
from

the
bottom

corners
ofthe

large
aggregate

to
the

top
corners

ofthe
indexed

location.E
xam

ple
SU

B
SE

T
C

O
L

O
C

A
T

IO
N

:
an

E
L

F
file

resides
in

a
buffer,the

E
L

F
headerresides

in
a

subset
thereof,and

the
textsection

resides
in

a
com

pletely
differentsubset.

o verlap*
tw

o
locations

m
ay

overlap
each

otherin
m

em
ory

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
setofrelevant
definition,calculation,
and

use
sites

lifetim
e

*
tw

o
nodes

(locations
orvalues)

should
be

valid
forthe

sam
e

tim
efram

e

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D
setofrelevant
definitions

and
lifetim

e
ending

instructions

E
xam

ple
L

IFE
T

IM
E

:a
bufferand

the
length

ofthatbufferhave
approxim

ately
the

sam
e

lifetim
e

as
each

other(they
are

tightly
coupled)

and
should

share
a

lifetim
e

edge.

60

Ta
bl

e
3.

5.
In

te
ra

ct
iv

ity
re

qu
ir

em
en

ts
fo

ra
da

ta
flo

w
vi

su
al

iz
at

io
n

to
su

pp
or

tb
in

ar
y

vu
ln

er
ab

ili
ty

an
al

ys
is

.

Ty
pe

D
et

ai
ls

V
is

ua
lD

es
ig

n
E

le
m

en
t

In
st

an
tia

tio
n

in
C

ur
re

nt
R

ep
re

se
nt

at
io

n

N
ot

es
/E

xa
m

pl
es

co
de

/a
rt

ifa
ct

so
ur

ce
lin

k
to

so
ur

ce
ar

tif
ac

t(
bi

na
ry

or
so

ur
ce

/
de

co
m

pi
la

tio
n)

N
O

T
R

E
PR

E
SE

N
T

E
D

T
hi

s
is

a
di

re
ct

lin
k

to
gr

ou
nd

tr
ut

h
(c

od
e)

th
at

th
is

no
de

or
ed

ge
re

pr
es

en
ts

;i
ti

s
no

ta
gr

ap
h

en
tit

y.
It

in
cl

ud
es

:fi
le

,f
un

ct
io

n,
lin

e
(s

ou
rc

e/
de

co
m

pi
la

tio
n)

or
in

st
ru

ct
io

n
of

fs
et

(b
in

ar
y)

,
to

ke
n

/c
ha

ra
ct

er
/o

pe
ra

nd
.

el
em

en
tG

U
ID

a
un

iq
ue

no
de

/e
dg

e
(i

.e
.,

el
em

en
t)

id
en

tifi
er

N
O

T
R

E
PR

E
SE

N
T

E
D

T
he

G
U

ID
is

fo
rp

ro
gr

am
m

at
ic

al
ly

in
te

ra
ct

in
g

w
ith

el
em

en
ts

of
th

e
gr

ap
h;

it
is

no
ti

nt
en

de
d

to
be

di
sp

la
ye

d.
no

de
di

sp
la

y
na

m
e

an
an

al
ys

t-
as

si
gn

ed
na

m
e,

w
hi

ch
m

ay
ch

an
ge

ov
er

tim
e

te
xt

in
no

de
E

xa
m

pl
e

L
O

C
A

T
IO

N
:a

no
de

ch
an

ge
s

fr
om

S
P

+2
4

to
in

t@
sp

+2
4

to
se

le
ct

or
to

al
go

rit
hm

se
le

ct
or

as
th

e
an

al
ys

tg
et

s
m

or
e

in
fo

rm
at

io
n.

E
xa

m
pl

e
VA

L
U

E
:a

no
de

ch
an

ge
s

fr
om

8
to

P
E

TS
to

co
nt

ai
n

in
fo

rm
at

io
n

ab
ou

tw
ha

ta
va

lu
e

m
ea

ns
.

so
ur

ce
lin

k
to

th
e

lo
ca

tio
ns

or
va

lu
es

th
at

in
flu

en
ce

w
he

n
a

no
de

is
se

le
ct

ed
,s

ou
rc

e
no

de
s

th
at

in
flu

en
ce

th
at

no
de

ar
e

hi
gh

lig
ht

ed

T
he

so
ur

ce
co

ul
d

be
a

lo
ca

tio
n

or
a

va
lu

e.
So

ur
ce

s
an

d
de

st
in

at
io

ns
fo

re
dg

es
ar

e
up

da
ta

bl
e,

an
d

ed
ge

s
ca

n
co

nn
ec

tt
o

ei
th

er
va

lu
es

or
lo

ca
tio

ns
.A

na
ly

st
s

sh
ou

ld
be

ab
le

to
ad

d,
re

m
ov

e,
an

d
up

da
te

ed
ge

s.
de

st
in

at
io

n
lin

k
to

th
e

lo
ca

tio
ns

or
va

lu
es

th
at

ar
e

in
flu

en
ce

d
w

he
n

a
no

de
is

se
le

ct
ed

,d
es

tin
at

io
n

no
de

s
th

at
ar

e
in

flu
en

ce
d

by
th

at
no

de
ar

e
hi

gh
lig

ht
ed

la
yo

ut
lo

ca
tio

ns
of

no
de

s
an

d
ed

ge
s

in
th

e
ov

er
al

l
gr

ap
h

in
iti

al
la

yo
ut

m
ay

re
fle

ct
in

pu
t

or
ou

tp
ut

an
d

se
qu

en
ci

ng
(g

en
er

al
ly

,l
ef

tt
o

ri
gh

t,
th

en
to

p
to

bo
tto

m
),

bu
tt

he
an

al
ys

t
ul

tim
at

el
y

co
nt

ro
ls

th
e

la
yo

ut

L
ay

ou
tb

y
de

fa
ul

ta
tte

m
pt

s
to

co
nv

ey
ap

pr
ox

im
at

e
se

qu
en

ci
ng

of
de

fin
iti

on
s

an
d

us
es

.I
np

ut
s

flo
w

to
ou

tp
ut

s,
an

d
flo

w
is

m
od

el
ed

ge
ne

ra
lly

le
ft

-t
o-

ri
gh

ta
nd

to
p-

to
-b

ot
to

m
.A

s
a

se
co

nd
ar

y
go

al
,n

od
es

at
te

m
pt

to
la

y
ou

tc
hi

ld
re

n
va

lu
es

(d
efi

ni
tio

ns
)a

nd
ou

tg
oi

ng
ed

ge
s

(u
se

s)
se

co
nd

ar
ily

in
or

de
ro

fi
ns

tr
uc

tio
n

oc
cu

rr
en

ce
(s

eq
ue

nc
in

g)
.U

nd
er

st
an

da
bl

e
la

yo
ut

s
sh

ou
ld

no
tb

e
sa

cr
ifi

ce
d

to
se

qu
en

ci
ng

.
an

no
ta

tio
n

an
al

ys
t-

pr
ov

id
ed

ta
gs

,j
ud

gm
en

ts
,a

nd
no

te
s

an
ed

ita
bl

e
te

xt
bo

x
in

a
se

pa
ra

te
vi

ew
;w

he
n

re
qu

es
te

d,
al

lv
is

ib
le

el
em

en
ts

w
ith

a
gi

ve
n

an
no

ta
tio

n
m

ay
be

hi
gh

lig
ht

ed

A
ll

ta
gs

,j
ud

gm
en

ts
,a

nd
no

te
s

as
so

ci
at

ed
w

ith
an

el
em

en
ta

pp
ea

ra
s

an
no

ta
tio

ns
.A

nn
ot

at
io

ns
m

ay
al

so
be

re
pr

es
en

te
d

in
ot

he
rw

ay
s

la
te

r(
e.

g.
,t

ho
ug

h
sp

ec
ia

liz
ed

gl
yp

hs
).

A
na

ly
st

s
lik

ed
th

e
id

ea
of

ta
gs

on
no

de
s

to
do

cu
m

en
tl

ot
s

of
in

fo
rm

at
io

n
ab

ou
td

at
a

va
ri

ab
le

s,
e.

g.
,i

nt
er

va
ls

,
m

ax
im

um
,r

el
at

io
ns

hi
ps

be
tw

ee
n,

m
ax

im
um

le
ng

th
an

d
in

-d
ep

th
co

ns
tr

ai
nt

s.
A

ut
om

at
ic

sc
ri

pt
s

an
d

an
al

ys
es

sh
ou

ld
al

so
be

ab
le

to
pr

og
ra

m
m

at
ic

al
ly

ad
d

an
d

pr
op

ag
at

e
an

no
ta

tio
ns

.
fil

te
ri

ng
hi

di
ng

po
rt

io
ns

of
th

e
gr

ap
h

w
he

n
re

qu
es

te
d,

th
e

vi
su

al
iz

at
io

n
sh

ou
ld

hi
de

gr
ap

h
el

em
en

ts
(w

hi
le

m
ai

nt
ai

ni
ng

la
yo

ut
)b

as
ed

on
G

U
ID

,l
ay

er
,

na
m

e,
ty

pe
,o

r
an

al
ys

t-
pr

ov
id

ed
ta

gs
or

ju
dg

m
en

ts
hy

po
th

es
is

re
co

rd
s

a
pa

th
th

ro
ug

h
th

e
gr

ap
h

an
or

de
re

d
lis

to
fn

od
es

an
d

co
nn

ec
te

d
ed

ge
s

in
a

se
pa

ra
te

vi
ew

H
yp

ot
he

se
s

m
ay

be
sa

ve
d

an
d

re
-l

oa
de

d,
hi

gh
lig

ht
ed

,a
nd

tr
ea

te
d

as
an

y
ot

he
rg

ra
ph

el
em

en
t.

ex
pl

or
at

io
n

on
-d

em
an

d
gr

ap
h

ex
pa

ns
io

n
w

he
n

a
no

de
is

cl
ic

ke
d

fo
r

ex
pa

ns
io

n,
so

ur
ce

or
de

st
in

at
io

n
no

de
s

ar
e

ad
de

d
to

th
e

gr
ap

h;
re

qu
es

tin
g

un
sh

ow
n

hy
po

th
es

es
,e

le
m

en
ts

by
an

no
ta

tio
n,

or
el

em
en

ts
by

ty
pe

sh
ou

ld
al

so
ex

pa
nd

th
e

gr
ap

h
re

la
tiv

e
fr

eq
ue

nc
y

of
us

e

ho
w

of
te

n
th

e
no

de
or

ed
ge

is
ex

ec
ut

ed
as

co
m

pa
re

d
to

th
e

gr
ap

h
el

em
en

ts
to

w
hi

ch
it

is
co

nn
ec

te
d

re
la

tiv
e

“d
ep

th
”

re
pr

es
en

te
d

by
no

de
an

d
ed

ge
th

ic
kn

es
s,

w
he

re
th

e
re

la
tio

n
ca

n
be

ch
an

ge
d

(d
ef

au
lt

is
de

pt
h

of
ne

st
in

g,
bu

to
th

er
re

la
tio

ns
m

ig
ht

be
lo

w
er

bo
un

ds
,u

pp
er

bo
un

ds
,e

tc
.)

In
ex

ec
ut

in
g

th
e

pr
og

ra
m

,h
ow

of
te

n
is

th
is

no
de

ac
ce

ss
ed

as
co

m
pa

re
d

to
th

e
no

de
s

ar
ou

nd
it?

C
ur

re
nt

ly
w

e
us

e
de

pt
h

of
ne

st
in

g
in

lo
op

s
to

ca
lc

ul
at

e
th

is
:a

st
at

em
en

ta
tt

he
hi

gh
es

tl
ev

el
ha

s
a

th
ic

kn
es

s
of

on
e;

in
a

si
ng

le
lo

op
,t

w
o;

in
a

do
ub

ly
-n

es
te

d
lo

op
,t

hr
ee

;a
nd

so
on

.
R

ec
ur

si
on

is
no

ty
et

co
ns

id
er

ed
.O

th
er

op
tio

ns
fo

rr
el

at
iv

e
th

ic
kn

es
s

co
ul

d
lo

ok
at

co
m

pl
ex

ity
cl

as
se

s,
su

ch
as

co
ns

ta
nt

,l
og

n,
n,

et
c.

,f
or

tig
ht

or
lo

os
e

lo
w

er
bo

un
ds

,u
pp

er
bo

un
ds

,o
r

av
er

ag
e

ca
se

.C
ou

ld
ha

ve
se

le
ct

ab
le

op
tio

n
fo

rw
hi

ch
re

la
tiv

e
th

ic
kn

es
s

to
us

e.

61

T able
3.6.

E
xam

ples
ofannotations

to
supportvulnerability

anal-
ysis

of
binaries.

A
nalystjudgm

ents
convey

inform
ation

aboutde-
cisions

analysts
are

m
aking

about
data

or
a

flow
;

analysts
m

ight
use

judgm
entscales

to
help

guide
analysis

steps.
A

nalyses
sim

i-
larly

can
use

annotations
to

share
inform

ation.

Type
D

etails
V

isualD
esign

E
lem

ent
Instantiation

in
C

urrent
R

epresentation

N
otes/E

xam
ples

priority
judgm

ent
how

im
portantthis

elem
entis

to
follow

up
w

ith
orunderstand,as

com
pared

to
other

elem
ents

Priority
aids

in
earlierreverse

engineering
activities,and

indicators
ofpriority

actas
notes

to
and

by
the

analystto
guide

furtherdiscovery.A
tleastlow

and
high

priority
should

be
supported.O

therschem
es

forcategorizing
priority

m
ay

be
appropriate.

uncertainty
judgm

ent
how

m
uch

rem
ains

to
be

discovered
aboutthis

elem
ent

values
m

ay
use

“?”
labels;

edges
m

ay
lack

sources
or

destinations;locations
m

ay
lack

values
and

vice
versa;

otherw
ise,N

O
T

Y
E

T
R

E
PR

E
SE

N
T

E
D

C
onveys

uncertainty
abouthow

this
data

w
illbe

influencing,transform
ing,ortouching

other
data.A

n
initialinfluence

uncertainty
foreach

node
w

illbe
updated

by
the

analystoranalyses
overtim

e.Indicators
ofuncertainty

actas
notes

to
orby

the
analystto

guide
furtherdiscovery.

safety
judgm

ent
ho w

vulnerable
this

elem
entis

to
problem

atic
m

anipulation
Show

s
thatpropersecurity

and
integrity

checks
are

in
place

to
preventa

specific
vulnerability

involving
this

data
orrelationship.Safety

m
ay

be
evaluated

on
m

ultiple
axes

(different
vulnerabilities,e.g.).C

ould
be

supported
w

ith
visualization

functionality
allow

ing
analysts

to
tag

certain
nodes.

interest level/
boring
judgm

ent

how
interesting

is
this

elem
ent

rem
oved

from
visualization

or
hidden

w
ithin

an
edge,w

hen
represented;this

w
illbe

provided
by

the
analystas

a
tag

on
an

elem
ent

R
epresented

im
plicitly

by
being

leftout.E
xam

ple
B

O
R

IN
G

JU
D

G
M

E
N

T:localvariables,
irrelevantdata.Tied

in
w

ith
priority

and
safety.T

he
“boring”

m
arkerallow

s
forvisualization

sim
plifications

as
these

elem
ents

can
be

hidden.E
xam

ple
B

O
R

IN
G

node:ifa
function

receives
param

eter
y

and
copies

itdirectly
into

z
w

ithoutusing
itanym

ore,an
analystcould

m
ark

y
as

boring.Suppose
the

one
callsite

called
the

function
using

x.T
here

w
ould

be
one

param
eteredge

from
x

to
y,and

one
data

flow
edge

from
y

to
z.If

y
has

no
otheredges

to
or

from
it,and

the
analystm

arks
y

as
boring,the

visualization
could

update
to

show
only

a
param

eteredge
from

x
to

z
w

here
thatedge

is
associated

w
ith

allthe
associated

source
data

from
the

copy
from

x
to

y,y,and
the

copy
from

y
to

z.
extentof
influence
judgm

ent

how
m

uch
the

value
ofthis

elem
entm

ight
affectthe

functionality
ofthe

program
Foredges,how

m
uch

can
the

destination
data

value
change

based
on

the
source?

T
his

m
ay

be
a

categorical(e.g.,notchangeable,lim
ited

change,overw
ritable).Fornodes,how

m
uch

can
the

value
ofthe

node
affectdifferences

in
dynam

ic
executions?

attack er-
provided

or
attacker-
controlled

w
hether/how

m
uch

the
values

atthe
location

are
controlled

by
an

attacker
U

sed
to

quickly
check

source
ofdata

forcurrentcode
ofconcern

to
see

ifitis
possible

forthe
attackerto

putthe
program

into
this

state.M
ightalso

apply
to

edges,too,e.g.,w
hen

an
attackercould

controlw
hethera

control-enabled
edge

w
as

taken.

62

Ta
bl

e
3.

7.
R

ol
es

m
ig

ht
co

nv
ey

su
m

m
ar

y
in

fo
rm

at
io

n
ab

ou
t

in
-

te
rp

re
ta

tio
n

of
sp

ec
ifi

c
gr

ou
ps

of
da

ta
or

in
flu

en
ce

,
e.

g.
,

th
ro

ug
h

gl
yp

hs
or

ot
he

r
si

m
pl

e
ad

di
tio

ns
.

H
er

e,
w

e
sh

ow
ho

w
so

m
e

co
m

-
m

on
ro

le
s

m
ig

ht
be

id
en

tifi
ed

in
th

e
cu

rr
en

tg
ra

ph
.

