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Abstract—We introduce a topology-aware performance op-
timization and modeling workflow for AMR simulation that
includes two new modeling tools, ProgrAMR and Mota, which
interface with the BoxLib AMR framework and the SST-
macro network simulator. ProgrAMR allows us to generate and
model the execution of task dependency graphs from high-level
specifications of AMR-based applications, which we demonstrate
by analyzing two example AMR-based multigrid solvers with
varying degrees of asynchrony. Mota generates network topology-
sensitive box mappings, which we apply to optimize the data
layout for the example multigrid solvers. While the sensitivity
of these solvers to layout and execution strategy appears to be
modest for balanced scenarios, the impact of better mapping algo-
rithms can be significant when performance is highly constrained
by network hop latency. Furthermore, we show that network
latency in the multigrid bottom solve is the main contributing
factor preventing good scaling on exascale-class machines.

I. INTRODUCTION

The solution of partial differential equations (PDE's) using
adaptive mesh refinement (AMR) has proven to be a com-
putationally efficient approach for simulating a broad range
of physical phenomena in which feature sizes vary widely in
scale, such as those occurring in astrophysics, combustion, and
geophysical modeling [1], [2]. Significant effort has gone into
tuning AMR-based applications for current high performance
computers.

However, the push towards exascale computing is forcing
changes in the way these high performance systems are
designed. In order to keep aggregate system power in check
while continuing to push the performance envelope, future
systems will need to be composed of simpler, more power
efficient compute elements [3]. The composition of leadership
class machines is expected to transition quickly over the next
few generations with nodes becoming much more powerful,
data locality becoming increasingly important, and the balance
between compute and communication performance shifting.

This evolution in hardware design will compel scientists to
reexamine several core aspects of AMR in order to achieve
high performance on future architectures, including a) greater
attention to data locality and b) hiding communication la-
tency through increased asynchrony. Fundamental to block-
structured AMR is the spatial decomposition of the domain
into multiple grids at multiple levels of resolution. The specific
application determines how the domain is decomposed, but
performance considerations dictate the placement of grids (or
boxes) onto processors. The placement of data affects both
the computational load balance and the cost of communication
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Figure 1: Our AMR performance modeling workflow

over the network. As parallelism and aggregate compute per-
formance increase within compute nodes, the relative cost of
data movement and messaging will increase, with the possible
outcome that optimizing the locality of the grids at the expense
of load balance may improve performance at larger scales.
Additionally, asynchronous task-based programming models
may provide more flexible execution strategies on exascale
architectures to help overlap communication latencies with
independent computation. [4], [5], [6], [7], [8]. Since porting
existing large, complex scientific applications to task-based
programming models may be challenging, it is important to
understand the potential benefits on future hardware before
investing significant engineering effort.

Figure 1 illustrates our AMR modeling workflow. First, we
use applications from the BoxLib [1], [9] AIVIR framework
to generate multilevel grid hierarchies for analysis. The first
modeling tool, ProgrAMR, produces skeletonized task-graph
representations from high-level expressions of algorithms. The
second, Mota Mapper, is a multi-objective topology-aware
data mapping library that we use to map block-structured
AMR boxes to network nodes in a way that simultaneously
reduces communication costs while balancing compute loads
and memory constraints. Finally, the algorithm task graph and
mappers are fed into the SST-macro network simulator [10]
to illustrate various trade-offs in system performance.

We utilize this methodology to examine the implications of
changes in system architecture and execution models on the
performance and scalability of multigrid linear solvers, whose
execution typically contributes a significant fraction to the total
simulation time of AMR applications that utilize them. Some
of the authors have previously collaborated on a tool-chain
that allows AMR applications to be represented as a task
dependency graph that can be simulated at system scale [11].
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This paper follows a similar approach, but introduces new tools
that allow more flexible algorithm, data layout, and execution
model exploration than the previous work. Specifically, Pro-
grAMR allows higher-level algorithm specification, enabling
much more complex algorithmic variants (such as multigrid)
to be evaluated. It also tags tasks with metadata to allow vary-
ing the degree of asynchrony during execution. Furthermore,
Mota Mapper enables us to evaluate new topology-aware box
mapping strategies.
The rest of the paper is structured as follows. Section II

gives an overview of the BoxLib AMR framework. Section III
introduces the ProgrAMR semantics that provides a concise
way to generate AMR task dependency graphs, and describes
the set of AMR-based multigrid algorithms we modeled. Sec-
tion IV introduces the Mota Mapper library of multi-objective,
topology-aware mapping algorithms for assigning AMR boxes
to ranks on a network. Section V gives an overview of the SST-
macro network interconnect simulation framework. Section VI
discusses four different models of synchronization that we
explore using the task-graph representation of the solvers.
Finally, Section VII presents experimental results gathered
using our tools in conjunction with the SST-macro network
simulator to show:

1) a baseline analysis of scaling behavior of the AMR multigrid
algorithms,

2) the impact of new mapping algorithms on performance with
varying network configurations,

3) the sensitivity of multigrid variants to mapping optimizations,
4) a comparison between execution models with different degrees

of asynchrony, and
5) the impact of box consolidation to fewer ranks during multigrid

coarsening.

