
SANDIA REPORT

SAND2002-xxxx
Unlimited Release
Printed September 2017

Supersedes SAND1901-0001
Dated January 1901

Understanding the Hierarchy of Dense
Subgraphs in Stationary and Temporally
Varying Setting

A. Erdem Sariyuce and Ali Pinar

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology

and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

SAND2017-9707R

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2002-xxxx

Unlimited Release

Printed September 2017

Supersedes SAND1901-0001

dated January 1901

Understanding the Hierarchy of Dense Subgraphs in
Stationary and Temporally Varying Setting

Ahmet Erdem Sariyuce
Computer Science Department

University of Buffalo
Buffalo, NY

a.erdemsariyuce@gmail.com

Ali Pinar
Cyber Analytics and Data Science Department

Sandia National Laboratories
PO Box 969

Livermore, CA 94551-0969 apinar@sandia.gov

Abstract

Graphs are widely used to model relationships in a wide variety of domains such as soci-

ology, bioinformatics, infrastructure, the WWW, to name a few. One of the key observations
is that while real-world graphs are often globally sparse, they are locally dense. In other

words, the average degree is often quite small (say at most 10 in a million vertex graph), but

vertex neighborhoods are often dense. Finding dense subgraphs is a critical aspect of graph
mining It has been used for finding communities and spam link farms in web graphs, graph

visualization, real-time story identification, DNA motif detection in biological networks, find-

ing correlated genes, epilepsy prediction, finding price value motifs in financial data, graph

compression, distance query indexing, and increasing the throughput of social networking
site servers. However, most standard formulations of this problem (like clique, quasi-clique,

k-densest subgraph) are NP-hard. Furthermore, current dense subgraph finding algorithms

usually optimize some objective, and only find a few such subgraphs without providing any

structural relations, whereas the goal is rarely to find the "true optimum," but to identify many

(if not all) dense substructures, understand their distribution in the graph, and ideally deter-
mine relationships among them. In this project, we first aim to devise algorithms and provide

3

implementations with nice visualizations to find the hierarchy between dense subgraphs, and
then understand the structure of the hierarchy to gain more insight on the hidden patterns in
real-world networks. Another important aspects in graph analysis is the temporal nature of

networks. Networks evolve over time and in many applications data arrives at a high velocity,
and thus it is important to design algorithms that can process data efficiently.

We report three main results towards identifying dense structures in large evolving graphs.
First, we will show how the hierarchical connectedness structure can be maintained efficiently,

where connectedness is defined by increasing levels of connectivity strength. Next, we present
dense structure can be identified in bipartite graphs without building projection graphs. And
finally, we present a new method for peeling algorithms This new approach avoids sequential
nature of peeling algorithms and is amenable to parallelization, which is crucial for processing
high velocity data.

4

Acknowledgment

We are grateful to C. Seshadhri, Umit Catalyurek, Tamara Kolda, Kevin Matulef, Sucheta Soundara-
jan, Tina Eliassi-Rad, and Karim Mahrous for many helpful discussions and their support through-
out the project.

5

6

Contents

1 Introduction 13
2 Fast Hierarchy Construction for Dense Subgraphs 15

2.1 Introduction 15
2.2 Preliminaries 17
2.3 Literature and Misconceptions 22
2.4 Algorithms 27
2.5 Experiments 34
2.6 Conclusion 39

3 Peeling Bipartite Networks for Dense Subgraph Discovery 40
3.1 Introduction 40
3.2 Background 42

3.3 Related Work 45
3.4 Dense bipartite subgraphs 47
3.5 Peeling Butterflies 51
3.6 Experiments 53
3.7 Summary and Open Questions 59

4 Parallel Local Algorithms for Core, Truss, and Nucleus Decompositions 60
4.1 Introduction 60
4.2 Background 63

4.3 Going from h-index to As-index 65
4.4 Local algorithms 68
4.5 Experiments 74
4.6 Related Work 78
4.7 Conclusion 78

5 Conclusions and Future Work 88
References 89

Figures

1 2-(2,3) and 2-(2,4) nuclei on left and right . 18
2 Multiple 3-cores 23
3 k-dense [102] (triangle k-core [139]), k-truss [33] (k-community [128]) and k-truss

community [65] (k-(2, 3) nucleus [104]) on the same graph for k=2. Each subgraph
given by the corresponding algorithm is shown in dashed. 24

4 Example of T1,2s for A, = 2 and A, = 3. Hierarchy tree is shown on the right with
participating T1,2s. s are shown in red. Traversal algorithm needs to infer that,
for instance, components A and E are in the same 2-core. 27

5 A graph shown with regions on the left and the corresponding hierarchy-
skeleton on the right. A, values of Tr,ss are the white numbers. Thin edges are
disjoint- set forests 30

7

6 (2,3) [top] and (3,4) [bottom] nucleus decomposition comparison for DFT (the
one using Alg. 5 for traversal) and FND (shown in Alg.8). Two main results: (1)
Traversal part of DFT is close to the peeling part, (2) FND is able to keep the total
runtime comparable to the peeling part of DFT 38

7 Dense subgraph profiles for the ItiDb network. Each dot is a bipartite subgraph, the density,

IEI/ (IUHVI), is color coded and IU I and IV I are given on the x- and y-axis. Wing decom-
position algorithm results in 36 bipartite subgraphs with > 0.9 edge density that have at
least 10 vertices in each side. Other algorithms working on projections cannot report any
bipartite subgraph in that quality. 43

8 A projection example. The bipartite graph on the left is projected to the unweighted
and weighted unipartite graphs on the right. In the unweighted projection, vertices
A, B and C form a triangle since they are all connected to the same vertex in the
bipartite graph. Vertex D only connects to C in the projection since it does not
share affiliation with any other vertices in the bipartite graph. In the weighted
projection, the weight assigned to the edge between vertices A and B is 1/3 + 1/2,
because one of the affiliations they share in the bipartite graph has 3 neighbors and
the other affiliation has 2 neighbors.] 45

9 The entire graph is a 2-core since each vertex have at least degree 2. Each triangle
is a 1-truss, denoted in dashed lines, since each edge takes part in one triangle.
These two 1-trusses are not merged by the edge in the middle, because that edge
has no triangle.] 46

10 The entire graph is a 1-truss since each edge has 1 triangle. However, there are two
1-(2,3) nucleus subgraphs, overlapping on the middle vertex. These two nuclei are
not merged, because no triangle exists that contains an edge from each nucleus.] . . 46

11 Higher-order structures used to model the cohesion in bipartite networks. Borgatti and
Everett used (3, 3)-biclique [21], Opsahl used the 4-path and its closure [93], Robins and
Alexander introduced the 3-path and its closed form[98], and Aksoy et al. adopted the
(2, 2)-biclique (butterfly) [6]. 48

12 We focus on vertices on the left to find k-tips. Nine butterflies exist in total. A
and F are the only vertices that take part in one butterfly while all the others are
involved in more. Thus, entire graph is a 1-tip. Checking the induced subgraph of
the vertices B, C, D and E, all participate in at least three butterflies, which makes
them a 3-tip. Tip numbers of those vertices are also 3 whereas 0 (A) = 0 (F) = 1.] . 49

13 k-wings on the same graph. Each edge takes part in at least 1 butterfly, making
the entire graph a 1-wing. There are also two bicliques: BC123 and DE456. Each
edge in those bicliques takes part in two butterflies. So, each is a 2-wing, and all the
edges in those have a wing number of 2. Other edges e E {Al, A2, C4, D3, F5, F6},
ty (e) = 1. Overall, k-wing subgraphs find denser regions than the k-tips.] 50

14 In an author-paper network, the author shown in red cannot be considered in a single
research community because she collaborates with different researchers on distinct set of
papers. Each affiliation of an author should be considered independently to better detect
the communities she is involved in. 50

8

15 Dense subgraphs in condmat. Each dot is a bipartite subgraph, the density, IE I/(IU I • IV I),

is color coded and IU I and IV I are given on the x- and y-axis. k-wing has 4820 subgraphs

with > 0.1 density. 416 of them have sizes of > 5 on both sides with > 0.5 density, whereas
this number is 59, 14, and 20 in k-tip, (2, 3)-nucleus and fractional k-core cases 56

16 github network. k-wings report 122 subgraphs with > 0.5 density that have at least 5
vertices in each vertex set. k-tips gives only 3 such subgraphs and fractional k-cores report

even less. k-wings can also find 27 structures with > 0.9 density. 57

17 dbconf network. Most dense structures in (2, 3)-nucleus and fractional k-core cases have

only one vertex in either vertex set — the red dots along x- and y- axis. Those subgraphs

represent the collaborations of many authors in a single paper. We observe that they are

mostly a paper on a software-product which is authored by a large group of researchers in

a company. In most cases those authors do not have any other papers, which implies an

insignificance for the subgraph . 58

18 Dense subgraphs for marvel network. k-wing decomposition provides many subgraphs

with > 0.5 density. 57 of those have at least 5 vertices in each side and 11 have 10 vertices
in each. No other algorithm can get such subgraphs. 59

19 Convergence rates with the number of iterations for five graphs in our dataset.
Kendall-Tau similarity score compares the obtained decomposition and the exact
decomposition; becomes 1.0 when both are the same. We observe that our local al-
gorithms compute almost-exact decompositions in around 10 iterations for k-truss,
and (3, 4) nucleus decompositions. This enables exploring trade-offs between time
and quality, which are necessary for the real-world applications 79

20 SND (Algorithm 13) for the k-truss decomposition (r = 2, s = 3). We find the
2.3 indices. Triangle counts of all the edges are computed (d3) and set as their To
values (blue). For each edge, we first compute 21 indices (red) based on the To
indices. The ae edge, for instance, has four triangles and for each of those we
find the neighbor with minimum -co index and compute the h-index. So, Ti (ae) =

{(min(Th(eb),To(ab)),minero(ec),Th(ac)),min(To (eg),To(ag)),min(to(ef),To(af))} =
ye{2, 2, 1, 1} = 2. No updates happen in the second iteration (green), so conver-
gence is obtained in a single iteration 80

21 SND (Algorithm 13) and AND (Algorithm 14, no orange lines) for the k-core de-
composition (r = 1,s = 2). We find the A.2 indices (core numbers) of vertices (edge
is 2-clique). 'co indices are initialized to the degrees (d2 in blue). SND algorithm
uses the il_1 indices to compute the Ti indices and converges in two iterations (ri
in red, T2 in green, T3 in yellow). Same happens when we use the AND algorithm
(without orange lines) and follow the { a,b,c,d,e,f } order to process the vertices.
If we choose {f,e,a,b,c,d} order, which is actually a non-decreasing order on A,2
indices, AND converges in a single iteration. 81

22 Changes in 2 indices of randomly selected edges in facebook graph during the
k-truss decomposition. There are wide plateaus during the convergence, especially
at the end, where T indices stay constant. 81

9

23 k-core decomposition (r = 1 , s = 2) by AND (Algorithm 14) that uses the notifi-
cation mechanism. After the first iteration, the only active vertex is a and recom-
puting updates its 2 index and also notifies vertex b. Recomputing 2 of vertex b
does not yield any change and all the vertices become idle, thus convergence is
obtained. 8 2 computations performed in 3 iterations by AND with notification
mechanism, while 24 2 computations done in 4 iterations with if no notifications
used (Figure 21). 82

24 Convergence rates on all the graphs. We measure the Kendall-Tau similarity be-
tween Ti indices and A„ indices at each iteration i. We obtain very close solutions
to the exact decompositions within a few iterations. 90% similar results can be
obtained with —80% less iterations than the exact decompositions, on average. . . 83

25 Changes in the ratio of active r-cliques and the accuracy of 2 indices during the
computation, When the ratio of active r-cliques goes below 40%, T indices pro-
vide 83%, 82% and 86% accurate results on average for k-core, k-truss and (3, 4)
nucleus decompositions, respectively. If the ratio is below 10%, —99% accuracy
is achieved in all decompositions. 84

26 Changes in the ratio of active r-cliques and the accuracy of 2 indices during the
computation, When the ratio of active r-cliques goes below 40%, T indices pro-
vide 83%, 82% and 86% accurate results on average for k-core, k-truss and (3, 4)
nucleus decompositions, respectively. If the ratio is below 10%, —99% accuracy
is achieved in all decompositions. 85

27 Speedups of the parallel computations with respect to the sequential runs for the
k-core, k-truss, and (3,4) nucleus decompositions for all the graphs. We used
2,4, 6, 12, and 24 threads where each thread is assigned to a single core. With
24 threads, we observe up to 7x, 14x, and 29x speedups for k-core, k-truss, and
(3, 4) nucleus decompositions, respectively. Speedup numbers increase with more
number of threads and faster solutions are possible with better machines that have
more cores 86

28 Change of speedups (over peeling algorithm) with varying approximations of k-
truss, and (3, 4) nucleus decompositions. After a certain accuracy score, speedups
do not change significantly, which enables to get more accurate results with a small
additional cost. Thanks to our notification mechanism (Section 21), most of the
work is done in the first few iterations and fine tuning of the A, indices are made
easier 87

Tables

1 Speedups with our best algorithms for each decomposition. Starred columns (*)
show lower bounds, when the other algorithm did not finish in 2 days or did a par-
tial work. Best k-truss and (3,4) algorithms are significantly faster than alternatives,
and also more efficient than the hypothetically best possible algorithm (HYPO) that
does traversal to find the hierarchy. 17

2 Summary of notations 19

10

3 Statistics for the real-world graphs. Largest graph in the dataset has more than
37M edges. IA 1 is the number of triangles, 1K41 is the number of four-cliques.
Ratios of s-cliques to r-cliques are shown in columns 6,7,8, for s < 4 and s — r = 1.
Columns 9 to 14 show sub-(r, s) nuclei numbers (I T,-41) and non-maximal sub-(r, s)
nuclei numbers (177s1), artifact of Alg. 8, for the (r, s) values we interested. Last
two columns are the number of connections from 7,.*ss with higher A, values to the
ones with lower A, values. 33

4 k-core decomposition results. HYPO is the hypothetical limit for the best possible
traversal based algorithm. NAIVE is Alg. 3, DFT is the one using Alg. 5, FND
is the Alg. 8 and LCPS is our adaptation from [84]. Right-most column is the
runtimes of fastest algorithm and rest are its speedups over other algorithms. 35

5 (2,3) and (3,4) nucleus decomposition results. Right-most column for each is the
runtimes of the fastest algorithm and rest are its speedup over other algorithms.
Starred numbers (*) show lower bounds, when the algorithm did not finish in 2
days. HYPO is the hypothetical limit for the best possible traversal based algo-
rithm. For (2,3), it is done on edges and triangle connections, and for (3,4) it is on
triangles and four-clique connections. NAIVE is Alg. 3 and TCP* is the indexing
algorithm proposed by [65] and does not even include (2, 3) nuclei finding. DFT
is the one using Alg. 5 and FND is the Alg. 8. 36

6 Notations 42
7 Statistics for the real-world graphs. Columns show the number of primary vertices, sec-

ondary vertices, and edges edges in the projected graphs, butterflies, and triangles in the
projected unipartite graph, in order. 54

8 Runtime performances of the algorithms k-wing can be orders of magnitude faster than
the (2, 3)-nucleus decomposition. 59

9 Runtime comparison between the peeling algorithm and the local algorithm we
introduce for (3, 4) nucleus decomposition. Our local algorithm enables the pleas-
ingly parallel computation and obtains up to 7.9x speedup over peeling with 24
threads 62

10 Notation 64
11 Important statistics about our dataset; number of vertices, edges, triangles and

four-cliques (K4) 74
12 Number of iterations given by upper bound (Section 4.3), and SND and AND algo-

rithms. Both algorithms converge in far fewer iterations than the theoretical upper
bounds — on average SND converges in 5% of the bounds for all decompositions.
AND algorithm converges in 50% less number of iterations than the SND for k-core
and k-truss decompositions and 35% less for (3, 4) nucleus decomposition. 75

13 Runtime comparison of AND (Algorithm 14) and peeling (Algorithm 12) algo-
rithms using 24 threads. Runtimes are in seconds. AND obtains significant speedups
over the peeling process. In particular, (3, 4) is 7.98x faster than peeling on web-Not reDame
graph, and k-truss decomposition has 4.04x speedup over the peeling process. . . . 82

11

12

1 Introduction

Graphs are widely used to model relationships in a wide variety of domains such as sociology,
bioinformatics, infrastructure, the WWW, to name a few. One of the key observations is that while
real-world graphs are often globally sparse, they are locally dense. In other words, the average
degree is often quite small (say at most 10 in a million vertex graph), but vertex neighborhoods are
often dense. Finding dense subgraphs is a critical aspect of graph mining [1]. It has been used for
finding communities and spam link farms in web graphs [2, 3, 4], graph visualization [5], real-time
story identification [6], DNA motif detection in biological networks [7], finding correlated genes
[8], epilepsy prediction [9], finding price value motifs in financial data [10], graph compression
[11], distance query indexing [12], and increasing the throughput of social networking site servers
[13]. However, most standard formulations of this problem (like clique, quasi-clique, k-densest
subgraph) are NP-hard. Furthermore, current dense subgraph finding algorithms usually optimize
some objective, and only find a few such subgraphs without providing any structural relations,
whereas the goal is rarely to find the ?true optimum?, but to identify many (if not all) dense sub-
structures, understand their distribution in the graph, and ideally determine relationships among
them. In this project, we first aim to devise algorithms and provide implementations with nice
visualizations to find the hierarchy between dense subgraphs, and then understand the structure of
the hierarchy to gain more insight on the hidden patterns in real-world networks.

The agenda for this project has two main items. Firstly, we will improve our existing framework
[14] for hierarchical dense subgraph discovery to enable fast analysis of dense subgraphs. Our
previous work [14] generalizes the well known k-core and k-truss concepts in a unified framework
and shown to be superior than the state-of-the-art methods. Speeding up our current algorithms
and improving the visualization tools are the two main goals in our improvement plan. Secondly,
we will analyze the real-world datasets to understand the structure in hierarchy of dense subgraphs.
For this purpose, we plan to make use of graphs from Network Repository [15], providing hundreds
of different classes of networks in various sizes. Analyzing the graphs in each of those classes, and
being able to detect the similarities and differences in the hierarchy structure would enable us to
summarize them in a very succinct way.

The next three chapters report the three main results in the paper. Each chapter is written self
inclusively, hence some the definitions and discussions are repeated.

The first chapter is about maintaining the hierarchical structure among dense subgraphs. We
want to not only identify dense subgraphs, but also build a hierarchy among them (e.g., larger but
sparser subgraphs formed by two smaller dense subgraphs). Peeling algorithms (k-core, k-truss,
and nucleus decomposition) have been effective to locate many dense subgraphs. However, con-
structing a hierarchical representation of density structure, even correctly computing the connected
k-cores and k-trusses, have been mostly overlooked. Keeping track of connected components dur-
ing peeling requires an additional traversal operation, which is as expensive as the peeling process.
We start with a thorough survey and point to nuances in problem formulations that lead to signif-
icant differences in runtimes. We then propose efficient and generic algorithms to construct the
hierarchy of dense subgraphs for k-core, k-truss, or any nucleus decomposition. Our algorithms
leverage the disjoint-set forest data structure to efficiently construct the hierarchy during traver-

13

sal. Furthermore, we introduce a new idea to avoid traversal. We construct the subgraphs while
visiting neighborhoods in the peeling process, and build the relations to previously constructed
subgraphs. We also consider an existing idea to find the k-core hierarchy and adapt for our objec-
tives efficiently. Experiments on different types of large scale real-world networks show significant
speedups over naive algorithms and existing alternatives. Our algorithms also outperform the hy-
pothetical limits of any possible traversal-based solution.

The second chapter studies finding dense sub graphs in bipartite graphs. Bipartite graphs are
the natural way to model affiliation networks, such as actor-movie, document-keyword, and user-
product networks. Finding dense bipartite subgraphs and detecting the relations among them is
an important problem for affiliation networks that arise in a range of domains, such as social
network analysis, word-document clustering, internet advertising, and bioinformatics, to name
a few. However, most dense subgraph discovery algorithms are designed for classic, unipartite
graphs. Subsequently, studies on affiliation networks are conducted on the co-occurrence graphs
(e.g., co-authors and co-purchase networks), which projects the bipartite structure to a unipartite
structure by connecting two entities if they share an affiliation. Despite their convenience, co-
occurrence networks come at a cost of loss of information and an explosion in graph sizes, which
limit the quality and efficiency of solutions. In this paper, we study the dense subgraph discovery
problem on bipartite graphs. We define a framework of bipartite subgraphs based on the butterfly
motif (2,2-biclique) to model the dense regions in a hierarchical structure. We introduce efficient
peeling algorithms to find the dense subgraphs and build relations among them. Experiments
show that we can identify much denser structures compared to the state-of-the-art techniques on
co-occurrence graphs. Our algorithms are also memory efficient, since they do not suffer from
the explosion in the number of edges of the co-occurrence graph. Analysis of the author-paper
network of the top database conferences highlights the richer structure that can be identified by
working on bipartite graphs, which is otherwise lost in a co-occurrence graph.

The third chapter is about local and parallelizable algorithms for peeling algortihms that are
used in this work. Nucleus decomposition is a principled framework of algorithms that general-
izes the k-core and k-truss decompositions. It can leverage the higher-order structures to locate
the dense subgraphs with hierarchical relations. Computation of the nucleus decomposition is per-
formed in multiple steps, known as the peeling process, and it requires global information about
the graph at any time. This prevents the scalable parallelization of the computation. Also, it is
not possible to compute approximate and fast results by the peeling process, because it does not
produce the densest regions until the algorithm is complete. In a previous work, Lu et al. pro-
posed to iteratively compute the h-indices of vertex degrees to obtain the core numbers and prove
that the convergence is obtained after a finite number of iterations. In this work, we generalize
the iterative h-index computation for any nucleus decomposition and prove convergence bounds.
We present a framework of local algorithms to obtain the exact and approximate nucleus decom-
positions. Our algorithms are pleasingly parallel and can provide approximations to explore time
and quality trade-offs. Our shared-memory implementation verifies the efficiency, scalability, and
effectiveness of our algorithms on real-world networks. In particular, using 24 threads, we obtain
up to 4.04x and 7.98x speedups for k-truss and (3, 4) nucleus decompositions.

14

2 Fast Hierarchy Construction for Dense Subgraphs

Abstract

Discovering dense subgraphs and understanding the relations among them is a fundamen-

tal problem in graph mining. We want to not only identify dense subgraphs, but also build a
hierarchy among them (e.g., larger but sparser subgraphs formed by two smaller dense sub-
graphs). Peeling algorithms (k-core, k-truss, and nucleus decomposition) have been effective
to locate many dense subgraphs. However, constructing a hierarchical representation of den-

sity structure, even correctly computing the connected k-cores and k-trusses, have been mostly
overlooked. Keeping track of connected components during peeling requires an additional

traversal operation, which is as expensive as the peeling process. In this chapter, we start with
a thorough survey and point to nuances in problem formulations that lead to significant differ-

ences in runtimes. We then propose efficient and generic algorithms to construct the hierarchy
of dense subgraphs for k-core, k-truss, or any nucleus decomposition. Our algorithms lever-

age the disjoint-set forest data structure to efficiently construct the hierarchy during traversal.

Furthermore, we introduce a new idea to avoid traversal. We construct the subgraphs while
visiting neighborhoods in the peeling process, and build the relations to previously constructed

subgraphs. We also consider an existing idea to find the k-core hierarchy and adapt for our
objectives efficiently. Experiments on different types of large scale real-world networks show

significant speedups over naive algorithms and existing alternatives. Our algorithms also out-
perform the hypothetical limits of any possible traversal-based solution.

Results of this work were published in [109]. Here we present the results for completeness.

2.1 Introduction

Graphs are used to model relationships in many applications such as sociology, the WWW, cyberse-
curity, bioinformatics, and infrastmcture. Although the real-world graphs are sparse (1E1 <<11712),
vertex neighborhoods are dense [56]. Clustering coefficients [132], and transitivity [131] of real-
world networks are also high and suggest the micro-scale dense structures [114, 73]. Literature is
abundant with the benefits of dense subgraph discovery for various applications [76, 55]. Examples
include finding communities in web [74, 39], and social networks [65], detecting spam groups in
web [53], discovering migration patterns in stock market [40], improving software understanding
by analyzing static structure of large-scale software systems [138], analyzing gene co-expression
networks [137], finding DNA motifs [48], quantifying the significance of proteins [136] and dis-
covering molecular complexes [13] in protein interaction networks, identifying real-time stories in
microblogging websites [11], and improving the throughput of social-networking sites [54].

k-core [112, 84], k-truss [102, 33, 139, 128, 121, 140, 65], and their generic variant for larger
cliques, nucleus decomposition [104], are deterministic algorithms which are effective and effi-
cient solutions to find dense subgraphs and creating hierarchical relations among them. They have
also been used to improve community detection algorithms [95] and comparing real graphs and
models [117, 116]. They also known as peeling algorithms due to their iterative nature to reach
the densest parts of the graph. Hierarchy has been shown to be a central organizing principle of

15

complex networks, which is useful to relate communities of a graph and can offer insight into
many network phenomena [32]. Peeling algorithms do not aim to find a single optimum dense
subgraph, but rather gives many dense subgraphs with varying sizes and densities, and hierarchy
among them, if supported by a post-processing traversal step [84, 104].

Problem, Misconception and Challenges

We focus on undirected, unattributed graphs. Hierarchy of dense subgraphs is represented as the
tree structure where each node is a subgraph, each edge shows a containment relation, and the root
node is the entire graph. The aim is to efficiently find the hierarchy by using peeling algorithms.

Misconception in the literature: Recent studies on peeling algorithms has interestingly over-
looked the connectivity condition of k-cores and k-trusses. In the original definition of k-core,
Seidman states that k-core is the maximal and connected subgraph where any vertex has at least
degree k [112]. However, almost all the recent papers on k-core algorithms [30, 51, 52, 20, 92,
79, 71, 135, 133, 79] did not mention that k-core is a connected subgraph although they cite Sei-
dman's seminal work [112]. On the k-truss side, the idea is introduced independently by Saito et
al. [102] (as k-dense), Cohen [33] (as k-truss), Zhang and Parthasarathy [139] (as triangle k-core),
and Verma and Butenko [128] (as k-community). They all define k-truss as a subgraph where
any edge is involved in at least k triangles. Regarding the connectivity, Cohen [33], and Verma
and Butenko [128] defined the k-truss as a single component subgraph, while others [102, 139]
ignored the connectivity. In practice, overlooking the connectedness limits the contributions of
most previous work regarding the performance and semantic aspects. More details are given in
Section 3.3.

