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ABSTRACT and its engineering —> Software performance; Software mainte-

The growth of High Performance Computer (HPC) systems in-
creases the complexity with respect to understanding resource
utilization, system management, and performance issues. While
raw performance data is increasingly exposed at the component
level, the usefulness of the data is dependent on the ability to do
meaningful analysis on actionable timescales. However, current
system monitoring infrastructures largely focus on data collection,
with analysis performed off-system in post-processing mode. This
increases the time required to provide analysis and feedback to a
variety of consumers.

In this work, we enhance the architecture of a monitoring system
used on large-scale computational platforms, to integrate streaming
analysis capabilities at arbitrary locations within its data collection,
transport, and aggregation facilities. We leverage the flexible com-
munication topology of the monitoring system to enable placement
of transformations based on overhead concerns, while still enabling
low-latency exposure on node. Our design internally supports and
exposes the raw and transformed data uniformly for both node level
and off-system consumers. We show the viability of our implemen-
tation for a case with production-relevance: run-time determination
of the relative per-node files system demands.

CCS CONCEPTS

• General and reference —> Measurement; Performance; Eval-
uation; Experimentation; Empirical studies; Metrics; • Computing
methodologies —> Massively parallel and high-performance simu-
lations; Simulation evaluation; Modeling methodologies; • Software
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1 INTRODUCTION

Comprehensive understanding of resource utilization and system
state is required to understand and mitigate issues in HPC appli-
cation and system performance. HPC monitoring systems collect
global system information on resource utilization and system state
such as network and Lustre usage; CPU and memory utilization;
hardware performance counters; environmental information, such
as temperatures and fan speeds. On current large-scale systems,
this data can be many TB/day [7, 12].

Real-time troubleshooting and feedback to system components
and applications relies on the ability to perform low latency analysis
and to expose the results to application and system components,
such as resource managers. While monitoring systems may support
in-situ processing at the point of data collection (e.g., if the collection
is performed by a script), more often the analysis is done in post-
processing off-system (e.g., in a database). Storage and processing
of large data sizes can be demanding, making it difficult to obtain
results in a timely fashion. Moreover, data that could be key to
understanding is either not collected or not retained for analysis.
Lower latency access to results can be obtained by incorporating
streaming analysis into the monitoring process, but there are trade-
offs in features such as latency, overhead, and analysis complexity.

Post-processing provides the best flexibility for analysis con-
struction since we can answer complex questions and perform
multiple passes of queries through the data to extract meaning-
ful information. This flexibility comes at the expense of having
the highest latency to solution, with results not immediately ex-
posed to platform components. Conversely, in-situ processing at
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the point of data collection can potentially expose the results to
platform components. However, this type of processing imposes
overhead on compute nodes and incurs complexity when the anal-
yses rely on combinations of data from different nodes. While it
can reduce the amount of data for ultimate storage, it is at the cost
of losing data that could be used later. In-transit data processing at
aggregation points on the compute platform can enable analysis
at locations where performance impact is not an issue and also
provide exposure of the results to the platform components. Also,
such processing may reduce the complexity of and alleviate the
need for sophisticated post-processing analyses.

Here, we present an approach that enables both in-situ and in-
transit processing to address the challenges in low overhead, low
latency analysis and in the exposure of results at arbitrary locations.
We implement our method within an existing HPC monitoring
system, Lightweight Distributed Metric Service (LDMS) [2]. LDMS
is used in monitoring large-scale HPC systems such as NCSA's Blue
Waters [23] Cray XE/XK system with 27,648 nodes. Data collection
intervals are order 1 minute down to sub-second, thus resulting in
substantial data to be processed for analysis. LDMS is well suited
for the integration of analysis within its architecture because of its
support for a) plugins that operate on the data [18], b) node-level
exposure of data and c) arbitrary communication topologies. This
flexibility enables us to place analysis modules at arbitrary locations
in the monitored network and use the results of those analyses to
provide feedback throughout the system (e.g., application processes,
resource managers).

In LDMS, plugins exist for data collection (getting data into the
infrastructure) and for storage (getting data out of the system). We
enhance the LDMS architecture by adding the infrastructure for
streaming data processing and for handling the transformed data
within the system in the same way as the collected data, thus provid-
ing a uniform format for data consumers. Our enhancement, called
a transform module, enables authorized users to provide arbitrary
data transformations, at arbitrary points within the monitoring
system's communication topology. Our flexible and low-overhead
method enables monitoring tools to provide low latency feedback
to system components and applications. It provides the capabili-
ties to perform run-time troubleshooting with near-past data by
eliminating the need for storage before analysis. Furthermore, our
approach supports research on historical data by enabling analysis
results to be included in with the raw data to be stored.

This paper makes the following contributions:

• We present an approach to do chains of streaming analy-
sis within the monitoring architecture, as opposed to post-
processing.

• We incorporate this capability into a scalable monitoring
system.

• We leverage the arbitrary communication topologies of the
monitoring system, including bi-directional communications,
to minimize the impact of the computations while supporting
access to the transformed data.

• We provide a uniform interface to both the raw and trans-
formed data to increase flexibility and facilitate the data
utilization by consumers.

The rest of this paper proceeds as follows. We provide some
use cases and motivations for this work in Section 2. In Section 3,
we present the background on LDMS required for understanding
the implementation here. In Section 4, we describe the design and
challenges introduced. In Section 5, we present the experimental
evaluations and application of our work to a production-relevant
example. In Section 6, we discuss related work. Finally, we conclude
in Section 7.