II. B oxLIB: A BLOCK-STRUCTURED AMR SIMULATION
FRAMEWORK

BoxLib is a mature software framework for building
massively parallel block-structured adaptive mesh refinement
(AMR) applications [1], [9]. It is one of a number of current
publicly available AMR frameworks; see e.g., [12], for an
overview. Many application codes spanning a large range of
scientific domains are built on these frameworks — BoxLib-
based codes, for example, include those for astrophysical,
combustion, atmospheric, and subsurface flow simulations.
BoxLib supports explicit and implicit grid-based opera-

tions as well as particle and particle-mesh operations on
adaptive hierarchical meshes. Multiple time-subcyling modes
are supported for adaptive mesh simulations, and mul-
tilevel multigrid solvers are included for cell-based and
node-based data. BoxLib application codes have demon-
strated good scaling behavior on up to 100,000 cores on
current multi-core architectures [13], [14]. BoxLib itself
and several BoxLib-based codes are publicly available at
https://github.com/BoxLib—Codes.

III. PROGRAMR: DESCRIBING AMR
PURE-FUNCTIONALLY

A. Description

At its core, ProgrAMR is a semantics for describing a broad
set of AMR-related algorithms at a high level. By design, it

avoids execution details, giving rise to the two salient features:
1) conciseness of algorithm expression, and 2) decoupling of
algorithm specification from execution to aid the exploration
of execution strategies as a separate concern. It leverages pure-
functional semantics so that parallelism is exposed via data-
driven behavior. ProgrAMR currently meets the needs of task
graph driven system simulation; however, we may extend it
in the future to provide a full task-based AMR runtime. The
AMR-specific aspects of the API currently allow description
of skeletonized algorithms, meaning that they generate the
computation and communication event traces necessary to
drive the network simulator, without doing any actual floating-
point computation. The time spent in on-node compute kernels
is represented by performance model profiles generated by the
ExaSAT performance modeling framework [15].
We have implemented ProgrAMR as a C++ library in the

spirit of an embedded DSL. The operations exposed by the
library are mostly constructors for the various AST nodes
pertaining to our custom AMR semantics. For the user, C++
is used as a scripting language for generating the AST. The
embedded AST semantics is pure-functional, meaning that
the whole program is one large expression tree of function
applications, absent of any mutable state. The application
variables are big in the sense that they are implicitly distributed
over the entire machine's partitioned memory, and application
functions then operate on these whole distributed variables.
This leads to a very SIMD-like programming experience where
the scope of the instruction's parallelism is machine-wide,
and the tedious details about when to communicate data and
schedule computation are abstracted away.
Among the catalog of built-in data structures and operations,

the first to note is the Ex<T> type: an AST expression node
that at runtime will produce a value of type T. For AMR
simulations, state variables are Ex<Slab<T»S, which are ex-
pressions representing collections of boxes all at the same level
of refinement (called the slab's domain), where each cell of
a box holds a single value of type T. Since ProgrAMR is
pure-functional, slabs are immutable and may not be altered;
instead, new slabs are generated by applying one of the built-in
operations to existing slabs. For instance, the slab operation

Ex<Slab<T» slab_halo(Ex<Slab<T>> x, int width)

takes an expression for computing a slab x, and returns a new
expression for a new slab that has the same interior values
as x, but with halo (or ghost) zones added to the sides (thus
implying communication). This is commonly followed by

Ex<Slab<T» slab_stencil(Ex<Slab<T>> x, ...)

which takes an expression for a slab containing halo regions,
applies a stencil to the cell values, and produces an expression
for a new slab with updated interior cells but devoid of the
consumed halo regions. We have similar operations for prolon-
gation and restriction between parent/child slabs, and a halo fill
that accepts two parent slabs to be interpolated between. This
makes for a very intuitive coding style where slabs expressions
are simply passed in and out of slab operations. Also, common
patterns of slab operations can be factored into vanilla C++
user functions.
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The ProgrAMR slab operations used to build an application
are typically data-independent, i.e. the amount of computa-
tional work they represent is independent of their inputs'
numerical values. However, in order to include the costs
of convergence detection for iterative methods and handle
adaptive time-stepping, we added support for allreduce
collectives. We believe we handle the program dynamics of
data-dependent control flow in a pure functional setting with a
degree of novelty from the perspective of the HPC community.
The technique we employ is a mainstay for any pure-functional
programmer• the monad [16]. To understand the problem the
monad solves, consider that data-independent expression trees
are all static and finite. However, most iterative algorithms
dynamically decide what sequence of operations to perform
based on their intermediate results, hence they cannot know
their fully expanded expression tree up front. In order to
represent a whole dynamic, data-dependent program as an
expression tree (and retain pure-functional semantics), we
need a representation that allows expressions to dynamically
unfurl. By adding just one additional AST node type, the
monadic bind operation, we are able to wield an expression
unfurling mechanism that is Turing-complete, making it pow-
erful enough to encode any algorithm based on the primitives
already discussed.

Expressing reduction-dependent program control flow re-
quires two operations:

Ex<T> slab_reduce(Ex<Slab<T» x, T modeled_result)

folds a slab worth of values down to a single scalar. Since
ProgrAMR uses skeletonization to avoid doing numerical com-
putation, the user simply provides the result of the modeled
reduction.

Ex<T> mbind (Ex<U> x, std: : function<Ex<T> (U) > f )

produces a data-dependent expression. The two arguments are
the expression x on which we have a dynamic dependence, and
the C++ function f that will produce the dependent expression
given x's runtime value. The returned expression is a proxy
for the dependent expression so that it can nest into further
(perhaps data-dependent) expressions.