Finding k-cores requires traversal on the graph after the peeling process, where maximum k-
core values of vertices are found. It is same for k-truss and nucleus decompositions where the
traversal is done on higher order structures. Constructing the hierarchy is only possible after that.
However, it is not easy to track nested structure of subgraphs during a single traversal over entire
graph. Traversing k-cores is cheap by a simple breadth-first search (BFS) in 0(1E1) time. When it
comes to k-truss and higher order peeling algorithms, however, traversal becomes much costly due
to the larger clique connectivity constraints.

Contributions

Motivated by the challenging cost of traversals and hierarchy construction, we focus on efficient
algorithms to find the k-cores, k-trusses or any nuclei in general. Our contributions are as follows:

• Thorough literature review: We provide a detailed review of literature on peeling algo-
rithms to point the misconception about k-core and k-truss definitions. We highlight the
implications of these misunderstandings on the proposed solutions. We also stress the lack
of understanding on the hierarchy construction and show that it is as expensive as the peeling
process.

16

Table 1: Speedups with our best algorithms for each decomposition. Starred columns (*) show
lower bounds, when the other algorithm did not finish in 2 days or did a partial work. Best k-
truss and (3,4) algorithms are significantly faster than alternatives, and also more efficient than the
hypothetically best possible algorithm (HYPo) that does traversal to find the hierarchy.

k-core k-truss (3, 4) nucleus
NAIVE HYPO NAIVE TCP*[651 HYPO NAIVE*

Stanford3 25.50x 1.lOx 12.58x 3.41x 1.48x 1321.89x
twit-hb 27.89x 1.33x 16.24x 3.27x 1.78x 38.96x
uk-2005 58.02x 1.68x 90.50x 11.07x 1.24x 1.98x

• Hierarchy construction by disjoint-set forest: We propose to use disjoint-set forest data
structure (DF) to track the disconnected substructures that appear in the same node of the
hierarchy tree. Disjoint-set forest is incorporated into the hierarchy tree by selectively pro-
cessing the subgraphs in a particular order. We show that our algorithm is generic, i.e., works
for any peeling algorithm.

• Avoiding traversal: We introduce a new idea to build the hierarchy without traversal. In
the peeling process, we construct the subgraphs while visiting neighborhoods and bookkeep
the relations to previously constructed subgraphs. Applying a lightweight post-processing
operation to those tracked relations gives us all the hierarchy, and it works for any peeling
algorithm.

• Experimental evaluation: All the algorithms we proposed are implemented for k-core, k-
truss and (3, 4)-nucle-
us decompositions, in which peeling is done on triangles and the four-clique involvements.
Furthermore, we bring out an idea from Matula and Beck's work [84], and adapt and imple-
ment it for our needs to solve the k-core hierarchy problem more efficiently. Table 1 gives
a summary of the speedups we get for each decomposition. Our k-core hierarchy algorithm
adaptation outperforms naive baseline by 58 times on uk-2005 graph. The best k-truss and
(3, 4) algorithms are significantly faster than alternatives. They also beat the hypothetically
best possible algorithm (HYPO) that does traversal to find hierarchy. It is a striking result to
show the benefit of our traversal avoiding idea.

2.2 Preliminaries

This section presents building blocks for our work.

Nucleus decomposition

Let G be an undirected and simple graph. We start by quoting the Definitions 1 and 2 from [104].
We use Kr to denote an r-clique.

Definition 1 Let r < s be positive integers and be a set of Kss in G.

17

Figure 1: 2-(2,3) and 2-(2,4) nuclei on left and right.

• Kr(9) is the set of Krs contained in some C E

• The number of C E containing u E Kr(9) is the Ks-degree of u.

• Two Krs u, d are Ks-connected if there exists a sequence u = 141,142, . . . ,uk = d in Kr(9)
such that for each i, some Ks C E contains ui U ui+1.

These definitions are generalizations of the standard vertex degree and connectedness. Indeed,
setting r = 1 and s = 2 (so is a set of edges) yields exactly that. The main definition is as
follows.

Definition 2 Let k, r, and s be positive integers such that r < s. A k-(r, s) nucleus is a inaxiinal
union of Kss such that:

• The Ks-degree of any u E Kr(9) is at least k.

• Any u,ui E Kr(9) are Ks-connected.

Figure 1 gives an example for 2-(2,3) and 2-(2,4) nucleus. For r = 1,s = 2, a k-(1,2) nucleus
is a maximal (induced) connected subgraph with minimum vertex degree k. This is exactly k-
core [112]. Setting r = 2, s = 3 gives maximal subgraphs where every edge participates in at least
k triangles, and edges are triangle-connected. This is almost the same definition of k-dense [102], k-
truss [33], triangle-cores [139] and k-community [128]. The difference is on the connectivity con-
dition; [33, 128] defines k-truss and k-community as a connected component, whereas [102, 139]
do not mention connectedness, implicitly allowing disconnected subgraphs. The k-truss commu-
nity defined by Huang et al. [65] is the same as the k-(2,3) nucleus: both require any pair of edges
to be triangle-connected. More details can be found in Section 2.3. In the rest of the chapter, we
will be generic and present all our findings for the k-(r, s) nucleus decomposition, which subsumes
k-core and k-truss definitions.

For an r-clique Kr u, (05(u) denotes the Ks-degree of u. For a subgraph H C G, COr,s(H) is
defined as the minimum Ks-degree of a Kr in H , i.e., cor,s(H) = minfa)5(u) : u E H}.

Definition 3 The maximum k-(r,$) nucleus associated with a Kr u, denoted by Hu , is the k-(r, s)
nucleus that contains u and has the largest k = COr,s(Hu) (i.e., H s.t. u E H A H is an l-(r, s) nucleus A
l > k).

The maximum k-(r,$) number of the r-clique u, denoted by A.,s(u), is defined as A.,s(u) = (Dr,s(Ht1).

18

Table 2: Summary of notations

Symbol Description

Kr r-clique; complete graph of r vertices

ws(u) Ks-degree of u; number of s-cliques containing u

wr,s(11) min{cos(u) : u E H}; min Ks-degree of a Kr in H
Hu max k-(r,$) nucleus associated with the Kr u

As(u) COrs(Hu); max k-(r, s) number of the Kr u

Xr,s(H) min-Pi.s(u) : u e 111; min Xs of a Kr in graph H

Tr,s sub-(r,$) nucleus; maximal union of Krs of same 2,5

Throughout the paper, As (u) implies that u is a Kr. We also abuse the notation as 2, (u) when r and
s are obvious. The maximum k-(1, 2) nucleus is same as the maximum k-core, defined in [107].
For a vertex, v, A2(V) is also equal to the maximum k-core number of v [107], or core number of
v [30, 92]. Likewise, for an edge e, (e) is previously defined as the trussness of an edge in [65].

Building the (r, s) nucleus decomposition of a graph G is finding the of all Krs in G and
building the k-(r, s) nuclei for all k. The following corollary shows that given the As of all Krs, all
(r, s) nuclei of G can be found.

Corollary 1 Given A,s(v) for all Kr v E G and assuming 2,,s(u) = k for a Kr u, the maximum k-
(r,$) nucleus of u, denoted by Hu, consists of u as well as any K,. v that has 2,s(v) > k and is
reachable from u via a path P of Kss such that *EP, Ar,s(C)> k, where Xr,s(C) = minfÃs(u) : u C
C (u is a Kr)}.

Corollary 1 is easy to see for the k-core case, when r = 1, s = 2. All the traversed vertices are
in H" due to maximality property of k-cores, and all the vertices in H" are traversed due to the
connectivity condition, both mentioned in Definition 2. For the maximum k-(2, 3) nucleus, we can
also see the equality by Definition 2. For all edges e, 2,3 (e) > k satisfies the first condition, and
the path of triangles, which does not contain any edge whose 2,3 is less than k, implies the second
condition of Definition 2.

Corollary 2 H" can be found by traversing G starting at the Kr u and including each Kr v to Hu if

• Xs(v) > k

• E a Ks C s.t. vCCA Xr,s(C) > k.

Repeating this traversal for all Krs u E G gives all the k-(r,$) nuclei of G.

Traversal is trivial for k-(1, 2) nucleus (k-core): include every vertex with greater or equal 2,2.
For r = 2, s = 3, maximum k-(2, 3) nucleus is found by doing traversal on edges. Assuming the 2,3
value of the initial edge is k, the next edge in the traversal should have the A,3 value > k; should

19

Algorithm 1: SET-2., (G, r, s)

i Enumerate all Ics in G(11, E)
2 For every Kr u, set ws(u) as the number of ICss containing u
3 Mark every Kr as unprocessed
4 for each unprocessed Kr u with minimum cos(u) do
5 Xs(u) = cos(u), = Xs(u)
6 Find set <9° of Kss containing u
7 for each C E c5.° do
8 if any Kr v C C is processed then continue
9 for each IC, v C, v u do
10 if cos(v) > ws(u) then ws(v) = ws(v) — 1

11 Mark u as processed

12 return array A,s(.) and maxA,

Algorithm 2: TRAVERSAL(G, r, s, (•),max2„)

i for each k [1,max2d do
2 visited[v] = false, V Kr v E G
3 for each Kr u E G do
4 if A.s(u) = k and not visited[u] then
5 Q <— empty queue, Q.push(u)
6 S empty set, S.add(u)
7 visited[u] <— true
8 while not Q.empty() do
9 u Q.pop()
io for each Kr v s.t.

(u U v C C) A (C is a Ks) A (2,,s(C) > k) do
ii if not visited[v] then
12 Q.push(v), S.add(v)
13 visited[v] <— true

14 report S / / output the k-(r,$) nucleus

Algorithm 3: NUCLEUSDECOMPOSITION(G, r, s)

maxA, SET-2,(G,r,$) / / Finding Xs of Krs

2 TRAVERSAL(G,r,s,4),maxX)// Finding all (r,$) nuclei

be in the same triangle; and all the edges of this triangle should have 2,35 greater-than or equal to
k. Similar for r = 3,s = 4; traversal is done on triangles, and neighborhood condition is on the
containment of triangles in four-cliques.

In summary, (r, s) nucleus decomposition problem has two phases: (1) peeling process which
finds the 2.„, values of Krs, (2) traversal on the graph to find all the k-(r, s) nuclei. For r = 1,s = 2
case, the algorithm for finding A2 of vertices is based on the following property, as stated in [84]:
to find the vertices with the 2,2 of k, all vertices of degree less than k and their adjacent edges are
recursively deleted. For first phase, we provide the generic peeling algorithm in Alg. 1, which has
been introduced in our earlier work [104], and for the second phase, we give the generic traversal

20

algorithm in Alg. 2, which is basically the implementation of Corollary 2. The final algorithm,
outlined in Alg. 3 combines the two.

Lastly, we define sub-(r, s) nucleus and strong Ks -connec-
ted ness to find the Krs with same Xs values. We will use them to efficiently locate all the k-(r, s)
nuclei of given graph.

Definition 4 Two Krs u, d with A,(u) = (d) are strongly Ks-connected if there exists a sequence
u = 141,142 ,uk = d such that:

• Vi, (ui) = (u)

• Vi, C s.t.

— C is a Ks

— (ujUui+i) c C

— Ar,s(C) = Xs(u).

Definition 5 sub-(r,$) nucleus, denoted by Tr,s, is a maximal union of Krs s.t. V Kr pair u, v C S,

• 2d(u) = A.s(v)

• u and v are strongly Ks-connected

The sub- (1, 2) nucleus is defined as the subcore in [107, 106]. All the notations are given in Table 2.

Disjoint sets problem

Disjoint-set data structure, also known as union-find, keeps disjoint dynamic sets, and maintains
upon the operations that modifies the sets [35]. Each set has a representative. There are two main
operations: UNION (x,y) merges the dynamic sets with ids x and y, and creates a new set, or just
merge one of the sets into the other. FIND (x) returns the representative of the set which contains
x.

Disjoint-set forest is introduced with two powerful heuristics [123]. In the disjoint-set forest,
each set is a tree, each node in the tree is an element of the set, and the root of each tree is the
identifier of that set. To keep the trees flat, two heuristics are used that complement each other.
First is union-by-rank, which merges the shorter tree under the longer one. Second heuristic is
path-compression that makes each node on the find path point directly to the root. Time complexity
with union-by-rank and path-compression heuristics is O((m+n)log*n), where log* n is the inverse
Ackermann function which is almost linear [123]. Pseudocode for FIND and UNION operations
are given in Alg. 4.

21

Algorithm 4: DISJOINT-SET FOREST

LINK(x,y): // x and y are nodes in the tree
if x.rank > y.rank then y.parent <— x
else

x.parent <— y
if x.rank = y.rank then y.rank y.rank + 1

FIND(x):
S <— empty set
while x.parent is not null do x <— x.parent, S.add(x)
for each u E S do u.parent x
return x
UNION(x, y): LINK(FIND(x), FIND(y))

2.3 Literature and Misconceptions

In this section, we present a detailed review of related work on peeling algorithms. We point some
misconceptions about the definitions and the consequences. Our focus is on peeling algorithms and
their output, so we limit our scope to k-core and k-truss decompositions and their generalizations.
Detailed literature review of dense subgraph discovery can be found in [55, 76].

k-core decomposition

The very first definition of a k-core related concept is given by Erdös and Hajnal [42] in 1966.
They defined the degeneracy as the largest maximum core number of a vertex in the graph. Matula
introduced the min-max theorem [85] for the same thing, highlighting the relationship between
degree orderings of the graph and the minimum degree of any subgraph, and its applications to
graph coloring problem. Degeneracy number has been rediscovered numerous times in the context
of graph orientations and is alternately called the coloring number [82], and linkage [49].

First definition of the k-core subgraph is given by Seidman [112] for social networks analysis,
and also by Matula and Beck [84], as k-linkage, for clustering and graph coloring applications,
in the same year of 1983. Seidman [112] introduced the core collapse sequence, also known
as degeneracy ordering of vertices, as an important graph feature. He states that k-cores are good
seedbeds that can be used to find further dense substructures. Though, there is no algorithm in [112]
on how to find the k-cores. Matula and Beck [84], on the other hand, gives algorithms for finding

A2 values of vertices, and also finding all the k-cores of a graph (and their hierarchy) by using these
k values, because there can be multiple k-cores for same k value. Both papers defined the k-core
subgraph as follows:

"A connected and maximal subgraph H is k-core (k-linkage) if every vertex in H has
at least degree k." [112, 84]

The connectedness is an important detail in this definition because it requires a post-processing
traversal operation on vertices to locate all the k-cores of the graph. Figure 2 shows this. There are

22

two 3-cores in the graph, and there is no way to distinguish them at the end of the peeling process
by just looking at the values of vertices.

I3-corel

I 3-core I 2-core

Figure 2: Multiple 3-cores

Batagelj and Zaversnik introduced an efficient implementation that uses bucket data structure to
find the A, values of vertices [15]. They defined the k-core as a not necessarily connected subgraph,
in contrast to previous work they cited [112, 84]. With this assumption, they claimed that their
implementation finds all the k-cores of the graph.

Finding the relationships between k-cores of a graph has gained a lot of interest. Nested struc-
ture of k-cores reveals a hierarchy, and it has been shown to be useful for visualization [8] and
understanding the underlying structure of complex networks arising in many domains. Carmi et
al. [25] and Alvarez-Hamelin et al. [9] investigated the k-core hierarchy of internet topology at
autonomous systems (AS) level. Healy et al. [61] compared the k-core hierarchies of real-world
graphs in different domains and some generative models.

Given the practical benefit and efficiency of k-core decomposition, there has been a lot of recent
work to adapt k-core algorithms for different data types or setups. Out of memory computation is
an important topic for many graph analytic problems that deal with massive graphs not fitting in
memory. Cheng et al. [30] introduced the first external-memory algorithm Wen et al. [133] and
Khaouid et al. [71] provided further improvements in this direction. Regarding the different type
of graphs, Giatsidis et al. adapted the k-core decomposition for weighted [52] and directed [51]
graphs. To handle the dynamic nature of real-world data, Sariyuce et al. [107] introduced the
first streaming algorithms to maintain k-core decomposition of graphs upon edge insertions and
removals. They recently improved these algorithms further by leveraging the information beyond
2-hop [106]. Li et al. [79] also proposed incremental algorithms for the same problem. More
recently, Wu et al. [135] approached dynamic data from a different angle, and adapted k-cores for
temporal graphs where possibly multiple interactions between entities occur at different times. Mo-
tivated by the incomplete and uncertain nature of the real network data, O'Brien and Sullivan [92]
proposed new methods to locally estimate core numbers (A, values) of vertices when entire graph
is not known, and Bonchi et al. [20] showed how to efficiently do the k-core decomposition on
uncertain graphs, which has existence probabilities on the edges.

One common oversight in all those recent work (except [107, 104]) is that they ignore the
connectivity of k-cores. This oversight does not change their results, but limit their contributions:
they adapt/improve the peeling part of k-core decomposition, which finds the X s of vertices, not the
entire k-core decomposition which also needs traversal to locate all the (connected) k-cores. Con-
sidering the external memory k-core decomposition algorithms [30, 71, 133], existing works only
focused on how to compute the A. values of vertices. However, the additional traversal operation in

23

Figure 3: k-dense [102] (triangle k-core [139]), k-truss [33] (k-community [128]) and k-truss com-
munity [65] (k- (2, 3) nucleus [104]) on the same graph for k=2. Each subgraph given by the
corresponding algorithm is shown in dashed.

k-dense
1
1

triangle k-core I

k-truss
k- community

k-truss community

i
 J

r I I
I \ I I
I ‘ I I
I ‘ I I
I I I
 I 6 .— J
.. ,

1k-(2,3) nucleus `i ‘

I i\

external memory is not taken into consideration which is at least as expensive as finding A, values.
Finding the (connected) k-cores and constructing the hierarchy among them efficiently in the exter-
nal memory computation model is not a trivial problem and will limit the performance of proposed
algorithms for finding k-core subgraphs and constructing the hierarchy. Similar argument can be
considered for weighted [52], probabilistic [20], and temporal [135] k-core decompositions, all of
which have some kind of threshold-based adaptations on weights, probabilities and timestamps,
respectively. On the other hand, connectedness definition is semantically unclear for some existing
works like the directed graph core decomposition [51]. It is only defined that in- and out-degrees
of vertices can be considered to find two A, values, but traversal semantic is not defined for finding
subgraphs or constructing the hierarchy. One can think about building the hierarchy by consid-
ering the edges from lower level k-cores to higher level ones, or the opposite. To remedy those
misconceptions, we focus on the efficient computation of traversal part for k-core decomposition
and its higher-order variants.

k-truss decomposition

k-truss decomposition is inspired by the k-core and can be thought as the same peeling problem in
a higher level that deals with triangles. It is independently introduced, with subtle differences, by
several researchers. Chronologically, the idea is first proposed by Saito et al. [102], to the best of
our knowledge, in 2006:

"k-dense is a subgraph S if each adjacent vertex pair in S has more than or equal to
(k-2) common adjacent vertices in S."

In other words, each edge in S should be involved in at least k-2 triangles. Nothing is mentioned

24

about the connectedness of the vertices and edges, which implies that a k-dense subgraph might
have multiple components. Saito et al. argue that k-dense is a good compromise between easy
to compute k-cores and high quality k-cliques, and it is useful to detect communities in social
networks. In 2008, Jonathan Cohen introduced the k-truss as a better model for cohesive subgraphs
in social networks [33], which became the most popular naming in the literature:

"k-truss is a one-component subgraph such that each edge is reinforced by at least
k-2 pairs of edges making a triangle with that edge."

In 2012, Zhang and Parthasarathy [139] proposed a new definiton for visualization purposes:

"triangle k-core is a subgraph that each edge is contained within at least k triangles
in the subgraph."

Again there was no reference to the connectedness, implying multiple components can be observed
in a triangle k-core. In the same year, Verma and Butenko [128] introduced the following:

"k-community is a connected subgraph if every edge is involved in at least k trian-
gles."

The subtle difference between those papers is the connectedness issue. k-dense [102] and tri-
angle k-core [139] definitions allow the subgraph to be disconnected whereas the k-truss [33] and
k-community [128] are defined to be connected. All of these works only provided algorithms to
find the A.3 values of edges. k-dense and triangle k-cores can be found this way since they can be
disconnected. However, finding the k-truss and k-community subgraphs requires a post-processing
traversal operation, which increases the cost. As a stronger alternative to the k-truss, Huang et
al. [65] introduced the k-truss community. The only difference is that each edge pair in a k-truss
community is directly or transitively triangle-connected, where two edges should reside in the same
triangle to be triangle-connected. The generic k-(r,$) nucleus, proposed by Sariyuce et al. [104],
for r = 2, s = 3 gives the exact same definition. This brings a stronger condition on the connec-
tivity structure, and shown to result in denser subgraphs than the classical k-truss definition [65].
However, it has an extra overhead of post-processing traversal operation that requires to visit tri-
angles, which is more expensive than the traditional traversal. Authors devised TCP index, a tree
structure at each vertex, to remedy this issue [65]. Figure 3 highlights the difference between those
definitions on a simple example.

k-truss decomposition serves as a better alternative to the k-core. For most applications that
k-core is useful for, k-truss decomposition performs better. Gregori et al. [59] investigated the
structure of internet AS-level topologies by looking at the k-dense subgraphs, similar to Carmi et
al. [25] and Alvarez-Hamelin et al. [9] who used k-core for same purpose. Orsini et al. [94] also
investigated the evolution of k-dense subgraphs in AS-level topologies. It has been also used to
understand the global organization of clusters in complex networks [121]. Colomer-de-Simon et

25

al. used the hierarchy of k-dense subgraphs to visualize real-world networks, as Healy et al. [61]
used the k-cores for the same objective.

Proven strength of k-truss decomposition drew further interest for adapting to different data
types and setups, similar to the k-core literature. Wang and Cheng introduced external memory
algorithms [129] and more improvements are provided by Zhao and Tung [140] for visualization
purposes. More recently, Huang et al. [66] introduced probabilistic truss decomposition for uncer-
tain graphs.

Similar to the k-core case, overlooking the connectivity constraints limits the contributions in
the k-truss literature as well. For example, external memory k-truss decomposition [129] would
be more expensive and require more intricate algorithms if it is done to find connected subgraphs
by doing the traversal in external memory model. We believe that our algorithms for efficiently
finding the k-tnisses and constructing the hierarchy will be helpful to deal with this issue.

Generalizations

Given the similarity between k-core and k-truss decompositions, people have been interested in
unified schemes to generalize the peeling process for a broader set of graph substructures.

Saito et al. pointed a possible direction of generalization in their pioneering work [102], where
they defined k-dense subgraphs. Their proposal is as follows:

"Subgraph S is a h-level k-dense community if the vertices in every h-clique of S is
adjacent to at least h-k common vertices." [102]

In other words, h-level k-dense community is the set of h-cliques where each h-clique is contained
in at least h — k number of (h + 1)-cliques. Note that, there is no connectivity constraint in the
definition. h-level k-dense community subsumes the disconnected k-core, which contains multiple
k-cores, for h = 1. For h = 2, it is their k-dense definition [102]. They claimed that h-level k-dense
communities for h > 2 are more or less same with h = 2 and incurs higher computation cost. So
they did not dive into more algorithmic details and stick with h = 2.

Sariyuce et al. [104] introduced a broader definition to unify the existing proposals, which can
be found by a generic peeling algorithm. As explained in Section 2.2, their definition subsumes k-
core and k-truss community [65] concepts. It is also more generic than h-level k-dense community
of [102], since (1) it allows to look for involvement of cliques whose size can differ by more
than one, (2) enforces a stronger connectivity constraint to get denser subgraphs. h-level k-dense
community can be expressed as the k-(r, r + 1) nucleus which does not have any connectivity
constraint (k is actually h — k and it does not matter). Well-defined theoretical notion of k- (r, s)
nucleus enables to provide a unified algorithm to find all the nuclei in graph, as explained in
Section 2.2.

Sariyuce et al. [104] also analyzed the time and space complexity of (r, s)-nucleus decomposi-
tion. For the first phase, they report that finding A, values of nuclei (Alg. 1) requires 0(RT,(G) +

26

E, wr(v)d(v)S-r) time with 0 (1Kr (G)1) space, where RTr(G) is Kr enumeration time, and second
part is searching each Ks that a Kr is involved in (o)r(v) is the number of Krs containing vertex v,
d (v) is the degree of v, and 1 K r(G)1 is the number of Krs in G). For the second phase, traversal on
the entire graph needs to access each Kr and examine all the Kss it is involved. Its time complexity
is the same as the second part of first phase: 0(Ev cor(v)d(v)s—r) which also gives the total time
complexity.

2.4 Algorithms

In this part, we first highlight the challenging aspects of the traversal phase, then introduce two
algorithms for faster computation of (r, s)-nucleus decomposition to meet those challenges.

Challenges of traversal

As mentioned in the previous section, time complexity of the traversal algorithm for (r, s) nuclei
is 0(E, wr(v)d(v)s—r). However, designing an algorithm that constructs the hierarchy with this
complexity is challenging. In [104], it is stated that finding the nuclei in the reverse order of X
is better since it enables to discover previously found components, thus avoiding repetition. No
further details are given, though. This actually corresponds to finding all Tr,s (sub-(r, s) nuclei of
Definition 5), connected Krs with the same X value, and incorporating the relations among them.
But, keeping track of all the Trs in a structured way is hard. Figure 4 shows a case for k-core
(r = 1, s = 2). Traversal algorithm needs to understand the relation between T1,2s of equal X that
are not directly connected. For instance, Trs A and E are in the same 2-core, but the traditional
BFS will find 3 other Trs (F, D, G) between those two. During the traversal operation, there is a

t
o 'Ae
l l
o e

B ---4- -
FL___Aii_

1 3 —1 "or
I D

1
G

e '
E

11 ii 11 ii
1 o e eA
1 1

1111i1 il1, 0
0 11 2 il: 11 e e

el 1 1 el
1 l

----11:0— Mr
l
l ---11. -J

1 ra o e e

l I
l l

CI,
e e

e

ABCDEFG

Figure 4: Example of T1,2s for X = 2 and X = 3. Hierarchy tree is shown on the right with
participating T1,2s. X s are shown in red. Traversal algorithm needs to infer that, for instance,
components A and E are in the same 2-core.

27

need to detect each k-(r, s) nucleus, determine containment relations and construct the hierarchy.
One solution that can be thought is to construct the - expectedly smaller - supergraph which takes
all the Tr,s as vertices and their connections as edges. Then, repetitive traversals can be performed
on this supergraph to find each k-(r, s) nucleus and the hierarchy. However, it is not guaranteed
to get a significantly smaller supergraph which can be leveraged for repetitive traversal. The Tr,,
structure of real-world networks, which are investigated in Section 2.5, also verify this concern. It
is clear that there is a need for a lightweight algorithm/data structure that can be used on-the-fly,
so that all the k-(r, s) nuclei can be discovered with the hierarchy during the traversal algorithm.