2 MOTIVATION

Large-scale HPC systems utilize a variety of resources (e.g., network
and file systems) that are shared by both processes of a parallel
application and those of other concurrently running applications.
Contention for these resources can create congestion that can se-
verely impact application performance and system efficiency. While
monitoring and storage of system data can enable root cause analy-
sis through post-processing when problems have been identified
(typically after a failure or apparent lack of forward progress of an
application), this approach is not well suited for run-time feedback
to utilize the results of such analysis.

Figure 1 provides a comparison between typical resource utiliza-
tion and performance analysis in HPC monitoring systems based
on post-processing (Figure la) versus our approach based on inte-
grating in-situ processing on the node or in-transit processing at
data aggregation points (Figure lb). In both approaches, lightweight
processes collect data (e.g., error counters, network performance
counters, file system access counters) on resources (e.g., compute
nodes, LNET routers, admin nodes). Data flows from sampling
points (shown as compute nodes here) to aggregators that man-
age its disposition after collection. An off-platform machine or
cluster typically stores this data for future use for analysis for trou-
bleshooting and feedback. The processing performed by the data
collector is typically minimal. Typical use cases of the stored data
are troubleshooting and threshold-based feedback (e.g., component
temperature too high, therefore take some action). Troubleshooting
is typically driven by a failure of some sort and therefore post-
processing with a human in the loop can be feasible, timewise.
Defensive threshold-based, automated low latency feedback is typ-
ically incorporated into system components and not exposed to
system adminstrators.
A missing monitoring-related capability is the utilization of

the monitored data to enhance application and system efficiency
through run-time analysis and exposure of appropriate information.
Most situations would only benefit from a reasonably low latency
feedback cycle that could incorporate functional combinations of
data from multiple, possibly global, sources. Examples include the
use of global network utilization/congestion assessment by a work-
load manager for job placement and of global Lustre file system
utilization by queuing systems for job launch decisions or by appli-
cation processes for open/close/read/write timing decisions. While
HPC monitoring systems globally collect the types of data that
can be used for these analyses, none provide utilities for run-time
sharing of such information with applications or system access to
the results. Other information such as power consumption, ther-
mal information, storage bandwidth, memory contention, and CPU
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(a) Traditional post-processing data analysis approach. The data is collected on the compute node and then flows to the aggregation nodes, which manage
and send data to the storage system. The analysis is performed on the historical information and HPC-centric roles, such as application developers/users
and system administrators, manually trigger required actions based on the feedback.
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(b) Proposed integrated streaming analysis approach. We enhance the approach with run-time operational analysis, which can be performed either in-
situ on node or in-transit at data aggregation points. Based on this information, on-node consumers, such as applications can receive feedback and
automatically trigger appropriate actions. This information can also enable users/admins to make more informed decisions with the additional run-time
analysis. Long-term analysis is still performed with the same approach as described in Figure la.

Figure 1: Differences in the processes of performance analysis: post-processing vs integrated analysis.

utilization can enable certain applications to realize benefits us-
ing a low latency feedback approach. For example, in multi-core
applications, memory contention has been used to manage con-
currency [27], and thread contention analysis has helped to tune
non-blocking algorithms [20]. Computations, based on hardware
performance counters, of node and job level flop rates, cache misses
rates, and cycles per instruction are used in assessing application
resource utilization [3].

In the remainder of this paper, we describe our modular and
extensible approach to providing capabilities for streaming analysis
on either counters or state data in the context of the Lightweight
Distributed Metric Service HPC monitoring framework.

3 LDMS MONITORING FRAMEWORK
BACKGROUND

Our approach leverages and builds upon LDMS's data collection,
transport, and aggregation capabilities. In the LDMS framework,
daemons run on the resources to be monitored (e.g., compute nodes),
and utilize plugins for data sampling and storage. Daemons can
aggregate data from other LDMS daemons over various transports,
including Infiniband, iWarp, and Ethernet, in arbitrary communica-
tion topologies. Thus, multiple aggregation points can be configured
to pull data from disjoint and overlapping sources, including other
aggregators, as shown in Figure 2. This flexible communication
topology is a key for performing low latency analysis and feedback
that requires bidirectional data flow. This infrastructure design
allows us to perform transforms at arbitrary locations where the
computational overhead is not a concern (e.g., on "aggregation"

nodes), but still expose the transformed data where it is needed. Ag-
gregation nodes in the LDMS context are nodes dedicated primarily
to aggregation of large collections of sampled data sets (metric
sets). Because aggregation nodes are dedicated to this functional-
ity, the computational intensity of analytics performed on these
nodes has no adverse effect on application performance within the
computational infrastructure.
The typical process of collecting data, or metric values, from

compute nodes is as follows. LDMS daemons on compute nodes,
which are configured as sampler daemons, create in-memory data
structures, called metric sets, to store the collected data. They pe-
riodically sample new metric values using sampler plugins. An
aggregator connects to a set of sampler daemons and then periodi-
cally reads and stores, in local memory, metric sets from sampler
daemons. An aggregator might also then storel (e.g., write out to a
file, or a named pipe for forwarding to a disjoint architecture, (e.g.,
a named pipe to syslog [2]) the metric sets using a store plugin. Dae-
mon instances, per-daemon plugins, aggregation setup (including
topology and sets to be aggregated), rates, and store parameters are
all configuration options.
A metric set consists of meta-data and data sections. The meta-

data section retains the description of the set (e.g., metric names,
metric types, size of the set). The data section stores both meta
metrics, which have values that are either constant or rarely change
(e.g., component ID corresponding to a metric set), and data metrics
which store values of frequently changing metrics.