Once the user program is specified, ProgrAMR can then
generate the machine-wide task graph to drive the network
simulator. We first run the user program to generate the
AST, then visit the slab operations embedded in the tree's
nodes in topologically sorted order. For each box in every
operation's output, we generate a compute task that represents
the computation of the box's data and generate communication
messages for the task's true data dependencies on individual
boxes from the operation's inputs. The set of tasks produced
is the Cartesian-product of the set of operation nodes and the
boxes in the mesh. The tasks and messages are then saved
to an XML file to be read by the SST-macro simulation
framework. This process is depicted in Figure 2. The following
section describes the AMR-based multigrid algorithms we
implemented and modeled with ProgrAMR.

B. AMR-Based Multigrid Algorithm Skeletons Using Pro-
grAMR

Many algorithms for multiphysics PDE-based applications
require the iterative solution of large linear systems arising
from either discretization of elliptic equations or implicit
treatment of parabolic equations. Multigrid algorithms are
often the method of choice for solving these systems. AMR
simulations with subcycling in time typically require linear
solves across the grids at a single AIVIR level only; algorithms
without subcycling typically require solves across all the levels
in the hierarchy. For the rest of this paper we focus on
the performance of multigrid on multiple levels of an AMR
hierarchy, using either V-cycles or F-cycles (see, e.g., [17],
for more detail). For each of the two cases we implemented a
skeletonized version of the algorithm in ProgrAMR. While the
variants are not directly comparable since they have different
convergence characteristics, it is still informative to compare
how the performance of each variant responds to other changes
in the system, such as modifications to the box layout or
network interconnect, relative to the other variant.

Figure 3 illustrates the differences between the variations
of an integration strategy that requires linear solves. In the
subcycled version, temporal resolution is coupled to spatial
resolution, resulting in multiple fine grid time steps per coarse
grid time step. Each time step at each level requires a single-
level multigrid solve, potentially followed by a multi-level
multigrid synchronization step. An advantage of this time
integration strategy is that fewer time steps are taken on the
coarser levels than if all the levels were advanced with the
same small time step.

In contrast, the time integration algorithm without subcy-
cling in time advances the data on all levels with the same
time step, typically dictated by the data at the finest level. In
this case the multigrid solver includes all AMR levels within
each solve, requiring much more inter-level communication.
Although this approach requires all levels to update at the
finest time resolution, it can often be more efficient because
the coarsest AMR level covering the entire domain can often
be coarsened much more deeply than the union of a grids
at a finer level. Deeper multigrid cycles can result in faster
convergence and enable additional optimizations such as box
consolidation or agglomeration.

V-cycles and F-cycles differ in the order in which the
multigrid levels are traversed and in how many times each
level is visited within the cycle. Relative to V-cycles, F-
cycles spend more of their time at the coarser multigrid levels,
thus we expect their performance to be more sensitive to
the performance of the bottom solver and other coarse grid
optimizations. Results comparing the relative performance of
these algorithms will be explored in Section VII-B.

IV. MOTA MAPPER: THE MULTI-OBJECTIVE
TOPOLOGY-AWARE MAPPING LIBRARY

The AMR box layout problem is to determine an assignment
(mapping) of boxes to ranks to simultaneously minimize the
computational load imbalance and communication costs of
the application. There is an obvious trade-off between the
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typedef Ex<Slab<double>> ExSlabD;
MEM.
EMMEN

// builds a serial expression tree : MEMEMEMIIMMEN
// x —> y —> z MEMENEMEMMEN

ExSlabD smooth (ExSlabD x) { MEMENNUMENUMEN
ExSlabD y = slab_halo (x , 2); MENNEMENNEMENNEN

IMENIMEMENIIMMEN
ExSlabD z = slab_stencil (y, 2, ...); MENNEMENNEMENNEN
return z ;

}
MEM.
1111111.M.

(a) User code snippet. (b) Slab x's domain with two boxes
(deduced for y and z). Halo of 2

cells outlined, and regions commu-

nicated shaded.

(c) Generated task

graph.

Figure 2: An example of how ProgrAMR generates the task graph given an expression tree and initial mesh configuration.
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Figure 3: a) A comparison between AMR simulation with and
without subcycling; b) A comparison between multigrid V-cycles and
F-cycles

two objectives: mappings that favor good load balance tend
to increase communication costs, and those that minimize
communication costs tend to have poor load balance. Finding
a communications-optimized load balanced mapping is an NP-
complete multi-objective optimization problem [18], thus we
are forced to resort to algorithms that provide an approximate
solution.

These algorithms fall into two categories: those that do
not take into account the network topology and those that
do. As computer hardware evolves, data movement and
communication will increasingly impact the runtime of our
applications [3], and thus we expect reducing the cost of
moving data across the network will become more important.
This section introduces three new network-topology-aware
approaches that produce approximate solutions to this multi-
objective problem. In addition, we summarize and examine
three current algorithms utilized in BoxLib for comparison
with the new algorithms. Experimental evaluations of these
mapping algorithms will be given in Section VII.