R
ol

e
W

ay
to

R
ec

og
ni

ze
in

C
ur

re
nt

R
ep

re
se

nt
at

io
n

N
ot

es
/E

xa
m

pl
es

ba
se

po
in

te
r

a
no

de
(l

oc
at

io
n

or
va

lu
e)

ha
s

a
po

in
ts

-t
o

ed
ge

to
an

ag
gr

eg
at

e
an

d
is

us
ed

in
a

co
m

pu
te

d
va

lu
e

th
at

th
en

po
in

ts
to

a
lo

ca
tio

n
w

ith
in

th
e

ag
gr

eg
at

e
N

on
-a

gg
re

ga
te

s
sh

ou
ld

no
tb

e
in

de
xe

d
an

d
th

er
ef

or
e

sh
ou

ld
no

th
av

e
a

ba
se

po
in

te
r(

as
di

st
in

ct
fr

om
a

po
in

te
r)

lo
op

va
ri

ab
le

a
co

ns
tr

ai
nt

va
lu

e
w

ith
bo

th
a

m
or

e
fr

eq
ue

nt
ly

us
ed

co
nt

ro
lfl

ow
en

ab
le

d
ed

ge
(t

hi
ck

er
;

th
e

lo
op

-t
ak

en
br

an
ch

)a
nd

a
le

ss
fr

eq
ue

nt
ly

us
ed

co
nt

ro
lfl

ow
ed

ge
(t

hi
nn

er
;t

he
lo

op
-n

ot
-t

ak
en

br
an

ch
)r

ep
re

se
nt

s
th

at
th

e
lo

ca
tio

n
is

a
lo

op
va

ri
ab

le

A
lo

op
va

ri
ab

le
is

a
va

lu
e,

no
ta

lo
ca

tio
n,

as
it

re
pr

es
en

ts
w

he
th

er
a

lo
op

w
as

ta
ke

n
or

no
t

w
ith

in
a

bi
na

ry
.L

oo
p

in
du

ct
io

n
va

ri
ab

le
s

(l
oc

at
io

ns
)t

he
m

se
lv

es
m

ay
be

di
ffi

cu
lt

to
id

en
tif

y
in

bi
na

ri
es

,b
ut

th
e

ju
m

p
ba

ck
to

th
e

he
ad

of
th

e
lo

op
is

(u
su

al
ly

)r
ea

di
ly

id
en

tifi
ab

le
.L

oo
p

/i
te

ra
to

re
dg

es
or

no
de

de
co

ra
to

rs
w

er
e

sp
ec

ifi
ca

lly
re

m
ov

ed
fr

om
a

pr
io

rv
er

si
on

of
th

e
di

sp
la

y
to

tr
y

to
ke

ep
th

e
vi

su
al

iz
at

io
n

a
lit

tle
si

m
pl

er
(e

.g
.,

th
e

su
cc

es
sf

ul
[]

di
sp

la
y)

.
st

at
e

m
ac

hi
ne

co
nt

ro
lt

ra
ns

fe
r:

lo
ca

tio
n

an
d

a
se

to
fa

ss
oc

ia
te

d
da

ta
va

lu
es

re
pr

es
en

ts
ta

te
va

ri
ab

le
s,

e.
g.

,w
he

re
da

ta
is

,o
rh

ow
da

ta
sh

ou
ld

be
pa

rs
ed

;s
ta

te
m

ac
hi

ne
s

ar
e

lo
ca

tio
ns

w
ith

va
lu

es
th

at
ar

e
ea

ch
so

ur
ce

s
of

co
nt

ro
lfl

ow
en

ab
le

d
ed

ge
s;

de
la

ye
d

tim
in

g
in

fo
rm

at
io

n
su

ch
as

th
at

in
a

ha
nd

sh
ak

e
is

N
O

T
R

E
PR

E
SE

N
T

E
D

Ti
ed

in
w

ith
pr

io
ri

ty
.E

xa
m

pl
e

C
O

N
T

R
O

L
T

R
A

N
SF

E
R

R
O

L
E

:l
oc

at
io

n
st

at
e

st
or

es
th

e
m

os
tr

ec
en

tly
co

m
pl

et
ed

st
ag

e
of

a
T

C
P

ha
nd

sh
ak

e;
on

re
ce

iv
in

g
a

pa
ck

et
,t

he
va

lu
e

in
st

at
e

co
nt

ro
ls

w
hi

ch
co

nt
ro

lp
at

h
pe

rf
or

m
s

th
e

ne
xt

st
ag

e
of

th
e

ha
nd

sh
ak

e.

m
ai

lb
ox

da
ta

tr
an

sf
er

:l
ar

ge
,c

om
pl

ex
ag

gr
eg

at
es

or
lo

ca
tio

ns
th

at
en

ab
le

da
ta

tr
an

sf
er

be
tw

ee
n

co
m

po
ne

nt
s;

a
da

ta
tr

an
sf

er
lo

ca
tio

n
is

an
ag

gr
eg

at
e

th
at

ha
s

bo
th

in
co

m
in

g
an

d
ou

tg
oi

ng
in

flu
en

ce
ed

ge
s

fr
om

no
de

s
th

at
ar

e
in

di
sp

ar
at

e
se

ct
io

ns
of

th
e

bi
na

ry
,b

ut
ex

te
rn

al
da

ta
tr

an
sf

er
is

N
O

T
Y

E
T

R
E

PR
E

SE
N

T
E

D

Ti
ed

in
w

ith
pr

io
ri

ty
.E

xa
m

pl
e

D
A

TA
T

R
A

N
SF

E
R

R
O

L
E

:a
gg

re
ga

te
lo

ca
tio

n
m

ai
lb

ox
is

us
ed

fo
ri

nt
er

-p
ro

ce
ss

co
m

m
un

ic
at

io
n

(I
PC

).

st
at

ic
da

ta
im

pl
ic

itl
y

re
pr

es
en

te
d

as
a

lo
ca

tio
n

th
at

ha
s

on
ly

on
e

(i
ni

tia
l)

va
lu

e,
or

a
va

lu
e

w
he

re
th

e
w

ra
pp

in
g

lo
ca

tio
n

ha
s

be
en

re
m

ov
ed

T
hi

s
no

de
w

ill
no

tb
e

up
da

te
d

af
te

rb
ei

ng
se

t.

de
ad

co
de

gr
ap

h
el

em
en

ts
th

at
do

n’
ta

pp
ea

ro
ra

re
no

tc
on

ne
ct

ed
m

ay
be

de
ad

,b
ut

w
e

cu
rr

en
tly

do
no

ts
up

po
rt

m
ar

ki
ng

el
em

en
ts

as
de

ad
ot

he
rt

ha
n

th
ro

ug
h

an
no

ta
tio

ns
or

re
qu

es
te

d
re

m
ov

al

W
e

m
ig

ht
w

an
tt

o
ex

pl
ic

itl
y

vi
su

al
iz

e
th

is
,b

ut
an

no
ta

tio
ns

ca
n

su
pp

or
tt

hi
s

us
e

ca
se

.

pa
rs

er
lo

ca
tio

ns
in

an
ag

gr
eg

at
e

ha
ve

m
ul

tip
le

ex
pl

ic
it

va
lu

es
th

at
ha

ve
ou

tg
oi

ng
co

nt
ro

le
dg

es
,

bu
tt

he
lo

ca
tio

ns
do

no
th

av
e

in
co

m
in

g
va

lu
e

flo
w

ed
ge

s
T

he
co

de
as

so
ci

at
ed

w
ith

th
e

co
nt

ro
le

dg
es

an
d

va
lu

es
is

th
e

pa
rs

er
;t

he
pa

rs
er

its
el

fi
s

no
tr

ea
lly

re
pr

es
en

te
d,

th
ou

gh
.

le
ng

th
U

N
K

N
O

W
N

A
T

T
H

IS
PO

IN
T

IF
L

E
N

G
T

H
IS

E
V

ID
E

N
T

M
ay

ne
ed

to
m

an
ua

lly
id

en
tif

y
an

d
an

no
ta

te
le

ng
th

ro
le

an
d

in
flu

en
ce

/r
el

at
io

ns
hi

p
ed

ge
.

63

Figure 3.7. Summary key of final selected visualization ele-
ments.

Location Location: shared
allocation

Location:
field

Location:
aggregate array

Input / Output
Location: aggregate

structure field

Thickness indicates
frequency of use

Computed
value Aggregate: constraints

(I.e. AND)

Location:
global Code node

Points to Control influence:
negative Data influence:

comparison

Value:
constant, set or

constraint

?
Uncertain

value

Location
Function boundary

(parameter / return value)

Special annotations can
indicate priority,

uncertainty, safety,
boring, and extent of

influence

Not yet represented:
code influence

(allocatable, freeable,
visible, updatable),

synchronization (lifetime,
sometime), colocation

(spatial, subset, overlap),
or lifetime

Sequencing information
may be implied through
left-to-right and top-to-

bottom layout

Control influence:
positive

Location
Initial
value

Data flow:
value

length

64

Figure 3.8. Final visualization of vulnerability 2 of the DARPA
CGC challenge CROMU 00034.

offset_next_entry

successful

offset_first_
entry

? … ?

next_offset

entry

chapter

offset_data

title

entry

buffer

STDIN

max_len

buff_data

buff

parent_of_subtitle

Success

? … ?

entry_
count

[3][1][0] [4][2]

&buff
_data

STDIN

0

>20

<11?

?

8
3

0?
1

10

25

0

5?

1

0 ?

?

IDEN
TITY PETS

JOBS?

NULL

0
?

??

0? ?

10 -1101 10100

verify_
entry

verify_
chapter?

cg_mem
cpy

first_
offset

?

Figure 3.9. Visualization of simple sums function.

STDIN

STDOUT

STDOUTn

i

j

sum

?

1 <= n
0

1 <= i
1

1 0

4

4

4

read(n);
i = 1; sum = 0;
while (i <= n) do
 sum = 0; j = 1;
 while (j <= I) do
 sum = sum + j;
 j = j + 1;
 endwhile;
 write (sum, i);
 i = i + 1;
endwhile;
write (sum, i);

65

66

Chapter 4

Evaluation

Ideally, in a formal evaluation, we would compare the accuracy and efficiency of analyst perfor-
mance on relevant tasks with and without our visualization on realistically sized binaries. Unfor-
tunately, several challenges impede a formal evaluation in this realm: it is difficult for a non-expert
to judge accuracy of performance, we have not created the workflow integration components of
our visualization, we would need well understood and well-crafted data flow vulnerability analysis
problems, and we would need analysis problems that can be completed within a couple of hours
rather than over the course of days to weeks.

Instead, we performed an informal evaluation on exceedingly simple examples as described
here. Vicente (2002) recommended three ways to evaluate requirements developed through the
application of human factors methods [63]: 1) a proof of principle through a demonstration that
the requirements generated through the cognitive work activities can be used to create a design;
2) an analytical principle that demonstrates that the design reveals important understanding about
the domain of interest, and 3) an empirical principle that uses experimental testing of the new
design against an existing design or against some benchmark of task performance to demonstrate
utility. We conducted proof of principle and analytical principle testing, but we decided that A/B
experimental testing was premature because the visualization was not deployed within the analysis
environment and only represented a subset of the information needed for a full vulnerability assess-
ment.1 We focused on answering the following questions: Can other visualizations be constructed
with these rules? Can visualizations of different types of data flow problems be constructed and
interpreted? Can SMEs interpret visualizations with minimal training? What is confusing? What
is missing?

Note, our research is a work in progress. We are attempting to understand the cognitive pro-
cesses of reverse engineers performing vulnerability assessment and to use these cognitive models
to produce a visualization.

It is difficult to assess the replicability of the results generated from this work. Several fac-
tors may make it difficult to reproduce our results. Our preliminary interviews and walkthroughs
tested only a few people under each protocol and focused on a single type of data flow task, i.e.,
attack surface characterization. Further, the results of the modified sorting task may have been
biased by the functionality of the programs selected or the range of potential vulnerabilities, and

1In developing the analytical principle, we performed an A/B comparison with n=1 against an analyst using a
traditional binary RE environment. We summarize the results of the binary pre-test in Appendix C.

67

the judgments of our panel of experts may have been skewed by their work. Because of these
limitations, we may not have discovered all of the data flow primitives and relationships necessary
for a complete representation.

Despite these concerns, we incorporated several strategies to increase the likelihood that our
results are replicable. We used a range of approaches: interviews, walkthroughs, and the modified
sorting task. We captured the essential data flow elements from a range of projects with different
analysis goals. We used an iterative development and design process during which reverse engi-
neers frequently reviewed the adequacy of the data flow elements and the design choices made in
the visualization [71].

Although our proof of principle and analytic evaluations of the visualization show that ana-
lysts can represent and answer questions about data flow, additional development is needed along
several lines before these visualizations could be deployed to an analysis environment. Our visu-
alizations were created manually. Binary reverse engineers in an operational environment already
maintain high cognitive loads without the added burden of creating a visualization. Manually cre-
ating the visualizations is untenable, and, although many of the data flow elements can be derived
automatically, such automation is not incorporated into current workflows.

Once automation can be used to derive data flow visualization components, new insights will
need to be easily injectable into the visualization during line-by-line analysis, and workflows will
need to be optimized for stitching together these automated pieces with line-by-line code analysis.
The interviews and cognitive walkthroughs revealed that the discovery of data flow information
can unfold over the course of an analysis, e.g., identifying that a data structure is used, and then
piecing together details about the parts of that structure. Thus, the data flow visualization should
support the recording of unknowns and partial insights as they become known during the analysis.
Additionally, interactivity requirements derived from our preliminary data gathering indicate that
analysts require interactive features that support using the data flow graph to navigate through
the code base, as well as features that allow sections of the graph to be collapsed when detailed
information is not necessary.

4.1 Proof of Principle

The first test of the list of data flow elements was a proof of principle: could a visualization be
created from the data flow primitives and their visual descriptions for a binary program, and would
that visualization represent and convey the important information about the data flow vulnerabili-
ties in the code?

4.1.1 Experimental Setup

For this test, a novice reverse engineer just out of an undergraduate computer science program was
asked to create a data flow visualization for the simple sums example and for two Cyber Grand

68

Challenge (CGC) binaries CROMU 00065 (WhackJack)2 and the C++ KPRCA 00052 (pizza or-
dering system)3 using our list of data flow elements and visualization specifications. This test
revealed several ways that the data flow primitives were not specified in enough detail to create the
visualization, resulting in minor revisions to the final list of data flow primitives. The second proof
of principle task identified a third CGC binary, EAGLE 0005 (CGC Hangman Game). This visu-
alization was manually created for the entire binary through a collaboration between the novice
and an expert. We did not require modifications to our set of elements, though we did modify
our (manual) algorithm for creating the visualization to handle while true loops with a break and
non-returning function calls (see Figure 4.3). This visualization represents 408 lines of relevant
decompiled binary code. With existing data flow graphs, analysts would not be able to observe the
entire binary at once.

4.1.2 Results

The final sums data flow graph is presented in Figure 3.9. In creating this graph, we changed the
requirements to specify how to represent loop induction variables and to add a comparison edge
between two locations.

During this exercise, the novice reverse engineer made judgments about how to represent cer-
tain items, e.g., which location to treat as the source for a comparison edge between two locations.
Just as with functions (which one may want inlined for clarity of context or shared for clarity of
code structure), this represents a decision that may vary based on location. We view these deci-
sions as transformations that represent the same thing. We continue with the view that it is valid
to represent things one way that could be represented differently; analysts may have preferences,
preferences may change based on program point or analysis goal, and giving analysts flexibility in
when and how to apply which transformations may help analysts use these graphs more effectively.

For the next two graphs, Figures 4.1 and 4.2, we present intermediate results of partial analysis
of the relevant binaries (not full binaries). These graphs have not been updated to illustrate our
final assignment to visual elements. Instead, they reflect graphs at two points in our iterative
development process. Further, they do not incorporate all of the visual design elements completely.
Finally, Figure 4.1 shows function boundaries around the data flow elements. These were used by
the analyst to help map to a mental model of the code and decompilation as the graph was being
created. They are stored in another layer and are toggle-able (i.e., they can be easily hidden as a
group).

This exercise exposed a need for duplicating conditions and memory locations for clarity some-
times and sharing them other times (an example of a transformation applied based on analyst judg-
ments), mechanisms for representing virtual tables and resulting function calls, and a need to hide
information that is prolific when it is not useful (e.g., the this pointer). For example, the bottom of
Figure 4.2 demonstrates a function that randomly calls one of two virtual functions. We can clearly

2WhackJack has data flow elements that are neither the most complex nor the simplest within the CGC binary set.
3pizza ordering system has some relatively complex data flow elements as compared to the rest of the CGC binaries

in that dynamic dispatch is used.

69

Main

add_players

delete_players
play_round

player_name

whackJackAlgorithm

funds

cards

computerPlayer

computerMethod

useHints

hintsMethod

wins

losses

bet

players
8

card_ptr

silentMenu selection
99

!=0

0

STDIN
21

buffer

1 2 3 4

0

buffer

4

playerList[I] + 0

playerList[I] + 12

playerList[I] + 16

???

playerList[I] + 30

playerList[I] + 31

playerList[I] + 32

???

playerList[I] + 36

playerList[I] + 40

???

i0

playerList

players

<8

!=0

1

!=8

buffer

STDIN
12

12

buffer

500

0

0

0

buffer[0] =‘y’ || ‘Y’

1

method

STDIN

method

12

matchDealer

basicAlgo

simpleAlgo

neverBustAlgo

buffer[0] =‘y’ || ‘Y’
0
1

12345

1234

superDuperAlgo

playerList

players

???

playerList[I] + 0

playerList[I] + 16

???

playerList[I] + 36

playerList[I] + 40

???

!=0

i0 <8

return

x0 1 buffer

STDIN
20

20

delete_num
buffer

>=x

return

<8

500

0

0

0

playerList

players next_card
card_ptr

Figure 4.1. A data flow graph manually constructed from the
TrailOfBits port of CGC challenge binary CROMU 00065 by a
novice using our intermediate data flow requirements.

see that it calls some offset from edx in the virtual table, but we do not have a good representation
of the uncertainty in the resulting location. One expert analyst responding to this visualization
stated, “overall, I think it’s far, far better than looking at the disassembly or the source code”, but
also stated, “I can’t quite follow all of it... and I’m not sure whether I need more practice reading
these diagrams, whether the diagram is incomplete [it is], or whether the representation needs a
little more work.”

4.1.3 Discussion

To highlight how this visualization would be useful to binary analysts performing a vulnerability
assessment, Figure 4.4 shows the portion of that graph that includes the two vulnerabilities present
in EAGLE 0005. In the upper left, 80 bytes from STDIN are read into the 32 byte name buffer
located on the stack. This is an easily identifiable stack buffer overflow. This data is then passed,
without sufficient checks on the data, into STDOUT; this is an easily identifiable format string
vulnerability. These two vulnerabilities are relatively straight-forward to identify via a line-by-
line analysis because they are wholly contained within a single function. However, if trying to
understand how an attacker might exercise these vulnerabilities, an analyst requires interprocedural
data flow understanding of nearly all of the 408 lines of code and data flow depicted in Figure 4.3.
Current data flow visualizations do not enable effective visualization of an entire binary in this way.
See Appendix D for comparative visualizations of the CROMU 00034 and EAGLE 0005 binaries.