1Note the different use of store to write out as opposed to the daemons which store
data in memory. We believe this standard terminology will be clear to the reader.
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Figure 2: LDMS supports arbitrary communication topolo-
gies. Green squares indicate nodes; blue circles indicate
LDMS daemons; blue triangles indicate applications. Arrows
indicate the direction of aggregation and data accessing by
applications. For example, A can aggregate metric sets from
4 of LDMS daemons; B can aggregate any metric sets gener-
ated on A or aggregated by A; application X can access metric
sets on A; application Y can access metric sets on C. A com-
mand line query tool can also query any daemon remotely
to obtain its data.

nid00004/cray_gemini_r_sampler: consistent, last update: Tue May 16 00:34:36 2017 [3060us]
METADATA  
Pr ame : curie
nstance Name : nid00004/cray_gemini_r_sampler

Verbose fisting of metric sets shows

the MetaData vs Data sizes, the

amount of time (Durafion) to sample

the deta and build the set, and the

77mestamp of the set.

Metric Set Instance naming convention:
ecomponent>ksampler names

Sc ema ame cray_gemini_r_sampler_nid00004
Size : 8312

Metric Count : 144
GN : 2

DATA  
Tue May 16 00:34:36 2017Timestamp : [3060us]

Duration : [0.000793s]
Consistent : TRUE

Size : 1192
GN : 243772

component_id Data metric values are

u64
job_id
nettopo_mesh_coord_X

presented by (type, name, value).

u64 nettopo_mesh_coord_Y meta metrics (M) vs

u64 nettopo_mesh_coord_2 data metrics (D)
u64
u64

X,_traffic (3)
X—_traffic (8)

1533417918654

u64 Y+_traffic (8) 12243567675

D u64 client.lstats.read_bytes_llite.snx11024 98955581 392 Metrics used in the
0 u64 client.lstats.write_bytes_llite.snx11024 13123517 a

transform analyses
0 u64
0 u64

client.lstats.open_llite.snx11024
client.Istats.close Ilite.snx11024

18478
18478

are boxed in red.

0 u64 client.Istats.flocrIlite.s.11024 0
D u64 client.Istats.9etattr_llite.snx11824 9124
D u64 client.lstats.statfs_llite.snx11024 24
D u64

D u64

client.lstats.alloc_inode_llite.snx11024

loadayg_latest(4100)

9683

'190u64 loadayg_total_processes

Figure 3: Output from the ldms_ls command, showing part
of a metric set produced by a sampler plugin written to col-
lect a variety of metrics from a Cray XE/XK system. In Sec-
tion 5.2, we utilize transform plugins to perform some anal-
yses using the metrics related to the Lustre file system.

An LDMS daemon stores only a single set of values for its current
metric sets. An LDMS daemon may be queried to get its current
metric sets either by an aggregator or via ldms_ls, a query tool
that works similarly to how aggregators collect sets from sampler
daemons. An annotated example of the ldms_ls output of a metric
set is shown in Figure 3, including meta-data vs. data sections, and,
for the data, metric data types, names, and values.

A store plugin is notified every time an LDMS daemon obtains
an update to a metric set for which it has been configured for
storing. Before the work presented in this paper, in LDMS, some
limited streaming computations and data transformations have
been performed using store plugins called function store plugins.
These plugins [6] perform limited computations and filtering on the
metric set data before writing the raw or computed data to storage.

Expanding the store plugin for more general exposure of data
and access to the resultant computations would not be as useful
and flexible as the ability to support and expose transformed data
within the metric set context already handled by the infrastructure.
In this work, we overcome this limitation by designing a flexible
approach to support streaming analysis. This enables us to take ad-
vantage of LDMS's support for arbitrary communication topologies,
including bi-directional communications, to minimize the impact
of the computations within the compute environment while still
supporting access, by both system services and applications, to
the transformed data. We can then opt to place the transforms at
locations where the computational impact is not a concern while
the resultant transformed set can then be pulled to a node and only
incur the transport cost.

4 LOW LATENCY ANALYSIS INTEGRATION

In this section, we describe our approach to integrate low latency
analysis into HPC system monitoring. We explain the design of
the transform module and its components. Also, we discuss the
considerations and challenges in our design.

4.1 Transform Design

We enhance LDMS by designing and implementing the transform
module to enable streaming analysis. LDMS collects and transports
metrics in a well-defined format. We design the transform module
to take inputs as metric sets and generate output also in the metric
set format. This decision adds flexibility to our design and enables
transformed sets to be transported and stored in the same way as
raw sets.
Some of the functionalities that the transform module adds to the

LDMS framework are displayed in Figure 5. In this figure, several
sources provide data streams. Transform modules take the provided
metric sets and perform the labeled operations using different com-
ponents within this module.
Our transform module consists of two components: transform

management and transform plugins. Transform management han-
dles the data flow from receiving an update of a locally obtained or
remotely pulled metric set to obtaining the final output of a trans-
form chain. The transform plugin is a new plugin type in the LDMS
framework. It takes metric sets or individual metrics as input and
derives a transformed set, of one or more metrics, as the output.