The other challenge with the traversal algorithm is the high computational cost for r > 2 cases.
Consider the (2, 3) case. We need to traverse on edges, and determine the adjacencies of edges by
looking at their common triangles. At each step, it requires to find the common neighbors of the
vertices on extremities (of the edge), check whether each adjacent edge is previously visited, and
push to queue if not. As explained at the end of Section 2.3, complexity becomes 0(3 * 1 A 1) . Cost
is getting much higher if we look for (3, 4) nuclei, which is shown to give denser subgraphs with
more detailed hierarchy. Ideally we are looking to completely avoid the costly traversal operation.

Disjoint-set forest idea

We propose to use disjoint-set forest data structure (DF) to track the disjoint Tr,s (of equal X), and
construct the hierarchy where Tr„, with smaller A, is on the upper side, and greater 2„ is on the lower
side. DF has been used to track connected components of a graph and fits perfectly to our problem
where we need to find the connected components at multiple levels.

DF-TRAVERSAL algorithm, outlined in Alg. 5, is used to replace the naive TRAVERSAL (Alg. 2)
in NUCLEUSDECOMPOSITION (Alg. 3). Basically it finds all the 7,-,s in the decreasing order of 2,.
We construct the hierarchy-skeleton tree by using Trss. Each node in the hierarchy-skeleton is a
Trs. We define subnucleus struct to represent a Tr,s. It consists of 2„, rank, parent and root
fields. A, field is the A„ (v) for v E 7;4 , rank is the height of the node in the hierarchy-skeleton,
parent is a pointer to the parent node and root is a pointer to the root node of the hierarchy-
skeleton. Default values for parent and root are null, and rank is O. Figure 5 shows an example

Algorithm 5: DF-TRAVERSAL(G, r, s , A, (.) , maxA)

i hrc <— list of subnuclei in a tree structure
2 comp(.) V IC, E G // subnucleus id for each A;
3 visited[v] = false // lazy init
4 for each k E [max2, ,1] do
5 for each Kr u E G do
6 if A, (u) = k and not visited[u] then
7 SUBNUCLEUS (u, G, r, s, A, (.), visited, comp, hrc)

8 root <— subnucleus, with A„ = 0
9 for each s E hrc do
10 if s.parent is null then s.parent root

it hrc.add(root) and REPORT ALL THE NUCLEI BY hrc,comp

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

hierarchy-skeleton obtained by Alg. 5. Thin edges show the disjoint-set forests consisting of Tr,,s
of equal A, value. The hierarchy of all (r, s) nuclei, the output we are interested, can be obtained by
using the hierarchy-skeleton easily: we just take the child-parent links for which the values are
different.

In the DF-TRAVERSAL algorithm, we store the subnuclei
in hrc list (line 1) which also represents the hierarchy-skele-
ton. Krs in a Tr,, are stored by inverse-indices; comp keeps
subnucleus index of each Kr in hrc (line 2). We also use vi s it ed to keep track of traversed Krs
(line 3). Main idea is to find each Tr,,, in decreasing order of A, (in lines 4-7). We construct the
hierarchy-skeleton in a bottom-up manner this way and it lets us to use DF to find the representative
Tr,,, i.e., the greatest ancestor, at any time. At each iteration we find an un-vi sited Kr with the A,
value in order (line 6) and find its Tr4 by SUBNUCLEUS algorithm (line 7), which also updates the
hierarchy-skeleton.

SUBNUCLEUS (Alg. 6) starts by creating a subnucleus, with X of the Kr of interest. We will

Algorithm 6: SUBNUCLEUS(u, G, r,s,A,(•),
visited, comp, hrc)

sn subnucleus, with Â. = (u), hrc.add(sn)
2 comp(u) sn, k A,(u)
3 marked[v] = false
4 merge <— list of subnuclei, merge .add(sn)
5 Q <— empty queue, Q.push(u)
6 visited[u] true
7 while not Q.empty() do
8 u Q.pop(), comp(u) sn
9 for each Kr v s.t.

(ttUv c C) A (C is a Ks) A (2,;s(C) = k) do
if A.(v) = k then

if not visited[v] then
Q.push(v), visited[v] <— true
comp(v) sn

e se
sx—comp(v)// 2.(v))4(
if not marked[s] then

marked[s] = true
s FIND-R(s)

if not marked[s] A s sn then
if hrc(s).A, > k then

hrc(s).parent hr c (s) soot <— sn

else merge.add(s) / / hrc(s).A, = k
marked[s] = true

24 for each m,n E merge do
25 UNION-R(m,n)

// lazy init

29

Figure 5: A graph shown with 7,;,, regions on the left and the corresponding hierarchy-skeleton on
the right. A values of 7,,;ss are the white numbers. Thin edges are disjoint-set forests.

store the discovered Krs in this subnucleus (by inverse indices). We put this subnucleus into
hrc (line 1) and assign its comp id (line 2). We use marked (line 3) to mark the adjacent subnucle i en-
countered during traversal so that unnecessary computation is avoided in lines 16-23. We do traver-
sal (lines 7-23) by using a queue. At each step of the traversal, we process the next Kr in the queue.
First, we assign its comp id as the new subnucleus (line 8) and then visit the adjacent Krs residing
in same Kss, in which min A, of Kr is equal to A (v) (line 9). This is exactly the condition for Tr,s,
given in Definition 5. For each adjacent Kr, its A, is either equal (line 10) or greater (line 14) by
definition of Tr,s. If it is equal and not vi s it ed before, we visit it, put into queue (line 12) and
also store in the current subnucleus (line 13). Otherwise, we find an adjacent subnucleus s with
greater A (line 15), that is already in hierarchy-skeleton, and can update the hierarchy-skeleton
(lines 18-23) unless we had encountered s before (line 16).

Location of the subnucleus s in the hierarchy-skeleton is important. If it is parentless, we
can just make it a child of the current subnucleus we build. If not, it means subnucleus s is
a part of a larger structure and we should relate our current subnucleus to the representative of
this large structure, which is the greatest ancestor of s that is guaranteed to have greater or equal A
(by line 9). So, hierarchy-skeleton update starts by finding the greatest ancestor of the s in line 18.
FIND-R procedure is defined in Alg. 7. Its difference from FIND of Alg. 4 is that we use root field,
not parent. root of a node implies its greatest ancestor in the hierarchy-skeleton, i.e., either it is
the greatest ancestor or a few steps of root iterations would find the greatest ancestor. parent of
a node, on the other hand, represents the links in hierarchy-skeleton, and not modified in FIND-R.
After finding the root and making sure that it is not processed before (line 19), we can merge the
current subnucleus to the hierarchy-skeleton. If the root has greater A, we make it a child of our
current subnucleus (line 21), by assigning both root and parent fields. Otherwise, we defer
merging to the end (line 22), where we merge all subnuclei with equal A, by UNION-R operations
(lines 24-25), defined in Alg. 7. UNION-R is slightly different than UNION of Alg. 4 in that it uses
FIND-R instead of FIND and sets the root field of child node to the parent (in LINK-R).

Figure 5 displays the resulting hierarchy-skeleton for the Tr,s regions shown on the left. We
process Tr4 in alphabetical order, which also conforms with decreasing order of A,. Consider the

30

Tr,s O, which is found and processed last. O finds the adjacent Tr,ss I, J and K, during lines 9-23
of Alg. 6. All have greater A values, so we focus on lines 14-23. Greatest ancestor of I is G, and
we make G child of 0 (line 21) since its A is greater. Greatest ancestors of J and K are L and N,
respectively, and they have equal A values. So, we merge L and N with O in lines 24-25. Say we
merge O and N first and O becomes parent of N since its rank is higher. Then, we merge O and
L. Their ranks are equal and we arbitrarily choose L as the parent.

After traversing all the Tr,s, we create a root subnucleus to represent entire graph and make it
parent to all the parentless nodes (lines 8-11 in Alg. 5). Time complexity of DF-TRAVERSAL does
not change, i.e., 0(E1, co, (v)d(v)s—r). Additional space is required by the auxiliary data structures
in DF-TRAVERS AL. hrc needs 4 .1 Tr,s 1 (for four fields), and comp and vi s it ed requires 1Kr 1 space
each. In addition, SUBNUCLEUS might require at most 2 .17;41 for marked and merge, and at most
1Kr 1 for Q, but reaching those upper bounds in practice is quite unlikely. Overall, additional space
requirement of DF-TRAVERSAL at any instant is between 4 • 1 Tr,s 1 + 2 • 1Kr 1 and 6 • 1 Tr,s 1 + 3 • 1Kr 1 •
An upper bound for 1 Tr,s 1 can be given as 1Kr1, when each Kr is assumed to a subnucleus, but this
case is also quite unlikely as we show in Section 2.5.

Avoiding traversal

All the Tr,s can be detected without doing a traversal. A Kr is said to be processed, if its A, is
assigned. During the peeling process, neighborhood of each Kr is examined, see lines 6-7 of Alg. 1,
but processed neighbors are ignored (line 8). We leverage those ignored neighbors to construct the
Tr,s. We introduce FASTNUCLEUSDECOMPOSITION algorithm (Alg. 8) to detect Tr,s early in the
peeling process so that costly traversal operation is not needed anymore.

At each iteration of the peeling process, a Kr with the minimum co is selected and co of its
unprocessed neighbors are decremented. No information about the surrounding processed Krs is
used. If we check the processed neighbors, we can infer some connectivity information and use
it towards constructing all the Tr,s as well as the hierarchy-skeleton. For example, assume we are
doing k-core decomposition and a vertex u with degree d is selected. We assign A (u) = d and check
the unprocessed neighbors of u to decrement their degree, if greater than d . We can also examine

Algorithm 7: NEW DISJOINT-SET FOREST

LINK-R(x,y): // x and
if x.rank > y.rank then y.parent x, y.root <— x
else

x.parent <— y, x.root <— y
if x.rank = y.rank then y.rank <— y.rank + 1

FIND-R(x):
S empty set
while x.root is not null do x <— x.root, S.add(x)
for each u E S do u.root <— x
return x
UNION-R(x,y): LINK-R(FIND-R(x), FIND-R(y))

Y are nodes in the tree

31

the processed neighbors. A, of any processed neighbor is guaranteed to be less than or equal to d,
by definition. Say v is a neighbor with X (v) = d. Then, we can say that u and v are in the same
Tro.. Say w is another neighbor with X (w) < d. Then, we can infer that maximum d-(1, 2) nucleus

Algorithm 8: FASTNUCLEUSDECOMPOSITION(G, r, s)

I Enumerate all Ics, mark them unprocessed, find their cos
2 hrc <— list of subnuclei in a tree structure
3 comp(v) = —1 V Kr v E G 1 1 subnucleus id for each Kr
4 ADJ <— list of adjacent subnucleus pairs
5 for each unprocessed Kr u with minimum cos(u) do
6 (u) = (05(u), hr c.maxX = i1, (u)
7 sn subnucleus with = (u)
8 Find set <5° of Kss containing u
9 for each C E do
10 if all Kr v c C is unprocessed then
11 for each Kr v C, v u do
12 if co,(v) > cos(u) then co,(v) = co,(v) — 1

13 e se
14 D <— set of processed Krs C C
15 w v E D with the smallest X
16 if 2, (w) = (u) then
17 if comp (u) = —1 then comp(u) = comp(w)
18 else UNION-R (comp(u), comp(w))

19 else ADJ.add(comp(u), comp (N)) / / (w) < (u)

20 if comp (u) = —1 then comp (u) sn, hrc.add(sn)
21 Update all (-1, •) E ADJ with (comp(u), .)

22 BUILDHIERARCHY(ADJ,hrc) // postprocessing

23 create subnucleus root with X = 0, tie to all existing roots
hrc.add(root) and REPORT ALL THE NUCLEI BY hrc, comp

Algorithm 9: BUILDHIERARCHY(ADJ,hrc)

binned_ADJ X— hrc.ma.0., # of empty lists // to bin ADJ

2 for
3

4 for
5

6

each (s,t) E ADJ do // hrc (s) > hrc (t) .
binned_ADJ[hrc(t).2d.add(s,t)

each list l E binned_ADJ in [hrc.max2., ... 1] order do
merge x— empty list of subnucleus pairs
for each (s,t) E l do

7 s FIND-R(s), t x— FIND-R(t)
8 if s t then
9 if hrc(s).2., > hrc(t).A, then
10 hrc(s).parent = hrc(s).root = t

11 else merge.add(s,t)

12 for each (s, t) E merge do
13 UNION-R (s,t)

32

Table 3: Statistics for the real-world graphs. Largest graph in the dataset has more than 37M
edges. is the number of triangles, 1K41 is the number of four-cliques. Ratios of s-cliques to
r-cliques are shown in columns 6,7,8, for s < 4 and s - r = 1. Columns 9 to 14 show sub-(r, s)
nuclei numbers (1Tr,s1) and non-maximal sub- (r, s) nuclei numbers (I Tr*,s1), artifact of Alg. 8, for the
(r, s) values we interested. Last two columns are the number of connections from Tr*ss with higher
A, values to the ones with lower A, values.

II/ 1E1 1A1 1K-41 m 10 k IT1,21 IT1.,21 17'2,31 li231 17'3,41 1T3.41 1C4.(723)11c1(734)1
skitter(SK) 1.7M 11.1M 28.8M 148.8M 6.54 2.59 5.17 1.1M 1.2M 2.1M 2.7M 1.4M 2M 8.0 M 8.2 M
Berkeleyl3(BE) 22.9K 852.4K 5.3M 26.6M 37.22 6.30 4.96 8.6K 9.3K 106.3K 137.7K 206.0K 261.1K 1.4 M 1.9 M
MIT(MIT) 6.4K 251.2K 2.3M 13.7M 39.24 9.44 5.77 2.7K 2.8K 27.3K 34.6K 77.6K 105.7K 509.1 K 1.3 M
Stanford3(ST) 11.6K 568.3K 5.8M 37.1M 49.05 10.27 6.37 4.7K 4.9K 56.8K 72.5K 185.2K 255.1K 1.2 M 2.9 M
Texas84(TX) 36.4K 1.6M 11.2M 70.7M 43.74 7.03 6.33 13.5K 14.9K 210.0K 266K 395.5K 498.9K 2.6 M 3.7 M
twit-hb(TW) 456.6K 12.5M 83.0M 429.7M 27.39 6.63 5.18 341.4K 350K 2.9M 3.3M 5.6M 7.3M 27.2 M 59.5 M
Google(GO) 916.4K 4.3M 13.4M 39.9M 4.71 3.10 2.98 408.7K 508.3K 386.9K 568.4K 251.4K 382.8K 982.8 K 814.7 K
uk-2005(UK) 129.6K 11.7M 837.9M 52.2B 90.60 71.35 62.36 1.5K 1.7K 837 837 836 836 0 0
wiki-0611(WK) 3.1M 37.0M 88.8M 162.9M 11.76 2.40 1.83 2.4M 2.5M 7.9M 9.7M 6.7M 9.3M 45.1 M 45.0 M

of w contains u, and Trs of u is an ancestor of Tr,s of w in the hierarchy-skeleton. Leveraging these
pairwise relations enables us to find all the Tr,s and construct the hierarchy-skeleton.

An important thing to note is that, it is not always possible to detect the Tr4 of a Kr by only
looking at the processed neighbors. Consider k-core decomposition on a star graph, for which
all vertices has A. = 1. Center vertex is processed in the last two steps of peeling, so it is not
possible to infer two connected vertices with equal until that time. We find non-maximal Tr,ss
(denoted as Tr*s) and combine them by using the disjoint-set forest algorithm. The difference from
the DF-TRAVERSAL algorithm is that our hierarchy-skeleton will have more nodes because of
non-maximal Tr,s.

Colored lines 13-22 in Alg. 8 implements our ideas. For each Ks we encountered (line 9),
processed neighbors are explored starting from line 13. Note that, there is no need to check every
adjacent and processed Kr in the same Ks, since the relations among them are already checked in
previous steps. It is enough to find and process the Kr w with minimum as in line 15. If w
has an equal value (line 16), we need to either put our Kr of interest to the subnucleus of w
(line 17) or merge to the subnucleus of w by UNION-R operation (line 18). In FASTNUCLEUS-
DECOMPOSITION algorithm, we only build disjoint-set forests during the peeling process (until
line 22). If A, (w) happens to have a smaller value (line 19), we put the pair of subnuclei to a list
(AD J), which will be used to build the hierarchy-skeleton after the peeling. We do not process the
relations between subnuclei of different X right away for two reasons: (1) subnucleus of the Kr
of interest might not be assigned yet (comp(u) is -1), (2) order of processing subnuclei relations is
crucial to build the hierarchy-skeleton correctly and efficiently. Regarding (1), we take care of the
Krs not belonging to a subnucleus in lines 20 and 21. For (2), we have the BUILDHIERARCHY
function (line 22), defined in Alg. 9.

In BUILDHIERARCHY, we create maxA, number of bins to distribute the subnuclei pairs based
on the smaller X of the subnucleus pair. The reason is same with our reverse order discovery of
subnuclei in DF-TRAVERSAL (Alg. 5): we construct the hierarchy-skeleton in a bottom-up man-
ner and it enables us to use disjoint-set forest algorithm to locate the k- (r, s) nuclei that we need.
Distribution is done in lines 2-3. Then, we just process the binned list (binnecLADJ) in reverse
order of values (line 4). We do the same operations to build the hierarchy-skeleton: lines 7-

33

11 of BUILDHIERARCHY and lines 18-22 of SUBNUCLEUS algorithm (Alg. 6) are almost same.
Once we finish each list in binned_ADJ, we union the accumulated subnuclei of equal A, values
(lines 12-13), as we did in lines 24-25 of SUBNUCLEUS algorithm. Finally, in FASTNUCLEUSDE-
COMPOSITION we create a subnucleus to represent entire graph, make it parent to all parentless
subnuclei, and give the hierarchy.

Avoiding traversal does not change the time complexity of overall algorithm, since the peeling
part was already taking more time. Auxiliary data structures in FASTNUCLEUSDECOMPOSITION
requires additional space, though. hrc needs 4 • 1 Tr*,s 1 in which subnuclei are not necessarily max-
imal, and comp needs 1K,1 . ADJ structure corresponds to the connections from Tr*ss with higher A
values to the ones with lower A values, which we denote as c.(Tr*s). The upper bound for Ic.,(Tr*,,)1

is (sr)1Ksl, when each Kr is assumed to be a Tr*, and their 2, values are adversary (see the end of
Section 2.3 for details). However, it is unlikely as we show in Section 2.5. binned_ADJ in BUILD-
HIERARCHY is just an ordered version of ADJ, and needs the same amount of space; lc 1,(Tr*„)1.
Lastly, merge in BUILDHIERARCHY might require another 1c4,(7,.*4)1 at most, but it is quite un-
likely. Overall, additional space requirement of FASTNUCLEUSDECOMPOSITION at any instant
is 4 • ITr*,s1 + 2 ' 1 c ' .(Tr*,$)1+1Kr 1 and additional 1 c ,(Tr*„) I might be needed. Section 2.5 gives more
details on Tr*, structure of real-world networks and their impact to the memory cost.

2.5 Experiments

We evaluated our algorithms on different types of real-world networks, obtained from SNAP [77],
Network Repository [100] and UF Sparse Matrix Collection [37]. Our dataset includes an internet
topology network (skitter), facebook friendship networks of some universities (Berke1ey13,
MIT, Stanford3, Texas84) [125], follower network of Twitter users tweeted about Higgs boson-
like particle discovery (t wit -hb), web networks (Go ogle, uk-2005) and network of wikipedia
pages (wiki-0611). We ignore the directions for directed graphs. Important statistics of the net-
works are given in Table 3. 11(5111Kr 1 ratio gives an estimate for the k-(r, s) nucleus decomposition
runtime, as explained at the end of Section 2.3, and we put them in columns 6-8 to show the chal-
lenging and diverse characteristics of the networks in our dataset. Note that most of the networks
have relatively high edge density in the realm of real-world networks and it makes the computation
more expensive. We also included graphs with various IK,,,VIK,1 ratios to diversify our dataset.
Last eight columns are shown to explain the runtime and memory costs of our algorithms. All the
algorithms are implemented in C++ and compiled using gcc 5.2.0 at -02 optimization level. All
experiments are done on a Linux operating system running on a machine with Intel Xeon Haswell
E5-2698 2.30 GHz processor with 128 GB of RAM.

Nucleus decomposition has been shown to give denser subgraphs and more detailed hierarchies
for s — r=1 cases, for fixed s [104]. We implemented and tested our algorithms for s — r=1 cases
where s < 4: giving us (1, 2), (2, 3) and (3, 4) nucleus decompositions. (1, 2)-nucleus decom-
position is same as the k-core decomposition [112] and (2,3) corresponds to k-truss community
finding [65] (stronger definition of k-truss decomposition [33]). We consider the k-(r, s) nucleus as
a set of Ics. In our algorithms, we find the k-(r, s) nuclei for all k values and determine the hierar-
chy tree among those nuclei. We report the total time of peeling and traversal (or post-processing)

34

Table 4: k-core decomposition results. HYPO is the hypothetical limit for the best possible traversal
based algorithm. NAIVE is Alg. 3, DFT is the one using Alg. 5, FND is the Alg. 8 and LCPS is
our adaptation from [84]. Right-most column is the runtimes of fastest algorithm and rest are its
speedups over other algorithms

(1,2)-nuclei
speedups
HYPO

with
NAIVE

respect
DFT

to
FND

time (s)
LCPS

skitter 0.41x 5.94x 2.79x 1.33x 1.94
Berkeleyl3 0.82x 19.74x 1.68x 2.77x 0.05
MIT 0.82x 17.51x 1.74x 2.80x 0.01
Stanford3 0.78x 25.50x 1.76x 2.19x 0.03
Texas84 0.78x 23.01x 1.61x 2.57x 0.11

twit- hb 0.80x 27 .89x 1.94x 2.60x 1.18

Google 0.15x 3.45x 0.40x 0.27x 3.83
uk-2005 0.86x 58.02x 2.61x 3.32x 0.17
wiki-0611 0.52x 10.09x 1.96x 1.41x 7.79
avg 0.66x 21.24x 1.83x 2.14x best

that takes the graph as input and gives all the nuclei with an hierarchy.

k-core decomposition (or (1, 2) nuclei)

Peeling phase of the k-core decomposition, which finds A values of vertices, is well studied, and
most efficient implementation is used in our work. As mentioned before, traversal part, however,
is mostly overlooked and there is no true algorithm to serve as a baseline.

In their pioneering work, Matula and Beck [84] introduced a high-level algorithm, named
LCPS (Level Component Priority Search), to detect k-cores and the hierarchy among them. LCPS
algorithm traverses the vertices based on A. values in a selective order and outputs them with in-
terspersed brackets. The vertices enclosed by paired brackets at depth k + 1 are the vertices of a
k-core in G. The traversal can be started from any vertex, and neighbors are discovered and put in
a priority queue along with their 2., values. At each step, vertex with the maximum A, is chosen
from the queue, and processed. Closed/open brackets are interspersed according to the A, values of
consecutively processed vertices. Authors argue that time complexity of LCPS is 0(1ED, but an
implementation may not always be possible owing to the difficulty of maintaining an appropriate
priority queue [84].

We adapt and implement the LCPS algorithm for our objectives. We alleviate the problem of
maintaining an appropriate priority queue by using the bucket data structure, known by the bucket
sort [35]. During the traversal, we place the discovered vertices in the bucket according to their
A values, and find the one with the maximum A value in 0(1) time. We also adapted the placing
brackets part to have the tree hierarchy, where each node is a T12. If the A value of vertex of
interest is equal to the one in the previous step, we stay in the same node. If it is greater, we go

35

Table 5: (2,3) and (3,4) nucleus decomposition results. Right-most column for each is the runtimes
of the fastest algorithm and rest are its speedup over other algorithms. Starred numbers (*) show
lower bounds, when the algorithm did not finish in 2 days. HYPO is the hypothetical limit for the
best possible traversal based algorithm. For (2,3), it is done on edges and triangle connections, and
for (3,4) it is on triangles and four-clique connections. NAIVE is Alg. 3 and TCP* is the indexing
algorithm proposed by [65] and does not even include (2, 3) nuclei finding. DFT is the one using
Alg. 5 and FND is the Alg. 8.

(2,3)-nuclei
speedups with respect to time (s)

(3,4)-nuclei
speedups with respect to time (s)

HYPO NAIVE TCP*[65, DFT FND HYPO NAIVE DFT FND

skitter 1.54x 45.62x 3.69x 2.04x 91.3 1.78x 163.91*x 1.96x 1054.2

Berkeley13 1.13x 10.76x 3.41x 1.40x 7.3 1.42x 1812.47*x 1.52x 95.3
MIT 1.lOx 11.68x 3.45x 1.33x 2.8 1.45x 3848.02*x 1.53x 44.9
Stanford3 1.lOx 12.58x 3.41x 1.36x 7.8 1.48x 1321.89*x 1.58x 130.7
Texas84 1.lOx 14.41x 3.35x 1.37x 16.8 1.49x 679.06*x 1.57x 254.5
twit-hb 1.33x 16.24x 3.27x 1.49x 255.5 1.78x 38.96*x 1.81x 4434.9
Google 1.31x 1729.93x 3.90x 1.59x 13.0 1.35x 1083.02*x 1.43x 159.6
uk-2005 1.68x 90.50x 11.07x 3.64x 562.5 1.24x 1.98*x 1.98*x 87329.6
wiki-0611 1.53x 7.06x 3.37x 1.63x 584.9 1.82x 23.00*x 1.91x 7513.5
avg 1.31x 215.4x 4.32x 1.76x best 1.53x > 996.92x > 1.70 x best

down in the tree by creating a chain of new nodes, otherwise we climb up in the tree. Number of
these new nodes (or steps to climb) is the difference between A, s of current and previous vertex. As
a result, we create a tree hierarchy with as many levels as the max in the graph.