70

var_D

oim

8050AE0

pickup_name (+0)

pizzas (+ 32)

len (+ 4096)

data (+ 0)
1024

0

32

len (+ 4231168)

data (+ 0)
1024

0

8050B20

Entry Node

line_size (+ 12)

line (+ 8)

fd (+ 4)

line_len (+ 16)

vtable_ptr

0

orders (+ 20)

0

200
line

line_size

pwio

authenticated0

shutdown0

line_size (+ 12)

line (+ 8)

fd (+ 4)

line_len (+ 16)

vtable_ptr

0

0

200

line
line_size

804DBD0
804DC20

!= 1
pw_attempts10

!= 1

max_size

rx

i

0 0

0

line_size

ST - FD
1

<max_size

1

i

1

line[I] != ‘\n’

?

0

0 1

max_size

eax? 1

STDOUT“Incorrect
Password”

Var_C

0

0line

eax? “pizzapass”

STDOUT
“\n”

STDOUT
“Welcome to

the CGC
Pizzeria order
management
system.\n”

1

“quit”

STDOUT“Received
termination

string\n”

1

STDOUT“Incorrect
Password”

0

STDOUT“Too many bad
attempts\n”

1

topping

calls edx +
12

?

STDOUT“%s”

eax
1

STDOUT
“**”

edx&toppings

ecx&toppings

calls ecx +
8

0

STDOUT
“*”

Figure 4.2. A data flow graph manually constructed from the
TrailOfBits port of CGC challenge binary KPRCA 00052 by a
novice using our intermediate data flow requirements. The source
for this binary was written in C++.

71

STDIN 1

STDIN 1

?

? STDIN 1

STDIN 1
?

?

var_8
inbuf

256

STDIN

?

255

i

w

?
STDIN

4

cgc_term
inate

nam
e

32

STDIN
80

cgc_term
inate

STDO
UT

“Passw
ord: “

STDO
UT

“W
elcom

e to
H

angm
an

Blondie!\n”

“C
hoose your w

ord seed.
Please send 4 bytes\n”

STDO
UT

STDO
UT

“\nN
ice shot Blondie,

you freed Tuco.\n”

STDO
U

T
“The correct w

ord is %
s.\n”

‘_’
STDO

U
T

“\nM
iraculously, you have

m
anaged to prolong Tuco’s life.\n”

STDO
UT

“\nHaha, Tuco is feeling that rope a little m
ore!\n”

“Blondie, you m
issed, Tuco has been hanged.\n”

STDO
UT

“The correct w
ord is: ”

STDO
UT

STDO
UT

STDO
UT

“C
ongratulations blondie, add yourself to the high score list\n”

STDO
UT

“W
hat is your nam

e? \n”
STDO

U
T

&nam
e

0

“New
 m

em
ber of the H

O
F: ”

STDO
UT

STDO
U

T

STDO
U

T

STDO
UT

“ y/n? ”
STDO

UT
“Play again”“Invalid guess, gam

e over.\n”

STDO
UT

“used: \””
STDO

UT

“\”\n”
STDO

U
T

“available: \””
STDO

UT

STDO
UT

“\ncurrent: ”
STDO

UT

STDO
UT

“\nYour guess: ”
STDO

UT STDO
UT

used

27

avail

27

STDO
UT

STDO
UT

“\n%
s\n”

STDO
UT

G
allow

s
“ --- | | | | | | -----| |”

0
HANG

EM
HIG

H!

lf
&inbuf

&inbuf

var_1D

1

1
*lf

0
0xa

0

&avail
i

<26
0

1

0x61

i

found

s

s
1

 eax
s

1

0

&avail

c
0

?
0

&used
str

1

0
res

1
0 &used

c

w
ord

128

&w
ord

<r

c

str
1

0
res

1
0 s

str
1

0

res
1

0&w
ord

d

?

src
11

0

sd

cgc_w
ords

415833
&cgc_w

ords

[…
]

?

415833

secret
0x4347C000

?

0xffd

0xa

is_alpha

v2

0x20

c
0

¤t

c

lf
\n

1

‘ ’

&gallow
s

bad_guesses

parts
“0|/\\|/\\”

&parts
?

&indexes

indexes
5

6
0

1
2

3
4

17
24

23
25

31
37

39

7

0

<r

0
1

0
1

>= res

i

0

eax

0
1

1

<7

0
1

is_alpha

v2

0x20

cgc_term
inate

0
<7

1

0xa

eax
‘y’

?

‘_’

0

current
128

0

Figur e
4.3.

A
data

flow
graph

m
anually

constructed
using

our
data

flow
requirem

ents
and

final
assignm

ent
to

visual
design

el-
em

ents.
G

enerated
from

the
TrailO

fB
its

port
of

C
G

C
challenge

binary
E

A
G

LE
0005, this

graph
encapsulates

allinstructions
from

the
binary

exceptthose
from

libraries.

72

name

32

STDIN
80

cgc_terminate

“Congratulations blondie, add yourself to the high score list\n”
STDOUT

“What is your name? \n”
STDOUT

&name

0

“New member of the HOF: ”

STDOUT

STDOUT

STDOUT

lf
\n

1

?

“\n”

Figure 4.4. The portion of the EAGLE 0005 data flow graph
showing the two vulnerabilities known to be exhibited by that bi-
nary: a stack buffer overflow vulnerability, and a format string
vulnerability.

The EAGLE 0005 example demonstrates how such a visualization might be useful theoreti-
cally; we next wanted to gain some confidence that the visualization did, in fact, allow an analyst
to answer data flow questions.

4.2 Analytical Principle

The second type of testing followed the analytical principle. For these tests, a list of questions
about data flow and important considerations in reverse engineering and vulnerability assessment
were derived from the initial project discussions and cognitive task analysis products.

4.2.1 Experimental Setup

An experienced reverse engineer who was not involved in the previous activities was given a 15-
minute primer on the graph for CROMU 00034, and then he was asked to answer the questions
presented in Figure 4.5 using only the data flow visualization for the EAGLE 0005 binary.

73

1) Where does an attacker control data input throughout the program?
2) What constraints on the password read into inbuf would allow the body of this program to be reached?
3) Looking at the processing of the input buffer inbuf in the function main (upper left of data flow graph):

a) What is the initial value of the pointer?
b) When is the pointer incremented?
c) Are values being read or written as the array is walked?
d) What values are being looked for as the array is walked?
e) What values are written?
f) When are those values written?

4) Looking at the global avail array initially in the function cgc reset (left side, middle height, left-most uses in
the data flow graph):

a) Are values being read or written as the array is walked?
b) What values are written?
c) When are those values written?
d) When else is avail read?
e) When else is avail written?

5) Looking at the global used array initially in the function cgc reset (left side, middle height, left-most uses in
the data flow graph):

a) Are values being read or written as the array is walked?
b) What values are written?
c) When are those values written?
d) When else is used read?
e) When else is used written?

6) Looking at the global word array (left-ish side, towards the bottom, left-most uses in the data flow graph):
a) Where is the array being walked?
b) For each use, are values being read or written as the array is walked?
c) For each read, what values are being looked for?
d) For each write, what values are being written and where do they come from?
e) How were those source values located?

i) Follow the flow backwards as far as possible.
ii) What causes these values to change?

iii) Are there potential problems with this flow?
7) Looking at the c variable from cgc doTurn (middle of everything in the data flow graph):

a) What are inputs to the value?
b) What constraints are on the value?
c) To what locations is c written? When?
d) To what locations is c compared? When?

8) Looking at the name array in cgc getHighScore (far right bottom in the data flow graph):
a) What are inputs to the values?
b) What are constraints on the data input to this variable?
c) Are there potential problems with this flow?
d) Similarly, following name through STDOUT?

9) Can you find a place where an array is walked through by incrementing a pointer?
10) Can you find a place where an array is walked through by incrementing a counter and adding that to the base

pointer?
11) Can you find where the global array gallows is written?
12) Can you find where the global array current is written?
13) How many guesses do you have before you lose the game?
14) What things cause the game to restart?

Figure 4.5. Evaluation questions for analytical principle testing
of EAGLE 0005.

74

4.2.2 Results

The analyst interviewed preferred language like “When is used being written to?”, or “When is data
in avail’ being updated?”, or “Is data in avail being overwritten?” Additionally, the analyst noted,
in reference to arrows for pointers, that the directions of the arrows were sometimes confusing
because an arrow can suggest a value being read... but a value being read does not represent data
flow.

In spite of this, the analyst was able to answer 11 of the 14 data flow questions correctly within
40 minutes. The questions that could not be completely answered in the allotted time involved
interpreting pointers and their edges (see questions 4, 6 and 7 of Figure 4.5) and suggest a possible
area for improvement of the visualization.

4.2.3 Discussion

Overall, this result gives us some confidence that visualizations produced via our static require-
ments are useful for answering data flow questions.

However, we need to understand what levels of detailed program understanding are necessary
during assessment. The expert analyst who evaluated this data flow visualization noted that an-
swering the questions about data flow without first having a general program understanding “felt
weird”. As RE and VA incorporate more automated tools that allow analysts to draw conclusions
about sections of code without requiring the analyst to understand the line-by-line functioning of
code, the understanding of minimal levels of detail will be critical. This understanding will help
to effectively incorporate new tools into workflows and to effectively document the results of team
assessments completed over time.

75

76

Chapter 5

Workflow Integration

As mentioned in Section 4, additional development is needed along several lines before these
visualizations could be deployed to an analysis environment. We used human studies to help
identify fundamental concepts that could help to organize, scale, or filter data flow graphs to make
them comprehensible. To enable integration of our visualization requirements, which described
what information to display, we need two primary components: a generation mechanism, and
a presentation mechanism. We pursued an end-to-end solution to this data flow understanding
problem through collaboration with experts in program analysis and, separately, visualization from
Georgia Tech’s College of Computing.

Our visualizations were created manually, taking up to several hours to generate the simple
graphs in this document. The full EAGLE 0005 took even longer. Binary reverse engineers in
an operational environment already maintain high cognitive loads without the added burden of
creating a visualization; manually creating the visualizations is untenable. We will need a semi-
automated creation mechanism to help analysts generate these graphs if they are to prove useful.

In Section 5.1, we discuss initial automated extraction of the basic elements in our graph from
source code, creating a json description of a data flow graph. Further automated analysis could
extract additional data flow abstractions and relationships. This automated extraction is not be
complete; it presupposes strong solutions to the open data flow problems of interprocedural anal-
ysis, shape analysis, and type flow analysis. However, this extraction provides a strong base on
which to build, and it provides many primitive elements from which human analysts can draw their
own conclusions.

Once automation can be used to derive data flow visualization components, new insights will
need to be easily injectable into the visualization during line-by-line analysis, and workflows will
need to be optimized for stitching together these automated pieces with line-by-line code analysis.
We currently only provide a static graph, but our interactivity requirements indicate that analysts
require interactive features that support using the data flow graph to navigate through the code
base, to collapse portions of the graph, and to support recording unknowns and partial insights
through the analysis. To meet these interactivity requirements, specialized layout and interaction
capabilities are necessary.

In Section 5.2, we discuss a proof-of-concept visualization to support interactive presentation
of data flow graphs described in a json file. The json description files are independent of creation
mechanism; some of ours were created manually, and others were created through the dg extension.

77

5.1 Automatic Generation

Our data flow graph is quite similar to a system dependence graph (SDG) [59], an interprocedural
program dependence graph (PDG), which displays data dependencies and control dependencies
between instructions. This covers much of the non-judgment information needed to construct our
data flow graph.

In our graph, however, we use a handful of transformations, layout constraints, and abstractions
to help an analyst explore the graph. For example, assignment nodes in the PDG that assign to the
same location are value nodes in our graph, but these value nodes are children of the same parent
location node. In this case, the layout constraints enforced by the parent node allow an analyst
to easily differentiate between a specific value (definition) being used in an expression and an
uncertain value (one of multiple definitions) being used; they are similar to PHI nodes. Similarly,
control dependencies may be flattened more than in a PDG (they explicitly connect a trigger value
to the value assignment that happens when that trigger occurs), and many control dependencies are
elided.

The primary difficulty in constructing PDGs is the need for accurate aliasing information. Sim-
ilarly, much of the work performed to construct our data flow graph automatically (without anno-
tations) is to infer accurate data dependence information. We build off of dg [22], which builds
on top of the LLVM compiler infrastructure [70] and is a component of the symbiotic analysis
platform to check common safety properties [23]. Using dg, we begin with constructing our data
flow graph automatically from source. We use a points-to analysis [98], a reaching definitions
analysis [26], a def-use analysis [45], and a control dependence analysis [45] to compute data and
control dependence graphs. We modified dg to produce interprocedural dependence graphs and
to generate json output in the appropriate format. Appendix E gives an example json specification
for the simple sums code. We do not perform all of the simplifying transformations described
by our requirements yet. For example, intermediate registers that simply aggregate partial data in
a computation should not be represented explicitly in our graph, but we do not yet perform this
simplification. Because this code is preliminary, we do not provide pseudo-code here.

As we attempt to generate these graphs from binaries, we will have to address the fact that
aliasing information and aggregates will be more difficult to compute. That is, there will be more
uncertainty in the initial constructed graph prior to analyst interaction. While we briefly looked
into generating such graphs by first lifting into McSema [33], which, given a commercial IDA
Pro [55] license, lifts into LLVM IR and thus could directly use the LLVM analysis, we leave
generating these graphs automatically from binaries to future work.

5.2 Interactive Presentation

Again, once automation can be used to derive data flow visualization components, we need to
support interactive exploration, annotation, and update of these graphs. Here, we explore a proof-
of-concept visualization to support interactive presentation of data flow graphs described in a json

78

file.1

As with our other efforts, we asked expert analysts to provide feedback and suggestions during
our iterative development. Feedback was generally positive; analysts frequently asked when they
could have such a visualization integrated with their current tools. Unfortunately, as mentioned,
we have not yet integrated this visualization into current workflows.

5.2.1 Proof-of-Concept Interactive Visualization

The primary goal in this instantiation has been to find a layout that can change as new graph
elements are added to the display, but remains close to the original to alleviate cognitive load.

However, analysts from other domains are often drawing a visualization to encode their under-
standing – not looking at a visualization to gain insight. For example, Analyst Notebook [79] is
essentially a drawing tool. Binary analysts often use their manual visualizations similarly; thus,
the interactive visualization needed to give analysts a lot of control over the visualization elements
and layout.

The first implementation used Dagre [81] for a somewhat force-directed layout and D3 [14]
for the rendering. Unfortunately, some constraints imposed by Dagre, including an expectation
of ranking that ordered nodes from the top down, did not interact well with our requirements.
However, the pan and zoom abilities were helpful. In this implementation, the layout took up a lot
of screen space even with a simple function. The layout did not look like it would scale well past
a few sources and sinks.

The second iteration used webcola [40] and a tree-like view of the data flow.

The current iteration uses cytoscape [89]. The current default layout includes the following
panes (shown in Figure 5.2):

• On the left, semi-transparent panes allow parts of the graph to be seen behind them, effec-
tively increasing graph real-estate. These panes include

– a function list of all the functions discovered in the json file

– a hypothesis or flowlist pane, which allows an analyst to start, add or store, or clear a
hypothesis, a selected list of nodes and their connecting edges, and

– a details pane, showing the number of times that attribute has been viewed as a progress
bar and including two tabs,

∗ an attributes pane, showing the associated json attributes of a graph element and
∗ a notes pane, where analysts can add and search textual notes about an element.

• In the middle, the graph pane takes most of the available screen space.

1We tested with json files created manually or through the dg extension.

79

• On the right, the code view supports selecting between source files and a json view.

This version does not currently implement the visual elements encoding types of nodes and edges;
rather, it focuses on meeting the layout, update, and interactivity requirements.

Figures 5.2.1 and 5.2 show screenshots of this proof-of-concept, including an analyst interact-
ing with some capabilities to support code exploration and analysis.

Several features in the proof-of-concept interactive visualization support bottom-up view con-
struction:

• On selecting a function from the function list, the view is populated with all other data flow
nodes associated with that function, including location parents that may not be defined in the
function (Figure 5.2(a)). The view supports visualizing multiple functions at a time.

• An analyst can click on a sequence of nodes and save the subgraph to a “hypothesis” list.
Currently, nodes in a hypothesis are colored differently (in red). Mousing over or clicking
a hypothesis highlights the subgraph in the current view, restores it to the view if hidden, or
populates a secondary detail view with a small layout just of that path (Figure 5.2(d)).

• Given a selected path, the code pane shows raw code relevant to elements in the path (Fig-
ure 5.2). The visualization currently jumps to the relevant code line, if present, but a future
iteration might highlight a selection, e.g., presenting a word tree. The code pane provides
dynamic file loading and highlighting for most common languages.

• When a node is clicked, any connected nodes not already in the current view are added (i.e.,
the node is expanded; Figure 5.2(b)). In future work, nodes should also indicate if they have
incoming or outgoing hidden links that outside the visible functions.

• Mousing over a node highlights all inbound and outbound links (Figure 5.2(a)).

Several features support analysis:

• Node locations can be controlled by the analyst through dragging (Figure 5.2(c)).

• Nodes and links can be annotated arbitrarily (Figure 5.2). The visualization supports easy
location and highlighting of elements annotated with a suggested hashtag format, e.g. #pri-
ority:high, #uncertain, or #vulnerability. Currently the visualization changes the size of nodes
annotated with #priority:high.

• Analysis histories for each subgraph are saved, and a meta-visualization of the graph analysis
process can be shown. Subgraphs remember number of touches.

• Graph and analysis saving maintains positions across functions.

Finally, several future features have been requested by analysts or suggested by our analysis:

80

Figure 5.1. These figures show portions of the graph view as an
analyst explores and interacts with two functions, cgc clearBoard
and cgc reset, that do not directly share any nodes.

(a) The functions as
initially laid out after each
function has been added to
the graph view. node105,
which will be selected,
is currently moused over,
showing relevant displayed
relationships.

(b) node105 has been
clicked, discovering the
only previously connected
but undisplayed node, the
bright yellow node205. All
edges from node205 to
displayed elements are now
also displayed.

(c) The analyst has man-
ually adjusted the location
of node105, node99, and
node205 and is currently
moused over node205.

(d) The analyst has expanded
node205 (discovering many out-
going links) and is in the pro-
cess of defining a hypothesis from
node205 to node109 to node110 to
node111.