4.1.1 Transform Management. We enhance LDMS daemons with
the transform management functionality. The transform manage-
ment creates transform instances according to the user config-
urations, chains the transform instances, and optionally passes
the output of transform chains to a store plugin to retain the de-
rived metrics. Transform management supports use of both locally
obtained and remotely pulled metric sets for transformation and
manages all the transform configurations.



Integrating Low-latency Analysis into HPC System Monitoring ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Some calculations in analyses need input from multiple data
sources and metric sets. The transform management component
supports multiple transform plugin instances. This enables applica-
tion of transform plugins to a variety of configurations and multiple
input sets.

Configuration of a transform includes specification of its input
sets. Upon receiving a set update, an LDMS daemon passes the
updated set to each transform instance. Each instance uses the
configuration to determine whether it needs the set for its calcula-
tion or not. When all metric values for the transforms' output set
have been updated, the transform instance notifies the host LDMS
daemon that the updated output set is ready to use.

While our enhancement to the LDMS infrastructure enables
users to develop a single transform plugin that can perform all de-
sired computations, the ability to chain plugins can provide reusable
elements from which more complex calculations can be built. This
flexibility may entirely obviate the need for a user to design and
implement any transform plugin. For example, in the Lustre analy-
sis presented in Section 5.2, the computed values include ratios of
the rates of some metrics (e.g., file opens) per compute node relative
to the total number of opens from all compute nodes. The trans-
form management component supports this by providing a path
from the output of one transform plugin to another. The LDMS dae-
mon, enabled with transform management, passes the output set
to each transform instance in the chain according to the provided
configurations.

Using a uniform format for the transform's input and output
allows us to treat these just as any regular metric set in the LDMS
framework. This includes the final output as well as any intermedi-
ate output sets, which are input sets of another transform instance.
LDMS daemons can pass transform output sets to a store plugin as
well to store either the final output set or the intermediate sets.
We discuss the challenges introduced by the design decisions

described here in Section 4.2.

4.1.2 Transform Plugin. Transform plugins are responsible for
parsing and interpreting their specific configuration, generating
transformed sets, performing mathematical manipulation, and let-
ting the transform management know when a transformed set is
ready. Each plugin receives an input set(s), performs its mathemati-
cal manipulation if metrics of the set are needed in the derivation,
and then updates the corresponding output set. To reduce clutter
when the intermediates in a chain of transforms are not useful as
an end goal, transformed sets can be marked as unpublished. Only
published sets can be aggregated and will appear in the 1 dms_ls
output. For example, in Figure 6, which shows a sequence of trans-
forms performed on an aggregator, only the final per-node sets
need to be published.

Our flexible design allows the user to develop transform plugins
and perform arbitrary analyses on the performance data stream.
More complex analyses are feasible through chaining the basic plu-
gins together. In this work, we implement several transform plugins
to demonstrate and evaluate the capabilities of our enhancements
to LDMS using a case study.
The following list defines the transform plugins implemented

for our case study and evaluation. In all equations, capital letters
represent a metric set where a subscript shows a metric within the

metric set and a superscript shows the timestamps attributed to a
value.

• delta plugin calculates the difference of a metric between
two consecutive timestamps.

delta(t)(M) = N, where

bi < IMI Ni = Mi(t) - Mi
(t-1)

• rate plugin calculates the ratio of the delta and the differ-
ence of two consecutive timestamps.

rate(t)(M) = N, where

M.(t) - M.t
1)

< = At

• ratio plugin calculates the ratio of different metrics in the
same metric set at the same timestamp.

ratio(t)(M_num,M_den) = N, where

M num(.t)

Vi < IM_numl Ni = - 

M_deni(t)

• sum vector plugin assumes that input metrics are vectors.
It calculates the sum of all elements in a vector at the same
timestamp.

!MI
sum_vector(t) (M) = Emi(t)

,=o
• windowed minimum plugin calculates the minimum of

the metrics over a defined window of timestamps.

min_n(t)(M) = N, where

Vi < IMI Nl = min MC's)
Vs qt-n, t]

• windowed maximum plugin calculates the maximum of
the metrics in a defined window of timestamps.

max_n(t)(M) = N, where

Vi < IMI Ni = max MC's)
Vs qt-n, t]

• windowed average plugin calculates the average of the
metrics in a defined window of timestamps.

avg_n(t)(M) = N, where

tbi < Nt = s=t-n 4)n

• combine plugin combines multiple metric sets into a single
set according to the user configuration. The plugin assumes
that all sets have the same sampling interval in order to
ensure it combines the input sets from comparable times.

• global ratio plugin operates on a single metric set. Simple
user definable associations of the metrics in the set are used
to determine a group of metrics to sum. The output is a set
with the ratio of each of the individual values to the sum(s).
For example, if the set contains the same two metrics (e.g.,
Active, MemFree) for each of N nodes, the output will contain
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for each metric 1) the sum of all the nodes' values and 2) the
ratio of each nodes individual value relative to that sum.

• separate plugin separates a single metric set into multiple
metric sets according to the user configuration.

These basic plugins can be chained together to compute the
quantities of interest given in Section 2. In Section 5.2, we show
how we utilize transform plugins for performing an analysis on the
Lustre file system, based on the raw data displayed in Figure 3.