A. Non-topology-aware algorithms

Two of the current algorithms (knapsack and space-filling
curve) are non-topology-aware, taking into account the size
and/or geometry of the boxes but not network topology.
1) Knapsack (KS): This box mapping algorithm focuses on

balancing the number of grid cells across ranks, resulting in

a good balance of the memory footprint across ranks as well
as computational load. The number of cells in a box is used
as the weight of the box, and the mapping algorithm tries to
evenly partition the total weight of the boxes in each level
across available ranks in the network. It does not attempt to
use any information about how the boxes communicate, only
their computational and memory footprints.
2) Space-Filling Curve (SFCS): The space-filling curve

mapping algorithm, like many of the algorithms considered
in this paper, constructs a linear sequence of the boxes in
a way that attempts to keep boxes that communicate close
together in sequence order. It does so by identifying a point
with each box (e.g. a corner or the center), and using a Z-
Morton coordinate transformation [19] to order them. Each
AMR level is mapped in turn, and a separate sequence of boxes
is generated for each level independently. For each level, the
boxes are distributed (in Z-Morton order) to a sequence of
N buckets (where N is the number of ranks) in a way that
maintains load balance across buckets. Using a new set of
buckets for each level ensures that the per-level load balance
is addressed while grouping boxes that probably communicate
(based on their proximity) together. The buckets and ranks
are then sorted and mapped bijectively such that buckets with
larger load are mapped to ranks with smaller load (taking into
account the load of the boxes from previously mapped AMR
levels), and this process is repeated for each AMR level.

B. Topology-aware algorithms

We examine one current topology-aware mapping algorithm
(PFCM) from BoxLib and introduce three new ones (GR,
RCM, and RB).
1) Proximity-Filling Curve (PFCM): This BoxLib algo-

rithm utilizes a similar technique to SFCS, but considers
boxes across all levels simultaneously to construct the Z-
Morton ordered sequence. Sequencing the boxes in all levels
simultaneously places communicating boxes from different
AMR levels closer to each other, potentially increasing the
performance of restriction and prolongation operations. Ad-
ditionally, the ranks are ordered in such a way to increase
the topological locality between nearby ranks (the specific
ordering mechanism depends on the type of network). Both
the ordering of the boxes and the ordering of the ranks is
used during box distribution, resulting in lower inter-node
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messaging costs for neighboring boxes mapped to different
ranks.
One trade-off of sequencing all levels at once is that the

load balance of each AIVIR level on its own is not taken into
account during box distribution, only the memory footprint of
the boxes per rank. Thus per-level load balance may not be as
good as the other algorithms, and performance may suffer for
certain AIVIR solvers since there may be several computational
stages that operate on levels individually, during which no
work is available for boxes on other levels.
2) New Topology-Aware Algorithms: The new box mapping

algorithms are based upon three topology mapping algorithms
described in [18] and implemented in the LibTopoMap library
[20]. In order to apply some of the ideas from that paper
to the AMR box mapping problem, we made some signifi-
cant enhancements to the algorithms. The topology mapping
problem in that paper was formulated as mapping a set of
equivalent processes to a set of compute nodes, each with a
capacity for a number of processes (e.g. 1 process per core).
The computational load and memory footprint of each process
was not taken into account, so each process was effectively
treated as if it took an equal amount of resources on the
node. Furthermore, for some mappings there are constraints
on the number of processes per node and restrictions on the
cardinality of the application and network graphs.
We modified these algorithms to make them applicable to

the AMR box mapping problem, which maps boxes to ranks,
and must take into account the different computational costs
and memory footprint of the boxes assigned. Our extended
methods can handle multiple computational load balancing
constraints and a memory constraint, and supports mapping
an arbitrary number of boxes to an arbitrary number of ranks.
We believe the methods we developed are generic enough to
be applied to other application domains that require multi-
objective topology mapping.
3) Network Topology Models: In order to map boxes in

a topologically-aware fashion for proposed exascale inter-
connect configurations, we utilize a parameterized network
interconnect model that allows us to represent the connectivity
graph and routing behavior for various network topologies.
We implemented four classes of interconnect topologies: a
generic N-dimensional torus, a generic dragonfly, and specific
models for the Edison and Cori supercomputers at NERSC.
Our models are based on [21], [22], the SST-macro simulation
framework [10], and information communicated from NERSC
staff. The parameterized generic models allow us to generate
mappings for future interconnects, while the specific models
allow us to map boxes for runs on current machines.

These models allow us to customize both the connectivity
and the routing algorithms so that we can examine not just the
topology, but also edge/link utilization metrics that are needed
in some mapping algorithms. For example, in the greedy
algorithm boxes are placed to avoid utilizing network links that
are already servicing heavy traffic between previously placed
boxes, requiring a model of the interconnect routing behavior.
4) Greedy (GR): The greedy algorithm maps boxes to ranks

one at a time, sequentially choosing the next box to map based
on how heavily connected it is to the already mapped boxes.

Ranks are filled up until they have no more capacity, then
the next rank is chosen based on a single-source shortest path
algorithm through the interconnect until one is found with
sufficient capacity. For a more detailed description of non-
AMR version of the greedy algorithm, see [18].

In the previous work, each rank has a capacity of pro-
cesses, assumed to have equivalent cost. To suit the AMR
box mapping problem, each rank k is instead given a tuple
Ck = (Ck,1, Ck,n) of grid cell capacities where the number
of components n equals the number of AMR levels plus one,
representing all level-specific compute loads plus the overall
memory balance constraint.
Each box j with g3 grid cells in AMR level l is assigned a

tuple to represent its weight w3 = (w3,1 , w3,0, where:

313,i = 
{gj
0

if i E fl, nl, and

otherwise.
(1)

The capacity constraint can then be defined as:

E w3,, < ck,,, Vk, i, (2)

j EM (k)

where M(k) is the set of boxes mapped to rank k.
One problem we had to solve was what capacities to use

for the ranks. The capacity model of [18] does not face this
problem since they simply assume the total process capacity
(number of cores) of the system is fixed by the hardware and
equals or exceeds the number of processes to be mapped. They
also do not attempt to minimize the average or maximum
process load across nodes, since it is assumed each additional
process assigned to a node will receive an independent core.