81

Figur e
5.2.

Fullscreenshotofvisualization
environm

ent,includ-
ing

all
default

panes
and

view
s

and
zoom

ed
view

of
graph

gen-
erated

autom
atically

from
the

TrailO
fB

its
portof

C
G

C
challenge

binary
E

A
G

LE
0005.

In
this

screenshot,
after

all
steps

in
Fig-

ure
5.2.1,an

analysthas
added

the
note

#priority:high
to

node205,
has

saved
three

hypotheses
that

start
at

node205
(tw

o
are

identi-
cal),and

has
m

oused
over

node83
to

see
related

flow
s.

82

• Collapsing subgraphs that are contained within a hypothesis would allow analysts to control
summarization within the main view.

• Analysts want the ability to move parents to new locations.

• A timeline of interaction (e.g., branching, review and restore, or breadcrumbs) would enable
knowledge transfer.

• Analysts requested an ability to pass a hypothesis to an automated analysis engine, e.g., to
look for more details about a structure, to hide irrelevant parts of a structure, or even to ask
questions about values or constraints related to the hypothesis.

• As expected, analysts asked to be able to interact with a reverse engineering environment
such as IDA Pro [55], and potentially to map graph elements back to both the binary in the
RE environment and the source.

• Toggle-able layers based on node or link type were requested.

• Similarly, analysts should have the option to force node or edge information to be visible all
the time, visible on hover, or never visible. These options could be tested in later instantia-
tions: Can people extract meaning when details are not shown? Do they know where to look
to find information rich areas? How much detail can be hidden?

• Interactivity to combine nodes or change clustering would allow analysts more control over
their representations, which would be more like their current manual drawings, but this kind
of interactivity would have to be built on top of the visualization engine. Currently the
easiest (and expected) way to achieve this kind of interaction is to redefine the graph in json
and allow the engine to create a new layout. This may lose the mapping to past layouts,
though.

5.2.2 Interesting Layout Ideas for Data Flow Understanding

Several layouts may give interesting insights into data flow relationships and may be worth explor-
ing:

Word Tree The word tree [111] shows how summary and global relationship information might
be displayed. This layout allows forward and backwards traversal, puts code on the side, and
supports easily hiding the relationship snippets.

Hive Plots and Pivot Graphs Layouts like hive plots [68] and pivot graphs might be used as an
alternative view to help show when single nodes are particularly important sources or sinks
and where the related data flows connect.

Scatter Plots Scatter plots from a force directed layout graph makes the location of the node
meaningful. While such layouts can be ugly, they can also be interestingly informative.

83

5.3 Analyst Usage during Analysis

Recall, we expect that analysts will create this graph through discovery and analysis, use this graph
for navigation, and take some working notes within the graph. The analyst will need to be able to
use multiple other tools (e.g., IDA Pro, dynamic evaluation) and representations (e.g., the CFG,
call graph) in conjunction with this graph. For effective use, this visualization will need to be
integrated with other analyst tools. Ideally, navigation within one tool should be able to inform or
control the views of other tools. This is a large engineering effort that remains to be addressed.

84

Chapter 6

Future Work

The application of human factors to binary reverse engineering and vulnerability analysis is grow-
ing. The breadth of potential research and impact is huge. We describe here a few of our ideas for
future work at different scopes: locally to improve and evaluate our data flow visualization, and
globally to explore binary analysis workflows.

6.1 Completing our Data Flow Visualization

Several thrusts remain to complete and complement our data flow visualization exploration. Fur-
ther efforts should:

• Explore ways to encode additional information from “requirements” spreadsheet.

• Design solid tests and evaluate the utility of this representation for experts ...

• and compare to the utility of this representation for novices.

• Evaluate the visualization against other mission questions, including within the context of
real analyses.

• Evaluate the visualization against our stated hard problems, including dynamic dispatch,
pointer manipulations, and verifying and maintaining relationships between variables and
values.

• Update automatic generation of json from LLVM to include other information from rule set.

• Implement automatic generation from a binary tool (e.g., IDA Pro) or front-end (e.g., Mc-
Sema [33]).

• Update interactive visualization to include selective display based on annotations.

• Tie analysis frameworks and visualization together in an interactive loop.

• Expand this representation or, more likely, design a representation that helps analysts create
a high-level understanding of data flow, i.e., an algorithmic description such as previously

85

designed hierarchical graphs designed after an analysis. Primitives or categories here would
be goals, and tools would need to support creating this type of visualization over the course
of the assessment, including categorizing uncertainty as it changes over the assessment and
remembering critical details of analyst judgments.

• Extend a simple dynamic memory representation like kapsi [41], which color codes access
types and displays them in an XY coordinate graph of memory accesses across time. We
could layer on some useful bottom-up context information (i.e., linking parts of the graph to
parts of the code) to help analysts quickly identify or confirm hypothesis-driven understand-
ing of algorithms. Such a visualization could capture complex algorithmic behaviors (e.g.,
hashing, encryption), and provide the ability to compare dynamic memory information.

• Expand the IDA Pro navigation pane to include an ability to quickly categorize and tag
code snippets (like a swipe right / swipe left interface). One question is: what judgment
would be useful to tag data elements with? In the attack surface characterization cognitive
walkthroughs, analysts were typically making judgments about the likely category of the
data element to prioritize their future work.

6.2 Explorations of Binary Analysis Workflows

We believe that thinking of binary analysis as a classic sensemaking problem, and attempting to
apply solutions to sensemaking problems in other domains, may prove fruitful. Similarly, ex-
ploring solutions and guidelines from the situational awareness (SA) literature may prove fruitful.
Appendix G calls out specific SA design principles that are particularly relevant for binary analysis
through symbolic execution.

We are particularly interested in research to meet the following goals:

• Understand how different workflows should be specialized for different questions.

• Efficiently communicate essential knowledge to yourself and others, with support for exam-
ining bases for conclusions and hypotheses.

• Support effective decision making, including helping analysts to answer the following ques-
tions:

– When is the evidence for a particular conclusion/hypothesis strong enough to move on?
– What portions of the analysis should I prioritize?
– What tools might help me understand this question? And how do I use them?

• Observe analysts working in high-performing pairs or teams.

– When do analysts elect to pair RE?
– What does information hand-off look like in pair RE?

86

– How is this cognitively advantageous? Do the analysts bring different sets of knowl-
edge and skills to bear, whether general knowledge, specific vulnerability knowledge,
code source knowledge, data flow knowledge, knowledge of programming paradigms,
or tools to understand code?

– How do the analysts interact? Do they attend to the same parts of code simultaneously?
Pose questions for one another? Help to keep each other on track with the current goal?

– How do tools and discussions reveal answers to questions and provide evidence for
hypotheses? Does this make project hand off easier?

• Categorize design patterns of vulnerabilities and program features in binaries, similarly to
the categorization of source code vulnerabilities described in [35].

• Create templates for data “audit logs”, providing a format that allows an analyst to summa-
rize valuable information and have that information automatically propagated through the
relevant data flows in the binary.

• Allow analysts to explicitly represent and control uncertainty about hypotheses.

• Gather data from the RE environment to help determine what analysts are doing, where
they need help, and where automated analyses could help to pare down the code to relevant
sections.

• Explore applications of eye tracking to understanding expert and novice binary analysts (see
Appendix I).

Previous human factors explorations of program understanding have identified cognitive de-
sign elements that are needed to support the construction of mental models. Storey and colleagues
identified two broad classes of design elements important for helping software analysts maintain-
ing code to build their mental model: those that support comprehension, and those that reduce
the cognitive overhead of the analyst [101]. Examples of elements that support comprehension
include tools and features that support the construction of multiple mental models, and tools and
features that provide abstraction mechanisms. Such elements support both bottom-up (line-by-line
analysis) and top-down (knowledge-driven) comprehension as well as the integration of the two.
Examples of design elements that reduce the cognitive overhead of the analysts include support
for navigation through the code, decision making, and documentation of findings. Although these
insights came from studying software maintainers, they are relevant for binary reverse engineers as
well. These insights will continue to be important as new tools are developed, automatic analyses
are advanced, and reverse engineering workflows evolve.

We frequently observed the need to reduce the cognitive overhead of binary analysts. It was
described as a pain point for analysts, e.g., forgetting decisions that were made about how to
proceed with an assessment (such as which path to follow), and it was observed for all the analysts
in the 1.5 hour cognitive walkthroughs (e.g., analysts described small memory lapses for where
they had already looked in the code or for what they were looking). Analysts could recover from
these memory lapses quite quickly, but their occurrence suggests that more support of analyst
cognitive processing is required.

87

Besides further developing our colocations visualization (Appendix F), another opportunity for
reducing the cognitive overhead of the analyst is to provide tools that can help them to record the
details of their analysis. For example, something like a knowledge transfer diagram [116] could be
particularly beneficial. These visualizations can help to externalize an analyst’s understanding of
both the program and the assessment. A record of this understanding can help maintain the current
goal of the analysis, establishing the mental context that is required for analysis when returning
to a project, or communicating the current state of understanding to other analysts or customers.
Applied cognitive task analysis, activity analysis, time analysis, and work domain analysis could
support development of these externalizations.

One of the most striking observations about binary analyst workflows is the mismatch in func-
tional allocation. A central tenet of human factors for systems design is to assign functions of
the system to the component, human or machine, that is best suited for performing that function.
Binary code is the language that machines understand, and thus that function within the reverse
engineering workflow should be assigned to the machine. Instead, it is the human that is trying to
accurately focus and direct their attention to line-by-line processing while keeping multiple bits of
information in memory to be available for future processing... in addition to remembering deci-
sions and details related to the workflow itself. If mental simulation of program function cannot be
avoided, highly automated systems for capturing the states of the system and the states of decision
making across time could ease the cognitive burden of these analysts.

Changes to binary analyst workflows may increase human analyst throughput by orders of
magnitude. However, significant domain mapping is required before appropriate workflow sup-
ports and changes can be effectively designed and implemented, particularly as analysis goals
appear to significantly affect the course of an analysis.

88

Chapter 7

Related Work

Traditional static data flow analyses use unwieldy mathematical representations for computation
[65]. Most visualizations of these analyses overlay data flow or other information onto a control
abstraction, the CFG [55][83][117], the call graph [86][52], a file view [87] or a condensed view
of the textual layout of the code [8][42].The former two sets of visualizations do not provide fine-
grained interprocedural views; the latter set does not support interactive updates from the analyst
(e.g., correcting the disassembly). Several past visualizations helped analysts filter, organize, and
abstract overwhelming control flow graphs [78][102], delocalized data flow relationships [72][15],
historical animated views [7] and hierarchical interactive views [80], and even hypothesis-driven
understanding [84][69], but many of those visualization mechanisms do not appear to be imple-
mented in the common reverse engineering platforms of today [55][3][12].

Visualizations of program dependence graphs (PDG) [112], annotated system dependence
graphs (interprocedural PDGs) [31] and static value flow graphs [103] provide a reasonably in-
tuitive view of many important data flow relationships, primarily among locations. However, these
are statically computed graphs that are not designed to be updated, they are cognitively over-
whelming, and they tend not to highlight important values. One visualization of a dynamic data
flow graph uses physical address / execution time pairs with values [61], making most location and
points-to relationships and some values easier to understand than in other representations. How-
ever, these dynamic representations cover one potential set of relationships associated with a single
trace, and thus they do not generalize well to static analyses. Another recent work provides insight
into values [58], but these visualizations support source code understanding around variables rather
than locations. Such work complements our proposed requirements by exposing more information
about value sets.

Decompilers such as HexRays [55] and Dream [114] provide the most intuitive advanced
data flow representations today, encoding data flow information in automatically selected vari-
able names. The Dream++ extension [113] even selects names to reduce cognitive load on analysts
parsing the decompiled code. However, these text-based visualizations still use a control flow-
based layout, encoding control flow depth using whitespace indentation just as in code develop-
ment. They also display all the code rather than providing code folding [54], and analysts inject
knowledge at a different layer of representation than that displayed (i.e., on the disassembly).

In contrast, we generated requirements that: engage human pattern recognition skills by repre-
senting information as a graph, support analysts updating or correcting the underlying information

89

in the graph, and provide ways to filter, organize, and abstract these graphs.

Analysts interacting with instantiations of our requirements will be engaging in model building
through visual analytics [4]. When implemented within a graph, such instantiations will need to
support effective visual analytics through specialized interaction mechanisms and layouts such as
those in [82][69][32][64][88][111][68]. However, these mechanisms are targeted to control flow
abstractions or completely different domains. To support effective visual analytics, the data flow
graph interaction and layout mechanisms will need to focus on providing easy correlation to the
many other views that analysts use (including control flow views), reducing disorientation caused
by changes in this and other views, and providing easy mechanisms to alter and annotate the graph.

Our work is heavily influenced by two individuals who have thought deeply about supporting
visual analytics effectively: Storey [101] and Victor [110]. Storey provides a taxonomy of 14 cog-
nitive design elements to support mental model construction during reverse engineering of source
code for code maintenance (focusing on program understanding), and she points out the extensive
background knowledge required by reverse engineers (including programming, languages, compil-
ers, bugs and vulnerabilities, safe coding practices, and structures of different classes of programs
such as state machines or parsers); we summarize some of her insights in Section 7.1. Victor ar-
gues for immediate feedback, particularly from tools supporting individuals who are engaging in
a creative process (such as source code development, or, in our case, reverse engineering) [110];
easy movement between multiple levels of abstraction [109]; and natural interactive control mech-
anisms [108]. However, our work is focused in the more limited domain of answering data flow
questions about a binary.

Groups considering the human as a part of the binary or vulnerability analysis system are
growing in number. For example, the angr group is exploring ways to offload analysis tasks to non-
expert [95]. The DARPA CHESS program is building research to support humans and computers
working together to reason about the security of software artifacts [51]. Research groups such as
[75] are exploring ways to allow users who are not experts in analysis algorithms to better control
the analysis. Much (though not all) of this work is focused on building analytic systems to support
more targeted allocation of work; in contrast, we focus on the externalization of human analysts’
mental models.

While we use the Cyber Grand Challenge (CGC) binary challenge set for our tests [50][97],
other data sets such as the Juliet test set [13] and LAVA test set [34] are also promising for simple
test source code and binaries. While some studies move directly to realistically sized binaries, we
currently focus on small binaries because we are manually generating most of our data flow graphs.

7.1 Insights from Storey’s Studies

Storey studies reverse engineering for code maintenance. In [101], she calls out that reverse en-
gineers require extensive background knowledge, including programming, languages, compilers,
vulnerabilities, safe coding practices, and structures of different classes of programs (e.g., state

90

machines, parsers). Citing other work, she describes how analysts build and maintain three types
of mental models as they understand code:

• a domain model, describing the program’s functionality, which analysts may begin the RE
task with,

• a program model, specifying the control flow abstractions (and, likely, global data flow ab-
stractions),

• and a situation model, describing data flow and functional abstractions around a particular
situation, path, or set of paths. The situation models typically are not developed until after a
partial program model has been found.

Storey also provides a taxonomy of cognitive design elements to support mental model con-
struction during program understanding, describing 14 design elements in a figure. We restate the
seven of those elements (in three groups) related to improving program comprehension, highlight-
ing those that are particularly relevant for our work on data flow visualization

• Enhance bottom-up comprehension

– Identify software objects and the relations between them
– Reduce the disorientation that results from having to frequently switch between files

and parts of code
– Build abstractions (e.g., through chunking) from lower-level units; tools should be

available to allow the maintainer to create their own abstractions and label and
document them to reflect their meaning

• Enhance top-down comprehension
– Support goal-directed, hypothesis driven comprehension
– Provide overviews of the system architecture at various levels of abstraction

• Integrate bottom-up and top-down comprehension
– Support the construction of multiple mental models, particularly the situation and

domain models
– Cross-reference mental models

Briefly we restate the seven elements (again, in three groups) focused on reducing the maintainer’s
cognitive overhead:

• Make it easier to find what you are looking for; i.e., facilitate navigation by providing direc-
tional navigation and supporting arbitrary navigation.
• Make it easier to know or recall where you are in the code and the analysis; i.e., provide

orientation cues by indicating current focus, displaying the path that led to the current focus,
and indicating options for further exploration.
• Reduce disorientation by reducing effort of user-interface adjustment and providing effective

presentation styles.

91

92

Chapter 8

Conclusion

To reduce the human time burden for vulnerability analysts performing binary analysis requiring
data flow understanding, we used human factors methods in a rolling discovery process to derive
user-centric visual representation requirements. We derived requirements for interprocedural data
flow visualizations that can be used to quickly understand data flow elements and their relationships
and influences.

We encountered three main challenges: analysis projects span weeks, analysis goals signifi-
cantly affect approaches and required knowledge, and analyst tools, techniques, conventions, and
prioritization are based on personal preference. To address these challenges, we initially focused
our human factors methods on an attack surface characterization task. We generalized our results
using a two-stage modified sorting task, creating requirements for a data flow visualization.

We implemented our requirements partially in manually generated static visualizations of small
binaries with a few vulnerabilities; the binaries were drawn from the CGC challenge binary set. We
attempted to informally evaluate these manually generated graphs, finding that analysts were able
to use the data flow visualizations to answer many critical questions about data flow. We also im-
plemented these requirements partially in automatically generated interactive visualizations. These
generation and visualization mechanisms have yet to be integrated into workflows for evaluation.

Our observations and results indicate that 1) this data flow visualization has the potential to
enable novel code navigation, information presentation, and information sharing, and 2) it is an
excellent time to pursue research applying human factors methods to binary analysis workflows.
We are beginning to explore basic workflows, we have identified human factors findings from
other domains that may be applicable, and we have identified some ways in which current human
factors methods may need to be modified to apply to the variety of goal-driven reverse engineering
workflows.

We are most excited by the level of engagement and positive reinforcement we received from
our colleague analysts, both at Sandia and at other institutions. We look forward to continuing to
apply human factors methods to binary software reverse engineering and vulnerability analysis,
and we especially look forward to discovering workflow improvements that can slow our descent
into the depths of analysis backlogs.

93

94

References

[1] Rafal Ablamowicz and Bertfried Fauser. Clifford: a maple 11 package for clifford alge-
bra computations, version 11. http://math.tntech.edu/rafal/cliff11/index.html,
2007.

[2] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19.
ACM, 1970.