4.2 Challenges and Considerations

We enhance the LDMS monitoring infrastructure with a flexible
design for the transform module to support low latency analysis
within the monitoring system. This enables the authorized user
to perform low latency analyses using multiple metric sets from
different data sources. It supports the modularity of the required
calculations for analysis by chaining a series of transform plugins.
The ability to place any of the transforms at any location along the
data communication path where its input set(s) are available and
from where its output can be used adds an extra level of flexibility
to our design. This flexibility enables target where to apply memory
and CPU in the system to perform analyses. Note that memory and
CPU will be approximately the same globally but we can define
where it happens and do it on the fly using this functionality.

With increased flexibility, comes increased need for considera-
tion in transform design. Considerations include:

Location variation: Time skew between nodes. Sets are times-
tamped with the transaction time of the plugin generating the
set. Time skew between a node creating an input set and a different
node performing the transform can result in timestamp offsets that
make associations between sets difficult. We include a flag that en-
ables inclusion of time metrics from the input set(s) into the output
set(s) to facilitate such associations. This becomes more complex
as transforms are chained and/or more input sets are supported.

Data Types. Generically, transforms must address computations
for all data types in handling the input, within the computation, and
in the output type. Overflow must be recognized and handled. LDMS
supports signed and unsigned 8, 16, 32, and 64-bit integers, floats,
doubles, chars, arrays of such, and generic data blobs. In the example
transform plugins mentioned in Section 4.1.2, we support multiple
numerical input types and generate output in double to provide
consistency, particularly for mixed input types where multiple
values are used in a computation. However, this is not a restriction
in the transform management and infrastructure. New plugins can
be developed that support other data types.

Invalidating data/computations in a transform chain. Invalid re-
sults must be flagged and propagated throughout the chain of
computations. For example, divide by zero in a ratio transform
or negative delta time in a rate computation due to a clock reset
would result in invalid results if used as input in a subsequent
transform. Such cases may be indicated by values such as NaN
or in f , depending on the type, or by a validity flag carried with
each variable. In the function store, there is a validity flag carried
throughout every computation. This doubles the output size of the
data, but it is immaterial since the store plugin functions off-host.
For the current set of transforms, we handle the invalidity in the

data; where necessary we will implement it as an optional feature
on a per-metric basis to enable the user to keep as small as metric
set as desired.

Missing input sets or multiple input sets with time offsets. A trans-
form plugin with multiple input sets faces additional complexity in
addressing combinations of data that may be offset in time. These
types of plugins handle such offsets based on the operations within
the transform plugin and the implication of the offset on compu-
tations. For example, in our combine transform plugin, we check
the timestamps of the input sets to avoid two possible issues: (1)
combining input sets significantly mismatched in time and (2) lack
of progress if a particular input set does not arrive in a timely fash-
ion (e.g., due to node failures). Timely output is ensured with use
of the validity flag to indicate results based on incomplete data.

Judicious writing of the collector can minimize the need to write
multiple input set transforms, since metrics collected via the same
collector will be in the same metric set. For example, the full set
of metrics in the sampled set in Figure 3 includes Lustre, network,
GPU, and CPU data. This design choice was motivated by the desire
to have a single timestamp associated with all metrics [7], which
eases some processing, particularly for large-scale systems. The
legitimacy of doing this is dependent on the time required for
collection of all metrics. Since all plugins (samplers, transform, and
store) carry with them the time of the full transaction of the plugin,
this can be used to get an idea of the possible time offset between
the collection of the first metric in a set and the last. In the case
of this set, sampling takes around 425us without GPU data, and
800us with GPU data, both of which are small compared to the 1 to
60-second intervals of collection typically used.

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate the impact of our approach by per-
forming experiments and analyses using different performance data
sources. We study the overhead introduced by our enhancement to
the LDMS framework. Also, we present a case study of using the
transform module for performance monitoring and analysis of an
HPC file system.

5.1 Overhead evaluation

In this section, we evaluate the overhead impact of the transform
module. The transform module is integrated within the LDMS
framework. LDMS is proven to perform efficiently on large-scale
production systems, and overhead assessments have demonstrated
no significant detrimental system impact [2, 12, 13, 23]. Transform
plugins run on LDMS daemons that operate as a part of the LDMS
infrastructure to leverage its efficiency and scalability.
To assess the impact of the transform module, we utilize a 2

chassis, 64 node Cray XE/XK testbed system, called Curie, with a
Cray Gemini Interconnect and a Sonexion Lustre file system. This
testbed is representative of the type of hardware of one of our target
platforms, Blue Waters. For our overhead analysis assessments we
utilize datasets from /proc/meminf o and /proc/vmstat sources as
a representative sets. These sets have 43 and 97 metrics respectively.
We utilize the rate transformations in the experimental configura-
tions shown in Figure 4. Each experiment runs for 30 minutes with a
sampling interval of 1 second. Baseline experiments were intended
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Figure 4: Experimental setup for measuring overhead. Samplers are collecting two metrics set on each compute node. Aggre-
gators are pulling data from either one sampler, specified by experiments 1,3, and 4, or ten samplers, specified by experiments
2 and 5. The experiments specified by sections 1 and 2 of the figure are run without any transform plugins. Experiments 3-5
are run with active transform plugins on nodes.

to measure the inherent CPU time of sampling and aggregation.
We repeat the same experiments with the rate transform running
on nodes to measure the CPU overhead of transform plugins.
The additional overhead of running the transform on sampler

nodes can contribute to interferes with the operations of applica-
tions running on compute nodes. By moving the transform oper-
ations to aggregator nodes, we eliminate the overhead from the
compute nodes, while still enabling low latency access to the trans-
formed data. Furthermore, aggregators have the additional benefit
of having access to additional producer's metric sets, which can
enable generation of metric sets with global information aggregates.
This information can then be utilized by nodes in assessing current
global levels of shared resource utilization.