In the AMR box mapping problem, there is no fixed
compute load capacity, and furthermore, mappings that satisfy
smaller maximum load capacities may perform faster than
others. Our rank load capacities should thus be chosen to
be as tight as possible while still allowing a solution that
satisfies the capacity constraint (2). Such a solution will result
in a mapping with an even distribution of compute load and
memory footprint across N ranks.
Our approach to support the multi-objective capacity con-

straint is to use:

(Ck,i = max max wi,i ,
3 )wi,iIN Vk,i, (3)

which equals the larger of the maximum box weight and a
scaled average box weight for each constraint. We set a = 1
as an initial guess; however, with such a strict constraint,
the algorithm often encounters a situation with boxes still
remaining and no rank with sufficient capacity because a
constraint is too tight for some i.
When this condition is detected, we retry the mapping from

scratch with an increased capacity constraint until the mapping
algorithm completes. Starting from scratch allows the boxes
to be more evenly spread across ranks compared to simply
increasing the capacity of the ranks at the point where we
run out of space. Using a larger capacity multiplier between
retries will speed up the time to find a solution, but reduces
the average quality of load balance.
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5) Reverse Cuthill-McKee (RCM): As with the SFC al-
gorithm, the basic idea of the RCM mapping algorithm
[23], [24] is to construct linear orderings of the boxes and
ranks so as to reduce the distance between communicating
boxes and connected ranks, respectively. As the name implies,
this algorithm uses the Reverse-Cuthill-McKee sparse matrix
bandwidth reduction algorithm on the adjacency graphs of
the application and network. In the RCM process mapping
algorithm presented in [18], the number of processes per node
is either 0 or 1, and the number of available process slots must
equal the number of processes to be mapped.

Our method allows an arbitrary number of boxes to be
mapped to each rank by leveraging a new distribute algorithm
that takes a linear sequence of boxes and distributes them to a
linear sequence of ranks in a way that attempts to keep nearby
boxes close together while simultaneously satisfying all of the
multi-objective capacity constraints described in IV-B4. This
new distribute algorithm is described in the following section.

6) New distribute algorithm: We designed a new box dis-
tribution algorithm to map an arbitrary number of boxes to an
arbitrary number of ranks given a locality preserving ordering
of both the algorithm and network graphs. The distribution
algorithm also takes an arbitrary number of load and memory
balance constraints to determine placement of the boxes.

This algorithm is distinguished from the current BoxLib
distribution algorithm used in the SFCS and PFCM algorithms
in that it handles multiple constraints, providing memory
balance and per-level load balance on all AMR levels, as well
as network topology-aware box placement that is sensitive
to both intra- and inter-level communications. The original
BoxLib distribution algorithm handled a single constraint, so
there were two options: either 1) each AMR level was mapped
individually, providing good load balance on each individual
level but ignoring inter-level communication costs, or 2) all
boxes were mapped together, discarding per-level compute
load information and balancing memory only.

Algorithm 1 Distribute(boxes[M],ranks[N],-y)

1: Compute box weights and initialize rank capacities using Eqs. (1)
and (3) with a = 1

2: k d
3: while solution hasn't been found do
4: for j in (1, M) do
5: while rank k does not have capacity for box j according

to (2) do
6: if all ranks have been checked for box j then
7: Break out of for loop (line 4)
8: end if
9: if k = N or k =1 then
10: d —d
11: end if
12: k k + d
13: end while
14: Assign box j to rank k (insert j into M(k))
15: end for
16: if solution was not found then
17: a -y • a
18: Reset box assignments and rank capacities
19: end if
20: end while

The new distribute algorithm is sketched in Algorithm 1.
Like the outer retry loop of the greedy algorithm, it initializes
the rank capacity tuple (2) to be very tight and exponentially
loosens the capacity constraints by increasing a by some
-y > 1 until a solution is found. The algorithm attempts
to place boxes on the ranks in the order they occur in the
sequences. Like the current BoxLib distribution, it will place
multiple boxes on the same rank until the rank's capacity is
reached; however, due to the presence of multiple constraints,
ranks may not fill up all of their capacities on the first pass.
Thus it becomes necessary to backtrack across the sequence of
ranks to continue finding space for boxes in the hope that the
remaining boxes will fill in the "holes" left on the previous
passes. One might consider other methods for filling holes
while traversing the ranks, such as using a dovetail search
mechanism, but we have not yet explored these alternatives.

7) Recursive Bisection (RB): The recursive bisection ap-
proach given in [18] recursively divides both the application
and network graphs, mapping the partitions to each other
during each bisection call. This method is not suitable for
AMR box mapping because each bisection of the graph
balances a single constraint and requires that network capacity
equals the application graph size.

In order to support AMR box mapping, we instead use
the METIS recursive bisection algorithm to decompose the
graph into a hierarchical tree structure, where at every node
of the tree, the bisection is chose to minimize the edge cut
cost. We then leverage the fact that the leaves of the tree (i.e.
the returned partitions) are numbered in a depth-first traversal
(ensuring that entire subtrees are enumerated before moving to
the next subtree), thus providing a naturally locality-preserving
linear ordering. We apply this algorithm to produce orderings
of both the application and network graphs, then map boxes to
ranks using the multi-constraint distribute algorithm described
in Section IV-B6.