[3] Sergi Àlvarez. The radare2 book. https://radare.gitbooks.io/radare2book/
content/, 2009.

[4] Natalia Andrienko, Tim Lammarsch, Gennady Andrienko, Georg Fuchs, Daniel Keim, Sil-
via Miksch, and Andrea Rind. Viewing visual analytics as model building. In Computer
Graphics Forum. Wiley Online Library, 2018.

[5] Christoph Aschwanden and Martha Crosby. Code scanning patterns in program compre-
hension. In Proceedings of the 39th hawaii international conference on system sciences,
2006.

[6] Lisanne Bainbridge. Ironies of automation. Automatica, 19:775–779, 1983.

[7] Marla J. Baker and Stephen G. Eick. Visualizing software systems. In Proceedings of
the 16th International Conference on Software Engineering, ICSE ’94, pages 59–67, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[8] Thomas Ball and Stephen G Eick. Visualizing program slices. In Visual Languages, 1994.
Proceedings., IEEE Symposium on, pages 288–295. IEEE, 1994.

[9] Thomas Ball and Stephen G. Eick. Software visualization in the large. Computer, 29(4):33–
43, April 1996.

[10] Roman Bednarik. Expertise-dependent visual attention strategies develop over time during
debugging with multiple code representations. International Journal of Human-Computer
Studies, 70(2):143–155, 2012.

[11] Tanya Beelders and Jean-Pierre du Plessis. The influence of syntax highlighting on scan-
ning and reading behaviour for source code. In Proceedings of the Annual Conference of
the South African Institute of Computer Scientists and Information Technologists, page 5.
ACM, 2016.

[12] Vector 35 binary ninja product description page. https://binary.ninja.

[13] Tim Boland and Paul E Black. Juliet 1. 1 c/c++ and java test suite. Computer, 45(10):88–90,
2012.

95

[14] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEE
Transactions on Visualization & Computer Graphics, (12):2301–2309, 2011.

[15] K. Brade, M. Guzdial, M. Steckel, and E. Soloway. Whorf: a visualization tool for software
maintenance. In Proceedings IEEE Workshop on Visual Languages, pages 148–154, Sept
1992.

[16] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[17] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading: Re-
laxing the linear order. In Program Comprehension (ICPC), 2015 IEEE 23rd International
Conference on, pages 255–265. IEEE, 2015.

[18] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. Analysis of code reading to
gain more insight in program comprehension. In Proceedings of the 11th Koli Calling
International Conference on Computing Education Research, pages 1–9. ACM, 2011.

[19] Darpa cgc challenges source repository. https://github.com/CyberGrandChallenge/
samples/tree/master/cqe-challenges, 2016.

[20] Darpa cgc challenges ported to standard os. https://github.com/trailofbits/
cb-multios, 2016.

[21] Marek Chalupa. Dg: Llvm dependencegraph and llvm-slicer. https://github.com/
mchalupa/dg.

[22] Marek Chalupa. Slicing of llvm bitcode. Master’s thesis, Masaryk University, Brno, Czech
Republic, 2016.

[23] Marek Chalupa, Martina Vitovská, Martin Jonáš, Jiri Slaby, and Jan Strejček. Symbiotic 4:
Beyond reachability. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 385–389, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg.

[24] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-control-
data attacks are realistic threats. In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 12–12, Berkeley, CA, USA, 2005. USENIX
Association.

[25] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A platform for in-vivo
multi-path analysis of software systems. Acm Sigplan Notices, 46(3):265–278, 2011.

[26] Jean-François Collard and Jens Knoop. A comparative study of reaching-definitions analy-
ses. 1998.

96

[27] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang Hao, Christo-
pher Kruegel, and Giovanni Vigna. Difuze: interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2123–2138. ACM, 2017.

[28] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck. The roles beacons play in com-
prehension for novice and expert programmers. In 14th Workshop of the Psychology of
Programming Interest Group, pages 58–73, 2002.

[29] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c. In International Conference on Software Engineering and
Formal Methods, pages 233–247. Springer, 2012.

[30] Cwe-121: Stack-based buffer overflow. https://cwe.mitre.org/data/definitions/
121.html.

[31] F. Deng, N. DiGiuseppe, and J. A. Jones. Constellation visualization: Augmenting program
dependence with dynamic information. In 2011 6th International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), pages 1–8, Sept 2011.

[32] Sabin Devkota and Katherine Isaacs. Cfgexplorer: Designing a visual control flow analytics
system around basic program analysis operations. Computer Graphics Forum, 37:453–464,
06 2018.

[33] Artem Dinaburg and Andrew Ruef. Mcsema: Static translation of x86 instructions to llvm.
In ReCon 2014 Conference, Montreal, Canada, 2014.

[34] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil
Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated vulnerability
addition. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 110–121. IEEE,
2016.

[35] Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment:
Identifying and preventing software vulnerabilities. Pearson Education, 2006.

[36] V. D’Silva, M. Payer, and D. Song. The correctness-security gap in compiler optimization.
In 2015 IEEE Security and Privacy Workshops, pages 73–87, May 2015.

[37] Andrew T Duchowski. A breadth-first survey of eye-tracking applications. Behavior
Research Methods, Instruments, & Computers, 34(4):455–470, 2002.

[38] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Byte-precise verification of low-level list
manipulation. In Francesco Logozzo and Manuel Fähndrich, editors, Static Analysis, pages
215–237, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[39] Halvar Dullien, Thomas / Flake. Machine learning, offence, and the future of automation,
2017.

97

[40] Tim Dwyer. cola.js: Constraint-based layout in the browser. https://ialab.it.monash.
edu/webcola/.

[41] Otto Ebeling. Visualizing memory accesses of an executable. https://bling.kapsi.fi/
blog/x86-memory-access-visualization.html, 2013.

[42] SC Eick, Joseph L Steffen, and Eric E Sumner. Seesoft-a tool for visualizing line oriented
software statistics. IEEE Transactions on Software Engineering, 18(11):957–968, 1992.

[43] Eldad Eliam and Elliot J Chikofsky. Reversing: secrets of reversing engineering, 2007.

[44] Mica Endsley, Betty Bolte, and Debra Jones. Designing for Situation Awareness: An
Approach to User-Centered Design. 2014.

[45] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987.

[46] Maintained source for file utility. https://github.com/file/file.

[47] Original source packages for file utility. ftp://ftp.astron.com/pub/file/, 2012.

[48] Kraig Finstad. The usability metric for user experience. Interacting with Computers,
22(5):323–327, 2010.

[49] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Triggerscope: Towards detecting logic bombs in android
applications. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 377–396.
IEEE, 2016.

[50] Dustin Fraze. Cyber grand challenge (cgc). https://www.darpa.mil/program/
cyber-grand-challeng, 2016.

[51] Dustin Fraze. Computers and humans exploring software security (chess). https://
www.darpa.mil/program/computers-and-humans-exploring-software-security,
2018.

[52] Zoe Hardisty. Radia github page. https://github.com/zoebear/Radia.

[53] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results
of empirical and theoretical research. In Advances in psychology, volume 52, pages 139–
183. Elsevier, 1988.

[54] T. Dean Hendrix, James H. Cross, II, Larry A. Barowski, and Karl S. Mathias. Visual
support for incremental abstraction and refinement in ada 95. Ada Lett., XVIII(6):142–147,
November 1998.

[55] SA Hex-Rays. Ida pro disassembler. https://www.hex-rays.com/products/ida/,
2008.

98

[56] SA Hex-Rays. Hex-rays decompiler, 2013.

[57] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 54–61. ACM, 2001.

[58] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. Augmenting code with in situ
visualizations to aid program understanding. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, page 532. ACM, 2018.

[59] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence
graphs, volume 23. ACM, 1988.

[60] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai Liang. Au-
tomatic generation of data-oriented exploits. In USENIX Security Symposium, pages 177–
192, 2015.

[61] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai Liang. Auto-
matic generation of data-oriented exploits. In 24th USENIX Security Symposium (USENIX
Security 15), pages 177–192, Washington, D.C., 2015. USENIX Association.

[62] A.G. Illera and F. Oca. Introducing ponce: one-click sym-
bolic execution. http://research.trust.salesforce.com/
Introducing-Ponce-One-click-symbolic-execution/.

[63] Kim J Vicente. Ecological interface design: Progress and challenges. 44:62–78, 02 2002.

[64] Bernhard Jenny, Daniel M Stephen, Ian Muehlenhaus, Brooke E Marston, Ritesh Sharma,
Eugene Zhang, and Helen Jenny. Force-directed layout of origin-destination flow maps.
International Journal of Geographical Information Science, 31(8):1521–1540, 2017.

[65] Gary A. Kildall. A unified approach to global program optimization. In Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

[66] Fatih Kilic, Hannes Laner, and Claudia Eckert. Interactive function identification decreas-
ing the effort of reverse engineering. In Revised Selected Papers of the 11th International
Conference on Information Security and Cryptology - Volume 9589, Inscrypt 2015, pages
468–487, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[67] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults from cached
history. In 29th International Conference on Software Engineering (ICSE’07), pages 489–
498, May 2007.

[68] Martin Krzywinski, Inanc Birol, Steven JM Jones, and Marco A Marra. Hive plots—rational
approach to visualizing networks. Briefings in bioinformatics, 13(5):627–644, 2011.

[69] Thomas D LaToza and Brad A Myers. Visualizing call graphs. In Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, pages 117–124. IEEE,
2011.

99

[70] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program anal-
ysis & transformation. In Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization, page 75. IEEE Computer
Society, 2004.

[71] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul
Greenberg. Evaluation strategies for hci toolkit research. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI ’18, pages 36:1–36:17, New
York, NY, USA, 2018. ACM.

[72] P. E. Livadas and S. D. Alden. A toolset for program understanding. In [1993] IEEE Second
Workshop on Program Comprehension, pages 110–118, July 1993.

[73] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730,
Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550, May 1998.

[74] Pratyusa K. Manadhata, Kymie M. C. Tan, Roy A. Maxion, and Jeannette M. Wing. An
approach to measuring a system’s attack surface. School of Computer Science Technical
Report CMU-CS-08-146, Carnegie Mellon University, Pittsburgh, PA, August 2007.

[75] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A user-guided approach to pro-
gram analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 462–473, New York, NY, USA, 2015. ACM.

[76] Laura Militello and Robert Hutton. Applied cognitive task analysis (acta): A practitioner’s
toolkit for understanding cognitive task demands. 41:1618–41, 12 1998.

[77] Cve 2012-1571. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-1571, 2012.

[78] H. A. Müller and K. Klashinsky. Rigi-a system for programming-in-the-large. In
Proceedings of the 10th International Conference on Software Engineering, ICSE ’88, pages
80–86, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[79] Analyst Notebook. i2 analyst notebook i2 ltd.(2007), 2008.

[80] A. Orso, J. A. Jones, M. J. Harrold, and J. Stasko. Gammatella: visualization of program-
execution data for deployed software. In Proceedings. 26th International Conference on
Software Engineering, pages 699–700, May 2004.

[81] Chris Pettitt. Dagre: Directed graph layout for javascript. https://github.com/dagrejs/
dagre.

[82] Dean W. Pucsek. Visualization and analysis of assembly code in an integrated comprehen-
sion environment. Master’s thesis, University of Victoria, 2008.

[83] D. A. Quist and L. M. Liebrock. Visualizing compiled executables for malware analysis.
In 2009 6th International Workshop on Visualization for Cyber Security, pages 27–32, Oct
2009.

100

[84] V. Rajlich, J. Doran, and R. T. S. Gudla. Layered explanations of software: a methodol-
ogy for program comprehension. In Proceedings 1994 IEEE 3rd Workshop on Program
Comprehension- WPC ’94, pages 46–52, Nov 1994.

[85] Keith Rayner. Eye movements in reading and information processing: 20 years of research.
Psychological bulletin, 124(3):372, 1998.

[86] Jörg Rech and Waldemar Schäfer. Visual support of software engineers during development
and maintenance. volume 32, pages 1–3. ACM, 2007.

[87] Nishaanth H Reddy, Junghun Kim, Vijay Krishna Palepu, and James A Jones. Spider
sense: Software-engineering, networked, system evaluation. In Software Visualization
(VISSOFT), 2015 IEEE 3rd Working Conference on, pages 205–209. IEEE, 2015.

[88] John Sarracino, Odaris Barrios-Arciga, Jasmine Zhu, Noah Marcus, Sorin Lerner, and Ben
Wiedermann. User-guided synthesis of interactive diagrams. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pages 195–207. ACM, 2017.

[89] Paul T. Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction networks. Genome research, 13
11:2498–504, 2003.

[90] Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. An eye-tracking study on the
role of scan time in finding source code defects. In Proceedings of the Symposium on Eye
Tracking Research and Applications, ETRA ’12, pages 381–384, New York, NY, USA,
2012. ACM.

[91] Bonita Sharif and Huzefa Kagdi. On the use of eye tracking in software traceability.
In Proceedings of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering, pages 67–70. ACM, 2011.

[92] Katie Sherwin. Card sorting: uncover users’ mental models for better information architec-
ture. https://www.nngroup.com/articles/card-sorting-definition/.

[93] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. Firmalice - automatic detection of authentication bypass vulnerabilities in binary
firmware. 2015.

[94] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. Sok: (state of) the art of war: Offensive techniques in binary analysis. 2016.

[95] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu Wang,
Christopher Kruegel, and Giovanni Vigna. Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance. CoRR, abs/1708.02749, 2017.

101

[96] James Somers. The coming software apocalypse. https://www.theatlantic.com/
technology/archive/2017/09/saving-the-world-from-code/540393/, September
2017.

[97] Jia Song and Jim Alves-Foss. The darpa cyber grand challenge: A competitor’s perspective.
IEEE Security & Privacy, 13(6):72–76, 2015.

[98] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 32–
41. ACM, 1996.

[99] Bernhard Steffen, Jens Knoop, and Oliver Rüthing. The value flow graph: A program repre-
sentation for optimal program transformations. In European Symposium on Programming,
pages 389–405. Springer, 1990.

[100] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang, Jacopo Cor-
betta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. 2016.

[101] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to support the
construction of a mental model during software exploration. J. Syst. Softw., 44(3):171–185,
January 1999.

[102] M.-A. D. Storey and H. A. Müller. Manipulating and documenting software structures using
shrimp views. In Proceedings of International Conference on Software Maintenance, pages
275–284, Oct 1995.

[103] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis in llvm. In
Proceedings of the 25th International Conference on Compiler Construction, CC 2016,
pages 265–266, New York, NY, USA, 2016. ACM.

[104] Cromu 00034 - diary parser. https://github.com/trailofbits/cb-multios/tree/
master/challenges/Diary_Parser.

[105] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. An eye-tracking study
assessing the comprehension of c++ and python source code. In Proceedings of the
Symposium on Eye Tracking Research and Applications, pages 231–234. ACM, 2014.

[106] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. Ana-
lyzing individual performance of source code review using reviewers’ eye movement. In
Proceedings of the 2006 symposium on Eye tracking research & applications, pages 133–
140. ACM, 2006.

[107] David Van Horn and Matthew Might. Abstracting abstract machines. In Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP ’10,
pages 51–62, New York, NY, USA, 2010. ACM.

[108] Bret Victor. A brief rant on the future of interaction design. http://worrydream.com,
2011.

102

[109] Bret Victor. The ladder of abstraction. http://worrydream.com, 2011.

[110] Bret Victor. Learnable programming. http://worrydream.com, 2012.

[111] Martin Wattenberg and Fernanda B Viégas. The word tree, an interactive visual concor-
dance. IEEE Transactions on Visualization & Computer Graphics, (6):1221–1228, 2008.

[112] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Visualization of
program dependence graphs. In Proceedings of the Joint European Conferences on
Theory and Practice of Software 17th International Conference on Compiler Construction,
CC’08/ETAPS’08, pages 193–196, Berlin, Heidelberg, 2008. Springer-Verlag.

[113] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. Helping johnny to analyze
malware: A usability-optimized decompiler and malware analysis user study. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 158–177, May 2016.

[114] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith.
No more gotos: Decompilation using pattern-independent control-flow structuring and
semantic-preserving transformations. In NDSS, 2015.

[115] Michal Zalewski. American fuzzy lop: a security-oriented fuzzer. http://lcamtuf.
coredump.cx/afl/(visitedon06/21/2017), 2010.

[116] J. Zhao, M. Glueck, P. Isenberg, F. Chevalier, and A. Khan. Supporting handoff in asyn-
chronous collaborative sensemaking using knowledge-transfer graphs. IEEE Transactions
on Visualization and Computer Graphics, 24(1):340–350, Jan 2018.

[117] Zynamics binnavi product description page. https://www.zynamics.com/binnavi.
html.

103

104

Appendix A

Selecting a Data Flow Task to Study

To make effective use of human factors methods such as cognitive task analysis and cognitive
walkthroughs, we needed to select a data flow task that can be completed in one to two hours.
Unfortunately, currently defined static binary analysis tasks often take days to weeks to complete
within the context of answering a mission question across weeks to months.

We also wanted this task to be fairly representative, allowing us to encounter analyst mental
models that span a large portion of relevant data flow tasks. Again unfortunately, standard ap-
proaches to choosing a relevant task are not quite applicable in this domain yet. The higher-level
mission question appears to affect data flow tasks rather dramatically. Further, analysts often de-
scribe tasks by their approaches, which differ across analysts. Many analysts are just beginning to
explore disciplined ways to identify sub-goals and processes shared across mission questions.

Finally, we wanted to extract information from our tests with as little time commitment from
our volunteer analysts as possible. Our test subjects were limited to a pool of about forty analysts
whose job is to answer mission questions. Each test and interview we performed took them away
from their missions in improving national security. We wanted to minimize the time we stole from
each subject and refrain from burdening the same analysts multiple times.

To help us identify a reasonable data flow task to study, we explored two ways to define data
flow tasks: by high-level goal, and by low-level relationship. A high-level goal-oriented task res-
onates with analysts, easily maps to approach-agnostic problems (allowing analysts to pursue their
typical approaches), and creates well-defined and comparable output. A low-level relationship-
oriented task constrains the questions about data flow to a specific set. Each high-level task in-
volves several low-level tasks, and each low-level task may be used in several high-level tasks.