Table 1 shows the total CPU time in microseconds per metric set
on each node. In the first row, the aggregator is pulling data from
one sampler node, and in the second row, ten sampler nodes are
providing data to a single aggregator. Around 16 microseconds of
overhead for running the rate transform plugin on the aggregator
is seen. By chaining multiple transform plugins, this overhead
increases linearly due to the sequential wiring of transform plugins.

Experiment type Baseline

(ps)

Transform

(Ps)# of aggregator nodes # of compute nodes

1 1 63.9 71.4

1 10 57.3 73.5

Table 1: CPU time per sampled metric set for the baseline
and the case that is running a rate transform plugin. Differ-
ent number of compute nodes are used to show the efficiency
of using the in-transit approach on aggregators compared to
the in-situ analysis on compute nodes.

We run the transform plugins on the aggregators pulling data
from different number of compute nodes. Running the transform
plugin on one aggregator enables low latency analysis from all of
the compute nodes. Achieving the same results using the in-situ
approach requires running one instance of the transform plugin on
each compute node. In addition, the overhead per sample on sampler
daemons is higher than the overhead per sample on aggregators.

For the baseline, for each sample, a sampler daemon needs to
parse /proc/meminfo and /proc/vmstat to update each metric in
the meminfo and vmstat sets. By contrast, for each sample, an

aggregator only performs an RDMA read operation which does
not consume any CPU cycles on the sampling host. Since the read
operation is per set, the aggregator does not iterate through each
metric in each set. Hence, the overhead per sample on aggregator
daemons is lower than the overhead per sample on a sampler.

5.2 Case study: Lustre file system analysis

A case of general interest is discovering and assessing contention
in shared parallel file systems. Since Lustre is a popular shared
parallel file system utilized extensively on large-scale HPC systems,
we focus on contention for both meta-data services and read and
write bandwidth. Note that there are caching effects on the client
side that we do not address here. In this section, we demonstrate the
applicability of our work to a transform analysis of Lustre metrics.
Providing the types of analyses demonstrated here could be of
use to applications and system services running on the platform
hosts in load balancing, partitioning, and scheduling if low latency
exposure to applications and system services were possible.
The goal of this analysis is to make available to consumers on

each node and off-platform, data about each nodes relative use
of the file system. To minimize the impact on the compute nodes,
we leverage the bi-directional transport capabilities to perform the
computations entirely on the aggregators for all nodes, and we
present small memory footprint output metric sets to per-node con-
sumers. Figure 5 presents the design of our experiment to perform
an analysis on Lustre metrics using transform plugins. We chose
the instantaneous read, wri te, open, and close values from the
original metric set provided by the LDMS sampler monitoring the
Lustre file system status displayed in Figure 3.

The first layer of transform plugins shown in Figure 5 is the rate
plugin that operates on the performance data streams generated
by the compute nodes. The results generated by the rate plugin are
fed into the windowed function plugins to calculate the average,
minimum, and maximum values reported by the rate plugin in the
previous step. In the third layer of transform plugins, the combine
transform merges all of the results from the previous step into one
metric set. The global ratio plugin works on this single metric set
and calculates each node's share of the system resource utilization.
Next, a separator plugin operates on the global ratio's output and
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Figure 5: Transform sequence and positions in the computation of the transformed Lustre metrics.

extracts metrics from it to output multiple metric sets, one for each
compute node. Finally, compute nodes receive this information.

Figure 6 shows representative subsets of intermediate and final
transformed metric sets. Naming conventions for the set instances
are determined by the transform, for example, the rate transform
appends _rate to the input set name (top of the figure); support for
more flexibility in handling naming conventions is in work. The
final analysis results for node n id00004 indicate that its average
read operations are roughly 10% of all read operations performed
in this Lustre system (marked in green). The final, smaller (size is
shown in the final meta-data), per-node metric sets are available to
be pulled back to or queried by LDMS daemons or system software
on the compute nodes.

This global knowledge of Lustre system component utilization,
provided by transform plugins, can be leveraged by application
processes for open/close/read/write timing decisions. In addition,
queuing systems can make informed decisions for launching jobs
based on this information. Also, this global knowledge can improve
load balancing [14]. Run-time determination of the relative per-
node file system demands can play an important role in system
administration. Run-time availability and exposure of such data
would be of benefit to those seeking to resolve issues. These data
can be used to identify the causes of high load on the file system
and to identify imbalances in an application's resource demands.

Our approach for the in-transit analysis at aggregation points
enables run-time operational analysis with no overhead on compute
nodes. Our experimental evaluations demonstrate the capability of
the transform module to support low latency analyses within the
monitoring system efficiently.