V. COARSE-GRAINED FULL S YSTEM SIMULATION

The SST-macro element library of the Structural Simulation
Toolkit (SST) has been developed to allow efficient discrete
event simulation of HPC systems at full scale [10], [25], [26].
In order to keep full system simulations tractable, sensible
approximations must be made. Simulating network traffic as
flows holds an intuitive attractiveness in that messages can
flow through the system with a very small number of events
unless congestion is present. However, in the presence of
congestion, flow updates must be propogated across switches
in the system, and simulation costs rise unacceptably for
large simulations with significant congestion. An alternative
for speeding up simulation is to packetize messages, elim-
inating the need for system-wide updates, but keep these
packets "coarse-grained" so that there are fewer of them to
simulate. However, these large packets block resources for
larger amounts of time than would happen on real hardware,
so packets competing for the same resource will encounter
delays which introduce significant errors. The hybrid packet-
flow model within SST-macro provides a practical tradeoff
between accuracy and simulation cost. Once bandwidth for a
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packet is assigned, later packets can utilize unused bandwidth
but cannot acquire bandwidth previously assigned to earlier
packets. In this way, more realistic congestion delays can
be produced while keeping the model tractable. In this work
the packet-flow model is used in coarse-grained full system
simulation.

VI. AMR SIMULATION FRAMEWORK

A. Modes of Synchronization

As the degree of parallelism and relative cost of communica-
tion increases with evolving system architecture design, bulk-
synchronous parallel execution approaches may not perform
well when scaled to exascale system sizes. We investigate
here the impact of applying varying degrees of asynchrony
to the AMR application skeletons described in Section III by
simulating the execution under four different synchronization
mechanisms In all models except for fully asynchronous,
there are conditions where ranks unnecessarily idle even if
there are local tasks whose individual data dependencies have
been fulfilled. The trade-off for these models is that more
synchronous models tend to be easier to program and verify
for correctness.

All of the synchronization methods we analyzed are sim-
ulated from the same task-graph XML description files. The
only differences are additional synchronizations added during
simulation itself to emulate the false dependencies that are
required by more synchronous execution models. We enabled
this flexibility by utilizing epochs, which we define in this
context to be sets of tasks (sequences of computations or
communications) that may proceed concurrently with no de-
pendencies.
An example of an epoch would be a single explicit time

step update that may execute after a boundary fill or halo
exchange has completed. Since the computational step is
typically executed across multiple AMR boxes, this epoch
consists of multiple events spread across multiple ranks, each
corresponding to an update of an individual box. This method
is implemented in our task-graph XML by tagging each
event (computation or communication) with an epoch number,
grouping together events that are part of the same epoch.
The execution models and their differences are described

below.
1) Fully Synchronous: In the fully synchronous execution

model, each computational epoch in the algorithm proceeds in
lock-step across all ranks. In our example, every rank waits
for the preceding epoch's halo exchange messages to complete
across all ranks before proceeding with the time step compu-
tation. No event of a given epoch may proceed until events on
all ranks in a previous epoch have completed. This method is
often implemented using global barriers (e.g. MP I_Barrier)
to separate consecutive computational stages.
2) Rank Synchronous: In the rank synchronous execution

model, ranks are decoupled so that no global synchronization
is required. However, there is a local restriction on the order
in which tasks are processed within each rank Specifically,
events cannot begin until all events on the same rank with a
previous epoch number have completed. In the explicit time

stepping example, each rank would wait until all boundary fill
messages for all boxes owned by the rank have been received
before proceeding to any time step computation. Thus, even
if the boundary has been completely filled for an individual
box, it cannot proceed with its update until the boundaries
for the other boxes owned by the same rank have also been
filled. This execution model mostly closely corresponds to
the current BoxLib implementation and is often implemented
using local synchronization of posted non-blocking receives
(e.g. MPI Waitall).
3) Phase Asynchronous: In the phase asynchronous ex-

ecution model, ranks are allowed to more freely overlap
communication and computation between epochs. Specifically,
computation events may overlap arbitrarily with communica-
tion events, but computes in different epochs cannot execute
simultaneously on the same rank. This behavior corresponds
to data-parallel asynchrony where the concurrency exposed
by the programming model includes the events of a single
computational step spread across multiple data.

This execution model corresponds to entering a fork-join
concurrency mode during each computational step, where a set
of concurrent tasks and their data dependencies are registered
with the runtime. All communications are assumed to occur
asynchronously, and any computational task within an epoch
can execute as soon as its individual data dependencies have
been satisfied. In the explicit time-stepping example, a box
may do its time step update as soon as its boundary has been
filled without waiting for the boundaries of other boxes on the
same rank to be filled. This execution model corresponds to
using a light-weight runtime to manage registration of tasks
and processing them immediately when their data dependen-
cies have been satisfied (see [27] for a similar, although more
powerful, example of this type of data-parallel asynchrony).
Note that this model requires the runtime to be more attentive
to individual incoming receives (e.g. MP I_Waitany) rather
than blocking until all posted receives complete.
Compared to the fully asynchronous execution model, this

model will not progress to the next epoch until all tasks of the
current epoch have completed, but communications are issued
asynchronously to maximize the opportunity for overlap. This
type of parallelism is one model being considered for the AMR
exascale applications area since it is easier for the application
programmer to specify at a high level compared to a full task
dependency graph.
4) Fully Asynchronous: In the fully asynchronous execu-

