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2 Introduction

Wind turbines operate in stochastic flow environments with
constantly changing wind speed and direction

■ Yaw systems are designed to respond slowly to not over-exercise
their components meaning wind turbines nominally operate with an
unintentional yaw offset

■ There has been recent interest in intentionally yawing wind turbines
out of the wind as a wind plant control strategy to improve system
power benefits

- For both intentional and unintentional yaw offsets, there is a need
for better understanding of the effect on fatigue loads to improve
the operation of future wind plants



3 Introduction

• Research has been performed on
intentionally yawing wind turbines out of the
wind at the DOE/SNL Scaled Wind Farm
Technologies (SWiFT) facility during the
summer of 2017

• The Wake Steering Experiment was
performed in collaboration with the National
Renewable Energy Laboratory as part of the
U.S. Department of Energy's Atmosphere to
Electrons (A2e) program

The experiment includes data from an
upstream meteorological tower, two wind
turbines spaced 5-diameters apart, and the
DTU Spinner Lidar scanning the wake
behind the dominantly upstream turbine
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4 Methods

• Data acquired from WTGa1 and
METa1 between July 9-13, 2017 are
used in this analysis.

Data are sampled at 50 hz and
logged with a site GPS time.

• WTGa1 analyzed data include:

• optical blade root strain gage pairs
calibrated to blade root flapwise and
edgewise bending moments

generator electrical power output

• wind turbine azimuth position and
rotational speed

- nacelle heading

• METa1 analyzed data include:

• sonic anemometer measured wind
speed/direction at 5 tower heights
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5  Methods

• Data are separated into 50-
rotation bins (70-150 sec)

Data are filtered for a
minimum power threshold, u,
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operation in Region 2, and for 50

unobstructed wind directions

Due to the campaign
objectives the data are biased
towards high shear, low
turbulence conditions with
positive yaw offset

Bulk data trends are biased
towards high shear and low
turbulence compared to the
site averages for the shear
exponent of 0.21 and
turbulence intensity of 12%
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6  Methods

Rotational Spectral Analysis: 

Operational loads data are
processed through a rotational
Fourier analysis

• Data are separated into 50-rotation
bins and resampled into evenly
discretized 15° azimuth positions

• Amplitude and phase frequency
content is calculated for each bin at
per-revolution (P) forcing's

—i27-(k-1)(n-1)
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7 Methods

Fatigue Calculations: 

• Blade load fatigue cycles are
extracted through rainflow cycle
counting of the first 60-sec from the
50-rotation bin's time series

Damage equivalent loads (DEL) for
the flapwise and edgewise root
bending moment are calculated and
compared as ratios to a reference
DEL

• A fatigue slope of m=10 for
fiberglass is used

• The increase in blade damage (D)
caused by the operational conditions
is the normalized DEL raised to the
fatigue slope (m=10)
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8 Experimental Results
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(a) Rotational spectral analysis flapwise bending moment amplitude content
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• Strong, negative correlation between 1 per-revolution amplitude and
yaw offset for flapwise bending moment

• 2-6 per-revolution amplitude content are uncorrelated with yaw offset
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(a) Rotational spectral analysis edgewise bending moment amplitude content
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Strong, positive correlation between 1 per-revolution amplitude and
yaw offset for edgewise bending moment

The 1P amplitude correlations show opposite trends for flapwise and
edgewise bending moments

• 1P amplitude is best signal to track for yaw offset identification
1
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(b) Rotational spectral analysis edgewise bending moment phase content (wrapped from 0° to 360°)
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• Phase content for flapwise and edgewise bending moments show weak
correlations with yaw offset which typically are within the data's spread

1P edgewise phase is most strongly correlated, where the phase angle
moves towards the downstream portion of the rotor with yaw offset

- 1P flap- and edgewise phase angle are only equal at a -10° yaw offset
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• Damage equivalent loads
are calculated for each bin
and normalized by the
edgewise DEL at zero
yaw

• The effect of wind speed
on DEL can be more
substantial than yaw offset
so the data are further
grouped into 0.5 m/s bins

Bin averages are calculated
for every 5° yaw offset bins
• The lowest wind speed bin (a)
has insufficient negative yaw
data so its trend for negative
yaw should be disregarded
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The correlation of DIH,L, with wind speed is seen to be as substantial
as the yaw offset

Data reveals that flapwise D   FL increases with negative yaw and
decreases with positive yaw as the velocity shear loading is balanced

Edgewise DF,L shows the negative trend that was observed in the 1P
amplitude content, but with a shallower slope
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(a) Velocity shear DEL trends (b) Turbulence intensity DEL treiids (c) Wind veer DEL trends

• The data are further divided into atmospheric states including all of the
wind speed data from 6-8 m/s to ensure sufficient data content

In positive yaw, the DEL for low shear cases decreases at a lower rate
than high shear cases, as expected

• Turbulence intensity has a stronger observed effect than shear

Wind veer is not strongly correlated, although for positive yaw negative
veer appears to increase DEL while positive veer decreases DEL
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14  Discussion
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• Yaw offset is observed to reduce power beyond around ±10°

- Yaw offset reduces power and alters the fatigue loads for wind turbines,
both negatively and positively for the SWiFT turbines

• An effective "cost" is defined which compares DEL and power,
normalized to the wind speed bin's zero yaw offset values

• For the high-shear data analyzed, the SWiFT turbine has the best overall
performance at around 10-12° yaw offset



15  Conclusion

• The Wake Steering experimental data were analyzed to compare
blade loads with yaw offset under varying atmospheric conditions

a Flapwise bending DEL from the SWiFT turbine was observed to
increase with negative yaw and decrease with positive yaw, based on
the level of shear across the rotor disk

• Edgewise bending DEL has the opposite trend with yaw

The 1P amplitude spectral content is most correlated with yaw
offset, is the source of DEL increase/decrease, and may be the best
signal to track to identify yaw offset magnitude

Turbulence intensity has a stronger effect on DEL versus yaw
offset than shear was observed to have

Based on loads reduction and a relatively constant power, wind
turbines may have optimal performance at a nominally positive yaw
offset, based on the atmospheric conditions

The complete Wake Steering experimental dataset will be
available for download at a2e.energy.gov by August.
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