6 RELATED WORK

Many widely used HPC monitoring frameworks are intrinsically de-
signed as one-way communication constructs, thus limiting the abil-
ity to feed back the data and analysis results to arbitrary consumers.
Ganglia [22] and Nagios [28] are invoked periodically on the nodes
with the data typically aggregated to a central location. Ganglia is
designed to use rrdtool [25] as a back-end database, which can then
be used for off-system analysis and visualization. Nagios supports
some limited failure alert features based on predefined thresholds.

ElasticStack [15] ingests input data into a publish-subscribe mes-
sage bus, LogStash, and does server-side analysis with ElasticSearch.
This model can ingest data from sources such as Ganglia and Na-
gios but does not address analysis on the compute platform. Even
if on-node analysis were supported, the message bus interaction
and message parsing would incur additional overhead, as opposed
to LDMS's RDMA, primarily pull-based model. Collectl [10] can
be configured to report delta rather than raw values but not to
perform arbitrary analyses. It is not designed for easy general con-
figuration of arbitrary communication topologies. TACCStats [16]
has in the past collected data on the node to a file which has then
been collected off the machine nightly. While they have recently
enabled run-time collection [17] via a daemon-based version of
TACCStats to an off-platform site, it still does not intrinsically en-
able streaming analysis using a general approach as we did in this
work. Instead, some limited analyses like maximum and average for
certain metrics have been provided. The SOS [32] project appears to
share our goals with respect to enabling system wide information
sharing, low latency analysis and feedback to both applications
and system software. A significant difference is that SOS is a new
framework which incorporates an additional daemon per-node that
communicates with applications and other data collection entities
for data acquisition and uses a SQLite database for both on node and
aggregator storage. Its functional scalability, including application
performance impact at large scale, has yet to be established. Pub-
lished information about SOS's online data analysis and automated
information migration is insufficient for comparison currently. Our
work leverages an existing HPC monitoring framework with proven
scalability to lOs of thousands of nodes. Storage of data values for
this work is in native ldmsd metric set data structures and whatever
backend storage is configured for a particular system. Performance
libraries such as PAPI [8] and the perf tool provide limited support
for presenting some derived metrics such as IPC (instructions per
cycle) on a local node. Our scalable tool enables flexible analysis on
application and system resources using various transport protocols
in arbitrary communication topologies at runtime.

Communication architectures and tools such as MRNet [29] and
AIVIQP [24] could be used for the transport part. However, all the
capabilities for data collection, analysis, and exposure of both raw
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nid00004/cray_gemini_r_saapler_rate: consistent, last update: Tue May 16 00:34:35 2017 [154528us1
D d64 client.Istats.n,ad_bytes_llite.snx11024 0.000000 Rate transform operates on

D d64 client.Istats.write_bytes_llite.snx11824 0.000000 (1) each node individually over
D d64 client.lstats.open_llite.snx11824 0.000060 

last time step
D d64 client.lstats.close_Ilite.snx11024 0.000000

Rate transform output metric set is input to the

windowed avg, min, and max transforms

nid08084/cray_gemini_r_sampler_rate_avg_n: consistent, last update: Tue May 16 00:34:35 2017 [165962usl
D d64 client.Istats.read_bytes_llite.snx11024 1256485.542593
D d64 client.Istats.write_bytes_llite.snx11024 1256485.542593
D d64 client.lstats.open_llite.snx11024 0.099954
D d64 client.Istats.close_Ilite.snx11024 0.099954

(2)

Window avg/min/max transforms operates on

each node individually over time window

Windowed avg, min, and max output metrics sets for all nodes are input to the combine

transform which merges them into one dataset (unshown). (3)

Output of the combine transform is input to the global ratio transform

curie/Inet_rates_all_global_ratio: consistent, last update: Tue May 16 00:34:36 2017
METADATA  
Producer Name
Instance Name :

Schema Name
Si

curie 
furie/lnet rates allglobal_ratio)
lnet rates:all_gTobat_ratio

ze 14112
Metric Count 132

GN : 1
DATA  

Timestamp : Tue May 16 08:34:36 2017 [203812us]
Duration : [0.001161s]

Consistent : TRUE
Size : 1104

CN : 331717

D d64
D d64

D d64
D d64

D d64
D d64

D d64
D d64
D d64
D d64

[203812.]

(4)

Global ratio transform operates on a single
input metric set. It calculates per-node window
avg, min, max values relative to the total node
sums. lt outputs a single metric set

cray_gemini_r_sampler_nid00010_rate_avg_n__client.Istats.read_bytes_llite.snx11024 0.198067
cray_gemini_r_sampler n1d00010 rate_avg_n__client.Istats.write_bytes_llite.snx11024 0.396454

cray_gemini_r_samplerflid00004..rate_avg_n__client.Istats.read_bytes_llite.snx11824 0.100202
cray_gemini_r_sampler.nid00004 rate avg n client.Istats.write_bytes_llite.snx11024 0.075414

cray_gemini_r_sampler_nid00004_rate_max_n__client.Istats.read_bytes_llite.snx11824 0.115037
cray_gemini_r_sampler_nid00004_rate_max_n client.Istats.write_bytes_llite.snx11024 0.101542

rate_avg_n__client.lstats.read_bytes_llite.snx11024677\2539496.433430
rate_avg_n__client.lstats.write_bytes_llite.snx1102t_global 16661235.373818
rate_avg_n__client.lstats.open_llite.snx11824_global u.dvv044
rate_avg_n client.Istats.close_Ilite.snx11024_global 0.799949