A.1 Goal-oriented Data Flow Task Definition

We define high-level data flow tasks by goals that might comprise part of a security assessment if
a binary. Examples of high-level goal-oriented data flow tasks include:

Characterize an attack surface Where are areas of security concern within the system? Where
does the attacker have influence on the boundary of the system? How might attacker-

105

controlled input influence security sensitive code? What areas should be prioritized for
further vulnerability analysis?

Reverse engineer an undocumented structure What data constraints hold over each field? How
do the field values influence each other? What relationships exist between the fields, stati-
cally or dynamically? What is the semantic meaning of each (relevant) field?

Reverse engineer an undocumented protocol Where is data produced or consumed on the pro-
gram boundary? How are messages parsed and created? What are the phases of communi-
cation? What induces a transition to a new phase?

Characterize potential impact of a vulnerability Given a vulnerability, is there an attacker-controlled
input that could exercise that vulnerability? What paths are vulnerable? Along those paths,
how does system code influence or add constraints on data values and relationships? How
much control could an attacker gain? Could that vulnerability be used to affect security
sensitive code?

Mitigate a dataflow exploit Given a dataflow exploit, how does the data in the exploit control the
system code? What assumptions within the software allow this exploit to function? What
code or system changes would prevent it?

A.2 Task-oriented Data Flow Task Definition

We define low-level data flow tasks by specific relationships between data that an analyst wants to
discover. Examples of low-level relationship-oriented data flow tasks include:

Slice forward Given a source, where are the sinks?

Slice backward Given a sink, where are the sources?

Resolve dynamic dispatch Given a call site, where can control go? What data influences that
decision and how?

Infer dynamic value correlation Given some data, is other data implicitly synchronized? For a
simple example, a buffer length should represent the number of bytes actually allocated in
memory for the corresponding buffer.

Trace an input Given an initial state and an input, how does the state change? Where does control
go and why?

Propagate constraints (along a set of paths) Given a set of paths, how are data values restricted?
What restricts them?

Infer aggregates Given some data, what other data is co-located and should be abstracted with
that data?

106

Infer points-to information Given a pointer, where does it point?

Infer heap object shape Given a pointer, what kind of data structures does it point to?

Infer type flow Given some typed data at a program point, is other data restricted in type?

A.3 Data Flow Task Selection

For our first interviews and cognitive walkthroughs, we decided to focus on attack surface char-
acterization. Attack surface characterization is well-understood; analysts know where and how
to address such a goal. The problem itself and desired outputs are easily defined, and the task
can be time-limited. Analysts can focus on forward slicing, minimal constraint propagation, and
prioritization judgments, although other low-level tasks are also brought to bear.

In contrast, reverse engineering structures and protocols tends to be extremely time intensive.
Time-limited analyses produce partial structure or protocol definitions, and such partial output is
difficult to compare across analysts given relatively small study sizes. Data flow exploitation is
relatively new in the academic literature, difficult to reason about, and not yet well-understood.

We attempted to define a second set of cognitive walkthroughs (Section B) to help us generalize
the results of our attack surface characterization studies (Section 2.4). For this phase, we decided
to focus on characterizing the impact of a vulnerability. In a carefully defined task, analysts can
focus on constraint propagation, backwards slicing, and mental tracing. Unfortunately, our dry-
run indicated that a full test would require significantly more care in task definition. Vulnerability
impact characterization requires either a significant time investment or an effective mechanism to
transfer knowledge from earlier phases of binary exploration. Lacking these, we did not pursue
this method for generalizing our results further.

We did not attempt to incorporate many of the other low-level tasks mentioned for similar
reasons. Tasks resolving dynamic dispatch, inferring dynamic value correlation, and discovering
aggregates tend to be either trivial or extremely complex. Finding appropriately complex (non-
trivial, time-limited) examples of such tasks would require significant time, and we chose to ignore
these tasks. Pointer analysis, shape analysis, and type flow analysis are areas of active research in
program analysis; they are generally computed via fixed-point analyses that use global knowledge
about the binary. We specifically chose to exclude such tasks from our research.

107

108

Appendix B

Designing a Cognitive Walkthrough:
Analyzing the Impact of a Vulnerability

We briefly explored creating cognitive walkthroughs for a different task, assessing the impact of
a vulnerability, as one possible way to generalize our data flow elements derived for the attack
surface characterization task. As with other use cases, we had to overcome several challenges:

• Analyses unfold over days.
• Binaries are originally written in a variety of programming languages.
• Analysts use a variety of analysis environments.
• Analysts ingrate multiple sources of information.

We designed and performed a pre-test with one analyst. However, our pre-test indicated that
significantly more work would be needed to design an effective cognitive walkthrough. Specifi-
cally, to fit within our one- to two-hour timeframe for each session, we would need to provide a few
hours beforehand to allow the analysts to familiarize themselves with the code, or we would need
to figure out how to transfer knowledge about the binary effectively from earlier phases of binary
exploration. Lacking these, we did not pursue this method for generalizing our results further.

B.1 Experimental Setup

We selected the UNIX file utility version 5.10 [47][46] for analysis, as previously. This version
of file’s core processing library libmagic is vulnerable to CVE-2012-1571 [77]. We had access to
source code for both the vulnerable version 5.10 and the fixed version 5.11. We built version 5.10
as a 32-bit executable with symbols.

We asked analysts to begin analysis again at the file buffer function in libmagic, treating the
array argument and length as attacker-controlled, i.e., as the “inputs” for the exercise. This is
a legitimate simplifying assumption in a real analysis; most of the processing before this point
involves command line parsing and reading the input file into a buffer in memory. Our human
factors specialist took notes about task performance and asked for additional details to understand
the thought process of the analyst, including asking for reasoning behind judgments and decisions,
and asking for clarification about sources of frustration. Walkthroughs lasted two hours including

109

Today I am going to ask you to describe the steps you take when you are analyzing a binary to understand how
and whether the code has sufficient protections to prevent exploitation. This exercise is not intended to be a full
vulnerability analysis. I am asking you to focus on understanding how input data are processed and transformed
through a limited portion of the binary. I want to understand how you make sense of the data inputs for this assessment:
1) What goals do you have when you are understanding the code? 2) When do you change goals and why? 3) What
knowledge and information from the binary are you using to make these decisions at each stage? I will not be
evaluating your work, nor should you have to describe details about any similar projects that you are working on.
To guide this description, I will provide you with a binary to analyze and specify what portion of the code to assess. I
will ask you to describe aloud how you are assessing the binary, why you take certain actions in assessing the binary,
what cues or information you use that lead you to take certain actions, and how you are categorizing different parts of
the binary. I may interrupt with questions to help you explain and think aloud. If such interruptions drastically disrupt
your work, please let me know and we can arrange for you to complete the analysis exercise first and then talk through
your analysis afterward.
By “assessing the protections”, I mean determining what aspects of inputs reach locations that are security sensitive
and how well the binary protects those locations. For this binary, please:
• Assess the utility file binary for the impact of vulnerability CVE-2012-1571. We provide you with a binary of

version 5.10. This vulnerability is patched in version 5.11. You may access the source code for both versions
if desired.

• Evaluate the path between the input data at function/interface file buffer. You may explore anywhere in the
binary to gain context, but your goal is to assess the protections in the binary for preventing exploitation.

• Produce an algorithmic description of the input and how it flows to the security sensitive area, conveying the
critical protections, data transformations, constraints and mitigations that are in place and may protect the
security of the system.

• Characterize these input data security elements (e.g., functions or program points) – and the paths that reach
them – with respect to the inputs and any other data sources

• Keep notes, comments, and diagrams as though you were going to complete a full vulnerability analysis.
– Please take any written notes in our provided notebook
– Please leave us with a copy of any electronic artifacts created or modified during this activity

Figure B.1. Instructions provided to analysts for vulnerability
impact cognitive walkthrough.

the time to set up the analysis environment.

We provide our instructions to analysts and questions for analysts in Figures B.1 and B.2. The
questions are almost identical to those in the attack surface characterization cognitive walkthroughs

B.2 Observations

To guide the analysts to the correct portion of code, we needed to provide an initial input document
for file to parse. For this pre-test, we provided a CDF file that ended up being the wrong type. The
analyst discovered the error quickly and created a “composite document file v2” Microsoft .doc
file, but this simple file did not drive the execution to the appropriate section of code. While such
proof-of-vulnerability inputs may be provided with CVEs, a problematic input was not available
in this case. We would need to construct one to support analysts within the timeframe desired.

110

Background Questions
Before beginning the exercise, we ask each analyst the following questions:

1) For how long have you been doing work that required analysis of binary code?
2) What types of security-related binary analysis do you do? And for how long have you done each?

Questions to Ask during Analysis
We interrupt each analyst as needed with the following questions:

1) What are you trying to do or learn right now?
2) What did you need to do to learn about that code?
3) What are you thinking about right now?
4) In the section of code that you are working on right now, what are you thinking about?
5) Why did you jump to this section of code?
6) Why did you decide to name this?
7) What does the name mean?
8) Why did you decide you should make a comment here?
9) What does the comment mean?

10) Where are you looking on the screen? Why?
11) In the section of code that you are working on right now, what information are you thinking about?
12) Does the variable or data that you are currently analyzing relate to other analysis that you have already done?

How?

Figure B.2. Questions we ask analysts before and during our
vulnerability impact cognitive walkthrough.

We provided the description of the vulnerability from the CVE database, but this description
was not sufficient. The analyst had to remind himself of the vulnerability, even though he had
been exposed to it within the past two weeks. Other analysts taking the test without the same
background would take even longer to familiarize themselves with the binary. We would need to
construct a good description of the vulnerability to save analyst time.

Finally, we would need to provide a work environment appropriate to each analyst. Our task
allowed analysts to look at both the vulnerable and the patched version of file, so analysts would
need their preferred source auditing platforms. Our task allowed analysts to trace the binary, so
analysts would need their preferred dynamic tracing environment set up to work with our provided
binary.

Because our pre-test analyst was unable to construct and evaluate a problematic test case in
the timeframe allowed, our pre-test indicated that, without further development, analysts would
be focusing on the same data flow tasks used for attack surface characterization. They would not
have the time to focus instead on the later tasks, backwards tracing and constraint propagation.
Rather than focusing on eliminating or minimizing the obstacles encountered in this pre-test, we
shifted gears and focused on generalizing our data flow primitives via analysis of analyst artifacts
produced for past projects2.5.

111

112

Appendix C

Designing an A/B Comparison

We briefly explored an A/B comparison for experienced binary reverse engineers between our static
data flow visualization and analysts working with a stripped version of the binary. We describe this
A/B comparison pre-test here for completeness, but we decided that A/B experimental testing was
premature because the visualization was not deployed within the analysis environment and only
represented a subset of the information needed for a full vulnerability assessment.

C.1 Experimental Setup

We selected the TrailOfBits provided port of the EAGLE 0005 binary, named CGC Hangman -
Game, compiled in 32-bit and stripped of symbols. We felt a stripped binary was most appropriate
because 1) many third-party binaries and malware are analyzed without symbols, and 2) our static
data flow visualization did not provide most symbol names. However, since our static visualization
did provide some symbol names as reference points, we added those specific names back into the
stripped binary before the analysis.

We asked two experienced binary analysts to analyze the binary using their standard RE en-
vironment and to answer the same questions as the analyst using the visualization (Section 4.2),
though we only kept detailed notes about the second. These questions were annotated with spe-
cific binary offsets to enable the analysts to locate the features of interest quickly. While only the
primary questions 1-8 changed, we provide the entire question set here in Figure C.1 for reference.

C.2 Observations

The second analyst spent 55 minutes analyzing the binary. Questions 1 and 6 took the most time to
answer, using 8 and 15 minutes, respectively. In both cases, the analyst was exploring new parts of
the binary and commented that the exploration should have proceeded faster, especially with more
familiarity with the code. The analyst missed partial information in answering questions 3, 7, and
14, and failed to document discoveries completely in answering questions 5 and 7. In these cases,
each question asked for a list of information and did not provide the analyst with any information
as to the correct number of items in each list; the analyst provided answers but did not provide

113

1) Where does an attacker control data input throughout the program?
2) What constraints on the password read into inbuf would allow the body of this program to be reached?
3) Looking at the processing of the input buffer inbuf in the function main:

a) What is the initial value of the pointer?
b) When is the pointer incremented?
c) Are values being read or written as the array is walked?
d) What values are being looked for as the array is walked?
e) What values are written?
f) When are those values written?

4) Looking at the global avail array accessed at 0x0804c6f7:
a) Are values being read or written as the array is walked?
b) What values are written?
c) When are those values written?
d) When else is avail read?
e) When else is avail written?

5) Looking at the global used array accessed at 0x0804c701:
a) Are values being read or written as the array is walked?
b) What values are written?
c) When are those values written?
d) When else is used read?
e) When else is used written?

6) Looking at the global word array:
a) Where is the array being walked?
b) For each use, are values being read or written as the array is walked?
c) For each read, what values are being looked for?
d) For each write, what values are being written and where do they come from?
e) How were those source values located?

i) Follow the flow backwards as far as possible.
ii) What causes these values to change?

iii) Are there potential problems with this flow?
7) Looking at the variable written at 0x08004cd25:

a) What are inputs to the value?
b) What constraints are on the value?
c) To what locations is c written? When?
d) To what locations is c compared? When?

8) Looking at the name array accessed by the function at 0x0804c8e9:
a) What are inputs to the values?
b) What are constraints on the data input to this variable?
c) Are there potential problems with this flow?
d) Similarly, following name through STDOUT?

9) Can you find a place where an array is walked through by incrementing a pointer?
10) Can you find a place where an array is walked through by incrementing a counter and adding that to the base

pointer?
11) Can you find where the global array gallows is written?
12) Can you find where the global array current is written?
13) How many guesses do you have before you lose the game?
14) What things cause the game to restart?

Figure C.1. Evaluation questions for binary analyst pre-test of
EAGLE 0005.

114

all possible items. The analyst did not provide any incorrect answers, nor did the analyst fail to
answer any questions.

These results indicate that the visualization alone may be comparable to the standard binary
analysis process. Without integration into a workflow, however, we do not feel that a full A/B
comparison will give us informative results about the strengths and weaknesses of this visual ap-
proach.

115

116

Appendix D

Comparative Visualizations of Small Cyber
Grand Challenge (CGC) Binaries

We provide a few current visualizations of the CGC CROMU 00034 and EAGLE 0005 binaries for
comparison.

First, we provide compare visualizations of CROMU 00034 from Figure 3.8. Figure D.1 shows
a call graph created by a tool similar to the Cartographer module [82], allowing interactive discov-
ery of call nodes, aggregation of nodes, and a summary of all analyst annotations found within the
function. Here, library functions are hidden and only the application functions are shown. Fig-
ure D shows the instruction level graph for only those functions and the interprocedural CFG for
all functions in the binary, both as displayed by the Gephi graph visualization tool, version 0.9.2.
While analysts would not use this tool to display such graphs (additional information within each
node is relevant and specialized layouts help identify interesting code), these images serve to show
the overwhelming number of nodes in even this extremely simplistic example.

Finally in Figure D, to give an example of the data provided by a system dependence graph
(SDG, an interprocedural PDG), we compare a visualization of the PDG for the 33 lines of the
main function from EAGLE 0005 from Figure 4.3 to our graph of the full binary (the highlighted
portions are those that are relevant to the main function). This PDG was produced by Frama-C

Figure D.1. Call graph representation of analyst discovery of
vulnerability 2 in the DARPA CGC challenge CROMU 00034.

117

Figure D.2. These figures show control flow abstractions of
DARPA CGC challenge CROMU 00034 as displayed by Gephi
v.0.9.2.

(a) The instruction level graph displaying control flow
for the functions shown in the call graph above. Each
node is an instruction; disconnected sets of nodes are
functions.

(b) The interprocedural control flow graph (CFG) for all func-
tions, including library functions.

118

[29], though we were unable to produce the full SDG quickly. (For a reason we have not tracked
down, the abstract interpretation hit bottom early in the next called function, precluding further
PDG generation or full SDG generation.)

119

Figure D.3. These figures compare a program dependence graph
(PDG) for the main function of EAGLE 0005 to our graph of the
full binary.

(a) The PDG for main as created by Frama-C.

(b) Our data flow graph of the full EAGLE 0005 binary with the components relevant to main highlighted.

120

Appendix E

Example json Specification of sums Data
Flow Graph.

{
” nodes ” : [
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” h igh ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” node ” ,
” c h i l d r e n ” : [

” node207 ”
] ,
” i d ” : ” node194 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 1 ,
” char−o f f s e t ” : 5

}
} ,
” p r o p e r t i e s ” : {

”name” : ” n ” ,
” sou rce−of−d a t a ” : ” i n p u t ” ,
” da t a−t y p e ” : ” i n t ” ,
” f r e q u e n c y−of−use ” : {

” c o n s t a n t ” : ” 1”
} ,
” t y p e ” : {

” p r i m a r y ” : ” l o c a t i o n ” ,
” s e c o n d a r y ” : ” l o c a l ”

} ,
” s i z e ” : 4

}
} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” unknown ”

} ,
”name” : ” ?”