tion model, there are no false dependencies between tasks,
providing the most flexibility to overlap communication and
computation. Computation and communication tasks in dif-
ferent epochs may execute in arbitrary order on each rank,
so long as their data dependencies have been satisfied. This
behavior corresponds to true task-parallel asynchrony, where
the programming model must expose a full task-graph to the
runtime. The runtime must either have the entire application
task graph registered at initialization or have some way of
dynamically unfurling the task graph so that tasks are created
and executed as their dependencies are satisfied. In the exam-
ple, boxes across the AMR grid can be progressing forward
in time completely independently of one another. Another
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possibility enabled by task-parallel asynchrony is to have tasks
from independent subroutines executing in any order, allowing
the possibility of interleaving light-weight tasks that have
relatively high dependent communication latencies (such as
the bottom solve of a multigrid solver). This execution model
corresponds to using a full task-graph based asynchronous
runtime such as Charm, HPX, Legion, OCR, etc.

VII. RESULTS

Since there are many parameter combinations we could
explore, we chose a baseline configuration and deviated from
it as needed to show specific parameter sensitivities. The
baseline algorithm configuration is a multi-level AMR multi-
grid with no subcycling, using a V-cycle with 10 BiCGStab
bottom solve iterations. The default execution model is fully-
asynchronous. We analyze two classes of network topologies:
the 3D torus and the dragonfly, both modeled by extending the
configuration of current interconnects (modifying the topology
and performance parameters) to represent a range of configura-
tions from current to potential exascale designs. Broadly, the
baseline exascale network consists of 64 port switches with
injection bandwidth (per port) and latency of 100GB/s and
0.25us, respectively, and network bandwidth and latency of
120 GB/s and 25ns, respectively.
The on-node performance of the multigrid kernels (e.g.

smooth, restrict, etc.) are modeled using the ExaSAT per-
formance modeling framework [15], which predicts that the
performance of the multigrid kernels will be determined by
the hardware's on-node memory bandwidth and cache sizes.
By tuning these parameters to represent an exascale class node
architecture, we can estimate the compute time for each kernel
during simulation.

In our simulations, we observed that the impact of box
layout and asynchrony in execution is actually quite small
for typical problem and hardware configurations. These op-
timizations appear to matter more for extreme configurations
where the performance is bound by network hop latency. This
situation happens when the injection latency is low relative
to the switch hop latency or when compute resources are
abundant, in both cases resulting in very communications-
bound performance. Admittedly, these situations may not be
typical, but we hope it is instructive to illustrate how sensitive
the performance can be in such extreme cases. To this end, we
chose two problem scenarios to illustrate: one balanced case
with 10,449 boxes in the AMR hierarchy mapped to 3,072
ranks, and one extreme case, representing compute resource
abundance, with 967 boxes freely mapped to any subset of
1,536 ranks

A. Box Layout Optimization and Network Latency Sensitivity

Using the Mota Mapper library, we examine the impact
of optimizing box placement using the various algorithms
described in Section IV. We also include random mapping
of boxes to ranks as a standard reference. Random mapping
(rdm) performs better than one might expect because boxes
are distributed relatively evenly across ranks providing good
load balance and avoiding congestion hotspots on the network,
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Figure 4: A comparison of box layout algorithms in the larger,
balanced case for different network latency configurations. Both
absolute time and normalized time vs. random are shown.
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Figure 5: A comparison of box layout algorithms in the smaller,
compute-abundant extreme case for different network latency con-
figurations. Both absolute time and normalized time vs. random are
shown.

though the average number of hops messages traverse through
the network is high. Furthermore, we experiment with mod-
ifying the network latency parameters to see how reducing
the injection latency from 250 ns to 25 ns, increasing the hop
latency from 25 ns to 250 ns, or both modifications combined,
affects performance.

Figures 4 and 5 show the absolute and normalized per-
formance for the large, balanced and small, extreme test
configurations, respectively, on the 3D torus and Dragonfly
networks. In the balanced case, the improvement from using
topology-aware mapping algorithms is small, with the greedy
or recursive bisection algorithms only improving the latency-
modified performance by 6 to 10 percent relative to the best
non-topology-aware mapping algorithm (usually the space-
filling curve or knapsack algorithm). However, in the extreme
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Figure 6: A comparison of relative performance of box layout
algorithms for different solver algorithms. Results are shown for the
latency-modified configuration with reduced injection and increased
hop latency.

case, the topology aware layouts improve the latency-modified
performance by 37 to 54 percent. These large speedups are
due to the algorithms placing boxes that communicate closer
to one another, resulting in a packing of boxes into nearby
ranks, rather than spreading them across the machine as with
the knapsack algorithm.

B. Multigrid Algorithm Sensitivity

Figure 6 shows the relative performance of box layout
algorithms for the V-cycle vs. F-cycle multigrid algorithms
with modified network latency parameters. Since the solver
algorithms are not directly comparable due to different con-
vergence properties, the normalized execution time (relative to
random placement) is shown to illustrate the relative sensitivity
of each algorithm to the layout strategy. Again, the network
topology-aware algorithms provide a greater improvement for
the extreme case versus the balanced case.

In the balanced case, the V-cycle benefits marginally more
than the F-cycle from box layout changes, while in the extreme
case, the F-cycle is notably more sensitive. The increased
sensitivity of the F-cycle in the extreme scenario could be due
to the latency bound bottom solve that dominates performance
in that configuration. Since the F-cycle spends relatively more
time updating the coarse AMR levels (especially during the
iterative bottom solves), using a layout that emphasizes good
locality for that level is particularly important.