Table 4 gives the total k-core decomposition runtimes for experimented algorithms; the fastest
one shown on the right-most column and its speedups over other algorithms given on the corre-
sponding columns. NAIVE is the base nucleus decomposition algorithm, given in Alg. 3, and uses
the naive traversal to find all k-cores. DFT is the algorithm that uses DF-TRAVERSAL (Alg. 5)
and FND is the FASTNUCLEUSDECOMPOSITION algorithm (Alg. 8). LCPS denotes the runtime
of our LCPS adaptation. Note that we are not aware of any other adaptation/implementation of
the LCPS algorithm in [84]. We also have a hypothetical runtime, shown as HYPO, which is
the peeling time plus a BFS traversal on the entire graph. HYPO is a limit for the most efficient
traversal (plus regular peeling) that can be done on a given graph. Although it does not compute
the hierarchy and find k-cores, it shows the best that can be done with a traversal-based nucleus
decomposition algorithm. Peeling phases of HYPO, NAIVE, DFT, and LCPS are same.

Results show that our LCPS adaptation outperforms other alternatives. Detailed timings sug-
gest that traversal time is almost same with peeling, satisfying the linear complexity in the number
of edges. On average, LCPS is 21.24x faster than NAIVE algorithm. Speedups over DFT and
FND are 1.83x and 2.14x. Our LCPS adaptation also runs in only 66% time of the theoretical
limit of HYPO, where the overhead is due to the bucket data structure.

36

(2, 3) nuclei

Table 5 gives the runtime comparison for entire (2, 3) nucleus decomposition, where rightmost
column is the fastest algorithm and other columns are its speedups over other algorithms. To start
with, we state that our peeling implementation for (2, 3) nucleus decomposition is quite efficient;
for instance [129] computes A, values of skitter graph in 281 secs where we can do it in 74
secs. We also tested wiki-Talk graph just to compare with [65], and we get 41/13 = 3.15 times
faster results despite our less powerful CPU. Apart from NAIVE, DFT and FND algorithms, we
give HYPO as the bound for the best possible traversal-based nucleus decomposition algorithm that
traverses graph over edges and triangles. In addition, we implemented the TCP index construction
algorithm introduced by Huang et al. [65]. In that work, authors devise TCP index on vertices
which enable fast traversal to answer max42, 3) nucleus queries on vertices. TCP index is a tree
structure at each vertex, which is actually the maximum spanning forest of each ego-network.
TCP index is constructed after the peeling process to be ready for incoming queries. Note that our
implementation of TCP index construction is also quite efficient that is 1.8x faster than [65] for the
dataset in their work. In Table 5, we show the time only for peeling plus TCP index construction.
Entire graph still needs to be traversed using TCP to find all the (2, 3) nuclei and the hierarchy
among them. Peeling phases of HYPO, NAIVE, TCP and DFT are same.

Before checking the fastest, we look at the DFT algorithm, which is the second best. It is 2.4x
and 122.4x faster than TCP and NAIVE algorithms, respectively. Note that, TCP time is even
before the traversal. In 40% of the time that TCP spends for being ready to answer queries, DFT
is able to give all the answers, i.e, (2, 3) nuclei and the hierarchy. This shows the benefit of using
disjoint-set forests to detect the nuclei and construct the hierarchy. One of our initial objectives was
to meet the computational complexity of traversal phase by true design and implementation. DFT
does that by keeping the traversal time close to the peeling time; traversal takes only 23% more
time than peeling on average. Figure 6 shows the comparison, where we normalize runtimes with
respect to total DFT. Also, DFT performs only 34% slower than the hypothetical bound (HYPo).

The fastest algorithm is FND. It is 215x faster than NAIVE on average and gives 1729 speedup
on Google. It outperforms TCP by 4.3x on average and up to 1 lx (on uk-2 0 05). FND also works
1.76x faster than DFT and Figure 6 shows the detailed comparison. For DFT, peeling is Alg. 1 and
postprocessing is the traversal time (Alg. 5). For FND, postprocessing is the BUILDHIERARCHY
algorithm (Alg. 9) and peeling is the rest in Alg. 8. FND is able to keep the total time comparable
to the peeling of DFT; it is only 29% slower! This is exactly the benefit of avoiding traversal
by early discovery of non-maximal T2,3. On uk-2 0 05 graph, benefit of avoiding traversal is most
apparent; DFT performs worst compared to FND. Because there are only 837 T2,3s which means
no work is done by disjoint-set forest and all the time is spent on traversal (see Figure 6). As
mentioned in Section 2.4, extended peeling in FND finds non-maximal T2,3, and the count might
be much larger than the number of T2,3s. However, it is not the case. Last 6 columns of Table 3
show that there is no significant difference; on average non-maximal T2,3s are 24% more than T2,3s.

DFT and FND algorithms require additional memory, as mentioned at the end of Section 2.4.
The upper bound of additional space for DFT is 6 • 1T2,31+ 3 • 1E1, and takes at most —650MB
for any graph in our dataset, where int is used to store each number (four bytes). Although the

37

upper bound of 1T2,31 is 1E1, we observed that it is only 13.1% of 1E1 on average, which can be
calculated from Table 3. Regarding the FND, upper bound is given as 4 -1T2*31+ 3 •1c, (T2*3) + 1E1
(see Section 25) and it takes at most —1.4GB for the experimented graphs (two ints for each
connection in c.,(T2*3)). We observed that uk-2005 graph have so many edges with no triangles
that results in isolated T2*3s (and T3*4s), so 1c,02*3)1 = lc.(T3*4)1 = 0. For the rest, we see that

1c4 (T24:3) is only 8.7% of the upper bound ((32)1A1), on average.

Lastly, we check FND vs. HYPO. FND is faster on all instances, and 1.31x on average, mean-
ing that it outperforms any possible traversal-based algorithm for (2, 3) nucleus decomposition.
This is so important to show the strength of (1) detecting the non-maximal T2,3 early to avoid
traversal, (2) using disjoint-set forest data structure to handle on-the-fly computation.

(3, 4) nuclei

Table 5 and Figure 6 gives the comparison of all algorithms on (3, 4)-nucleus decomposition,
which has been shown to give subgraphs with highest density and most detailed hierarchy [104].
Results are similar to the (2, 3) case: FND is the best and speedups are sharper. NAIVE algorithm
could not be completed in 2 days for any graph. DFT also could not finish its computation on
uk-2005 graph in that time. Regarding the memory requirement, we see that DFT and FND

1-100
0
u_
80
60

-2 40
1§ 20
° 0

L=100
0 80
f; 60
40
20

° 0

11111ffillL
postproc

i— 0 i— 0 1— 0 i— 0 i— HD I— 0
u- Z u- Z u- Z Z U-Z U-Z U-Z U-Z U-Z
OW OW OW OW OW OW OW OW OLL

SK BE MIT ST TX TW GO UK WK
Figure 6: (2,3) [top] and (3,4) [bottom] nucleus decomposition comparison for DFT (the one using
Alg. 5 for traversal) and FND (shown in Alg.8). Two main results: (1) Traversal part of DFT is
close to the peeling part, (2) FND is able to keep the total runtime comparable to the peeling part
of DFT

38

take at most —10GB and —3.5GB for the graphs in our dataset. Also, 1T3,41 and IcA*4) I are far
from the upper bounds, only of 3.9% and 2.5% on average. Overall, FND outperforms all others.
Figure 6 shows that total time of FND is only 21% more than the peeling time of DFT and only
2% slower on wiki-0611. Most significantly, FND is 1.53x faster than hypothetical limit (HYPo)
of any possible traversal-based (3, 4) nucleus decomposition algorithm.

2.6 Conclusion

In this work, we focused on computing the hierarchy of dense subgraphs given by peeling algo-
rithms. We first provided a detailed review of previous work and pointed misconceptions about
k-core and k-truss decompositions. We proposed two generic algorithms to compute any nucleus
decomposition. Our idea to leverage disjoint-set forest data structure for hierarchy computation
works well in practice. We further improved the performance by detecting the subgraphs during
peeling process to avoid traversal. We also adapted and implemented an existing idea for k-core de-
composition hierarchy, and showed its benefit. Overall, our algorithms significantly outperformed
the existing alternatives.

There are two open questions that might be worth to look at. First is about the analysis. Nested
structures given by the resulting hierarchy only show the k-(r, s) nuclei. Instead looking at the
Tr,,s, which are many more than the k-(r, s) nuclei, might reveal more insight about networks. This
actually corresponds to the hierarchy-skeleton structure that our algorithms produce. Second is
regarding the performance. We believe that adapting the existing parallel peeling algorithms for
the hierarchy computation can be helpful.

39

3 Peeling Bipartite Networks for Dense Subgraph Discovery

Abstract

Bipartite graphs are the natural way to model affiliation networks, such as actor-movie,

document-keyword, and user-product networks. Finding dense bipartite subgraphs and de-
tecting the relations among them is an important problem for affiliation networks that arise
in a range of domains, such as social network analysis, word-document clustering, internet

advertising, and bioinformatics, to name a few. However, most dense subgraph discovery
algorithms are designed for classic, unipartite graphs. Subsequently, studies on affiliation net-

works are conducted on the co-occurrence graphs (e.g., co-authors and co-purchase networks),
which projects the bipartite structure to a unipartite structure by connecting two entities if they

share an affiliation. Despite their convenience, co-occurrence networks come at a cost of loss
of information and an explosion in graph sizes, which limit the quality and efficiency of so-

lutions. In this paper, we study the dense subgraph discovery problem on bipartite graphs.
We define a framework of bipartite subgraphs based on the butterfly motif (2,2-biclique) to

model the dense regions in a hierarchical structure. We introduce efficient peeling algorithms
to find the dense subgraphs and build relations among them. Experiments show that we can
identify much denser structures compared to the state-of-the-art techniques on co-occurrence

graphs. Our algorithms are also memory efficient, since they do not suffer from the explosion
in the number of edges of the co-occurrence graph. Analysis of the author-paper network of

the top database conferences highlights the richer structure that can be identified by working
on bipartite graphs, which is otherwise lost in a co-occurrence graph.

Results of this work were published in [108]. Here we present the results for completeness.

3.1 Introduction

Many real-world systems are naturally modeled as affiliation, two-mode or bipartite networks [21,
75]. In a bipartite network, vertices are decomposed into two disjoint sets, primary and secondary,
such that edges can only connect vertices from different sets. For example authors and papers can
be the primary and secondary vertex sets, with an edge representing authorship. Finding dense sub-
graphs in the real-world affiliation networks, and relating them to each other has been shown to be
useful across different domains Literature is rich with examples such as spam group detection in
web [53], word and document clustering [38], and sponsored search advertising on webpages [44].
Despite their representation power, bipartite graphs are underutilized, since most graph mining al-
gorithms, including dense subgraph discovery, are studied on the traditional unipartite graphs. For
this reason, affiliation networks are projected to co-occurrence graphs, such that two vertices in
the primary set are connected by an edge if they share an affiliation. For instance, an author-paper
network can be transformed into a co-authorship network, where two authors are connected if they
co-authored a paper. However, this transformation comes at a cost of information loss and inflated
graph size, as we will discuss in more detail later. Therefore, designing algorithms that can work
directly on the bipartite graph, which provides an accurate representation of the underlying system,
is essential.

40

This paper studies finding dense subgraphs in a bipartite graph and detecting the relations
among them. Our approach is inspired by the k-core [112, 84] and k-truss [102, 33, 139, 128]
decompositions in unipartite networks, which are instances of peeling algorithms. They have been
shown to be effective to detect dense subgraphs with hierarchical relations [104].

Problem and Challenges

Our aim is to find many, if not all, dense regions in bipartite graphs and determine the relations
among them by using peeling algorithms.A common practice in the literature for working with
bipartite graphs has been creating co-occurrence (projection) graphs. Although the projection en-
ables the use of well-studied unipartite graph mining algorithms [21], it has significant drawbacks:

• Information loss and ambiguity: Bipartite graphs comprise one-to-many relationship in-
formation, but this information is reduced to pairwise ties when projected to a weighted or
unweighted unipartite form. Those pairwise ties are treated independently, which distorts the
original information. In addition, projections are not bijective irrespective of the projection
technique being used, which creates ambiguity.

• Size inflation: Each secondary vertex in the bipartite network with degree di results in a
di-clique in the projected graph. Thus, the number of edges in the projected graph can
be as many as &EV (di), whereas it is only Lev d, in the bipartite network, where V is
the set of secondary vertices(see Table 7). Increase in the number of edges degrades the
performance and also artificially boosts the clustering coefficients and local density measures
in the projected graph.

Given the drawbacks of projection approaches, we work directly on the bipartite graph to dis-
cover the dense structures. It has been shown that the higher-order structures (motifs, graphlets)
offer deeper insights for analyzing real-world networks and detecting dense regions in a better
way [104, 17, 65]. Peeling algorithms, k-core and k-truss decompositions, find dense regions in
unipartite graphs and determine the relations among them [65, 139, 59]. Nucleus decomposi-
tion [104] is a generalization of these two approaches and can work on higher-order structures
such as 4-cliques. However, none of them are applicable for bipartite networks. k-core decompo-
sition assumes that all vertices represent the same kind of entity, which does not hold for bipartite
graphs. k-truss decomposition works on triangles, which do not exist in bipartite graphs. Nucleus
decomposition uses small-cliques, which are also nonexistent in bipartite graph. Thus, we need
to define new higher-order structures that capture the triangle-like structures in bipartite graphs.
Then the peeling algorithms can be adapted to run on these structures to find dense regions with
hierarchical relations.

Contributions

We introduce new algorithms to efficiently find dense bipartite subgraphs with hierarchical rela-
tions. Our contributions can be summarized as follows:

41

Table 6: Notations

Symbol Description

G = (U ,V,E) bipartite graph with vertices in U and V, and edges E
N(u, G), N(u) set of vertices that are connected to vertex u in G
(a, b)-biclique complete bipartite graph where 1U 1 = a and 1171 = b
Gp =(U,Ep) unweighted projection of G, as given in Definition 6

Gwp = (U ,E,,p) weighted projection of G, as given in Definition 7
Ap number of triangles in the projected graph Gp
Z butterfly or (2, 2)-biclique
0 (u) tip number of vertex u, as given in Definition 11
iii(e) wing number of edge e, as given in Definition 12

• Introducing k-tip and k-wing bipartite subgraphs: We survey attempts to define higher-
order structures in bipartite graphs, and use the butterfly structure (2,2-biclique) as the sim-
plest super-edge motif. Building on that, we define the k-tip and k-wing subgraphs based on
the involvements of vertices and edges in butterflies, respectively.

• Extension of peeling algorithms: We introduce peeling algorithms to efficiently find all
the k-tip and k-wing subgraphs. Our algorithms are inspired by the degeneracy based de-
compositions for unipartite graphs. We present detailed psueducodes and also analyze their
complexity.

• Evaluation on real-world data: We evaluate our proposed techniques on real-world net-
works. We compare the quality of the dense regions found by our algorithms with those of
the present approaches. Figure 7 gives a glance of results on the IMDb movie-actor with
1.6M vertices and 5.6M edges. Our algorithms are able to extract larger and denser sub-
graphs of various sizes. We also analyzed author-paper network of top database conferences.
We highlight the interesting subgraphs and hierarchies we detect that cannot be discovered
by the existing approaches. Finally, we present the runtime performances.

3.2 Background

This section reviews the basics about bipartite networks and the peeling algorithms. We present
our notation in Table 6.

Let G = (U ,V,E) be an undirected, unweighted, simple (no loop, no multi-edge) bipartite
graph. U is the set of primary vertices, V is the set of secondary vertices, and E is the set of
edges s.t. V(u, v) E E, u E U A v E V. N(u, G) denotes the neighbor set of a vertex u in the bipartite
graph.We abuse the notation by using N(u) when G is obvious in the context. We define the density
of a bipartite subgraph G = (U ,V,E) as the ratio of the number of existing edges over the number

of all possible edges, i.e. 1E1
' 10.11(1'

42

DENSITY: 0.0--0.2--0.4--0.6--0.8--1.0

(a) k-wing

10
1

102 10
3

IUI

(b) (2, 3)-nucleus

Figure 7: Dense subgraph profiles for the IMDb network. Each dot is a bipartite subgraph, the density,
is color coded and IU I and IV I are given on the x- and y-axis. Wing decomposition algorithm

results in 36 bipartite subgraphs with > 0.9 edge density that have at least 10 vertices in each side. Other
algorithms working on projections cannot report any bipartite subgraph in that quality.

H = (U',17',E') is an induced subgraph of the bipartite graph G = (U,V,E), if U' C U,

C V, and

V' = U N(u,G), = U U (u,v).
uEIP LIEU' vEN(u,G)

G = (U,V,E) is an (a,b)-biclique if it is a complete graph between a vertices on one side and b

43

vertices on the other.

We present two ways to convert the bipartite graph to a unipartite graph, as illustrated in Fig-
ure 8.

Definition 6 Unweighted projection of a bipartite graph is obtained by connecting a pair of ver-
tices if they share an affiliation. Given a bipartite graph G = (U ,V,E), its projection is the unipar-
tite graph Gp = (Vp,Ep) s.t. Vp = U ,Ep = {(ul,u2) N(ui)nN(u2)

Definition 7 Weighted projection of a bipartite graph is built by computing the unweighted pro-
jection and assigning weights to the edges. Weights are computed in proportion to the num-
ber of vertices connected to each affiliation in the bipartite graph. Given a bipartite graph
G = (U ,V,E), its weighted projection is an edge-weighted unipartite graph Gwp = (Vwp,Ewp)

1

vE(N(ItifIN(u2)) IN(1))1 j •

s.t. Vwp = U ,Ewp = {(u1,112, W12) I N(ui) (1 N(t12) Aw12 =

k-core [112, 84] and k-truss [102, 33, 139, 128] subgraphs are defined as follows:

Definition 8 A connected subgraph, H, of G is a k-core if every vertex in H has at least degree k
and no other subgraph of G that subsumes H k-core. Core number of a vertex u is the maximum k
such that there is a k-core subgraph that contains u.

To find k-cores, vertices with degree < k and their edges are removed from the graph, until no
such vertex remains. For a full decomposition, we increment k at each step, and assign k as the
core number of each vertex removed. This process is called as 'peeling', and it works in 49(1E1)
time [15].

Definition 9 A connected subgraph, H, of G is a k-truss if each edge in H takes part in > k
triangles and no other subgraph of G that subsumes H is a k-truss.

Nucleus decomposition is a generalization of k-core and k-truss decompositions. Instead of
vertex-edge or edge-triangle relations, nucleus decomposition works on any clique relations. The
idea is described in [104], but we restrict presentation to a specific case for brevity. Here we only
define k-(2,3) nucleus to highlight its stronger connectedness than the k-truss.

Definition 109 suhgraph H,(1/,E) of G is a k-(2,3)-nucleus, iff

• each edge takes part in at least k triangles;

• any pair of edges in E is connected by series of triangles;

44

unweighted

weighted

Figure 8: A projection example. The bipartite graph on the left is projected to the unweighted
and weighted unipartite graphs on the right. In the unweighted projection, vertices A, B and C
form a triangle since they are all connected to the same vertex in the bipartite graph. Vertex D
only connects to C in the projection since it does not share affiliation with any other vertices in the
bipartite graph. In the weighted projection, the weight assigned to the edge between vertices A and
B is 1/3 + 1/2, because one of the affiliations they share in the bipartite graph has 3 neighbors and
the other affiliation has 2 neighbors.]
• no other subgraph of G that subsumes H is a k-(2,3)-nucleus.

Here (2, 3) refers to the 2-clique (edge) and 3-clique (triangle) relations. Two edges e and f are
connected by series of triangles if there exists a sequence of edges e = el,e2,... , ek = f such that
for each i, some triangle contains eiU ei+1. Figures 9 and 10 illustrate examples. In Figure 9, entire
graph is a 3-core. Two separate 1-trusses appear since the middle edge has no triangle. In Figure 10,
each edge takes part in 1 triangle, making the entire graph 1-truss. However, two separate 2-(2, 3)
nuclei exist, because there is no triangle that can connect edges from each nucleus.

3.3 Related Work

Literature on analysis of bipartite graphs has two main thrusts: extending unipartite graph con-
cepts to bipartite graphs and methods to projections to unipartite graphs. Borgatti and Everett [21]
redefined centrality and density metrics for bipartite graphs. Robins and Alexander [98] defined
the clustering coefficients for bipartite networks. Working on the bipartite network, instead of
its projection, is also useful for matrix partitioning [26] and clustering [134] algorithms As for

45

1

, 1 -truss -

°. # 0- 4-.
_

II . - II
1 -truss ' •--.....,"

2-cor
I ••••

•••

•

 }
Figure 9: The entire graph is a 2-core since each vertex have at least degree 2. Each triangle is a
1-truss, denoted in dashed lines, since each edge takes part in one triangle. These two 1-trusses are
not merged by the edge in the middle, because that edge has no triangle.]

i
.

1 -(2,3) nucleus
i ,..- -...... 1

...., .---
1 , 01 1 ,i,. 1

IF 1 i
ii l a . 1 1

-

11 1
i. I i.........., 11
N

1 -truss N

1 -(2,3) nucleus, ,

Figure 10: The entire graph is a 1-truss since each edge has 1 triangle. However, there are two
1-(2,3) nucleus subgraphs, overlapping on the middle vertex. These two nuclei are not merged,
because no triangle exists that contains an edge from each nucleus.]

projections methods, Newman introduced the weighted projection for scientific collaboration net-
works [89]. Everett and Borgatti proposed to use dual projections [43], where the idea is to create
projections for both set of nodes, and use the resulting one-mode networks for analysis.

Applications: Dense subgraphs in bipartite networks have valuable information that can be
utilized for various applications. Newman [89, 90] studied author and paper relations by applying
different projections to convert the bipartite network to a unipartite network. Giatsidis et al. [51]
worked on the same problem by using the same projection technique. In addition to finding dense
regions, they also focused on detecting the hierarchy and adapted the k-core decomposition for
weighted networks. They defined the fractional k-core as a maximal subgraph where every vertex
has at least weight k. Another application bipartite dense subgraphs is fraud detection [19]. Fake
likes, ratings and reviews are prevalent in online social networks and can be modeled as a bipartite
network.

Bipartite dense subgraphs: Borgatti and Everett proposed biclique to model dense sub-

46

graphs [21] which is a complete subgraph between two set of nodes. Kumar et al. used bicliques of
various sizes to analyze web graphs [74]. Enumerating all the maximal bicliques and quasi-cliques
is studied by Sim et al. [120], and Mukherjee and Tirthapura [88]. However, biclique definition is
regarded as too strict, not tolerating even a single missing edge and expensive to compute. More
recently, Tsourakakis et al. [86] used sampling to find (p, q)-biclique densest subgraph in bipartite
networks. Main difference of our work is that we do not focus on finding only a single subgraph
that is perfectly dense. Instead, we aim to find many dense subgraphs with hierarchical relations.

Peeling bipartite networks: There have been some attempts to adapt peeling algorithms or
k-core [112] like subgraphs to bipartite graphs. Cerinsek and Batagelj [27] adapted the generalized
core idea [14] to bipartite networks. They define the (p, q)-core with monotonic f and g functions
as a maximal union of the set of vertices u E U s.t. f (u) > p and v E V s.t. g(v) > q. However,
their definition is not suitable to construct a hierarchy among (p, q)-cores since it is not clear how
to define a comparison function for (p,q) pairs. Li et al. [81] where they adapted the k-truss
like definition for bipartite networks. They insert artificial edges between vertex pairs that share
a neighbor. Then they apply peeling algorithm on those artificial edges and their triangle counts.
This is actually identical to creating the projection, and applying the k-truss decomposition using
the triangle counts [33]. Unlike the previous work, we introduce peeling algorithms that work
directly on the bipartite network and result in dense regions in a hierarchy.

3.4 Dense bipartite subgraphs

Various locality patterns [21, 98, 93] and density measures [75] have been proposed for bipartite
graphs (see Figure 11). Borgatti and Everett considered (3, 3)-biclique as the best structure to
represent cohesiveness [21]. They claimed that 3-clique is the smallest non-trivial structure in
unipartite graphs and the complete bipartite graph should have at least 3 vertices in each side.
Opsahl had the same motivation [93], but he proposed to use the closed 4-path in a bipartite
graph to create a triangle in its projection. He defined the 4-path as a (3, 3)-biclique structure
with two missing edges, as shown in Figure 11. Closed 4-path is the (3, 3)-biclique. He defined
the density as the ratio of the closed 4-paths to all 4-paths. This is more relaxed than the (3, 3)-
biclique of [21], and can create a triangle in the projection with fewer bipartite edges. Robins and
Alexander considered the problem without any projections [98]. They used the (2, 2)-biclique to
model the cohesion, since it is the simplest cycle. Similar to Opsahl's work, they looked for a
3-path, which consists of three edges with two primary and two secondary vertices, as shown in
Figure 11. They defined the density as the ratio of closed 3-paths, i.e., (2, 2)-bicliques, to the all
3-paths. This approach is also adopted in a recent work by Aksoy et al. [6] to generate bipartite
graphs with community structure, where (2, 2)-biclique is called a butterfly.

We use the butterfly as the main higher-order structure since it is the most basic unit of cohesion
in bipartite graphs. It is the smallest structure with multiple vertices at each side, and also cheaper
to enumerate than the larger bicliques. We focus on the butterfly-dense subgraphs. Our aim is
to discover bipartite subgraphs with many butterflies and find the hierarchical relations among
them. Next, we introduce two dense bipartite subgraph models to explore the trade-offs between
subgraph quality and runtime performance

47

(3,3)-biclique 4-path 3-path (2,2)-biclique
closed w/ dashes closed w/ dashes (butterfly)

Figure 11: Higher-order structures used to model the cohesion in bipartite networks. Borgatti and Everett
used (3,3)-biclique [21], Opsahl used the 4-path and its closure [93], Robins and Alexander introduced the
3-path and its closed form[98], and Aksoy et al. adopted the (2, 2)-biclique (butterfly) [6].

Butterflies on vertices

We introduce k-tip subgraphs to identify dense regions. Our approach enables building hierarchical
relations among the subgraphs which results in a global tree structure that represents significant
regions in the graph with various sizes and densities. Our technique is motivated by the intensity
of vertex participations in the butterfly structures. k-tip bipartite subgraph is defined as follows:

Definition 11 An induced subgraph H = (U,V,E) of G is a k-tip iff

• each vertex u E U takes part in at least k butterflies,

• each vertex pair (u, v) E E is connected by series of butterflies,

• no other subgraph of G that subsumes H is a k-tip.

Tip number, 0 (u), of vertex u, is the maximum T such that there exists a T-tip subgraph that
contains u.

Two vertices u and u' E U are connected by a series of butterflies if there exists a sequence
of vertices u = ui , 142, . . . , uk = u' such that for each i, some butterfly contains ui and ui+1. This
connectivity condition helps to distinguish the dense regions that are only connected by an edge,
which are otherwise considered as a single combined subgraph. Butterfly density of a k-tip is
obtained by ensuring a lower bound on the number of butterflies that each vertex participates.
Note that a vertex with many butterflies does not imply a dense region by itself; it should also be
surrounded by other vertices incident to many butterflies. In addition, we define the tip number
of a vertex, denoted as 0, to indicate the extent of density around a vertex.