} ,
” i d ” : ” node207 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” h igh ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” node ” ,
” c h i l d r e n ” : [

” node196 ” ,
” node197 ” ,
” node198 ”

] ,
” i d ” : ” node195 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 2 ,
” char−o f f s e t ” : 17

}

} ,
” p r o p e r t i e s ” : {

”name” : ” i ” ,
” sou rce−of−d a t a ” : ” i n t e r n a l l y −

g e n e r a t e d−e v a l u a t i o n ” ,
” da t a−t y p e ” : ” i n t ” ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n ” ,
” c o u n t ” : ” n ” ,
” lower−bound ” : ” 1”

} ,
” t y p e ” : {

” p r i m a r y ” : ” l o c a t i o n ” ,
” s e c o n d a r y ” : ” l o c a l ”

} ,
” s i z e ” : 4

}
} ,
{

” p r o p e r t i e s ” : {
” i n i t i a l −v a l u e ” : t r u e ,
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” c o n s t a n t ”

} ,
”name” : ” 1”

} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 2 ,
” char−o f f s e t ” : 4

}
} ,
” i d ” : ” node196 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” r o l e ” : ” loop ” ,
” t y p e ” : {

” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” s e t−c o n s t r a i n t ”

} ,
”name” : ”<=n ”

} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 4 ,
” char−o f f s e t ” : 6

}
} ,
” i d ” : ” node197 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” p r o p e r t i e s ” : {

” sou rce−of−d a t a ” : ” i n t e r n a l l y −
g e n e r a t e d−e v a l u a t i o n ” ,

” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” computed ”

} ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n ” ,
” c o u n t ” : ” n ” ,
” lower−bound ” : ” 1”

}
} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 11 ,
” char−o f f s e t ” : 3

}
} ,
” i d ” : ” node198 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” node ” ,
” c h i l d r e n ” : [

” node200 ” ,
” node201 ” ,
” node202 ”

] ,
” i d ” : ” node199 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 6 ,
” char−o f f s e t ” : 1

}
} ,
” p r o p e r t i e s ” : {

” da t a−t y p e ” : ” i n t ” ,
” t y p e ” : {

” p r i m a r y ” : ” l o c a t i o n ” ,
” s e c o n d a r y ” : ” l o c a l ”

} ,
”name” : ” j ” ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n l o g n ” ,
” c o u n t ” : ” n l o g n ” ,
” lower−bound ” : ” 1”

} ,
” s i z e ” : 4

}
} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” c o n s t a n t ”

} ,
”name” : ” 1” ,
” i n i t i a l −v a l u e ” : t r u e

} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 6 ,

121

” char−o f f s e t ” : 5
}

} ,
” i d ” : ” node200 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” r o l e ” : ” loop ” ,
” t y p e ” : {

” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” s e t−c o n s t r a i n t ”

} ,
”name” : ”<=i ”

} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 7 ,
” char−o f f s e t ” : 7

}
} ,
” i d ” : ” node201 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” p r o p e r t i e s ” : {

” sou rce−of−d a t a ” : ” i n t e r n a l l y −
g e n e r a t e d−e v a l u a t i o n ” ,

” t y p e ” : {
” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” computed ”

} ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n l o g n ” ,
” c o u n t ” : ” n l o g n ” ,
” lower−bound ” : ” 1”

}
} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 9 ,
” char−o f f s e t ” : 3

}
} ,
” i d ” : ” node202 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” node ” ,
” c h i l d r e n ” : [

” node204 ” ,
” node205 ”

] ,
” i d ” : ” node203 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 3 ,
” char−o f f s e t ” : 1

}
} ,
” p r o p e r t i e s ” : {

”name” : ”sum ” ,
” sou rce−of−d a t a ” : ” i n t e r n a l l y −

g e n e r a t e d−e v a l u a t i o n ” ,
” da t a−t y p e ” : ” i n t ” ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n l o g n ” ,
” c o u n t ” : ” n l o g n ” ,
” lower−bound ” : ” 1”

} ,
” t y p e ” : {

” p r i m a r y ” : ” l o c a t i o n ” ,
” s e c o n d a r y ” : ” l o c a l ”

} ,
” s i z e ” : 4

}
} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” c o n s t a n t ”

} ,
”name” : ” 0” ,
” i n i t i a l −v a l u e ” : t r u e

} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 3 ,
” char−o f f s e t ” : 4

}
} ,
” i d ” : ” node204 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” sou rce−of−d a t a ” : ” i n t e r n a l l y −

g e n e r a t e d−e v a l u a t i o n ” ,
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” computed ”

} ,
” f r e q u e n c y−of−use ” : {

” upper−bound ” : ” n l o g n ” ,
” c o u n t ” : ” n l o g n ” ,
” lower−bound ” : ” 1”

}
} ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 8 ,
” char−o f f s e t ” : 5

}
} ,
” i d ” : ” node205 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” v a l u e ” ,
” s e c o n d a r y ” : ” c o n s t a n t ”

} ,
”name” : ” 1”

} ,
” i d ” : ” node206 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” code ”
} ,
”name” : ” r e a d ”

} ,
” i d ” : ” node208 ” ,
” e n t i t y −t y p e ” : ” node ”

} ,
{

” p r o p e r t i e s ” : {
” t y p e ” : {

” p r i m a r y ” : ” w r i t e ”
} ,
”name” : ” w r i t e ”

} ,
” i d ” : ” node209 ” ,
” e n t i t y −t y p e ” : ” node ”

}
] ,
” l i n k s ” : [
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge195 ” ,
” s o u r c e ” : ” node197 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 4 ,
” char−o f f s e t ” : 2

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” c o n t r o l−f low−

e n a b l e d ”
}

} ,
” t a r g e t ” : ” node200 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge196 ” ,
” s o u r c e ” : ” node197 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 4 ,
” char−o f f s e t ” : 2

}
} ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” i n f l u e n c e ” ,
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
e n a b l e d ”

}
} ,
” t a r g e t ” : ” node204 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge197 ” ,
” s o u r c e ” : ” node197 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 4 ,
” char−o f f s e t ” : 2

}
} ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” i n f l u e n c e ” ,
” s e q u e n c i n g ”

] ,
” r o l e ” : ” loop ” ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
e n a b l e d ”

}
} ,
” t a r g e t ” : ” node197 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge198 ” ,
” s o u r c e ” : ” node201 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 7 ,
” char−o f f s e t ” : 2

}
} ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” i n f l u e n c e ” ,
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
e n a b l e d ”

}
} ,
” t a r g e t ” : ” node205 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,

122

” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge199 ” ,
” s o u r c e ” : ” node201 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 7 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” c o n t r o l−f low−

e n a b l e d ”
}

} ,
” t a r g e t ” : ” node202 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge200 ” ,
” s o u r c e ” : ” node201 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 7 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” i n f l u e n c e ” ,
” s e q u e n c i n g ”

] ,
” r o l e ” : ” loop ” ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
e n a b l e d ”

}
} ,
” t a r g e t ” : ” node201 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge201 ” ,
” s o u r c e ” : ” node201 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 7 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” c o n t r o l−f low−

d i s a b l e d ”
}

} ,
” t a r g e t ” : ” node195 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge202 ” ,
” s o u r c e ” : ” node195 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 11 ,
” char−o f f s e t ” : 2

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,

” s e c o n d a r y ” : ” d a t a ”
}

} ,
” t a r g e t ” : ” node198 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge203 ” ,
” s o u r c e ” : ” node199 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 8 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” d a t a ”

}
} ,
” t a r g e t ” : ” node205 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge204 ” ,
” s o u r c e ” : ” node203 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 8 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” d a t a ”

}
} ,
” t a r g e t ” : ” node205 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge205 ” ,
” s o u r c e ” : ” node199 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 9 ,
” char−o f f s e t ” : 3

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” d a t a ”

}
} ,
” t a r g e t ” : ” node202 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge206 ” ,
” s o u r c e ” : ” node206 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 9 ,
” char−o f f s e t ” : 4

}

} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” d a t a ”

}
} ,
” t a r g e t ” : ” node198 ”

} ,
{

” a n a l y s t−j udgmen t s ” : {
” i n f l u e n c e ” : ” low ” ,
” u n c e r t a i n t y ” : ” z e r o ” ,
” s a f e t y ” : ” low ” ,
” p r i o r i t i z a t i o n ” : ” low ”

} ,
” e n t i t y −t y p e ” : ” edge ” ,
” i d ” : ” edge207 ” ,
” s o u r c e ” : ” node206 ” ,
” a r t i f a c t − l o c a t i o n ” : {

” sou rce− f i l e ” : {
” l i n e ” : 11 ,
” char−o f f s e t ” : 4

}
} ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” va lue−f low ” ,
” s e c o n d a r y ” : ” d a t a ”

}
} ,
” t a r g e t ” : ” node202 ”

} ,
{

” s o u r c e ” : ” node208 ” ,
” p r o p e r t i e s ” : {

” t y p e ” : {
” p r i m a r y ” : ” i n f l u e n c e ” ,
” s e c o n d a r y ” : ” code ”

}
} ,
” t a r g e t ” : ” node194 ” ,
” i d ” : ” edge208 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node196 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node204 ” ,
” i d ” : ” edge209 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node204 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node197 ” ,
” i d ” : ” edge210 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node197 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node204 ” ,
” i d ” : ” edge211 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node204 ” ,

123

” p r o p e r t i e s ” : {
” l a y e r s ” : [

” s e q u e n c i n g ”
] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node200 ” ,
” i d ” : ” edge212 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node200 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node201 ” ,
” i d ” : ” edge213 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node201 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node205 ” ,
” i d ” : ” edge214 ” ,

” e n t i t y −t y p e ” : ” edge ”
} ,
{

” s o u r c e ” : ” node205 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node202 ” ,
” i d ” : ” edge215 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node201 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node209 ” ,
” i d ” : ” edge216 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node209 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node198 ” ,
” i d ” : ” edge217 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node198 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node197 ” ,
” i d ” : ” edge218 ” ,
” e n t i t y −t y p e ” : ” edge ”

} ,
{

” s o u r c e ” : ” node197 ” ,
” p r o p e r t i e s ” : {

” l a y e r s ” : [
” s e q u e n c i n g ”

] ,
” t y p e ” : {

” p r i m a r y ” : ” c o n t r o l−f low−
s e q u e n c i n g ”

}
} ,
” t a r g e t ” : ” node209 ” ,
” i d ” : ” edge219 ” ,
” e n t i t y −t y p e ” : ” edge ”

}
]

}

124

Appendix F

IDA Pro Plugin: Ponce Plus Colocations
View for Rapid Judgments Based on Taint

The purpose of this IDA Pro [55] plugin is to provide a visual representation for tainted lines
and their colocations that is similar to the Microsoft Word colocations view of search terms (see
Figure F.2(a) for an example). This plugin should allow users to quickly view decompilation of
tainted lines to determine whether to inspect particular line or function. Tainted lines are extracted
from Ponce [62] with a Python script, displayed using our List View plug-in, and can be viewed
as a graph. This tool can be used to quickly display information about any lines of interest.

F.1 Usage

1) Install Ponce [62], https://github.com/illera88/Ponce.

2) Copy and paste our script TaintedInstanceListView.py into your IDA Pro plugins directory.
Section F.2 provides the basic function names and comments for this script.1

3) Run the Taint Analysis engine from Ponce to generate a list of tainted instruction on the
binary. This analysis is dynamic and requires the binary to be run in IDA’s debugger.

a) Set a breakpoint somewhere near your desired data.

b) Enable the taint engine in Ponce, using options to show debug information in the output
windows, enable the optimization to “only generate on tainted/symbolic”, add com-
ments with controlled operands, rename tainted function names, and paint executed
instructions.

c) Run the binary in IDA’s debugger (configuring if necessary) and wait for the execution
to hit the breakpoint.

d) Select the data you wish to taint in the hex view, right-click on the data, and select
Taint. Then continue the program execution to trace the taint.

4) Once the taint analysis is complete, run the plugin Alt-F8 to parse the disassembly text and
extract the tainted instructions, addresses, and context. Figure F.2(c) shows the results of the

1Contact the primary authors for access to the full script.

125

Ponce analysis while extracting information, and Figure F.2(b) shows our view of tainted
variables and colocations.

5) Interact with the text results via IDA:

• Double-clicking on memory locations and offsets sends you to the line in any IDA
view.

• Hover over the line of interest and press ‘D’ to delete a line.

• Hover over the line of interest and press ‘A’ to append a line to the end of the output.

• Hover over the line of interest and press ‘R’ to refresh output.

• Hover over the line of interest and press ‘E’ to edit a line or add a comment.

6) Edit the results in a .txt file:

• The script automatically generates a standardized text file.

• Set the location of this text file at the top of the Python plug-in script with the variable
created txtfile. Note: As long as you follow the standardized format text file and set the
read from this txtfile variable, you can display any information in a list view in IDA.

• You can edit this text file in any editor. If you want to view an edited output file in
the plug-in, you must a) Set the read from ponce flag to False. b) Set the read from -
this txtfile variable to the path of the edited text file. c) Re-run the plug-in in IDA using
Alt-F8/

7) Interact with a graph of the taint relationships:

• A .gv file is automatically created when you run the script.

• The location of this .gv file can be specified with the script variable gvfile.

• Using graphviz (http://www.graphviz.org/Download.php), you can run gvedit to
open and view the automatically generated gv file.

• You can edit the graph in gvedit by looking at the graphviz documentation (http://www.graphviz.org/Documentation/dotguide.pdf).

• Alternatively, you can alter the created textfile directly. For example, if you want to
create a link between A and B in your graph, change the Relationship with Location
field to have the Memory Location / Offset value of B. Rerun the IDA plug-in, ensuring
that your read from this txtfile is the same as your created textfile. The .gv file will be
updated, and you can view the results as previously.

F.2 TaintedInstanceListView.py

This is the outline of the python script to extract (using Ponce) and display taint results with code
colocations but without the entire body of code. We include primarily function names and debug
strings; we elide the actual code.

126

Figure F.1. Screen shots of the inspiration for displaying coloca-
tions and the IDA Pro plugin.

(a) Inspirational colocations
displayed by Microsoft Word
in the search navigation pane.

(b) Ida view of tainted variables and colocations, including
navigation control from items in the view.

(c) Ponce taint analysis results and tainted instructions, addresses, and decompilation context.

127

i m p o r t sys , s t r u c t
from c o l l e c t i o n s i m p o r t named tup le
i m p o r t i d c
i m p o r t i d a a p i
i m p o r t r e

I f you a r e r e a d i n g from Ponce , s e t t h i s f l a g t o ’ True ’
I f you a r e r e a d i n g from a p r e v i o u s l y a u t o m a t i c a l l y g e n e r a t e d t e x t f i l e ,
s e t t h i s f l a g t o ’ F a l s e ’ and s e t your r e a d f r o m t h i s t x t f i l e t o p o i n t t o
t h e l o c a t i o n o f t h e f i l e .
r e a d f r o m p o n c e f l a g = True

I m p o r t a n t ! I f you a r e r e a d i n g your t a i n t e d l i n e i n s t a n c e i n f o r m a t i o n from
a t e x t f i l e , p l e a s e e d i t t h e p a t h below t o p o i n t t o t h e r i g h t f i l e .
r e a d f r o m t h i s t x t f i l e = ” o r d e r e d t l l i s t . t x t ”

Every t ime t h e plug−i n i s run , t h i s plug−i n c r e a t e s a s t a n d a r d i z e d t e x t f i l e
from t h e Ponce o u t p u t .
Th i s f i l e can be e d i t e d i n a t e x t e d i t o r and
and re−run i n IDA u s i n g Alt−F8 .
c r e a t e d t x t f i l e = ” T a i n t e d L i n e I n s t a n c e s . t x t ”

E d i t t h e p a t h below t o p o i n t t o t h e d i r e c t o r y where you want t o save
t h e a u t o m a t i c a l l y g e n e r a t e d . gv f i l e which can be run i n GVEdit . exe .
g v f i l e = ” inputToGVEdi t . gv ”

Runs t h e plug−i n i n IDA Pro
c l a s s m y p l u g i n t (i d a a p i . p l u g i n t) :

d e f i n i t (s e l f) :
d e f run (s e l f , a r g) :
d e f te rm (s e l f) :

d e f PLUGIN ENTRY () :
r e t u r n m y p l u g i n t ()

Holds i n f o r m a t i o n a b o u t each t a i n t e d l i n e i n s t a n c e i n a named t u p l e
t a i n t i n s t = named tup le (’ t a i n t i n s t ’ , [’ i n s t n o ’ , ’ t i t l e ’ , ’ mem loc ’ , ’ n e x t ’ , ’ r e g ’ , ’ c o n t e x t ’])
i n s t l i s t = []
t o t a l i n s t n o = 0

I n i t i a l i z e IDAPython GUI i n c u s t v i e w e r f o r m a t
Some of t h i s code was s o u r c e d from h t t p s : / / g i t h u b . com / z a c h r i g g l e / i d a p y t h o n / b lob / m a s t e r / examples / e x c u s t v i e w . py

. . .

c l a s s s i m p l e c u s t v i e w e r t (o b j e c t) :
””” The base c l a s s f o r i m p l e m e n t i n g s i m p l e custom v i e w e r s ”””
d e f i n i t (s e l f) :
d e f d e l (s e l f) :

””” D e s t r u c t o r . I t a l s o f r e e s t h e a s s o c i a t e d C++ o b j e c t ”””
@ s t a t i c m e t h o d
d e f m a k e s l a r g (l i n e , f g c o l o r =None , b g c o l o r =None) :
d e f C r e a t e (s e l f , t i t l e) :

””” C r e a t e s t h e custom view . Th i s s h o u l d be t h e f i r s t method c a l l e d a f t e r i n s t a n t i a t i o n ”””
d e f Close (s e l f) :

””” D e s t r o y s t h e view . One has t o c a l l C r e a t e () a f t e r w a r d s . Show () can be c a l l e d and i t w i l l c a l l C r e a t e ()
i n t e r n a l l y . ”””

d e f Show (s e l f) :
””” Shows an a l r e a d y c r e a t e d view . I f t h e view was c l o s e d , t h e n i t w i l l c a l l C r e a t e () f o r you ”””

d e f R e f r e s h (s e l f) :

d e f R e f r e s h C u r r e n t (s e l f) :
””” R e f r e s h e s t h e c u r r e n t l i n e on ly ”””

d e f Count (s e l f) :
””” R e t u r n s t h e number o f l i n e s i n t h e view ”””

d e f AddLine (s e l f , l i n e , f g c o l o r =None , b g c o l o r =None) :
””” Adds a c o l o r e d l i n e t o t h e view ”””

d e f I n s e r t L i n e (s e l f , l i n e n o , l i n e , f g c o l o r =None , b g c o l o r =None) :
””” I n s e r t s a l i n e i n t h e g i v e n p o s i t i o n ”””

d e f E d i t L i n e (s e l f , l i n e n o , l i n e , f g c o l o r =None , b g c o l o r =None) :
””” E d i t s an e x i s t i n g l i n e . ”””

d e f DelLine (s e l f , l i n e n o) :
””” D e l e t e s an e x i s t i n g l i n e ”””

d e f GetLine (s e l f , l i n e n o) :
””” R e t u r n s a g i v e n l i n e ”””

d e f GetCurrentWord (s e l f , mouse = 0) :
””” R e t u r n s t h e c u r r e n t word ”””

d e f G e t C u r r e n t L i n e (s e l f , mouse = 0 , n o t a g s = 0) :
””” R e t u r n s t h e c u r r e n t l i n e . ”””

d e f GetPos (s e l f , mouse = 0) :
””” R e t u r n s t h e c u r r e n t c u r s o r o r mouse p o s i t i o n . ”””

d e f GetLineNo (s e l f , mouse = 0) :
””” C a l l s GetPos () and r e t u r n s t h e c u r r e n t l i n e number o r −1 on f a i l u r e ”””

d e f Jump (s e l f , l i n e n o , x =0 , y =0) :

d e f AddPopupMenu (s e l f , t i t l e , ho tk ey =” ”) :
””” Adds a popup menu i t em ”””

d e f GetTCustomContro l (s e l f) :
””” R e t u r n t h e TCustomContro l u n d e r l y i n g t h i s view . ”””