C. Impact of Asynchronous Execution

Figure 7 compares the performance of the V-cycle in the
larger, balanced case under different degrees of asynchrony.
There is a very large performance penalty when using the
fully-synchronous execution model due the global barriers
required between each computational epoch. Interestingly, the
rank-synchronous model, where ranks can make progress inde-
pendently of one another, produces almost all of the benefits
of a fully asynchronous execution, even though it lacks the
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Figure 7: A comparison of asynchronous execution models in
the larger, balanced case for different box layout algorithms. Both
baseline and latency-modified configurations are shown.

flexibility to either re-order tasks between compute epochs or
begin tasks as soon as their dependent data arrives. While there
is a 49 to 73 percent improvement from removing the global
barriers, there is only another 3 to 4 percent improvement
observed between rank synchronous and fully asynchronous.
We suspect the algorithms explored here may not contain
sufficient computation to hide the large network latency costs,
explaining the lack of significant improvement — we will
investigate this further in future work.

D. Scaling

Figure 8 presents strong scaling plots relative to 384 nodes
for simulations containing 100,000 boxes. The 100 GB/s
memory bandwidth curve shows reasonable scaling out to
12,288 nodes, but 1 TB/s and 10 TB/s curves, which are
representative of the range of memory bandwidths that might
be sustainable on exascale node architectures, show poor
scaling. A possible explanation could be that the faster nodes
inject traffic into the network at a faster rate, causing greater
congestion in the network and slowing down progress in the
computation. In SST-macro, bandwidth limits in the switches
of the simulator can be turned off, eliminating congestion from
the simulation. In the right-hand plot of Figure 8 congestion
has been turned off and the strong scaling curves change very
little, demonstrating that congestion is not a significant factor
in the observed poor scaling.

E. Compute Efficiency and Idle Time

Another factor which might impact the scaling is the bal-
ancing of compute activity between compute nodes. Figure
9 shows the percent of time each rank spends computing vs
waiting idly for network messages during simulations using
three memory bandwidths. It is clear that, though the per-
centage of time devoted to computation decreases drastically
as memory bandwidth increases, the distribution of compute
work amongst the nodes is quite even, indicating that load
imbalance is not the cause of the poor scaling behavior.
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Results are shown for memory bandwidths ranging from current-
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Figure 10 shows how the overall aggregate activity of the
full system changes over time for exascale simulations varying
the memory bandwidth. The significant compute sections at
the beginning and end of the simulation correspond to the
smooth segment of the multigrid while the largely idle section
in the middle corresponds to the multigrid bottom solve,
a communication heavy activity. As the memory bandwidth
increases, the time spent computing decreases correspondingly,
but larger and larger portions of the runtime are spent in the
mostly idle bottom solve phase of the computation. These plots
indicate that the explanation for the poor scaling lies in the
behavior of the bottom solve.

100 GM Memo, BaWwWM1 1 Ms Memory Bandwidth

Cane,.

10 TB/s Memory Bendel/IP

fie

nmeenri

Compute

Figure 10: Percentage of time the V-cycle spends computing versus
waiting for communication to complete over time for three memory
bandwidth values.
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Figure 11: a) The sensivity of the multigrid V-cycle to network/in-
jection bandwidth/latency. The dotted line represents the simulated
computation time for the baseline where all parameters are fixed
to representative exascale values for the network and a memory
bandwidth of 10 TB/s. The intersection of the red line with each axis
indicates the simulated runtime when the specified latency/bandwidth
is halved/doubled keeping all other parameters fixed. b) Strong
scaling speedups for the simulated V-cycle using algorithms both
with and without consolidation.

For the very inefficient 12,288 node exascale simulation
using 10 TB/s memory bandwidth, the sensitivity of the
simulation to network and injection latencies and bandwidths
was examined. These results are reported in Figre 11(a) where
each axis shows the simulated time for the baseline parameters
(dotted black line) compared to the simulated runtime when
the indicated latency/bandwidth parameter is halved/doubled.
The doubling of either injection or network bandwidth yields
essentially no improvement in simulated run time; the V-
cycle is not bandwidth bound for this system architecture. The
latencies, conversely show improvement in simulated runtime
when they are halved, with a particularly strong reduction for
injection latency. Thus, we expect for the proposed exascale
architecture parameters, the scaling performance is dominated
by the communication-intensive bottom solve which is almost
entirely latency bound.

F. Impact of Box Consolidation

Given that a large percentage of execution time is spent
on the latency-bound bottom solve of the multigrid, we also
briefly explore a variant of the box agglomeration technique
[28] that consolidates boxes to fewer ranks as we coarsen the
AMR level (but without merging them). Specifically, as we
progress down the multigrid cycle, and each box is coarsened
by a factor of eight (two per dimension), we migrate the boxes
to one-eighth the number of ranks. This preserves the average
number of grid elements each active rank is responsible for,
while potentially reducing the cost of the team collectives
needed for convergence detection during the bottom solve.
The trade-off is the cost to migrate the coarsened boxes to the
subset of ranks chosen to continue with the coarsened set of
boxes. Figure 11(b) shows the impact of the box consolidation
technique. For a current generation memory bandwidth of 100
GB/s the bottom solve is not a significant enough portion of the
runtime to yield scaling improvements due to consolidation,
while modest improvements are seen for the higher memory
bandwidths expected in the exascale time frame. We will
further examine the potential benefits of this optimization in
greater detail in future work.
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