Figure 12 illustrates some k-tip examples, where U and V cover the vertices on the left (A — F)
and right (1 — 6), respectively. There are nine butterflies in total: AB12,AB23,AC23, BC23, CD34, DE45, DF45, El
and EF56. Vertices A and F take part in one butterfly while the others in U are involved in more.
So, the entire graph is a 1-tip, shown with the orange line. If we look at the subgraph induced by
the vertices B, C, D, and E, we see a different picture. In that subgraph, butterfly counts of vertices

48

".... 1 1
..,_ _ .,

19(0)=1 1 -tip - -

61(0)=3 3-tip - -

Figure 12: We focus on vertices on the left to find k-tips. Nine butterflies exist in total. A and F
are the only vertices that take part in one butterfly while all the others are involved in more. Thus,
entire graph is a 1-tip. Checking the induced subgraph of the vertices B, C, D and E, all participate
in at least three butterflies, which makes them a 3-tip. Tip numbers of those vertices are also 3
whereas 0 (A) = 0 (F) = 1.]
B and E are three, and C and D are four. Thus, this subgraph is a 3-tip, shown in the red line. Note
that all the vertices in the 3-tip are connected. We also say that 0 (A)=0 (F)=1 (orange nodes) since
they are only contained in the 1-tip, and other vertices have 0=3 (red nodes). Algorithm to find the
tip numbers of vertices, and all the k-tips is given in Section 3.5.

Finding Overlapping Dense Blocks

Consider the bipartite network of authors and their papers. If an author collaborates with multiple
groups on different topics, connections will look like those in Figure 14. In that case, multiple
dense regions overlap on the red vertex. k-tip subgraphs cannot handle such situations since they
are defined to be disjoint. To allow vertex overlaps, we introduce another generic subgraph model,
k-wing. Its definition is similar to k-tip with one subtle difference: focus is on the edges, not
vertices. Distinguishing the edges that are connected to the same vertex is the key to get overlaps
on vertices. We define the k-wing bipartite subgraph as follows:

Definition 12 A bipartite subgraph H = (U,V,E) of G is a k-wing if

• every edge (u, v) E E takes part in at least k butterflies,

49

Nf()=1 1 -wing — —

IV()=2 2-wing -

Figure 13: k-wings on the same graph. Each edge takes part in at least 1 butterfly, making the entire
graph a 1-wing. There are also two bicliques: BC123 and DE456. Each edge in those bicliques
takes part in two butterflies. So, each is a 2-wing, and all the edges in those have a wing number
of 2. Other edges e E {Al, A2, C4, D3, F5,F6}, yi(e) = 1. Overall, k-wing subgraphs find denser
regions than the k-tips.]

Authors

Papers

Figure 14: In an author-paper network, the author shown in red cannot be considered in a single research
community because she collaborates with different researchers on distinct set of papers. Each affiliation of
an author should be considered independently to better detect the communities she is involved in.

• each edge pair (ui,v1),(u2,v2) E E is connected by series of butterflies,

• no other subgraph of G that subsumes H is a k-wing.

Wing nuinber, yr(e), of an edge e E E is the maximum w such that there is a w-wing that includes
(e).

50

Enforcing a lower bound on the number of butterflies per edge helps to focus on each affilia-
tion separately. We also define a new connectivity condition that is stronger than the traditional
connectedness and solves the problem shown in Figure 14. Two edges e and e' E E are connected
by series of butterflies if there exists a sequence of edges e = el,e2,...,ek= e' such that for each
i, some butterfly contains ei U ei+i. In a similar spirit to the core and tip numbers, we define the
wing number of an edge, denoted as 1/f, to indicate the intensity of the surrounding butterflies.

Figure 13 presents the k-wings in the same graph that we checked the k-tips previously. There
are nine butterflies again, and we check the number for each edge now. Each edge takes part in
at least one butterfly, thus the entire graph is a 1-wing, given in the dashed green line. There are
also two bicliques: BC123 and DE456. Each edge in those subgraphs participates in exactly two
butterflies. So, each bliclique is a 2-wing, shown in dashed pink lines. Regarding the edges, all
in 2-wings have wing number of 2, colored in pink. Also, v(A1) = (A2) = ty(C4) = ty(D3) =
lif(F5) = v(F6) = 1, green edges, since they only exist in a 1-wing. Algorithm to discover all the
k-wings in a graph and the wing numbers of vertices is given in the next section.

3.5 Peeling Butterflies

In this section, we present algorithms to compute the k-tips and k-wings in a bipartite graph. Our
algorithms finds the tip numbers of vertices, 00, and and wing numbers of edges, lif(.). We locate
all the k-tip and k-wing subgraphs with the hierarchical relations among them by using 0 (.) and

V()

Tip Decomposition

Our algorithm is similar to k-core decomposition, which finds the core numbers of vertices in
unipartite graphs. For a bipartite graph G = (U,V,E), we find the tip numbers of all the vertices in
U. We start with counting the number of butterflies that each vertex participates in, then apply the
peeling process. In each step, we find the vertex that has the minimum number of butterflies, assign
its butterfly count as its tip number, and decrement the butterfly counts of the neighbor vertices in
U if they are > k. Note that, in each butterfly, there is only one neighbor vertex from U.

TIPDECOMPOSITION, given in Algorithm 10, finds the tip numbers of the primary vertices in
U. To locate the k-tip subgraphs and constructing the hierarchy, we use the disjoint-set forest and
traversal avoidance heuristics that we introduced in a recent work for nucleus decomposition [109].
Their application to the tip decomposition is straightforward and we do not give the details for
brevity.

Our algorithm has two phases. First, we determine the number of butterflies that each u E U
participates (lines 2 to 5), by finding the multiset of union of N (v) for all v E N (u) . The multiplicity,
cd, for each such vertex d E D is the number of common neighbors of u and d, which can be
computed in linear time by using a hashmap. There are (V) pairs of vertices that form a butterfly
with vertices u and d. So, we compute the sum of (c(21) for cd E D. We exclude the counts of the

51

vertex u itself. This phase has 0(Evev d(v)2) time complexity, since a vertex v E V is accessed by
each of its neighbors, and each time all the vertices in N(v) are accessed. Butterfly counting can
be speed up by using various algorithmic tricks, which are beyond the scope of this paper.

In the peeling process (lines 7 to 12), we assign the tip number of vertices, 00, in a nonde-
creasing order of their butterfly counts. We leverage the bucket structure to efficiently retrieve the
vertex with fewest butterflies at each step. In each iteration, we first assign the current butterfly
number of u as its tip number (line 8), then find the butterflies that contains u. In each butterfly
we check the other primary vertex x E U. If the butterfly number of x is greater than the current
butterfly number of u, we decrement it since that butterfly will not contribute to the tip number of
x. Time complexity of the peeling phase is characterized by the total number of the butterflies in
the graph, which is denoted as 0(1 Z G1), where Z G is the set of all butterflies in G. Regarding the
space complexity, all of the additional data structures in both phases are in at most 0(1U 1) size.

Wing Decomposition

We find the wing numbers of all edges in E, tv(.), for a given bipartite graph G= (U,V,E) to locate
the k-wing subgraphs. Our approach is similar to tip decomposition. Instead of looking at vertex-
butterfly relations, we investigate the involvements of edges in butterflies. There are again two
phases; counting the butterflies for each edge and the peeling process to find the wing numbers of
all the edges. Locating the k-wings and building the hierarchy is straightforward by the algorithms
in [109] and not included for brevity.

WINGDECOMPOSITION, outlined in Algorithm 11, finds the tg(e) for all e E E. Butterfly
counting for each edge is done in lines 2 to 6. Here, we utilize a total ordering of the vertices in
U for efficient computation. All the vertices u E U are processed in order (line 2), and in each
intersection operation, we only take the vertices that succeed u (line 4). This enables us to visit

Algorithm 10: TIPDECOMPOSITION(G = (U, 1/, E))

// find the number of g for each vertex u E U

i D <— list, L <— list, PH <— butterfly counts V u E U

2 for each u E U do
3 D <— combine N(v), V v E N(u)

4 cd multiplicity of d E D s.t. d u

5 (u) EdED (V)
// find 0(u) V uEU by peeling

6 0 (u) -1 VUEU

7 for each u with minimum p (u) s.t. 0(u) = —I do
8 19(u) (u)
9 Find set .% of Z s containing u

10 for each g E M do
11 x <— other vertex in Z s.t. 0(x) is -1 (x E U)

12 if p (x) > p (u) then p (x) p (x) - 1
13 return array 0(-)

// tip numbers

52

Algorithm 11: WINGDECOMPOSITION(G = (U,17,E))

// find the number of Z for each edge e E E
i/3 <— 0, butterfly counts VeEE
2 for each u E U in order do
3 for each v1,v2 pair E N(u) do
4 I N(vi)11N(v2) s.t. i u Vi E I
s for each i E I do
6 I P(e) P(e)+1,Ve E Z (u,i,vi,v2)
// find ty (e) V eEE by peeling

7 llf(e) -1VeEE
s for each e with rninimum (e) s.t. w(e) is -1 do
9 Iff(e) 13 (e)
10 Find set ,q of Z s containing e
ii for each Z E ,q do
12 F other three edges in Z
13 if v (f) is -1 Vf EF then
14 for each f E F do
15 I if p(f) > p (e) then p(f) p(f)- 1
16 return array llf (.)

// wing numbers

each butterfly only once. We execute the intersection operation (line 4) EvEu (d(2u)) times, since
each pair in a neighborhood is processed. Cost of intersection operation is OM) in the worst
case, but it is unlikely in real-world networks.

In the peeling phase, wing numbers of edges are assigned in a nondecreasing order of their
butterfly counts. There are four edges in a butterfly, and we need to check the three neighbor edges.
In order to ensure that the butterfly that contains e is not examined before, we check if any of those
three neighbor edges has been assigned a wing number yet (line 13). If they are all unassigned, we
decrement their butterfly numbers if greater than the wing number we assigned in that step. Peeling
phase has 0(1 ZG 1) time complexity, but expected to take more time than TIPDECOMPOSITION
due to hidden constants. Additional space complexity of the wing decomposition is 0(1E1), since
we store butterfly numbers and wing numbers for each edge.

3.6 Experiments

We evaluate our algorithms on real-world bipartite networks, obtained from SNAP [77] and ICON [3].
Table 7 shows the important statistics for our dataset. condrnat is the author-paper network for
the arXiv preprints in condensed matter physics between 1995 and 1999 [91]. dbconf is an-
other author-paper network that we constructed with the papers and the authors from the three
top database conference proceedings; VLDB, SIGMOD, and ICDE [78]. github is the network
between users and repositories in the GitHub [28]. marvel is occurrence relations between the
Marvel characters and the comic books [7]. IMDb links actors and the movies they played in [2],
and lastfm is the network of users and the artists they listened in Last.fm online music sys-
tem [24]. In Table 7, second to fourth columns show the number of primary vertices, secondary

53

Table 7: Statistics for the real-world graphs. Columns show the number of primaiy vertices, secondwy
vertices, and edges edges in the projected graphs, butterflies, and triangles in the projected unipartite graph,
in order.

network 1U1 1V1 1E1 1Ep1 1Z 1 1Ap1
condmat 16.7K 22.0K 58.6K 95.1K 70.5K 68.0K
dbconf 11.2K 8.9K 30.7K 84.8K 34.6K 95.7K
github 56.6K 123.3K 440.2K 44.5M 50.9M 962.6M
marvel 6.5K 12.9K 96.7K 336.5K 10.7M 3.3M
IMDb 1.2M 419.7K 5.6M 157.5M 42.5M 312.1M
lastfm 2.1K 18.7K 92.8K 2.0M 13.4M 296.1M

vertices, and edges in each network. We assume that the primary vertices are the ones that drive
the connections, which are authors, users, Marvel characters and actors. In the fifth column, the
number of edges in the projected graphs (Ep) are given. We applied the projections as described
in Definition 6 and 7. Last two columns are the butterfly (Z) counts in each bipartite network and
the triangle (Ap) counts in the projected unipartite graph. Algorithms are implemented in C++
and compiled using gcc 5.2.0 at -02 optimization level. All experiments are performed on a Linux
operating system running on a machine with Intel Xeon Haswell E5-2698 2.30 GHz processor with
128GB RAM.

We compared the TIPDECOMPOSITION (Algorithm 10) and WINGDECOMPOSITION (Algo-
rithm 11) with the previous studies that find dense subgraphs with hierarchical relations in bipartite
networks and or their projections.

• For the unweighted projection, we use two algorithms• k-core decomposition (Definition 8)
and (2, 3) nucleus decomposition (Definition 10). k-(2, 3) nucleus subgraphs have been
shown to be quite effective to find dense regions with detailed hierarchical relations [65,
104] .

• For the weighted projection, we find the fractional k-cores [51], described in Section 3.3.
To the best of our knowledge, it is the only peeling adaptation that works on weighted net-
works. It is designed to handle the bipartite author-paper networks by using their weighted
projections.

• Regarding the algorithms that directly focus on the bipartite data, Li et al. [81] proposed a
k-truss adaptation for bipartite networks, as explained at the end of Section 3.3. Although
the focus is on the bipartite connections, their algorithm relies on inserting edges between
the vertices in the same set, and compute the k-trusses on those new edges and new triangles,
which is essentially the same as the (2, 3) nucleus decomposition.

For each bipartite subgraph found by our algorithms, we report the size of primary and sec-

ondary vertex sets, and the edge density, i.e.
1u1.

1E1
1v1 .

For the (2, 3) nucleus decomposition and

fractional k-core algorithms, we find the nuclei/cores in the unipartite projections (Gp), and report
the induced bipartite subgraphs using the vertices in those nuclei/cores.

54

Dense subgraph profiles

We compare the size and density of the bipartite subgraphs given by k-wings, k-tips, k-cores, (2, 3)-
nuclei, and fractional k-cores. Figures 15 (condmat), 16 (github), 17 (dbconf), 18 (marvel),
and also 7 (IMDb) (in Section 3.1) summarize the results. In all charts, each dot is a bipartite
subgraph that has > 0.1 density and < 10, 000 vertices in either side. 1U1 and IV are given on the
x-axis and y-axis, respectively, and the density of the subgraphs is color coded.

We omit the results for k-cores since they consistently have lower densities and larges size than
the (2, 3)-nuclei. Overall, we observe that dense bipartite subgraphs with nontrivial sizes on both
sides can be obtained with k-wings. k-tips also perform well on a few instances compared to the
others, but not as good as the k-wings. As we will show in Section 3.6, tip decomposition is faster
than the wing decomposition, and the fair quality of the k-tips can be preferred for applications
with strict performance requirements.

In condmat network, we checked the number of bipartite subgraphs with at least 0.5 density
and have at least 5 vertices in each vertex set. This corresponds to the subgraphs with 5 authors
and 5 papers. k-wings result in 416 such subgraphs and k-tips finds 59, whereas (2, 3) nuclei
and fractional k-cores can only detect 14 and 20 subgraphs, respectively. Note that most of the
dense subgraphs (red dots) appear on the axes for (2, 3) nucleus and fractional k-core cases. This
means that they either find a single paper with many authors, or a single author with many papers.
dbconf network presents a similar picture. We observe that most dense structures in (2, 3)-nuclei
and fractional k-cores have only one vertex in one of the vertex sets. Considering the red dots
along x-axis, they represent the collaborations of many authors in a single paper. We observe that
those are mostly the papers about a software-product and authored by a large group of researchers
in a company. In most cases those authors do not have any other papers, which implies an insignif-
icance for the subgraph. For instance, the paper entitled "Comdb2: Bloomberg's Highly Available
Relational Database System" in ICDE' 10 is written by a large group of people in Bloomberg LP.
On the other hand, there are also instances where the red dots appear along the y-axis in fractional
k-core cases. Those are the subgraphs with a single author and many papers. However, it is isolated
because the fractional k-core computation assigns a large weight to this vertex and there is no other
vertex around with a similar weight. Divesh Srivastaval is one such prolific researcher with 144
papers. He does not appear in any subgraph with density > 0.5.

In github network, k-wings can extract 122 subgraphs with at least 0.5 density that have at
least 5 vertices in each vertex set. k-tips gives only 3 such subgraphs and fractional k-cores report
even less. k-wings can also get some almost-clique structures: 20 subgraphs with at least 0.95
density where = = 5. Results are not given for the (2, 3)-nucleus decomposition, since it
is not completed in two days due to the explosion in the size of projected graph; number of edges
increased from 0.44M to 44.5M (Table 7). For the fractional k-core case, we again observe the
dense structures with a single vertex in either side — red dots on both axes. Results are similar for
marvel and last fm networks. On last fm network, only k-wings can produce 158 subgraphs with
> 0.5 density with at least 5 vertices on each side. Furthermore, 117 of them have > 20 vertices
on each side.

http://dblp.uni-trier.de/pers/hd/s/srivastava:Divesh

55

103

102

101

1 0
0

1 00 1 01

DENSITY: 0.0 — -0.2— -0.4 — -0.6 — -0.8— -1 .0

ii,610 *
Ire •• 41r.

103

102

101

1 0
0

I 1-J I

(a) k-wing

102

• • • • ••••• •
• • • 000 ••

• • • ••••'

10o 1 01

I I

(c) (2, 3)-nucleus

103

102

101

1 0
0

1 00 1 01

• ••• 4411.

1 I 1

• . • •
• • • • •

103

(b) k-tip

102

sm.
•• • op
• •••

1 0

•

2 • • I
••••!••

• So°

; • s•Ille•:: ••••

1 01

IiirAP• • ••••• •
• • 0 • ••••

1 Oo . 1111 111111..111.

102 10° 101

I ul

(d) fractional k-core

102

Figure 15: Dense subgraphs in condmat. Each dot is a bipartite subgraph, the density, IE1/ GUI •1V 1), is
color coded andlUI and 'VI are given on the x- and y-axis. k-wing has 4820 subgraphs with > 0.1 density.
416 of them have sizes of > 5 on both sides with > 0.5 density, whereas this number is 59, 14, and 20 in
k-tip, (2, 3)-nucleus and fractional k-core cases.

Peeling the top database conferences

In this section, we highlight some interesting subgraphs and hierarchical structures found in the
dbconf network. We report on what our algorithms can find, which cannot be identified by other
algorithms, and vice versa.

DB and Games Research at Cornell: One of the dense subgraphs in the hierarchy tree given by k-
wings contains professors and grad students from Cornell University and the papers they published.
It has 6 authors and 11 papers with 0.7 density. We noticed that one of the authors is a game design

56

researcher, W. M. White2, and the papers are about designing event processing systems for the
massively multiplayer online games. Other authors are J. Gehrke and A. J. Demers (database
professors), M. A. Vaz Salles (ex-postdoc), T. Cao and B. Sowell (ex-grad students). On the other
hand, k-tips, k-cores, (2, 3)-nuclei and fractional k-cores cannot find any subgraph with more than
0.1 density that contains W. M. White. The main reason is that J. Gehrke and A. J. Demers are
prolific researchers who collaborated with many people in the database community, thus take part
in dense and large structures. However, W. M. White does not have any other collaboration with
database community and projected graphs miss his strong connections with J. Gehrke and A. J.
Demers.

Philip Yu and IBM Research: We also checked the densest subgraphs that contain Philip Yu,
a well-known, prolific researcher. Tracing the hierarchical relations from those subgraphs gives
interesting information about the Streams group at IBM Research. One densest subgraph is a
biclique, including K. L. Wu, manager at IBM Research, and P. Yu, who used to work in the same
group, and 13 papers they co-authored. This subgraph is contained in another subgraph which has
0.82 density and includes B. Gedik (ex-staff member) in addition to K. L. Wu and P. Yu. Looking
at the parent subgraph, we find Ling Liu (B. Gedik's PhD advisor) joins B. Gedik, K. L. Wu and
P. Yu. Going further parent subgraphs in the chain reveals other researchers H. Andrade and G.
Jacques-Silva, who used to work in the same group.

In another branch, we found a biclique of C. Aggarwal (staff member), P. Yu and their 14
papers. Its parent subgraph has J. Wolf (staff member) in addition, and further parent subgraphs
in the chain include other people at the same institution. This chain and the other chain described
above merges in a subgraph that has 76 researchers and ex-interns from the Streams group 3.

2https://www.cs.cornell.edu/-,wmwhite/
3A11 the information is obtained from the websites of the aforementioned people

104

103

102

10
1

10°
I -gk

 •
• • 14=9 •• .

• ••

10° 101 10
2

IUI

(a) k-wing

1°3

103 •

ll:)2 • • :•• •••••

101 I IP':
• •

10° 101

(b) k-tip

103

•

• •

"• $

10 I I
0,0.0 •••

lir

•

• • • • •

10°
100102 103
• • •••••6

101 10
2

103

IUI

(c) frac. k-core

Figure 16: github network. k-wings report 122 subgraphs with > 0.5 density that have at least 5 vertices
in each vertex set. k-tips gives only 3 such subgraphs and fractional k-cores report even less. k-wings can
also find 27 structures with > 0.9 density.

57

o3 103

1 0
2

• • loc" • esse : 1 02_ ..._• •
• • e • I 8 qr•• • •

I
1 ! I

111•:: •

• JO

1 0
1 sel 1 01

• limc c
• • • • • ••• en

10
0

10°

1 o3

102

1 01

10°
10
0 101

I ul

(c) (2, 3)-nucleus

102

1 I 1111•Pia....•;
• •• •• • •

•

• • • • • .•

102

1 0
0

1 0° 101

I I

(b) k-tip

.

011•
• ••

•
• • •
•

1 I 0

I . i si• me • ••
$ • e•

I

1 0 .0

• •
• • • • •

1 o3

102

1 02

101 1

1 0°
1 0° 1 01

I I

(d) fractional k-core

•
•

• •
• • • •

•
.

• • •• ••• •I

I

••

••1 "
• ••• •• •
• ••• •••••

Alk k.

102

Figure 17: dbconf network. Most dense structures in (2, 3)-nucleus and fractional k-core cases have
only one vertex in either vertex set — the red dots along x- and y- axis. Those subgraphs represent the
collaborations of many authors in a single paper. We observe that they are mostly a paper on a software-
product which is authored by a large group of researchers in a company. In most cases those authors do not

have any other papers, which implies an insignificance for the subgraph.

Runtime performances

Lastly we check the runtime results. As explained in Section 3.5, WINGDECOMPOSITION is more
expensive thanTIPDECOMPOSITION due to butterfly counting per each edge. (2, 3)-nucleus de-
composition has 0(1AD complexity on the projected graph, and fractional k-core is 0(1E1) on
the projection as well. Table 8 shows the total runtimes for all algorithms. k-wing is orders of
magnitude faster than (2, 3)-nuclei on github, IMDb, and last fm networks. (2, 3)-nucleus de-
composition did not finish in two days on github. Number of edges can increase as much as 100
times when projected from bipartite to unipartite type, as shown in Table 7. This drastically limits
the scalability of the algorithms that work on projections. We also observe that TIPDECOMPO-

58

Table 8: Runtime performances of the algorithms k-wing can be orders of magnitude faster than the
(2, 3)-nucleus decomposition.

(in seconds)
bipartite

k-tip k-wing
unipartite

(2, 3)-nucleus fractional k-core

condrnat 0.04 0.13 0.05 0.04
dbconf 0.04 0.07 0.06 0.03
github 29.93 118.41 > 2 days 9.70
marvel 3.90 19.22 3.15 0.12

IMDb 66.07 170.50 39258.34 37.27
lastfm 3.59 20.95 767.22 0.21

SITION is up to times faster than WINGDECOMPOSITION. For the application scenarios with
high performance requirements, TIPDECOMPOSITION is favorable and it can provide subgraphs
with fair quality.

3.7 Summary and Open Questions

We proposed peeling algorithms for bipartite networks to find many dense substructures with hi-
erarchical relations. Our peeling algorithms are based on the butterfly subgraphs, and work on
the involvements of vertices (k-tip) and edge and edges (k-wing) in butterflies. Experiments and
analysis of a author-paper network showed the quality and efficiency of our proposed techniques.
As a future work, we plan to speed up the computation by shared-memory parallelism, especially
for the cases with too many butterflies.

104

103

02

10'

10°
10°

I•

04

103

104

10
3• •

.•01"
•

•
•

• ••

se

leII II
• • . «opb•••• arm
• /0 ••

I 11/8.4• • •• e•

.102

101

100

•

•

• ••

• • •

102

101

10°

•

I•• r•
•
•

• • *•••

101 102
IUI

101
lul

102
•0
101
IUI

10210° 10

(a) k-wing (b) k-tip (c) (2, 3)-nucleus

Figure 18: Dense subgraphs for marvel network. k-wing decomposition provides many subgraphs with
> 0.5 density. 57 of those have at least 5 vertices in each side and 11 have 10 vertices in each. No other
algorithm can get such subgraphs.

59

4 Parallel Local Algorithms for Core, Truss, and Nucleus

Decompositions

Abstract

Finding the dense regions of a graph and relations among them is a fundamental task in
network analysis. Nucleus decomposition is a principled framework of algorithms that general-

izes the k-core and k-truss decompositions. It can leverage the higher-order structures to locate
the dense subgraphs with hierarchical relations. Computation of the nucleus decomposition is

performed in multiple steps, known as the peeling process, and it requires global information
about the graph at any time. This prevents the scalable parallelization of the computation.

Also, it is not possible to compute approximate and fast results by the peeling process, be-
cause it does not produce the densest regions until the algorithm is complete. In a previous

work, Lu et al. proposed to iteratively compute the h-indices of vertex degrees to obtain the
core numbers and prove that the convergence is obtained after a finite number of iterations. In
this work, we generalize the iterative h-index computation for any nucleus decomposition and

prove convergence bounds. We present a framework of local algorithms to obtain the exact and
approximate nucleus decompositions. Our algorithms are pleasingly parallel and can provide

approximations to explore time and quality trade-offs. Our shared-memory implementation

verifies the efficiency, scalability, and effectiveness of our algorithms on real-world networks.

In particular, using 24 threads, we obtain up to 4.04x and 7.98x speedups for k-truss and (3, 4)
nucleus decompositions.

Results of this work were published in [110]. Here we present the results for completeness.