Output of the global ratio transform is input to the separator transform

curie/lnet_rates_all_global_ratio_nid00804: consistent, last update: Tue
METADATA —
Producer Name :
Instance Name :

Schema Name :

curie
curie/Inet_rates_all_global_ratio_nid00084)
Inet_rates_aLc_gcooac_ratio_separate
2104Size :

Metric Count : 24
EN :

DATA
1

Timestamp Tue May 16 00:34:36 2017 [210050us]
Duration : [0.800002s]

Consistent : TRUE
Size : 240

GN : 60313

D d64
D d64
D d64
D d64
D d64
D d64

D d64
D d64

Global ratio needs

all nodes' data for
the computation.
Output set has all
nodes and global
data as metrics

May 16 00:34:36 2017 [210050us]

(5)

Separator transform operates on a single input

metric set and and outputs a subset of data to

each of several output sets. The smaller output

sets are then available to on-node consumers

rate_avg_n__client.lstats.read_bytes_llite.snx110246.100282?
rate_avg_n__client.lstats.write_bytes_llite.snx11824-8A7541
rate_avg_n client.lstats.open_llite.snx11824 0.111867
rate_avg_n client.lstats.close_Ilite.snx11024 0.124951
rate_max_n__client.lstats.read_bytes_llite.snx11024 0.115037
rate_maX_n__client.lstats.write_bytes_llite.snx11824 0.181542

rate_avg_n__client.lstats.read_bytes_llite.snx11024_global 12539496.433430
rate_avg_n__client.lstats.write_bytes_llite.snx11824_global 16661235.373810

Output set for nid00004.
Read operations are 10%
of the total.

Figure 6: Example metric sets at stages in a transform sequence. The goal is per-node sets of windowed avg, min, and max
of quantities relative to the set of nodes' total usage. (1) Rate output for nid00004 (2) Windowed avg output for n 100004 (3)
Combine transform (unshown) (4) Global ratio output. The component for the metric set instance is the system, with the nodes
encoded in the metric names. (5) Separator output produces per-node sets - nid00004 shown. Computationally and memory
intensive transforms can be done on aggregation nodes, and the final smaller set is then available to be pulled back to or
queried by the compute nodes for use by system software and applications. All sets are exposed in the same way.

and transformed data in a uniform way would have to be built. Note
that MRNet targets a tree-based overlay and hence the setup to
enable arbitrary and bi-directional communications could become
quite complex. It does not currently support RDMA which therefore
increases its innate overhead for data transfer and feedback based
on analyses. MRNet explicitly targets filtering of data, which is an
analysis, at the tree aggregation points to reduce message size. It

was used in collecting platform data with reduction [5]. Here, we
integrate low latency streaming analysis, and not merely reduction,
at arbitrary locations in the entire HPC system, and support build-
ing complex analysis units from basic transform plugins using the
chaining capability. AMQP theoretically would support more arbi-
trary communication topologies because of its publish-subscribe
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architecture. However, typical applications of this model use self-
describing messages, which are inherently of larger size than the
LDMS messages that send only data.

Various tools for big data systems and streaming databases exist
(e.g., [1] [11] [26] [19] [9]). These tools provide one-way communi-
cation constructs using query interfaces for analyses. This limits
the ability to feed back the data and analysis results to the com-
pute platform. In our work, we leverage the bidirectional infras-
tructure of the LDMS framework to enable information feed back
to various system components and applications. This makes the
decision-making process in the system software and applications
more informed and environment-aware.

Pipeline capabilities that support filters for analysis and visu-
alization exist in architectures such as the Visualization Tool Kit,
VTK [30]. VTK has a relatively sophisticated model for handling
the pipeline due to the need to handle possibly complex issues such
as visible components in the 3D rendering of objects. Our work
seeks to incorporate a much more limited capability for chaining
analyses without the added complexity of writing code utilizing
VTK's language bindings.

Analysis capabilities such as SciPy [31] tools are being applied to
computations in HPC analysis (e.g., [21]) as are no-SQL databases
(e.g., [4]) in support of data storage. Efficiency in the analysis, in-
sertion, and retrieval can provide a performance benefit for data
processing, however they would not entirely obviate the desire to
compute and expose data on the platform. Similarly, the innate col-
lection and transport data capabilities would need to be integrated.
Such analysis capabilities could, however, be used to facilitate the
building of the analyses required in the plugins.

7 CONCLUSIONS

In this work, we have designed chaining transform capabilities
to support streaming analysis within an existing production HPC
monitoring framework, LDMS. The transformed data is supported
by the same structures as the collected data, thus enabling the
transformed data set the same flexibility in transport and the same
exposure as the collected data. We leverage the transport flexibility
of LDMS to enable placement of computationally intensive transfor-
mations on hosts where the overhead would not adversely affect an
application and yet be able to transport the result to hosts, including
those hosting applications, where the results are needed.
We have shown the viability of our initial implementation for

a case with production-relevance: run-time determination of the
relative per-node filesystem demands. Run-time availability and ex-
posure of such data would be of benefit to those seeking to identify
the causes of high load on the filesystem and to identify imbalances
in an application's resource demands. Future work includes harden-
ing of the transform support design. Ultimately we seek to perform
run-time global analyses of system and resource state (e.g., network
contention measures) and can use that information to invoke more
optimal resource usage as a result.
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