The a c t i o n h a n d l e r
c l a s s s a y s o m e t h i n g h a n d l e r t (i d a a p i . a c t i o n h a n d l e r t) :

128

c l a s s mycv t (s i m p l e c u s t v i e w e r t) :
d e f C r e a t e (s e l f , sn=None) :

Form t h e t i t l e ” T a i n t e d Line I n s t a n c e s ”
C r e a t e t h e cus tomviewer
For each i n s t a n c e , p r i n t t h e s t a n d a r d i n f o r m a t i o n :

I n s t a n c e : <i n s t n o>
T i t l e : <i n s t a n c e . t i t l e >
#Memory L o c a t i o n / O f f s e t : <i n s t a n c e . mem loc>
R e l a t i o n s h i p wi th L o c a t i o n : <i n s t a n c e . nex t>
R e g i s t e r : <i n s t a n c e . reg> \n
C o n t e x t : <i n s t a n c e . c o n t e x t>
#”−−−

d e f OnClick (s e l f , s h i f t) :
””” User c l i c k e d i n t h e view ”””

d e f OnDblClick (s e l f , s h i f t) :
””” User dbl−c l i c k e d i n t h e view ; jump t o t h e a d d r e s s o f t h e c u r r e n t word ”””

d e f OnClose (s e l f) :
””” The view i s c l o s i n g . Use t h i s e v e n t t o c l e a n u p . ”””

d e f OnKeydown (s e l f , vkey , s h i f t) :
””” User p r e s s e d a key ; respond , and ask t h e u s e r f o r c o n f i r m a t i o n i f c h a n g i n g a l i n e
@param vkey : V i r t u a l key code ”””
P r e s s ’ Esc ’ t o e x i t
P r e s s ’D’ t o d e l e t e l i n e a t c u r s o r
P r e s s ’R ’ t o r e f r e s h l i n e a t c u r s o r
P r e s s ’A’ t o append l i n e t o end of o u t p u t f i l e
P r e s s ’ I ’ t o i n s e r t a l i n e a t c u r s o r
P r e s s ’E ’ t o e d i t a l i n e o r add a comment

Some of t h i s f i l e was s o u r c e d from h t t p s : / / g i t h u b . com / EiNSTeiN−/ i d a p y t h o n / b lob / m a s t e r / examples / v d s x r e f s . py
d e f g e t d e c o m p i l e d l i n e (cfunc , ea) :

Th i s f u n c t i o n c r e a t e s a s t a n d a r d i z e d t a i n t e d l i n e i n s t a n c e t e x t f i l e
T i t l e : N/A\n
Memory L o c a t i o n / O f f s e t : <i n s t a n c e . mem loc> \n
R e l a t i o n s h i p wi th L o c a t i o n : N/A\n
R e g i s t e r : <i n s t a n c e . reg> \n
C o n t e x t : <i n s t a n c e . c o n t e x t> \n
−−−\n
d e f c r e a t e s t d f i l e () :

Th i s f u n c t i o n g r a b s t a i n t e d l i n e i n s t a n c e i n f o r m a t i o n t h r o u g h t h e Ponce plug−i n .
d e f o b t a i n i n f o u s i n g p o n c e () :

Begin EA
I t e r a t e t h r o u g h each f u n c t i o n i n t h e program

I t e r a t e t h r o u g h each ” chunk ” , and look f o r a t a i n t e d i n s t r u c t i o n

Th i s f u n c t i o n u s e s r e g u l a r e x p r e s s i o n s t o p a r s e t h r o u g h a s t a n d a r d i z e d
t a i n t e d l i n e i n s t a n c e t e x t f i l e .
d e f o b t a i n i n f o f r o m t x t f i l e () :

Read from f i l e
P a r s e each r e c o r d

d e f c r e a t e g r a p h () :
Wr i t e g v f i l e d i g r a p h i n f o r m a t i o n

””” d i g r a p h G {\ n r a n k d i r = ”LR”\ nnode [shape = r e c o r d , fon tname = C o u r i e r , s t y l e =” f i l l e d ” , g r a d i e n t a n g l e = 9 0] ;\ n\n
node <i n s t a n c e . i n s t n o> [l a b e l = ” <i n s t n o> I n s t a n c e : <i n s t a n c e . i n s t n o> |<mem loc> Memory L o c a t i o n /

O f f s e t : <i n s t a n c e . mem loc> |<next>R e l a t i o n s h i p wi th L o c a t i o n : <i n s t a n c e . nex t> |<reg>A f f e c t e d
R e g i s t e r : <i n s t a n c e . reg >”];\n\n

” node<i +1>”:mem loc −> ” node<j +1>”:mem loc ;\ n

d e f show win () :
O b t a i n t a i n t e d l i n e i n s t a n c e i n f o r m a t i o n u s i n g Ponce
or O b t a i n t a i n t e d l i n e i n s t a n c e i n f o r m a t i o n from t x t f i l e

C r e a t e s t a n d a r d i z e d t a i n t e d l i n e i n s t a n c e t e x t f i l e t h a t u s e r can e d i t a s t h e y wish t o c u s t o m i z e t h e i r IDA Pro d i s p l a y .

C r e a t e a . gv f i l e t o r e a d i n t o GVEdit . exe

R e g i s t e r a c t i o n s , i n c l u d i n g a c t i o n name , a c t i o n t e x t , a c t i o n h a n d l e r , and empty a c t i o n i c o n

129

130

Appendix G

Binary Analysis, Symbolic Execution, and
Situational Awareness

The concept of situational awareness was developed by Mica Endsley and others to capture the
requirements of mental models and how individuals construct them while engaging in real-time
decision making [44]. Much of the work that motivated the concept and development of design
principles for situational awareness (SA) was conducted with war-fighters and medical personnel
relying on knowledge, memory and interpretation of sensor data to make decisions.

Situational Awareness has three levels:

1) perception of the elements in the environment within a volume of time and space,

2) comprehension of their meaning, and

3) projection of their status in the near future.

The activities that were studied in the development of situational awareness theory are similar
to binary code analysis in a few important ways that make the design principles for situational
awareness relevant. Specifically, binary code analysts are also:

• working in environments that put great demands on attention and working memory.

• constructing mental models of the “current state of the system” (although for binary analysts
these are models of self-generated understanding, not driven by changes in the environment).

• projecting the status of the “current state of the system” that is being held in memory in order
to devise hypothesis tests for whether the current understanding is accurate.

Table 15.1, “Summary of SA-Oriented Design Principles” from [44] provides a list of SA
Design Principles organized by category. Many of those design principles are relevant for binary
analysis, excepting the Alarm Design Principles. Here, we copy out the design principles that
are most relevant for symbolic execution engine specializations for a specific application, e.g.,
specializing angr [94] to detecting known environmental triggers [49] or backdoors [93].

131

• No. 1 General Organize information around goals

• No. 2 General Present Level 2 information directly – support comprehension

• No. 3 General Provide assistance for Level 3 SA projections

• No. 9 Certainty Design Principles Explicitly identify missing information

• No. 10 Certainty Design Principles Support sensor reliability assessment

• No. 11 Certainty Design Principles Use data salience in support of certainty

• No. 12 Certainty Design Principles Represent information timeliness

• No. 13 Certainty Design Principles Support assessment of confidence in composite data

• No. 14 Certainty Design Principles Support uncertainty management activities

• No. 15 Complexity Design Principles Just say no to feature creep – back the trend

• No. 16 Complexity Design Principles Manage rampant featurism through prioritization and
flexibility

• No. 17 Complexity Design Principles Insure logical consistency across modes and features

• No. 18 Complexity Design Principles Minimize logic branches

• No. 19 Complexity Design Principles Map system functions to the goals and mental models
of users

• No. 20 Complexity Design Principles Provide system transparency and observability

• No. 36 Automation Design Principles Provide SA support rather than decisions

132

Appendix H

Testing and Evaluation of Software Tools
for Binary Auditing

The process of developing software that solves problems faced by binary software auditors and that
can be integrated into their existing workflows requires both domain expertise and understanding of
how to measure the success of the integration of software into an existing human-computer system.
Effective testing and evaluation requires expertise in cognitive task analysis, human performance
measurement of software systems and binary code analysis.

Testing the usability of a software package requires designing test scenarios that capture the
demands faced by both the user and the system in an operational environment, while scoping
those demands to a time frame that is reasonable for evaluation. These scenario requirements can
be determined through a cognitive task analysis that uses semi-structured interviews of domain
experts to identify essential processing steps in task performance, the information needs at each of
those steps, and the constraints imposed by the work setting (e.g., time, development environment).

Software can be evaluated through self-report measures such as the 10-item System Usabil-
ity Scale (SUS) [16] or 4-item Usability Metric for User Experience (UMUX) scale [48]. These
measures can only evaluate the learnability and usability of a software system; they do not pro-
vide diagnostic information regarding how the software might be improved. Other measurements
might focus on individual human constraints that software is not sufficiently acknowledging and
supporting. For example, because binary code auditing requires significant cognitive loads during
much of task performance, software that adds significant additional cognitive burden is likely to be
difficult to integrate into the existing workflows. Measures of cognitive workload, such as NASA-
TLX [53], can be used to assess whether a new software tool is likely to introduce an additional
cognitive burden that might deem the software unusable.

In situations where the usability of a system is worse than desired, we use techniques taken
from experimental psychology to assess and diagnose opportunities for improvement. Experimen-
tal protocols have experts perform representative tasks while using their various tools. The eye
movements, mouse movements, and thoughts (through think-aloud protocols) of the experts are
recorded simultaneously to assess attentional deployment, cognitive failures, and cognitive effi-
ciency. These task performance artifacts are then segmented and categorized to provide a model
of what fluent task performance looks like, as well as metrics of how the task performance may
be disrupted through memory errors, execution errors, and user frustrations. Task performance

133

disruptions can be linked to specific features of the software system, thus providing a means of
diagnosing how to improve the software tool.

134

Appendix I

Literature Review of Eye Tracking for
Understanding Code Review

In February of 2017, performed a cursory literature review of academic work related to eye tracking
for understanding code review. We present the results of that literature review for the interested
reader.

Reading and understanding code is complex, beyond that of typical reading. However, cur-
rently little is known about the cognitive processes involved in code comprehension, and, impor-
tantly, what separates experts from novices. There has been a recent push in the computer science
literature to better understand how experts understand code in order to leverage these insights to
improve computer science education and reduce the time it takes for analysts to become experts.
One method uses eye-tracking, in which infrared cameras record a reader’s gaze position on a
screen with high temporal resolution (anywhere from 60Hz up to 1000Hz—that is, recording the
gaze position once every 16 milliseconds to once every millisecond). Eye tracking technologies
record two important aspects of human reading behaviors: fixations (periods of relative stability
in which readers pause to look directly at, or fixate, an area of interest), and saccades (the actual
movements of the eyes from one location to another). Average fixation durations in reading last
200-250 ms, whereas saccades last roughly 50ms (see Rayner, 1998, [85] for a comprehensive
review of eye movement behaviors associated with reading). Saccades are ballistic movements of
the eyes (once they start, they cannot be stopped), and due to a process called saccadic suppression,
human eyes do not register the input of visual information during saccades (which is why the world
does not look blurry every time we move our eyes). Saccades can move in the forward direction,
which in English is from left to right, but regressions are saccades that move the eyes backwards
in the text (and encompass roughly 15% of saccades in typical reading). When reading, humans
can clearly see roughly 7-8 letters to the right of fixation, and 2-3 letters to the left of fixation: this
is known as the perceptual span, and it reflects that fact that attention is typically directed forward
in the direction of reading.

Eye tracking has been used to understand text reading, and visual attention to scenes more
generally, for over 30 years (see [37] for a review of eye movement behaviors across a variety of
visual tasks). Many of the basic insights gained from the text reading literature can be broadly
applied to code comprehension and offer a good starting place to the types of questions that can be
answered using eye-tracking. Several important eye-tracking measures from the reading literature
include: fixation durations (how long readers look at particular areas), fixation count or proportion

135

(how many total fixations a person makes in the region), and probability of a regression to a region
(whether a reader returns to a region after having already read it). Although the total amount of
time spent reading a region is often highly correlated with the number of times it was fixated, these
two different pieces of information can sometimes diverge to provide insights into more detailed
reading strategies. Typically, sentences are dived into regions of interest, which can be as small
as a single word or as large as a paragraph. Reading times are then calculated for these regions
of interest and compared to reading times on other regions that differ in important characteristics
(e.g., grammatical versus ungrammatical sentence endings, sensical versus non-sensical words). It
is best to compare reading times on different regions within individuals, as people can vary widely
in their reading patterns.

General findings from the reading literature [85] indicate that words that are easier to process
(for example, because they are frequently encountered in the language or expected from the con-
text) are looked at for less time relative to words that are more difficult to process (for example,
because they are less frequently encountered, unexpected from the context, contain a spelling or
grammatical error). Readers can also skip words that are highly expected, or very short, because
they can be seen in the perceptual span, mentioned above. There is much evidence that readers
process language incrementally—that is, they attempt to comprehend every word as it is encoun-
tered, rather than storing chunks in working memory and putting them all together at the end of
the sentence. When readers encounter a word that is semantically confusing or that grammatically
violates the sentence structure, they will often 1) stop and spend more time fixating the word,
and/or 2) launch a regressive saccade to earlier parts of the sentence. These basic eye movement
behaviors can thus offer insights into the ongoing cognitive processes readers use to comprehend
text.

Computer science researchers have begun to apply these principles to the comprehension of
code, especially in trying to understand the difference between expert and novice behavior. In
general, experts spend more time reading meaningful lines in algorithms as compared to novices,
whereas novices spend more time reading comments [11]. In one set of studies, researchers tried
to identify differences between reading text and code, and whether these patterns differ for experts
and novices. Busjahn et al. [17] developed novel metrics to identify how linear a subject’s code
reading pattern was, finding the most linear patterns in reading natural language text (unsurpris-
ingly). They found that, when reading code, however, both novices and experts exhibited less
linear reading patterns intermixed with more vertical movements. Interestingly, experts were even
less linear than novices, instead adopting a more execution-based style of reading code where they
tended to make many vertical movements to trace the execution of the code.

A second set of studies tried to identify general eye movement patterns over code for both
experts and novices in the realm of defect detection. One such study [106] found that, when reading
a small piece of unfamiliar code, programmers engage in two different reading phases: scanning,
which they defined as the time it takes readers to fixate 80% of the programs’ lines, and reading,
in which fixations were more concentrated within specific liens. This study, and a subsequent
replication [90], found that these patterns tend to hold up amongst both expert and novice readers,
although experts tend to spend less time scanning the code initially. They also found that the more
time readers spent in their initial scan of the program, the less time it took them to identify the

136

defective line, suggesting that the initial overall sweep of the code played an important role in
establishing a mental model of the code’s functionality. Beelders and du Plessis [11] found that
these general scanning patterns were unaffected by syntax highlighting (as compared to black and
white presentation of code), which provides interesting insights into the types of cues programmers
do and do not rely on.

Another set of studies tried to use eye-tracking to ask whether experts use beacons more ef-
ficiently than novices. Beacons, or stereotypical indicators of code function, are thought to drive
the top-down comprehension of code by experts. Crosby, Scholtz, and Wiedenbeck [28] took an
approach that was much more similar to the text reading literature. In two initial experiments,
they had programmers rate different parts of code by their importance to understanding the over-
all functionality of the code. Then, in the eye-tracking experiment, they divided pieces of code
into smaller regions of interest, and categorized these regions based on the functions they served
(simple statements, complex statements, comments, keywords, etc.) and the importance given
to them by the independent set of raters. They found that experts made many more fixations on
complex statements as compared to novices, suggesting that they were able to identify and utilize
these beacons more easily than novices. This shows how eye-tracking can be 1) combined with
offline subjective ratings of evaluating code and 2) used to confirm which pieces of code are most
important to facilitating understanding.

Other work includes: asking how commenting code into chunks helps comprehension [18],
identifying differences in comprehension between C++ and Python source code [105], determining
gaze patterns associated with debugging behavior [10], and determining eye movement patterns
associated with traceability links in code [91].

The current literature seems to indicate that there is growing interest in the use of the eye-
tracking methodology to understand how programmers understand and debug code – and how
these processes differ between experts and novices. One drawback to this fledgling literature is
that many of these studies have inconclusive results due to poor experimental design, incorrect
statistics, poor eye tracking collection procedures, or failure of the authors to report critical infor-
mation necessary to interpret their findings (tables or plots of means across conditions). Most of
the papers are published conference proceedings and, due to their short nature, offer few method-
ological details. Moreover, the studies are conducted across a range of programming languages
(C, C++, .Net, Java, Python), and differences across studies are often confounded with program-
ming language differences as well. One drawback that will be harder to overcome includes the use
of very short snippets of code that do not represent the true complexity of typical programming
problems. There is a clear desire among the computer science community for information regard-
ing code comprehension, and there is a need for rigorous, well-designed and controlled empirical
studies to replicate many of these earlier findings.

Many of the researchers have identified end-state goals for their vision of what eye-tracking
research would add to the code comprehension literature: to develop eye-tracking metrics that
quantify “expert” programmer behavior. These metrics of expert behavior could then be used to:
provide a metric by which to measure an individual’s programming skill [90]; be leveraged to
provide instruction or visual cues to novices to help them attend to the same areas attended to
by experts [17], or to programmers of any skill level who are failing to attend to the important

137

areas [28]; or, identify additional beacons used by experts to comprehend code [5]. These goals
all seem to be aimed at answering the questions of how people understand code and how we can
more effectively teach people these skills. As such, identifying expert behaviors across a range
of activates, from comprehension to debugging to reverse engineering, will provide a basis for
accomplishing these goals.

138

DISTRIBUTION:

3 MS 1319 Michelle Leger, 05836
1 MS 1110 Karin Butler, 09131
1 MS 0359 D. Chavez, LDRD Office, 1911
1 MS 0899 Technical Library, 9536 (electronic copy)

139

140

v1.40

141

142