4.1 Introduction

One of the characteristic features of the real-world graphs is the sparsity at the global level, and
the density in the local neighborhoods [56]. Dense subgraphs are strong indicators for functional
units or unusual behaviors. They have been helpful in various applications, such as detecting the
DNA motifs in biological networks [48], identifying the news stories from microblogging streams
in real-time [11], finding the price value motifs in financial networks [40], and locating the spam
link farms in web [74, 53, 39], to name a few. Dense regions are also used to improve the efficiency
of computation-heavy tasks like distance query computation [70] and materialized per-user view
creation [54].

Identifying the significant or anomalous parts of a graph can reveal further insights that are
hidden in its complex structure. For this reason, detecting dense structures in various granularities
and finding the hierarchical relations among them is a fundamental problem in graph mining
Considering a paper citation network, for instance, investigating the hierarchical relations of dense
parts in various granularities can reveal how the new research areas are initiated or which research
subjects became popular in time [105]. k-core [112, 84] and k-truss decompositions [102, 33, 128,
139] are two effective ways to find many dense regions in a graph and construct a hierarchy among
them. k-core is based on the vertices and their degrees, whereas k-truss relies on the edges and
their triangle counts.

60

Higher-order structures, also known as motifs or graphlets, have been used to locate dense
regions that cannot be detected otherwise with edge-centric methods [17, 126]. Finding the fre-
quency and distribution of triangles and other small motifs in real-world networks is a simple yet
effective approach used in data analysis [68, 96, 5, 101]. Nucleus decomposition is a framework of
decompositions that is able to use higher-order structures to find dense subgraphs with hierarchi-
cal relations [104, 105]. It generalizes the k-core and k-truss approaches and finds higher-quality
dense subgraphs with more detailed hierarchies. However, existing algorithms in the nucleus de-
composition framework require global graph information at each step and can be computationally
unaffordable for massive networks. They are also unamenable for parallelization or approxima-
tion due to their interdependent iterative nature. We introduce a framework of algorithms for the
nucleus decomposition that uses only the local information. Our algorithms are pleasingly parallel
and can also be used to achieve faster and approximate solutions to the nucleus decomposition.

Problem and Challenges

The standard method to compute a k-core decomposition is a sequential algorithm, known as the
peeling process. To find a k-core, all the vertices with degree less than k are removed repeatedly
until no such vertex remains. This process is repeated after incrementing k until no vertices remain
Batagelj and Zaversnik introduced a bucket-based 0(1ED algorithm for this process [15]. It keeps
track of the vertex with the minimum degree at each step, thus requires global information about
the graph at any time. k-truss decomposition has a similar peeling process with 0(1A 1) complex-
ity [33]. To find a k-truss, all the edges with less than k triangles are removed recursively and at
each step, algorithm keeps track of the edge with the minimum triangle count, which requires infor-
mation from all around the graph. Nucleus decomposition [104] also facilitates the peeling process
on the given higher-order structures. The computational bottleneck in the peeling process is the
need for the global graph information. This results in inherently sequential processing. Paral-
lelizing the peeling process in a scalable way is not possible since each step depends on the results
of the previous step. Parallelizing each step in itself is also infeasible since synchronizations are
needed to decrease the degrees of the vertices which are the neighbor to the multiple vertices being
processed in that step.

Iterative h-index computation: Lu et al. introduced an alternative formulation for k-core decom-
position [83]. They proposed to iteratively compute h-indices on the vertex degrees to find the core
numbers of vertices. Degrees of the vertices are found at the beginning and each vertex computes
the h-index value for the list of its neighbors' degrees. This process is repeated on these values until
convergence. At the end, each vertex has the value of its core number. They prove that convergence
of degrees to the core numbers is guaranteed. They also analyzed the convergence characteristics
of the real-world networks and show nice trade-offs for time and quality of the solutions.

We generalize Lu et al.'s work for any nucleus decomposition, including k-truss. We show
that convergence is guaranteed for all nucleus decompositions and prove the first upper bounds for
the number of iterations. Our framework of algorithms locally compute any nucleus decomposi-
tion. We propose that iteratively computing h-indices of vertices/edges/r-cliques based on their

61

(in seconds) Peeling Local alg. Speedup

twitter 131 73 1.8
web-Not reDame 261 33 7.9

wiki-0611 3034 820 3.7

Table 9: Runtime comparison between the peeling algorithm and the local algorithm we introduce
for (3, 4) nucleus decomposition. Our local algorithm enables the pleasingly parallel computation
and obtains up to 7.9x speedup over peeling with 24 threads.
degrees/triangle/s-clique counts converges in the core/truss/nucleus numbers (r < s). Local formu-
lation also enables the pleasingly parallel computation, which is not possible in the peeling process.
In addition, intermediate values provide an approximation to the exact nucleus decomposition to
trade-off between runtime and quality. Note that this is also not possible in the peeling process,
because no intermediate solution can provide an overall approximation to the exact solution. For
instance, the densest regions are not revealed until the end.

Contributions

Our contributions can be summarized as follows:

• Generalization for nucleus decomposition: We generalize the iterative h-index compu-
tation idea [83] for any nucleus decomposition by using only the local information. Our
approach is based on iteratively computing the h-indices on the degrees of vertices, triangle
counts of edges, and s-clique counts of r-cliques (r < s) until convergence. We prove that
the iterative computation by the h-indices guarantees the convergence to the core, truss, and
nucleus decompositions.

• Upper bounds for convergence: We prove an upper bound for the number of iterations
needed for convergence. We define the concept of degree levels which models the worst case
for convergence. Our bounds are generic for any nucleus decomposition and much tighter
than the obvious bounds that rely on the number of vertices/edge/triangles.

• Framework of parallel local algorithms: We introduce a framework of efficient algorithms
that only use local information to compute any nucleus decomposition. Our algorithms are
pleasingly parallel thanks to the local computation and have been implemented in OpenMP
for the shared-memory architectures.

• Evaluation on real-world networks: We evaluate our algorithms and implementation on
various types of real-world networks. With 24 threads, we obtain up to 4.04x and 7.98x
speedups for k-truss and (3, 4) nucleus decompositions, respectively. Table 9 gives repre-
sentative runtime results for the (3, 4) nucleus decomposition. We also obtain close approx-
imations to the exact nucleus decompositions within a few iterations. Figure 19 presents the
convergence rates by the number of iterations for k-truss and (3, 4) nucleus decompositions.
For most graphs, our algorithms achieve close solutions to the exact decompositions in —10
iterations. This enables the exploration of trade-offs between time and quality, which are
essential for real-world applications.

62

4.2 Background

In this section, we present several definitions to introduce our algorithms. We work on an undi-
rected simple graph G = (V,E) where V is the set of vertices and E is the set of edges.

Nucleus Decornposition

We start by giving the k-(r, s) nucleus subgraph definition that was proposed in [104].

Definition 1 Let r < s be positive integers.

• <41(G)and (G) are the set of r-cliques and s-cliques in G, respectively, and (-6° (G) =
M(G)U < 5 ° (G) (We may use W, <.V, and <5° when G is obvious).

• In graph G, the number of S E 5 ° (G) containing the r-clique R E M(G) is the 5°-degree of
R, denoted as ds 1G(R). (Abusing the notation, we may also use ds(R) when G is obvious in
the context)

• In graph G, minimum 9-degree of an r-clique R E M(G) is denoted as ör,s(G).

• Two r-cliques R, R' are Y-connected i f there exists a sequence R = R1,R2,... ,Rk = Ir in M
such that for each i, some S e ,5° contains RiURi+i.

• Ars(R) denotes the set of neighbor r-cliques of the r-clique R such that lr E A(R) if A an
s-clique S s.t. S 9 R and S 9 Ir.

Definition 2 Let k, r, and s be positive integers such that r < s. A k-(r, s) nucleus is a subgraph
G/ which contains the edges in the maximal union of s-cliques such that:

• The <9-degree of any r-clique R E M(G') is at least k.

• Any r-clique pair R, E M(G') are <5°-connected.

k-(r, s) nucleus definition is inspired by k-core and and k-truss. For r = 1, s = 2, k-(1, 2) nucleus
is a maximal (induced) connected subgraph with minimum vertex degree k. This is exactly the k-
core. Setting r = 2, s = 3 gives maximal subgraphs where every edge participates in at least k
triangles, and edges are triangle-connected. This is essentially the definition of k-truss. We also
define the Xs index of r-clique analogous to the core numbers of vertices and truss numbers of
edges.

Definition 3 For any r-clique R E M(G), the A,-index of R, denoted as Xs(R), is the largest k value
such that R is contained in a k-(r, s) nucleus.

63

Table 10: Notation

Symbol Description

G graph
R, S r-clique, s-clique
M(G) set of r-cliques in graph G
5° (G) set of s-cliques in graph G
W (G) M (G) U S'a (G)
d,1 G (R)
(d,(R))

s-cliques that contains R in graph G
(it is actually the S-degree of R)

Or,s (G) minimum S-degree of an r-clique in graph G
A(R) set of (neighbor) R's s.t.] an s-clique S D (R U R')

Al (R) largest k s.t. R is contained in a k-(r, s) nucleus
, X e (K) largest h s.t. at least h numbers in set K are > h
V update operator, (r : ,q N) (V 2 : M N)

We use the notion of k-(r, s) nucleus and Xs-index to introduce our generic theorems and algo-
rithms for any r, s values. The set of k- (r, s) nuclei is found by the peeling algorithm [104] (outlined
in Algorithm 12 for completeness). It is a generalization of the k-core and k-truss decomposition
algorithms, and finds the Xs indices of r-cliques in non-decreasing order.

The following lemma is quite standard in the k-core literature and we prove the analogue for
k-(r,$) nucleus. It is a convenient characterization of the Xs indices.

Lemma 1 For all R E M(G), A.,(R) = maxm(c) Rör,,(0), where 0 C G.

Proof: Let T be the A„(R)-(r, s) nucleus containing R. By definition, (T) = A„(R), so maxc >
(R). For contradiction's sake, suppose there existed some subgraph Ti R such that 6r,s(V) >

A.s(R) (Wlog, we can assume T' to be connected; otherwise, we denote T' to be the component
containing R). There must exist some maximal connected T" D T' that is a Or,s(T')-nucleus. This
would imply that As(R) > 6,;„ (T) > 2.,5(R), a contradiction. 0

h-index computation

The main idea in our work is the iterative h-index computation on the S-degrees of r-cliques. h-
index metric is introduced to measure the impact and productivity of researchers by the citation
counts [62]. A researcher has h-index if she has at least h papers and each paper is cited at least
h times such that there is no h' > h that satisfies these conditions. We define the function <9'e to
compute the h-index as follows:

Definition 4 Given a set K of real numbers, „Ye)(K) is the largest h E N such that at least h elements
of K are at least h.

64

Algorithm 12: PEELING(G, r, s)

Input: G: the graph, r, s: natural numbers
Output: Ks (.): array of Ks indices for r-cliques
Enumerate all r-cliques in G
For every r-clique R, set ds (R) (Y-degrees)
Mark every r-clique as unprocessed
for each unprocessed r-clique R with minimum cis(R) do

Xs(R) = ds (R)
Find set 5° of s-cliques containing R
for each C E do

if any R c C is processed then continue
for each r-clique c C, R do

if ds (R') > ds(R) then ds (R') = ds(k) — 1

Mark R as processed

return array 2.,s (.)

Core numbers are related to h-indices. For instance, core number of a vertex can be defined
as the largest k such that it has at least k neighbors whose core numbers are also at least k. In
the following section, we will formalize this observation, and build on it to design algorithms to
compute not only core decompositions but also truss and generalized nucleus decompositions.

4.3 Going from h-index to A,s-index

Our main mathematical contribution is two-fold. First, we introduce a generic formulation to
compute the k-(r, s) nucleus by an iterated h-index computation on r-cliques. Secondly, we prove
convergence bounds for the number of iterations.

We define the update operator . This takes a function T : N and returns another function
GlC T : N, where d is the set of r-cliques in the graph.

Definition 5 The update V is applied on the r-cliques in a graph G such that for each r-clique
R E M(G):

11. For each s-clique S R, set p (S , R) = T(R/).

22. Set 2l z(R) = a ({P(S,R)}sDR).

Observe that Gll T can be computed in parallel over all r-cliques in M(G). It is convenient to
think of the Y-degrees (ds) and A„, indices as functions M —> N. We initialize 'co = ds, and set

tir+l = VTt•

65

The results of Lu et al. [83] prove that, for the k-core case (r = 1, s = 2), there is a sufficiently
large t such that Tt = A,2 (core number). We generalize this result for any nucleus decomposition.
Moreover, we prove the first convergence bounds for V .

The core idea of [83] is to prove that the 2t(.) values never increase (monotonicity) and are
always lower bounded by core numbers. We generalize their proof for nuclei.

Theorern 1 For all t and all r-cliques R:

• (Monotonicity) Tt+i (R) < tt(R).

• (Lower bound) "rt(R)> Xs(R).

Proof: (Monotonicity) We prove by induction on t. Consider the base case t = O. Note that
for all R, Ti(R) = Vds(R) < ds(R). This is because in Step 2, the Ye operator acts on a set of
ds(R), and this is largest possible value it can return. Now for induction. (Assume the property is
true up to t.) Fix an r-clique R, and s-clique S D R. For Tt(R), one computes the value p (S , R) =
mini?, cs,Rw'rt—i(R). By the induction hypothesis, the values p (S , R) computed for Tt±i is at most
the value computed for 2t. Note that the ye operator is monotone; if one decreases values in a set
K, then .91c (K) cannot increase. Since the p values cannot increase, Tt+i (R) < Tt(R).

(Lower bound) We will prove that for any G' C G, ..q (0) D R, Tt(R)
completes the proof.

> ör,s(0) . Lemma 1

We prove the above by induction on t . For the base case, To (R) = ds1 G(R) > dslc (R) > 3,,,s(C) .
Now for induction. By the induction hypothesis, V R E ,q(C), Tt(R) > 3,.,,,(C). Consider the
computation of 2t+i (R), and the values p (S , R) computed in Step 1. For every s-clique S, note that
p (S , R) = minkcs,Rw'rt(k). By the induction hypothesis, this is at least 3,.,s(G'). By definition
of 81-4 (0) , dslc (R) > ör,s(0). Thus, in Step 2, the A° operator returns at least 3,.,s(G'). El

Note that this is an intermediate result and we will present our final result in Lemma 2 at the
end.

Convergence bounds by the degree levels

A trivial upper bound for convergence is the number of r-cliques in the graph, IM(G)1, because
after n iterations n r-cliques with the lowest Xs indices will converge. We present a tighter bound
for convergence. Our main insight is to define the degree levels of r-cliques, and relate these to the
convergence of 2t to Xs. We prove that the Â. indices in the ith level converge within i iterations of
the update operation. This gives quantitative bounds on the convergence.

Definition 6 For a graph G,

66

• S E (G) if and only if R E CO, V R C S.

• If R is removed from ̀e (G), all S D R are also removed from (G).

• Degree levels are defined recursively as follows. The i-th level is the set Li.

— Lo is the set of r-cliques that has the minimum -degree in ̀Ki' .

— Li is the set of r-cliques that has the minimum -degree in W\U1<iL1.

We first prove the Xs indices cannot decrease as the level increases. The following proof is closely
related to the fact the minimum degree removal algorithm (peeling) finds all cores/nuclei.

Theorem 2 Let i < j. For any Ri E Li and R1 E Lj, Xs(Ri) < Xs(Rj).

Proof: Let Li =Ur>iLr, the union of all levels i and above, and G' is the graph such that E =
(G') . By definition of the levels, dslc (Rj) = 5,;5(C) and dslc (Rj) > dslc (Ri). There exists

some As (Ri)-nucleus T containing Ri. We split into two cases.

Case 1: M(T) C E. Thus, Xs(Ri) = 5,;5(T) < 5r,s(0) = ds1C(Ri)•
minp3Ri ör,s(P), so A,s(Rj) > Sr,s(G1). Hence, Xs (Ri) < (Rj).

Case 2: M(T) \L' . Thus, there exists some r-clique R' E M(T) n Lb, where b < i. Choose
the R' that minimizes this value of b. Since T is a Xs (Ri)-nucleus, dsIT (k) > 2,s(Ri). Consider

M — r> b Lr • Note that M(T) C M, since we chose R' to minimize b. Let Q is the graph such that
M = <1` (Q). We have ds1Q(k) cisIT (RI) Xs(Ri). Since R' E Lb, ds1Q(k) = 3r,s(Q). Since j > b
and R E M, Xs(R j) > 3r,s(Q). Combining the above, we deduce Xs (Ri) < (Rj). El The main
convergence theorem is the following. As explained earlier, it shows that the ith level converges
within i iterations.

Theorem 3 Fix any level Li. For all t > i and R E Li, 2t(R) = Xs(R).

Note that Xs(R f) =

Proof: We prove by induction on i. For the base case i = 0: note that for any R of minimum
-degree in G, Xs(R) = ds1G(R) = -ro(R). Now for induction. Assume the theorem is true up

to level i. Thus, for t > i and V R E U1<iLi, Tt(R) = Xs(R). Select arbitrary Ra E Li+), and set
L' — Upi+i Lj.

We partition the s-cliques containing Ra into the "low" set 5°.e and "high" set Yb. s-cliques in
,_5°.e contain some r-clique outside E, and those in Yb are contained in L'. For every s-clique S E <7.e,
there is some Rb E S such that Rb E Lk for k < i. By the induction hypothesis, Zt (Rb) = Xs(Rb). By
Theorem 2 applied to Rb E Lk and Ra E Li+i, (Rb) < Al(Ra) •

Focus on the computation of Tt+1(Ra), which involves first computing p(S,Ra) in Step 1 of
Definition 5. For every S e ,5°e, by the previous argument, there is some r-clique Rb E S, Rb Ra,

67

such that Tt(Rb) < (Ra). Thus, V S E <9,e, p(s,R.) < Xs(Ra). This crucially uses the min in
the setting of p (S,Ra), and is a key insight into the generalization of iterated <Ye-indices for any
nucleus decomposition.

The number of edges in <9ah is exactly dslc (Ra) = ör,s(G') . Applying Lemma 1 to Ra E we
deduce Xs(Ra) > dslc (Ra). All in all, for all S E 5°6 p(s,Ra) is at most Xs(Ra). On the other
hand, there are at most A,s(Ra) s-cliques in Yh. The application of the ,21° function in Step 2 yields

Tt+1(Ra) < Xs(Ra) • But the lower bound of Theorem 1 asserts Tt+ 1 (Ra) > Xs(Ra), and hence, these
are equal. This completes the induction. ❑

We have the following lemma to show that convergence is guaranteed in a finite number of
iterations.

Lemma 2 Given a graph G let I be the maximum i, such that L1 and Ti(R) > Xs(R) for all
r-cliques (e.g., 20 = ds) and set Tt±i = -rt. For some t < l, Tt (R) = (R), for all r-cliques.

4.4 Local algorithms

We introduce generalized local algorithms to find the Xs indices of r-cliques for any (r, s) nucleus
decomposition. For each r-clique, we iteratively apply h-index computation on some attributes in
their neighborhood. Our local algorithms are pleasingly parallel thanks to the independent nature
of the h-index computations. We also offer to explore time and quality trade-offs by using the
iterative nature. We first present the deterministic synchronous algorithm which does not depend
on the order of processing the r-cliques. It implements the V operator in Definition 5. Then we
adapt our algorithm to work in an asynchronous manner that converges faster and uses less space.
For those familiar with linear algebra, the synchronous and asynchronous algorithms are analogous
to Jacobi and Gauss-Seidel iterations for iterative solvers. At the end, we discuss some heuristics
and key implementation details for shared-memory parallelism in OpenMP.

Synchronous Nucleus Decomposition (SND)

We use the update operator V to compute the k-(r, s) nuclei of a graph G in a synchronous way.
Algorithm 13 (SND) implements the Definition 5 for functions To = ds and Tt+i = V2t to find the
Xs indices of r-cliques in graph G.

S ND algorithm proceeds in iterations until no further updates occur for any z index, which
means all the z indices converged to 2.,s. Computation is performed synchronously on all the r-
cliques and at each iteration i, 2i indices are found for all r-cliques. We declare two arrays, 'CH
and "CP (.), to store the indices being computed and the indices that were computed in the previous
iteration, respectively (Lines 1 and 4). 20 are initialized to the <5° -degrees of the r-cliques since

To = ds (Line 2). At each iteration, newly computed T(.) indices are backed up in TP(.) (Line 7),
and the new TO indices are computed. During the iterative process, convergence is checked by

68

the flag ,g" (Line 5), which is initially set to TRUE (Line 3) and stays TRUE as long as there is an
update on a T index (Lines 6, 13, and 14).

Computation of the new 20 indices for each r-clique can be performed in parallel with no
communication or synchronization between threads (Lines 8 to 15). For each r-clique R, we apply
the two step process in the Definition 5. First, for each s-clique S that contains R, we compute the
p values which is the minimum 2P index of an r-clique R' E S (R R) and collect them in a set L
(Lines 10 to 12). Then, we compute the h-index of the set L and assign it as the new T index of the
r-clique (Line 15). We also check if there is an update on the T index and make sure to continue
computation if so (Line 13 and 14). Once the T indices converge, we assign them to ic, indices and
complete the algorithm (Lines 16 and 17)

Figure 20 illustrates the SND algorithm for k-truss decomposition (r = 2, s = 3) on a toy graph,
where the involvements of edges (2-cliques) in triangles (3-cliques) are examined. Triangle counts
of all the edges (d3) are computed and set as their 20 values (in blue). For each edge, first we
compute 21 indices (in red) based on the 20 indices (Line 5 to 15). For instance, the ae edge has
four triangles and for each of those we find the neighbor with minimum To index (Line 10 to 12).
So, set L = {(minero (eb), To (ab)) , minero(ec), To (ac)),
mineco(eg),m(ag)),min(ro(ef),To(af))} = {2, 2, 1, 1} and 21(ae) = A ' (L) = 2 (Line 15). Since
the Z index is updated, we set flag <g- TRUE to continue iterations. After computing the 22 indices
(green), we observe that there is no update, i.e., T2(e) = Ti(e) for all edges, thus completing the
algorithm. So, one iteration is enough for the convergence and we have X3 = tl for all edges.

Asynchronous Nucleus Decomposition (AND)

In the SND algorithm, updates on the T indices are synchronous and all the r-cliques are processed
by using the same snapshot of T indices. However, when an r-clique R is being processed in itera-
tion i, a neighbor r-clique R' that participates in an s-clique with R might have already completed
its computation in that iteration and updated its T index. By Theorem 1, we know that the T index
can only decrease as the algorithm proceeds. Lower T (R') indices in set L might decrease A' (L),
and it can help T (R) to converge faster. So, it is better to use the up-to-date T indices for faster
convergence. In addition, there would be no need to store the T indices computed in the previous
iteration, saving r1M (G) I space.

We introduce the AND algorithm (Algorithm 14) to leverage the up-to-date T indices for faster
convergence (Orange lines can be ignored for now). At each iteration, we propose to use the
latest available information in the neighborhood of an r-clique. Removing the green lines in the
SND algorithm and inserting the blue lines in the AND algorithm are sufficient to switch from
synchronous to asynchronous computation. We do not need to use the Tp (') to back up the indices
in the previous iteration anymore, so lines 4 and 7 in Algorithm 13 are removed. Computation is
done on the latest T indices, so we adjust the lines 11 and 13 (in Algorithm 13 and 14) accordingly,
to use the up-to-date T indices.

In the same iteration, each r-clique can have a different view of the TO and updates are done

69

Algorithm 13: SYNCHRONousNucDEC(SND) (G, r, s)

Input: G: the graph, r, s: natural numbers
Output: ics (.): array of Ics indices for r-cliques

i TO {— indices V R e M(G) // for current iter. .
2 'r (R) <— ds(R) V R E M(G) I / set to the Y-degrees
3 g- {— TRUE // stays TRUE if any 2(R) is updated

4 TP(.) <— indices V R E M(G) / I for previous iter. .
5 while ,_. do
6 g. {— FALSE

7 'CP (R) T(R)VREM(G)
8 for each R E M(G) in parallel do
9 L empty set
10 for each s-clique S 9 R do
11 p x— minkcsARw TP(R')
12 L . add (p)

13 if "CP (R) A c (L) then
14 g- <— TRUE

15 T (R) <— Y t ° (L)

16 2,s (.) <— -c (.)
17 return array 2, (.)

asynchronously in an arbitrary order. Number of iterations for convergence depends on the process-
ing order of the r-cliques, which is used in line 7 of Algorithm 14. For the sequential computation,
we have the following theorem regarding the best ordering that results in the quickest convergence.

Theorem 4 For a graph G, if the r-cliques are processed in the non-decreasing order of their As
indices in the AND algorithm, convergence is obtained in a single iteration.

Proof: Say that we process the r-cliques in the non-decreasing order of Xs indices and for the sake
of contradiction, assume that there exists an r-clique R s.t. Ti(R)> As(R), i.e., it does not converge
in a single iteration. Let Ro is the first r-clique being processed, so we have 2„(R)> As(Ro) since
we follow the non-increasing order.

(1) If AAR) = A,(Ro): Say AAR) = n. d5(R) = -co(R) = m > n by Theorem 1. So initially
there are m s-cliques that contains R. We also know that for each R' c M(G), To(k) > A,5(k) > n
since n is the smallest A„, index, by our assumption. Thus, for each s-clique S 9 R, p value is
at least n and there are m such s-cliques, which makes -ci (R) = n. But, our initial assumption is

Ti(R) > AAR) = n, contradiction.

(2) If 2„(R) > 2,(R0): Say 2, (Ro) = n and 2„ (R) > n + 1. We have To (R) > zi(R) > n + 1, by
our assumption, when we start processing R. Since R is not the first r-clique in the order, we have
a set P of r-cliques that are processed before R where 1P1 > 0. Thus, we have 615(R) > n +11'1+ 1 at
most, when V R' E P, X, (R') < Xs(R) and there exists an s-clique S E G s.t. RUR' C S. If we exclude
the s-cliques that contains an r-clique from P, we have more than n+ 1 s-cliques where each has a

70

Algorithm 14: AsYNCHRONousNucDEC(AND) (G, r, s)

Input: G: the graph, r, s: natural numbers

Output: ics(.): array of Ics indices for r-cliques
2(-) <— indices V R E M(G) / / for current iter. .

2 2(R) ds(R) V R E a(G) // set to the Y-degrees

3 g- TRUE // stays TRUE if any 2(R) is updated

4 c(R) TRUE V R E M(G)
5 while do
6 <— FALSE

7 for each R E M(G) in parallel do
8 if c(R) is FALSE then continue
9 L empty set
10 for each s-clique S R do
11 p IllinYESARW T(k)

12 L . add (p)
13 if -r(R) (4 then
14 <— TRUE

15 for each k A7s(R) do
16 if (L) < 2(k) < 2(R) then
17 C(R1) <— TRUE

18 2(R) (L)
19 C(R) <— FALSE

20 A,s(.) 2(.)

21 return array As (.)

p value of at least n + 1, since all the r-cliques R" in those s-cliques has ds(R") > n. This implies
that 21(R) = n + 1, which contradicts with our initial assumption that 21(R) > > n + 1. 0

The worst case for AND happens when all the r-cliques see the 2 indices of their neighbors that
are computed in the previous iteration, and it is exactly the SND algorithm.

Figure 21 illustrates the SND algorithm and AND algorithm with two different orderings on
the k-core case (r = 1, s = 2). Focus is on vertices (1-cliques) and their edge (2-clique) counts
(degrees). We first do the SND. Vertex degrees are set as To indices (blue). For each vertex u we
compute the 21(u) = de({20(v) : v E A72(U)} (red), i.e., h-index of its neighbors' degrees. For
instance, vertex a has two neighbors, e and b, with degrees 2 and 3. Since Ye({2, 3}) = 2, we get
21(a) = 2. For vertex b, we get 21 (b) = Ac({2, 2, 2}) = 2. Once we compute all the 21 indices,
we observe an update (vertices e and b), thus move forward and compute the 22 indices, shown in
green. We observe an update only for the vertex a; 22(a) = <Ytc(tri(e),Ti(b)1) = Ye({1,2}) = 1
and continue computation. For 23 indices (yellow), no update is observed which means that
= 22 for all vertices and SND converges in two iterations. Regarding the AND algorithm,

say we choose to follow the non-decreasing order of A,s indices; {f,e,a,b,c,d}. Computing the
21 indices on this order enables us to reach the convergence in a single iteration. For instance,

21 (a) = (tri (e),Th(b)f) = Ac({1,3}) = 1. However, if we choose to process the vertices in
the alphabetical order, {a,b,c,d,e,f}, we have 21(a) = <Ye ({To(e), -co (b)f) = ,Ye({2, 3}) = 2, and

71

need more iteration(s) to converge. Indeed, a is the only updated vertex. In the second iteration,
we get T2(a) = Yea Ti (e), Ti (b)}) = Ye((1, 2}) = 1, an update, thus continue iterating. Third it-
eration does not change the T indices, so AND with { a,b,c,d,e,f} order converges in two iterations,
same as the SND.

Skipping the plateaus

SND and AND algorithms converge when none of the r-cliques update their T indices anymore.
Consequently, computations continue to be performed for all the r-cliques even when only one
update occurs and we also need an extra iteration to detect the convergence. Figure 22 shows
the T indices of randomly selected edges in the facebook graph during k-truss decomposition (r =
2, s = 3). There are plenty of wide plateaus where T indices stay constant, which suggests that those
computations are redundant. But how can we avoid them? For example, when i(R) converges to
A.,. (R), no more computations are needed for R anymore. However, we cannot know if the T(R)
has converged or not by looking at the repeating T indices or watching the plateaus, because an
update can occur after maintaininig the same T index for a number of iterations, creating a plateau.
In order to efficiently detect the convergence and skip any plateaus during the computation, we
introduce a notification mechanism where an r-clique is notified to recompute its T index, if any of
its neighbors has an update.

Orange lines in Algorithm 14 present the notification mechanism plugged in to the asyn-
chronous computation. c(.) array is declared in (Line 4) to track whether an R E M(G) has updated
its T index or not. c(R) = FALSE means R did not update its T index, it is an idle r-clique, and there
is no need to recompute its T value for that iteration (Line 8). A non-idle r-clique is called active.
Thus, all c (.) is set to TRUE at the beginning to initiate the computations for all r-cliques. Each
r-clique marks itself idle at the end of an iteration (Line 19) and waits until an update happens
in the T index of a neighbor. When the i(R) is updated, T indices of some neighbor r-cliques in
A(R) might be affected and they should be notified for the recomputation. For R' e A(R), if
T (R') < A D (L) (new T(R)) then it is not affected since T (R') < T(R) already in the previous iter-
ation and no change can happen in the h-index computation. In addition, if T(k) > T(R) before,
then T (R1) > Ye (L) (the new T(R)) as well and will not be affected. Therefore, we only need to
notify the neighbors that have T indices in Ve(L), T(R)] interval (Line 15 to 17) In parallel com-
putation, some neighbors might already be active when they are notified, and use the stale i(R)
at that time, thus missing the new update. But it is okay since the following iterations will handle
it. Indeed, parallel asynchronous computation becomes the synchronous computation in the worst
case.

For the same toy graph, we now apply AND algorithm with the notification mechanism in
the { a,b,c,d,e,f} order. Figure 23 illustrates the computation. Again, vertex degrees are set as To
indices (blue) and we compute the Ti(u) = Acazo(v) : v E ,A(2(u)}, i.e., h-index of its neighbors'
degrees, (red) for each vertex u. No update happens for vertex a and no vertex is notified. T(b)
is updated as 2 and we check if any neighbors of b has a T index > 2 and < 3 (Line 16). No
such vertex occurs and no notification happens. Vertices c and d do not update their T indices.
i(e) is updated as 1 and since To(e) > -ci (a) > Ti (e), vertex a is notified for recomputing its T

72

index. Vertex f does not change its 2 index as well and all the vertices except a are idle now. In
the second iteration, we process a and compute -c2 (a) = yetri (e), 21 (b) } = Aaf 1, 2} = 1. Update
in 2 index of a notifies vertex b since Ti (a) > Ti (b) > 22 (a). However computing T2 (b) gives no
update and all the vertices become idle, meaning that the convergence is achieved. Overall, we
do 8 2 computations by using the AND with notification mechanism and it takes 3 iterations to
complete the process, whereas 4 iterations needed if no notification mechanism is used and 24 2
computations are necessary in total (Figure 21). So the notification mechanism is helpful to avoid
redundant computations.

Heuristics and implernentation

We introduce key implementation details for the shared-memory parallelism and important heuris-
tics for efficient h-index computation. We used OpenMP [36] to utilize the shared-memory archi-
tectures. The loops, annotated as parallel in Algorithms 13 and 14, are shared among the threads,
and each thread is responsible for its partition of r-cliques. No synchronization or atomic opera-
tion is needed. Default scheduling policy in OpenMP is static and it distributes the iterations of the
loop to the threads in chunks, i.e., for two threads, one takes the first half and the other takes the
second. Although this policy is useful for many applications, it does not work well for our algo-
rithms. The notification mechanism to avoid the redundant computations can result in significant
load imbalance between threads with static scheduling. If most of the idle r-cliques are assigned
to a certain thread, then that thread quickly finishes its work, becomes idle and waits for the other
threads until the end of the iteration. To prevent this, we embraced the dynamic scheduling where
each thread is given a new workload once it is done. We set chunk size to 100 and observed no
significant difference for other values. No thread stays idle this way, and the overall computation
is parallelized more efficiently.

h-index computation for a list of numbers is traditionally done by sorting the numbers in the
non-increasing order and checking the values starting from the head of the list to find the largest
h value for which at least h items exist with at least h value. Main bottleneck in this routine is the
sorting operation which takes O(nlogn) time for n numbers. We introduce a linear time algorithm
that uses a hashmap and does not include sorting to compute the h-index. h is initialized as zero
and we iterate over the items in the list. At each step, we attempt to increase the current h value
based on the inspected item. For the present h value in a step, we keep track of the number of items
examined so far that have value equal to h. We use a hashmap to keep track of the number of items
that has at least h value, and we ignore values smaller than h. This enables the computation of the
h-index in linear time and provides a nice trade-off between time and space. In addition, for the
non-initial iterations of the convergence process, we simply check the items if the current 2 index
can be preserved. Once we see at least 2 items with index at least 2, no more checks needed and
no update happens.

73

Table 11: Important statistics about our dataset; number of vertices, edges, triangles and four-
cliques (K4).

1V1 1E1 1A1 1K41

skitter(ASK) 1.7M 11.1M 28.8M 148.8M
facebook (FB) 4K 88.2K 1.6M 30.0M

soc-Livejournal (Su) 4.8M 68.5M 285.7M 9.9B
soc-orkut (ORK) 2.9M 106.3M 524.6M 2.4B

soc-sign-epinions (SSE) 131.8K 711.2K 4.9M 58.6M

soc-twitter-higgs (FIG) 456.6K 12.5M 83.0M 429.7M
twitter (Tw) 81.3K 1.3M 13.1M 104.9M

web-Google (WGO) 916.4K 4.3M 13.4M 39.9M
web-NotreDame (WND) 325.7K 1.1M 8.9M 231.9M

wiki-0611(wm) 3.1M 37.0M 88.8M 162.9M

4.5 Experiments

We evaluate our algorithms on three instances of the (r, s) nucleus decomposition: k-core (or
(1, 2)), k-truss (or (2, 3)), and (3, 4). We do not store the s-cliques during the computation for
better scalability in terms of the memory space. Instead, we find the participations of the r-cliques
in the s-cliques on-the-fly. More details about the time-space trade-offs are given in [104]. Our
dataset comprises a diverse set of real-world networks from SNAP [77] and Network Reposi-
tory [100], such as an internet topology network (skitter), online social networks (facebook,
soc-Livejournal, soc-or- kut), trust network (soc-sign-epinions), follower-followee Twit-
ter networks (soc-twitter-higgs, twitter), web networks (web-Google, web-NotreDame),
and a network of wikip- edia pages (wiki-0611). Number of vertices, edges, triangles and four-
cliques in those graphs are given in Table 11.

All experiments are performed on a Linux operating system running on a machine with Intel
Ivy Bridge processor at 2.4 GHz with 64 GB DDR3 1866 MHz memory. There are two sockets
on the machine and each has 12 cores, making 24 cores in total. Algorithms are implemented in
C++ and compiled using gcc 6.1.0 at the -02 optimization level. We used OpenMP v4.5 for the
shared-memory parallelization.

We first compare the SND (Algorithm 13) and AND (Algorithm 14) algorithms and check the
number of iterations for convergence in sequential settings. Then, we investigate the characteristics
of the convergence processes and look how the 2 indices are getting closer to the A, indices at each
iteration. We explore the trade-offs between the quality of 2 indices (how close they are to Xs)
and runtime, and give some guidance on finding the sweet spots where good-enough 2 indices can
be obtained faster. Last, but not least, we compare the runtimes of our algorithms with respect
to the widely accepted peeling technique, and discuss the scalability of our implementations with
increasing number of threads.

74

Algorithm/Bound ASK FB SLJ ORK SSE HG TW WGO WND WIKI

k-core
Degree Levels 1195 352 3479 5165 642 1713 961 384 665 2026

SND 63 21 99 147 38 73 37 23 187 55
AND 33 11 51 73 19 37 21 14 35 30

k-truss
Degree Levels 1605 859 5401 4031 1273 2215 1337 254 417 2824

SND 118 33 86 207 52 101 52 20 187 562
AND 58 19 44 103 28 53 29 11 15 410

(3,4)
Degree Levels 1734 1171 7426 3757 1584 2360 1641 157 138 1559

SND 72 38 123 196 54 109 76 11 14 122
AND 41 23 73 116 30 51 40 6 10 107

Table 12: Number of iterations given by upper bound (Section 4.3), and SND and AND algorithms.
Both algorithms converge in far fewer iterations than the theoretical upper bounds — on average
SND converges in 5% of the bounds for all decompositions. AND algorithm converges in 50% less
number of iterations than the SND for k-core and k-truss decompositions and 35% less for (3, 4)
nucleus decomposition.

AND converges faster than SND

Number of iterations for convergence can be decreased by the asynchronous algorithm AND, as
described in 4.4. We compare SND (Algorithm 13) and AND (Algorithm 14) for three nucleus
decompositions. All the runs are performed in sequential, and for AND we use the natural ordering
of the r-cliques in datasets that is the order of vertices/edges/triangles given or computed based
on the ids in the data files. Note that, we also checked AND with random r-clique orderings and
did not observe significant differences. Apart from the algorithms, we also compute the number of
degree levels (Definition 6) that we prove as an upper bound in Section 4.3.

Table 12 presents the results for each decomposition type, k-core, k-truss and (3, 4). Number of
degree levels gives much tighter bounds than the obvious limits — number of r-cliques. We observe
that both algorithms converge in far fewer iterations than our upper bounds — SND converges in
5% of the bounds given for all decompositions, on average. Regarding the comparison, AND algo-
rithm converges in 50% fewer iterations than the SND for k-core and k-truss decompositions and
35% less iterations for (3, 4) nucleus decomposition. Overall, we see the benefit of asynchronous
computation on all decompositions and we use AND algorithm for the remaining experiments.

Few iterations are enough for close results

We investigate the convergence rates of the three decompositions. At each iteration i we compute
the similarity between the zl indices and the final As indices of r-cliques. We have two metrics to
measure the similarity: (1) Kendall-Tau metric with a minor adaptation, (2) Accuracy percentage
of the converged i indices, i.e., E ,q (G) : (RI) = (1?') 11/1m(G)1.

Kendall-Tau metric computes the ratio of pairwise agreements between two ranking lists and
used to measure the k-core approximations [83, 58]. In our case, for (xl , x2, • • •

75

xlm(G)1) and (y1, y2, ..., ylm(G)1) lists, if both (xi < xj) and (yi < yj) or both (xi > xj) and (yi > yj),
we say i, j pair is concordant. If (xi < xj) and (yi > yj) or (xi > xj) and (yi < yj), i, j pair is
discordant, and if (xi = xj) or (yi =yj), then the pair is neither concordant nor discordant. Kendall-
Tau is defined as (n+ — n—) I# pairs, where n+ and n— are the number of concordant and discordant
pairs. It is in [-1, 1] interval and larger the number, more similar the two lists. For our problem,
we make the Kendall-Tau metric stricter by considering that (i, j) pair is also concordant if both
(xi = xj) and (yi = yj). For any other case, we say the pair is discordant. The reason behind our
adaptation is that if two r-cliques have the same index, then they are in the same nucleus, which
is critical to locate dense nuclei and relate them to each other in a hierarchical way. Note that, this
metric becomes 1 at convergence and it is not necessarily monotonic with the increasing number
of iterations in our algorithms, because when an r-clique decreases its index, many concordant
pairs can be discordant temporarily for a number of iterations (especially the ones with equal
indices before decrease).

Figure 24 presents the Kendall-Tau similarity scores between Ti and Xs indices for each iteration
i, starting from 0 which shows the Y-degrees of r-cliques. We present the results for k-core and
k-truss computations in Figure 24 and (3, 4) results are also given in Figure 19 (Section 4.1).
For all decompositions, we observe that our algorithms obtain highly similar results within a few
iterations for all the graphs. In particular, the average number of iterations we need in order to
reach the 90% similarity are 5.4, 7.7 and 6 for k-core, k-truss, and (3, 4) nucleus decompositions,
respectively. For the 99% similarity, 19.3, 17.7, and 12.5 iterations are needed on average. Most of
the iterations after a certain point are performed just for a few r-cliques. We also observe that the
first iteration, which uses the Y-degrees of r-cliques, provides a great increase in the Kendall-Tau
similarity score. This is especially significant for higher-order decompositions, k-truss and (3, 4).
Overall, we can effectively approximate the indices in a few iterations.

In our algorithms, there is no way to infer if an r-clique has converged or not by checking
the repetitions on i indices at each iteration, because there might exist intermediate plateaus in 'r
indices, as explained in Section 21. However, we know which r-cliques are active or idle in each
iteration. We check the ratio of active r-cliques during the computation, which also corresponds to
the workload in each iteration, and examine their relations with the accuracy ratios of the r-cliques
(what percentage has converged so far).

Figures 25 and 25 presents the results for each graph on all three decompositions. We observe
that when the ratio of active r-cliques goes below 40% during the computation, 83%, 82%, and
86% accurate results are obtained for k-core, k-truss, and (3, 4) nucleus decompositions, on aver-
age. When the ratio goes below 10%, —99% accuracy is achieved in all decompositions, which is
pretty significant. We believe that the ratio of active r-cliques is a helpful guide to find the sweet
spots where almost-exact results are obtained more efficiently. Watching for 10 or 40 percent-
age of active r-cliques yields nice trade-offs between runtime and quality. If the computation is
terminated when the ratio of active r-cliques goes below 10% and 40%, we observe up to 1.67x
and 2.65x speedups with respect to full computation until convergence, in k-truss decomposition.
For the (3, 4) nucleus decomposition, speedups can be as large as 1.29x and 2.27x if we stop the
computation when the active r-cliques are below 10% and 40%. Overall, our algorithms enable
trading-off between runtime and quality, and can be tailored to the needs of the real-world appli-

76

cations.

AND is significantly faster than the peeling

We compare the runtime performances of AND (Algorithm 14) and the peeling process (Algo-
rithm 12) on three decompositions. We perform full computations until convergence. For the
k-truss and (3,4) nucleus decompositions, triangle counts per edge and four-clique counts per tri-
angle need to be computed and we parallelize these parts for the peeling algorithms as well, for a
fair comparison. Rest of the peeling computation is sequential as it cannot be parallelized. Run-
times with 24 threads are presented in Table 13. Overall, k-core computations are quite fast and
there is not much work to benefit from parallelism, so the peeling process is faster than AND. Note
that peeling performs a single scan of the graph while our algorithm does that at each iteration. For
the k-truss and (3, 4) nucleus decompositions, AND obtains significant speedups over the peeling
process. In particular, (3, 4) is 7.98x faster than peeling on the web-NotreDame graph, and k-truss
decomposition has 4.04x speedup over the peeling process on the skittergraph.

We also check the speedups for the approximate decompositions. We show how the speedups
(with respect to peeling algorithm) change when a certain amount of accuracy in 2,5 indices is sacri-
ficed. Figure 28 presents the behavior for k-truss and (3, 4) nucleus decompositions on some repre-
sentative graphs, starting from iteration O. We observe that after a certain accuracy score, speedups
do not change significantly. For k-truss decomposition on skittergraph, accuracy scores jump
from 0.45 to 0.8 in the first iteration and the speedup drops significantly - from 31 to 10. How-
ever, the accuracy scores above 0.8 do not change the speedup drastically. Slower rate of changes in
speedup numbers (close to the convergence) enables to get more accurate results with a small addi-
tional cost. The reason behind this behavior is our notification mechanism that avoids the redundant
computations. Similar trends are also observed for soc-twitter-higgs and wiki-0 611graphs,
on both k-truss and (3, 4) nucleus decompositions.

Shared-memory parallelization is scalable

We present the strong scalability evaluation for our shared-memory implementations of k-core, k-
truss, and (3, 4) nucleus decompositions. Our machine has 24 cores in total (12 in each socket) and
we run the experiments with 2, 4, 6, 12, and 24 threads where each thread is assigned to a single
core. Speedups for all three decompositions with respect to the sequential runs of AND are given
in Figure 27 for all the graphs. On average, using 24 threads we achieve 4.62x, 10.33x, and 15.12x
speedups for k-core, k-truss, and (3, 4) nucleus decompositions, respectively. We also observe up
to 7x, 14x, and 29x faster computations on some graphs. Our speedup numbers increase with more
threads and faster solutions are possible with more cores. We also observe that speedups increase
with larger r, s values which is due to the increasing computation demand Overall, our parallel
local algorithms are scalable and promise faster computations with more threads.

77

4.6 Related Work

Previous attempts to estimate the core numbers (or k-cores) focus on the neighborhood of a vertex
within a certain radius [92]. It is reported that if the radius is at least half of the diameter, close ap-
proximations can be obtained. However, given the small-world nature of the real-world networks,
the local graph within a distance of half the diameter is too large to compute. In our work, we
approximate the k-core, k-truss, and (r, s) nucleus decompositions in a rigorous and efficient way
that does not depend on the diameter.

Most related study is done by Lu et al. [83], where they show that iterative h-index computation
on vertices result in the core numbers. Their experiments on smaller graphs also show that h-
index computation provides nice trade-offs for time and quality of the solutions. In our work,
we generalized the iterative h-index computation approach for any nucleus decomposition that
subsumes the k-core and k-truss algorithms. Furthermore, we give provable upper bounds on the
number of iterations for convergence. Apart from that work, Govindan et al. [58] use the iterative
h-index computation to design space-efficient algorithms for estimating core numbers.

Regarding the parallel computations, Jiang et al. [69] introduced parallel algorithms to find the
number of iterations needed to find the empty k-core in random hypergraphs. Their nice work relies
on the assumption that the edge density is below a certain threshold and their focus is on the number
of iterations only. Our local algorithms present an alternative formulation for the peeling process,
works for any k value. For the k-truss decomposition, Quick et al. [97] introduced algorithms for
vertex-centric distributed graph processing systems. Their main focus is on the communication
cost. For the same setup, Shao et al. [119] proposed faster algorithms that can compute k-trusses in
a distributed graph processing system. Both papers make use of the peeling-based algorithms for
computation. Our focus is on the generalization of the h-index based computation for the nucleus
decompositions. Our local algorithms are pleasingly parallel.

4.7 Conclusion

We introduced a generalization of the iterative h-index computations for any nucleus decomposi-
tion and prove convergence bounds. Our local algorithms are pleasingly parallel and can provide
approximations to explore time and quality trade-offs. Experimental evaluation on real-world net-
works exhibits the efficiency, scalability, and effectiveness of our algorithms for three decompo-
sitions. We believe that our parallel local algorithms for core, truss, and nucleus decompositions
will be beneficial for many real-world applications.

78

1.0

= 0.5
co
H
ft 0.0
-0
c
a)
-0.5

-1.0
0

1.0

= 0.5
co
H
fo 0.0
-0c
a)
-0.5

facebook —
soc-sign-epinions

twitter —
web-NotreDame —

wikipedia-20061104,

5 10 15 20 25 30
number of iterations

(a) k-truss

facebook —
soc-sign-epinions

twitter —
web-NotreDame —

wikipedia-20061104,

5 10 15 20 25 30
number of iterations

(b) (3,4)-nucleus

Figure 19: Convergence rates with the number alterations for five graphs in our dataset. Kendall-
Tau similarity score compares the obtained decomposition and the exact decomposition; becomes
1.0 when both are the same. We observe that our local algorithms compute almost-exact de-
compositions in around 10 iterations for k-truss, and (3, 4) nucleus decompositions. This enables

SND : TO Ti T2

triangle count : d3

truss number : k3 (k3)

Figure 20: SND (Algorithm 13) for the k-truss decomposition (r = 2,s = 3). We find the A.3
indices. Triangle counts of all the edges are computed (d3) and set as their To values (blue). For
each edge, we first compute T1 indices (red) based on the To indices. The ae edge, for instance, has
four triangles and for each of those we find the neighbor with minimum -co index and compute the
h-index. So, Ti (ae) = ,_3(e {(min(m(eb),m(ab)),minem(ec),Th(ac)),rnin(Th
(eg),m(ag)),min(m(ef), m(af))1 = Ac{2, 2, 1, 1} = 2. No updates happen in the second iteration
(green), so convergence is obtained in a single iteration.

80

2 2 1 1

SND & AND {a,b,c,d,e,f} : TO Ti r2 T3
AND { f,e,a,b,d,c} : TO Ti

degree, core number : d2

2 2 2

2 2 2

Figure 21: SND (Algorithm 13) and AND (Algorithm 14, no orange lines) for the k-core decompo-
sition (r =1,s = 2). We find the X2 indices (core numbers) of vertices (edge is 2-clique). To indices
are initialized to the degrees (d2 in blue). SND algorithm uses the Ti_1 indices to compute the Ti
indices and converges in two iterations (ri in red, T2 in green, T3 in yellow). Same happens when
we use the AND algorithm (without orange lines) and follow the { a,b,c,d,e,f } order to process the
vertices. If we choose ff,e,a,b,c,d1 order, which is actually a non-decreasing order on A2 indices,
AND converges in a single iteration.

80

u) 60

f) 40 -
c

20

0
0 2 4 6 8 10 12 14 16

number of iterations
Figure 22: Changes in T indices of randomly selected edges in facebook graph during the k-truss
decomposition. There are wide plateaus during the convergence, especially at the end, where T
indices stay constant.

81

2 2

AND with notification { a ,b ,c ,d ,e ,f}
TO Ti T2

2 2

Figure 23: k-core decomposition (r = 1,s = 2) by AND (Algorithm 14) that uses the notification
mechanism. After the first iteration, the only active vertex is a and recomputing updates its 2 index
and also notifies vertex b. Recomputing 2 of vertex b does not yield any change and all the vertices
become idle, thus convergence is obtained. 8 2 computations performed in 3 iterations by AND
with notification mechanism, while 24 2 computations done in 4 iterations with if no notifications
used (Figure 21).

(in seconds)
Graphs Peeling

k-core
AND alg. Speedup Peeling

k-truss
AND alg. Speedup Peeling

(3,4)
AND alg. Speedup

ASK 0.61 1.04 0.59 55.9 13.8 4.04 457 167 2.73
FB 0.002 0.008 0.21 0.533 0.6 0.84 36 21 1.70
SLJ 4.35 7.45 0.58 192.7 104.6 1.84 25111 11651 2.16
ORK 11.46 19.90 0.58 746.7 359.1 2.08 6781 2977 2.28
SSE 0.02 0.10 0.25 3.1 2.5 1.24 103 59 1.76
HG 0.70 1.10 0.64 158.1 73.0 2.17 2047 875 2.34
TW 0.04 0.07 0.50 5.3 4.6 1.15 131 73 1.79
WGO 0.36 0.36 0.99 7.2 2.8 2.61 45 14 3.28
WND 0.02 0.11 0.21 3.0 0.9 3.41 261 33 7.98
WIKI 3.84 9.36 0.41 378.3 96.5 3.92 3034 820 3.70

Table 13: Runtime comparison of AND (Algorithm 14) and peeling (Algonthm 12) algorithms
using 24 threads. Runtimes are in seconds. AND obtains significant speedups over the peeling
process. In particular, (3, 4) is 7.98x faster than peeling on web-NotreDame graph, and k-truss
decomposition has 4.04x speedup over the peeling process.

82

k-core

1.0

0.5 1/

ASK

0.0 FB
SLJ
ORK
SSE
HG-0.5 TW

WGO
WND
WI KI

-1 .0
0 5 10 15 20 25

number of iterations

1.0 r

0.5

0.0-0

-0.5

-1.0
0

(a) k-core

30

ASK
FB
SLJ
ORK
SSE
HG
TW

WGO
WND
WIKI

5 10 15 20 25 30
number of iterations

k-truss (b) k-truss

Figure 24: Convergence rates on all the graphs83Ve measure the Kendall-Tau similarity between

Ti indices and Â. indices at each iteration i. We obtain very close solutions to the exact decompo-

sitions within a few iterations. 90% similar results can be obtained with -,80% less iterations than

the exact decompositions, on average.

1
>, 0.8
0
E'Es 0.6
=

cn
1000= 1
.7 80
o >, 0.8

o
60 Es 0.6

cn
 l000..- =

80 .7
o4 60 4_

0 0.4
0

40 a)> 8
= 0.4

/ /
- / 40 a)

c0 0.2 20 t cc 0.2 20 t
0 0

als
0 0

as

0 5 10 15 20 25 30 ° 0 5 10 15 20 25 30 °
number of iterations number of iterations

1

>, 0.8

Es 0.6
• 0.4

05 0.2

0
0

(a) skitter

5 10 15 20 25
number of iterations

(c) soc-Livejournal

(b) facebook

cn cn1 ooa)= 1 100a)=
80 -cir >, 0.8 80 .7o o 60 4, Es 0.6 60 4,
40 a) ...) .)= 0.4> 40 a)
20 t7)

>
ct 0.2 20 tal

0 as
0 0

30 ° 0 5 10 15 20 25 30 °
number of iterations

(d) soc-orkut

w
w 1 —1000

• = >, 0.8

r......,.
80 -'=-

r.,_=1 — 0--,-- 100a)

80 .7 0 oo 0 Es 0.6 60 4_Es 0.6 ► 60 & =
= 0 a)
0

0.4 400 0.4 40 a) >> 0

f 20 t 0.2 20
as

ctS

0

t)

0
(Vcz 0.2

0 5 10 15 20 25
number of iterations

(e) soc-sign-epinions

30 ° 0 5 10 15 20 25 30 °
number of iterations

(f) soc-twitter-higgs

k-core k-truss (3,4)
% active r-cliques

k-core k-truss (3,4)
correctness —

Figure 25: Changes in the ratio of active r-cliques and the accuracy of z indices during the compu-
tation, When the ratio of active r-cliques goes below 40%, indices provide 83%, 82% and 86%
accurate results on average for k-core, k-truss and (3, 4) nucleus decompositions, respectively. If
the ratio is below 10%, —99% accuracy is achieved in all decompositions.

84

1

>, 0.8

Es 0.6
o

(.9 0.4 i
o
cio 0.2 t

1
>, 0.8

2 0.6

o 0.4

06 0.2

0

0
number of iterations number of iterations

r
o

w

80 .2-

1

>, 0.8
o

cn
100a)=
80 .2-

T.)

—100S

060 4. E2 0.6 60 4.

40 1:1)>

=
0.48 40 a)>

20 t ai 0.2 20 t
as

0 0
as

5 10 15 20 25 30 ° 0 5 10 15 20 25 30 °

0 5

number of iterations

(c) web-NotreDame

(a) twitter (b) web-Google

co u)
1000 1 ,e, ---------- 1000==
80 .2- >, 0.8 r

0
4.

80 .2-
0

60
0 2 0.6 1 60 4.

=
40 a) 0 0.4 40 0>> o
20 t as 0.2 20 -t*

0
cti 0 . ' 0

co

10 15 20 25 30 ° 0 5 10 15 20 25 30 °

number of iterations

(d) wiki-0611

k-core k-truss (3,4)
% active r-cliques

k-core k-truss (3,4)
correctness —

Figure 26: Changes in the ratio of active r-cliques and the accuracy of T indices during the compu-
tation, When the ratio of active r-cliques goes below 40%, T indices provide 83%, 82% and 86%
accurate results on average for k-core, k-truss and (3, 4) nucleus decompositions, respectively. If
the ratio is below 10%, —99% accuracy is achieved in all decompositions.

85

7

6

0_
D 5
-o
o
o
0_ 4
u)

3

2

16

14

12

CD_ 1 0
D
-0
O 8
0
o_
ci) 6

4

2

0

30

25

20
o_
D
-o
o 15
o
o_
cr)

1 0

5

0
1

ASK -0-
FB -a-

- SLJ -0-
ORK -m-
SSE -0-

- HG -0-
TW -0,-

WGO -0-
- WND -0-
WIKI -.-

2 4 6

number of threads
12 24

ASK -0-
FB -0-

- SLJ -,,,-
ORK 00-

- SSE -0-
HG 00-
TW -0-

- WGO 00-
WND -0-

- WIKI -,-

1 2 4 6

number of threads
12 24

ASK 00-
FB -0-
SLJ 00-
ORK -,,,-
SSE -a-
HG -0-

- TW 00-
WGO 00-
WND 00-

- WIKI -,- 7.
2 4 6

number of threads
12 24

Figure 27: Speedups of the parallel computations with respect to the sequential runs for the k-core,
k-truss, and (3, 4) nucleus decompositions for all the graphs. We used 2, 4, 6, 12, and 24 threads
where each thread is assigned to a single core. With 24 threads, we observe up to 7x, 14x, and 29x
speedups for k-core, k-truss, and (3, 4) nucleusgiecompositions, respectively. Speedup numbers
increase with more number of threads and faster solutions are possible with better machines that
have more cores.

35
30

0-25
773 20
1) 15
2-10

5
0

50

40

-E 30
a)
E 20
10

0

35
30

0-25
-2, 20
a) '15
F0110

5
0
0.4

k-truss

0.5 0.6 0.7 0.8 0.9 1
accuracy

k-truss

.7"7"2116
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

accuracy

0.5 0.6 0.7 0.8

30
25

g-20

13 15

2-10

5

0

(3,4)

as 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) skitter

90

accuracy

(3,4)80 -•-
70
60

-0 50a)40
2-30
20
10
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) soc-twitter-higgs

0.9 1

80
70

0_60
_e) 50
a) 40
(12_30
(r) 20
10
0

accuracy

(3,4)

0.4 0.5 0.6 0.7 0.8 0.9
accuracy accuracy

(c) wiki-0611

Figure 28: Change of speedups (over peeling algorithm) with varying approximations of k-truss,
and (3,4) nucleus decompositions. After a certain accuracy score, speedups do not change sig-
nificantly, which enables to get more accurate results with a small additional cost. Thanks to our
notification mechanism (Section 21), most of the work is done in the first few iterations and fine
tuning of the A, indices are made easier.

87

5 Conclusions and Future Work

Finding dense subgraphs is a critical aspect of graph mining. However, most standard formulations
of this problem (like clique, quasi-clique, k-densest subgraph) are NP-hard. Furthermore, current
dense subgraph finding algorithms usually optimize some objective, and only find a few such
subgraphs without providing any structural relations, whereas the goal is rarely to find the "true
optimum," but to identify many (if not all) dense substructures, understand their distribution in the
graph, and ideally determine relationships among them.

We devised algorithms and provided implementations to find the hierarchy between dense sub-
graphs to understand the structure of the hierarchy to gain more insight on the hidden patterns in
real-world networks. We reported three main results towards identifying dense structures in large
evolving graphs. First, we showed how the hierarchical connectedness structure could be main-
tained efficiently, where connectedness was defined by increasing levels of connectivity strength.
Next, we presented dense structure could be identified in bipartite graphs without building projec-
tion graphs. And finally, we presented a new approach for peeling algorithms. This new approach
avoids sequential nature of peeling algorithms and is amenable to parallelization, which is crucial
for processing high velocity data.

Our results led to many interesting research, which we will be investigating. First, our stud-
ies focused on identifying structures with high density of small cliques. Our techniques can be
generalized to identify regions with high density of any specified structure. We plan to propose a
more generalized framework for this purpose. Secondly, the hierarchical structure identified in our
studies can be a good way to visualize graphs. A detailed study that can utilize the state of the art
on visualization will be a promising research thrust. The main goal in our work was to analyze
evolving graphs and we are in the process of applying our algorithms to evolving graphs. Finally,
we have identified some application, especially benefit from our techniques, and we are planning
to pursue these opportunities.

88

References

[1] University of florida sparse matrix collection. http: //www. cise .ufl . edu/research/

sparse/matrices/.

[2] Imdb, 2016. (www. imdb. com/interfaces).

[3] Ellen Tucker Aaron Clauset and Matthias Sainz. The colorado index of complex networks.,
2016. (icon . colorado . edu).

[4] A.B. Adcock, B.D. Sullivan, and M.W. Mahoney. Tree-like structure in large social and
information networks. In Data Mining (ICDM), 2013 IEEE 13th International Conf on,
pages 1-10, Dec 2013.

[5] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G. Duffield. Efficient
graphlet counting for large networks. In 2015 IEEE International Conference on Data
Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015, pages 1-10, 2015.

[6] Sinan Aksoy, Tamara G. Kolda, and Ali Pinar. Measuring and modeling bipartite graphs
with community structure. CoRR, abs/1607.08673, 2016.

[7]R. Alberich, J. Miro-Julia, and F Rosse116. Marvel universe looks almost like a real social
network. Preprint, 2002.

[8] J. Ignacio Alvarez-Hamelin, Alain Barrat, and Alessandro Vespignani. Large scale networks
fingerprinting and visualization using the k-core decomposition. In NIPS, pages 41-50,
2006.

[9] J. Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, and Alessandro Vespignani. K-
core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases.
Networks and Heterogeneous Media, 3(2):371-293, 2008.

[10] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In Workshop
on Algorithms and Models for the Web-Graph (WAW), pages 25-37, 2009.

[11] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava. Dense subgraph maintenance under
streaming edge weight updates for real-time story identification. PVLDB, 5(6):574-585,
February 2012.

[12] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. J.
Algorithms, 34(2):203-221, February 2000.

[13] Gary D. Bader and Christopher WV Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(1):1-27, 2003.

[14] V. Batagelj and M. Zaversnik. Generalized cores. Technical report, ArXiv, 2002.

[15] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks.
Technical Report cs/0310049, Arxiv, 2003.

89

[16] D. J. Beal, R. Cohen, M. J. Burke, and C. L. McLendon. Cohesion and performance in
groups: A meta-analytic clarification of construct relation. Journal of Applied Psychology,
88:989-1004, 2003.

[17] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of com-
plex networks. Science, 353(6295):163-166, 2016.

[18] J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G. Wilson.
Why do simple algorithms for triangle enumeration work in the real world? In Proc. of the
5th Conf on Innovations in Theoretical Computer Science, ITCS '14, pages 225-234, New
York, NY, USA, 2014. ACM.

[19] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos
Faloutsos. Copycatch: Stopping group attacks by spotting lockstep behavior in social net-
works. In Proceedings of the 22Nd International Conference on World Wide Web, WWW
'13, pages 119-130, 2013.

[20] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. Core
decomposition of uncertain graphs. In KDD, pages 1316-1325, 2014.

[21] Stephen P. Borgatti and Martin G. Everett. Network analysis of 2-mode data. Social Net-
works, 19(3):243 - 269, 1997.

[22] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph. Com-
mun. ACM, 16(9):575-577, September 1973.

[23] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compres-
sion with communities. In Proc. of the 2008 International Conf on Web Search and Data
Mining, WSDM '08, pages 95-106, 2008.

[24] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information hetero-
geneity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.

[25] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. A model of
internet topology using k-shell decomposition. PNAS, 104(27):11150-11154, 2007.

[26] C. V. catalyikek and C. Aykanat. Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673-693, 1999.

[27] Monika Cerinsek and Vladimir Batagelj. Generalized two-mode cores. Social Networks,
42:80 - 87, 2015.

[28] S. Chacon. The 2009 github contest. (github . com/blog/ 4 6 6-the-2 0 0 9-github-contest).

[29] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In
Proc. of the Third International Workshop on Approximation Algorithms for Combinatorial
Optimization, APPROX '00, pages 84-95, 2000.

90

[30] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu. Efficient core decomposition in
massive networks. In ICDE, pages 51-62, 2011.

[31] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithrns. SIAM J. Comput.,
14:210-223, February 1985.

[32] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and the
prediction of missing links in networks. Nature, 453:98-101, 2008.

[33] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security
Agency Technical Report, 2008.

[34] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science & Engineering,
11:29-41, 2009.

[35] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduc-
tion to Algorithms. McGraw-Hill, 2001.

[36] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming Computational Science & Engineering, IEEE, 5(1):46-55, 1998.

[37] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1-1:25, 2011.

[38] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-
tioning. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD '01, pages 269-274, New York, NY, USA, 2001.
ACM.

[39] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense commu-
nities in the web. In WWW, pages 461-470, 2007.

[40] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thornton Jr. Migration motif: a spatial - temporal
pattern mining approach for financial markets. In KDD, pages 1135-1144, 2009.

[41] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest subgraph computation in evolving
graphs. In Proc. of International Conf on World Wide Web (WWW), pages 300-310, 2015.

[42] P. Erdös and A. Hajnal. On chromatic number of graphs and set-systems. Acta Mathematica
Hungarica, 17:61-99, 1966.

[43] M.G. Everett and S.P. Borgatti. The dual-projection approach for two-mode networks. So-
cial Networks, 35(2):204 — 210, 2013.

[44] Daniel C. Fain and Jan O. Pedersen. Sponsored search: A brief history. Bulletin of the
American Society for Information Science and Technology, 32(2):12-13, 2006.

[45] U. Feige. Relations between average case complexity and approximation complexity. In
Proc. of symposium on Theory of Computing, pages 534-543, 2002.

91

[46] D. R. Forsyth. Group Dynamics. Cengage Learning, 2010.

[47] A. P. Francisco and A. L. Oliveira. Fully generalized graph cores. In Complex Networks,
volume 116, pages 22-34.2011.

[48] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou. Motifcut: regulatory motifs
finding with maximum density subgraphs. In ISMB, pages 156-157,2006.

[49] Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):24-32,
January 1982.

[50] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30-55, February 1989.

[51] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. Evaluating coopera-
tion in communities with the k-core structure. In ASONAM, pages 87-93,2011.

[52] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. D-cores: measuring
collaboration of directed graphs based on degeneracy. Knowl. Inf. Syst., 35(2):311-343,
2013.

[53] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive
graphs. In VLDB, pages 721-732,2005.

[54] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and I. Weber. Piggybacking on social net-
works. PVLDB, 6(6):409-420, 2013.

[55] Aristides Gionis and Charalampos E. Tsourakakis. Dense subgraph discovery: Tutorial. In
KDD, pages 2313-2314,2015.

[56] David F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good
seeds for local community methods. In KDD, pages 597-605,2012.

[57] A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA,
USA, 1984.

[58] P. Govindan, S. Soundarajan, T. Eliassi-Rad, and C. Faloutsos. Nimblecore: A space-
efficient external memory algorithm for estimating core numbers. In 2016 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 207-214, Aug 2016.

[59] E. Gregori, L. Lenzini, and C. Orsini. k-dense communities in the internet as-level topology.
In COMSNETS, pages 1-10,2011.

[60] R. Gupta, T. Roughgarden, and C. Seshadhri. Decompositions of triangle-dense graphs. In
Innovations in Theoretical Computer Science (ITCS), pages 471-482,2014.

[61] John Healy, Jeannette Janssen, Evangelos Milios, and William Aiello. Characterization of
Graphs Using Degree Cores, pages 137-148. Springer Berlin Heidelberg, 2008.

92

[62] J. E. Hirsch. An index to quantify an individual's scientific research output. Proceedings of
the National Academy of Sciences of the United States of America, 102(46):16569-16572,
2005.

[63] J. Håstad. Clique is hard to approximate within n(1—') . In Acta Mathematica, pages 627-
636, 1996.

[64] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs across
massive biological networks for functional discovery. Bioinformatics, 21(1):213-221, Jan-
uary 2005.

[65] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss
community in large and dynamic graphs. In SIGMOD, pages 1311-1322, 2014.

[66] Xin Huang, Wei Lu, and Laks V.S. Lakshmanan Truss decomposition of probabilistic
graphs: Semantics and algorithms. In SIGMOD, pages 77-90, 2016.

[67] L.D. Iasemidis, D.-S. Shiau, W. Chaovalitwongse, J.C. Sackellares, P.M. Pardalos, J.C.
Principe, P.R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure
prediction system. Biomedical Engineering, IEEE Transactions on, 50:616-627, 2003.

[68] Madhav Jha, C. Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proceedings of the 24th International Conference
on World Wide Web, WWW '15, pages 495-505, 2015.

[69] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. Parallel peeling algorithms. In
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA '14, pages 319-330, New York, NY, USA, 2014. ACM.

[70] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing scheme for
reachability query. In SIGMOD Conf, pages 813-826, 2009.

[71] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. K-core decomposition
of large networks on a single PC. PVLDB, 9(1):13-23, 2015.

[72] S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM Journal on Computing, 36(4): 1025-1071, 2006.

[73] Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. A scalable generative graph
model with community structure. SIAM Journal on Scientific Computing, 36(5):C424—
C452, 2014.

[74] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging
cyber-communities. In WWW, pages 1481-1493, 1999.

[75] Matthieu Latapy, Clmence Magnien, and Nathalie Del Vecchio. Basic notions for the anal-
ysis of large two-mode networks. Social Networks, 30(1):31 — 48, 2008.

[76] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms for dense subgraph
discovery. In Managing and Mining Graph Data, volume 40. 2010.

93

[77] Jure Leskovec and Andrej Krevl. SNAP Datasets, June 2014.

[78] Michael Ley. Dblp computer science bibliography, September 2016.
(dblp.uni-trier.d0.

[79] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. Efficient core maintenance in large dynamic
graphs. IEEE TKDE, 26(10):2453-2465, 2014.

[80] Rong-Hua Li, Jeffrey Xu Yu, Lu Qin, Rui Mao, and Tan Jin. On random walk based graph
sampling. In 31st IEEE International Conf on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015, pages 927-938, 2015.

[81] Yanting Li, Tetsuji Kuboyama, and Hiroshi Sakamoto. Truss decomposition for extracting
communities in bipartite graph. In IMMM 2013 : The Third International Conference on
Advances in Information Mining and Management, 2013.

[82] D. Lick and A. White. k-degenerate graphs. Canadian Journal of Mathematics, 22:1082-
1096, 1970.

[83] Linyuan Lii, Tao Zhou, Qian-ming Zhang, and H Eugene Stanley. The h-index of a network
node and its relation to degree and coreness. Nature Communications, 7:10168, 2016.

[84] D. Matula and L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
JACM, 30(3):417-427, 1983.

[85] David. W. Matula. A min-max theorem for graphs with application to graph coloring. SIAM
Review, 10(4):481-482, 1968.

[86] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis, and
Shen Chen Xu. Scalable large near-clique detection in large-scale networks via sampling. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD '15, pages 815-824, 2015.

[87] R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161-173, 1979.

[88] Arko Provo Mukherjee and Srikanta Tirthapura. Enumerating maximal bicliques from a
large graph using mapreduce. In Proceedings of the 2014 IEEE International Congress on
Big Data, BIGDATACONGRESS '14, pages 707-716, 2014.

[89] M. E. J. Newman Scientific collaboration networks. i. network construction and fundamen-
tal results. Phys. Rev. E, 64:016131, 2001.

[90] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks,
and centrality. Phys. Rev. E, 64:016132, 2001.

[91] M. E. J. Newman. The structure of scientific collaboration networks. Proceedings of the
National Academy of Sciences, 98(2):404-409, 2001.

[92] Michael P. O'Brien and Blair D. Sullivan. Locally estimating core numbers. In ICDM,
pages 460-469, 2014.

94

[93] Tore Opsahl. Triadic closure in two-mode networks: Redefining the global and local clus-
tering coefficients. Social Networks, 35(2):159 — 167, 2013. Special Issue on Advances in
Two-mode Social Networks.

[94] Chiara Orsini, Enrico Gregori, Luciano Lenzini, and Dmitri Krioukov. Evolution of the
internet k-dense structure. IEEE/ACM Trans. Netw., 22(6):1769-1780, 2014.

[95] Chengbin Peng, Tamara G. Kolda, and Ali Pinar. Accelerating community detection by
using k-core subgraphs. arXiv, abs/1403.2226, 2014.

[96] Ali Pinar, C. Seshadhri, and V. Vishal. ESCAPE: efficiently counting all 5-vertex subgraphs.
CoRR, abs/1610.09411, 2016.

[97] Louise Quick, Paul Wilkinson, and David Hardcastle. Using pregel-like large scale graph
processing frameworks for social network analysis. In Proceedings of the 2012 Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012),
ASONAM '12, pages 457-463, 2012.

[98] Garry Robins and Malcolm Alexander. Small worlds among interlocking directors: Network
structure and distance in bipartite graphs. Computational & Mathematical Organization
Theory, 10(1):69-94, 2004.

[99] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and Md. M. A. Patwary. A fast parallel
maximum clique algorithm for large sparse graphs and temporal strong components. CoRR,
abs/1302.6256, 2013.

[100] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph anal-
ysis and visualization. In AAM, pages 4292-4293, 2015.

[101] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Estimation of graphlet statistics. CoRR,
abs/1701.01772, 2017.

[102] K. Saito and T. Yamada. Extracting communities from complex networks by the k-dense
method. In ICDMW, 2006.

[103] A. Sala, L. Cao, C. Wilson, R. Zablit, Haitao Zheng, and Ben Y. Zhao. Measurement-
calibrated graph models for social network experiments. In WWW '10, pages 861-870.
ACM, 2010.

[104] A. E. Sariyace, C. Seshadhri, A. Pinar, and C. V. catalyarek. Finding the hierarchy of dense
subgraphs using nucleus decompositions. In WVVW, pages 927-937, 2015.

[105] A. E. Sanyfice, C. Seshadhri, A. Pinar, and D. V. catalyfirek. Nucleus decompositions for
identifying hierarchy of dense subgraphs. ACM Transactions on Web (TWEB), to appear.

[106] Ahmet Erdem Sanyfice, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and emit V.
catalyarek. Incremental k-core decomposition: algorithms and evaluation. VLDB Journal,
pages 1-23, 2016.

95

[107] Ahmet Erdem Sanytice, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and U. V.
catalytirek. Streaming algorithms for k-core decomposition. Proc. VLDB Endow, 6(6):433-
444, April 2013.

[108] Ahmet Erdem Sariyuce and Ali Pinar. Peeling bipartite networks for dense subgraph dis-
covery. arXiv, abs/abs/1611.02756, 2016.

[109] Ahmet Erdem Sanyiice and Ali Pinar. Fast hierarchy construction for dense subgraphs.
Proc. VLDB Endow, 2017. to appear.

[110] Ahmet Erdem Sariyuce, C. Seshadhri, and Ali Pinar. Parallel local algorithms for core,
truss, and nucleus decompositions. arXiv, abs/1704.00386, 2017.

[111] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an
experimental study. In Experimental and Efficient Algorithms, pages 606-609. 2005.

[112] S. B. Seidman Network structure and minimum degree. Social Networks, 5(3):269-287,
1983.

[113] S. B. Seidman and B. Foster. A graph-theoretic generalization of the clique concept. Journal
of Mathematical Sociology, 1978.

[114] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure and scale-free collec-
tions of erdos-rényi graphs. Phys. Rev. E, 85:056109, May 2012.

[115] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic measures on graphs: The power of wedge
sampling. Statistical Analysis and Data Mining, 7(4):294-307, 2014.

[116] C. Seshadhri, A. Pinar, and T.G. Kolda. An in-depth study of stochastic kronecker graphs. In
Data Mining (ICDM), 2011 IEEE 1 lth International Conference on, pages 587-596, 2011.

[117] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. An in-depth analysis of stochastic kronecker
graphs. J. ACM, 60(2):13:1-13:32, May 2013.

[118] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Triadic measures on graphs: The power of
wedge sampling. Statistical Analysis and Data Mining, 7(4):294-307, 2014.

[119] Yingxia Shao, Lei Chen, and Bin Cui. Efficient cohesive subgraphs detection in parallel. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD '14, pages 613-624, New York, NY, USA, 2014. ACM.

[120] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. Mining maximal quasi-
bicliques: Novel algorithm and applications in the stock market and protein networks. Sta-
tistical Analysis and Data Mining, 2(4):255-273, 2009.

[121] P. Simon, M. Serrano, M. Beiro, J. Alvarez-Hamelin, and M. Boguna. Deciphering the
global organization of clustering in real complex networks. Scientific Reports, 3(2517),
2013.

96

[122] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In WWW'll,
pages 607-614, 2011.

[123] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. JACM,
22(2):215-225, April 1975.

[124] N. Tatti and A. Gionis. Density-friendly graph decomposition. In Proc. of the 24th Interna-
tional Conf on World Wide Web (WWW), pages 1089-1099, 2015.

[125] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook
networks. Physica A: Statistical Mechanics and its Applications, 391(16):4165 — 4180,
2012.

[126] C. Tsourakakis. The k-clique densest subgraph problem. In Proc. of the 24th International
Conf on World Wide Web, WWW '15, pages 1122-1132, 2015.

[127] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest
subgraph: Extracting optimal quasi-cliques with quality guarantees. In Proc. of the 19th
ACM SIGKDD International Conf on Knowledge Discovery and Data Mining, KDD '13,
2013.

[128] Anurag Verma and Sergiy Butenko. Network clustering via clique relaxations: A commu-
nity based approach. In DIMACS Graph Part. and Clustering, pages 129-140, 2012.

[129] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812-823,
2012.

[130] N. Wang, J. Zhang, K. L. Tan, and A. K. H. Tung. On triangulation-based dense neighbor-
hood graph discovery. Proc. VLDB Endow, 4:58-68, 2010.

[131] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cam-
bridge Univ Press, 1994.

[132] D. Watts and S. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-
442, 1998.

[133] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. Yu. I/o efficient core graph decomposition at web
scale. In ICDE, pages 133-144, 2016.

[134] Michael M. Wolf, Alicia M. Klinvex, and Daniel M. Dunlavy. Advantages to modeling
relational data using hypergraphs versus graphs. In IEEE High Performance Extreme Com-
puting Conference, HPEC, 2016.

[135] Huanhuan Wu, J. Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and Hejun Wu. Core
decomposition in large temporal graphs. In Big Data, IEEE International Conf on, pages
649-658, 2015.

[136] Stefan Wuchty and Eivind Almaas. Peeling the yeast protein network. PROTEOMICS,
5(2):444-449, 2005.

97

[137] B. Zhang and S. Horvath. A general framework for weighted gene co-expression network
analysis. Statistical Applications in Genetics and Molecular Biology, 4(1):Article 17+,
2005.

[138] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. Using the k-core decompo-
sition to analyze the static structure of large-scale software systems. J. of Supercomputing,
53(2):352-369, 2009.

[139] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs
within networks. In ICDE, pages 1049-1060, 2012.

[140] F. Zhao and A. Tung. Large scale cohesive subgraphs disc. for social network visual analy-
sis. In PVLDB, pages 85-96, 2013.

98

v1.40

99

Sandia National Laboratories

100

