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Outli

Introduction

• Proposed Approach

• Model-to-model Calibration - no data noise

• Chemistry model calibration

• Model calibration with noisy data

• LES with model error

• Closure
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otivation

o All models are wrong in principle

o Models of physical systems rely on
o Presumed theoretical framework
o Mathematical formulation

o Practical models of complex physical systems rely on
o Simplifying assumptions
o Numerical discretization of governing equations
o Computational software & hardware

o model error is frequently non-negligible

o Estimating model error is useful for
o model comparison & validation
o model improvement & scientific discovery
o reliable computational predictions
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a enges wit Model Calibration due to Model Error

• • Data, N = 5
--- Truth

— Model prediction

x 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 8
al

o Conventional parameter estimation context: Ydata = f (x, À) + Ed
o Additional data results in reduced parameteric posterior uncertainty

o One gets more confident about predictions with the wrong model

o Predictive uncertainty in calibrated model has no utility for prediction
o Ignoring model error leads to irrelevant predictive errors
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a enges wit Model Calibration due to Model Error
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o Conventional parameter estimation context: Ydata = f (x, À) + Ed
o Additional data results in reduced parameteric posterior uncertainty

o One gets more confident about predictions with the wrong model

o Predictive uncertainty in calibrated model has no utility for prediction
co Ignoring model error leads to irrelevant predictive errors
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a enges wit Model Calibration d e to Model Error

• • Data, N = 100
- Truth
— Model prediction
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o Conventional parameter estimation context: Ydata = f (x, À) + Ed
o Additional data results in reduced parameteric posterior uncertainty

o One gets more confident about predictions with the wrong model

o Predictive uncertainty in calibrated model has no utility for prediction
co Ignoring model error leads to irrelevant predictive errors
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Statistical modeling of model error

Error framework:

Measurements:

Model predictions:

Thus:

Ydata — Ytruth Ed

Ytruth = Ymodel Em

Ydata = Ymodel + Ed

Error modeling - example

Model:

Data Error:

Model Error:

Ymodel = f (x, À)

ed N(0, 0-2)

c„, ̂  GP(it(x), C(x,

Model calibration:

Estimate model parameters A along with those of cm, Ed

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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a enges hysical Models

fa Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

o Potential violation of implicit constraints in physical models

o e.g. incompressible flow: V • v = 0

• Difficulty in disambiguation of model & data error

o Calibration of model error on measured observable does not impact
quality of other model predictions

co Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Key ea - argeted model error embedding

• Embed model error in specific submodel phenomenology

o a modified transport or constitutive law 
(Berliner 2003)

o a modified formulation for a material property

* Pros:
o Allows placement of model error term in locations where key modeling

assumptions and approximations are made
• as a correction or high-order term
• as a possible alternate phenomenology

o explore if it can explain discrepancy on observable
o naturally preserves model structure and associated constraints

o Cons:

o complex likelihood p(y À) for general nonlinear (x, À, cm)
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Consider a imple no-data-noise setting

• Calibration of a (simple) model against a complex model

• Let the complex model be presumed to represent the truth

• In this context, the data has no noise

o Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel Eon

o Frrt = Ydata — ymodel is a deterministic quantity

o The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique E„, for any x
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model-to- odel calibration

Model: y = f (x, 95(€7n))

- Random variable 0 in augmented model components carries
model error

Data: D = {(xj, ydata.i), i = 1, • • • , N}

• Goal:
• Establish À, p(0) such that the likelihood of the data is high, based on

the posterior predictive p(y1D)

• This puts us in a density estimation framework for 0:

• The utility of additional data is to improve the specification of À, and

p(0)
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resent Context

Embed cm in

co In other words: + ern

o Model: y = f (x, À) with : Rm

• Density estimation problem for p(A)

• : a random field A(x, w), or a random variable A(w)

- focus on the latter

• Let the random variable be parameterized by a
o For example, define a as a polynomial chaos expansion

= aktlik (e)
k=0

o Parameter estimation problem for a = (ao, - • , ap)

o Bayesian setting
o Prior 7(a)
• Likelihood L(a) = p(D1a)
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o Given a germ (c.o) = {6., • • • ,6,} - a set of dd. RVs
- where p(C is uniquely determined by its moments

Any RV in L2 (S, 6W, P) can be written as a PCE:

u(w) = f(C =
00

k=0

- uk are mode strengths

- 0 are functions orthogonal w.r.t.

U011 k (VW))

Orthogonal basis examples:

9 Hermite polynomials with Gaussian germ
o Legendre polynomials with Uniform germ, ...

o Global versus Local PC methods
o Adaptive domain decomposition of the support of
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Full Likelihoo

L(a) = p(Dla) = 7rf (ydata,l• • . . Ydata,N

where:
7rf N-variate density of the random variable (fi, , f N)
with fi = f (xi, A(; a))

Problem: /1-f 0 is degenerate in general when N > M

• Consider a case with M = 1, — N(.t, a2), and f =

o Let N = 2, hence (fl, f2) = (À, À) for any sample

• With fi = f2 = À, f2) are dependent and Irf (.1µ, cr) is non-zero
only along the line f2 = fi

• f ( \Ydata,1 Ydata,21 it, Cr) is non-zero only along the line Ydata,2 = Ydataj

potentially can ameliorate singularity with a smoothing nugget
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Proposed

Marginalized Likelihood

N

L(a) = p(Dia) = f (Ydata,i
i= 1

where
7T f, 0) is the univariate density of the RV fi = f (xi, A(a))

Problem: the likelihood has multiple singularities corresponding to ci
values leadin: to vanishing marginal variances at each

o Gaussian example: Let fi N(pi (a) , i(a)2), then

Fr ( 01,2,(CE) Ydata,z)2 
L(a) =  

(27)N / 2 11 a (a) exp 20-i(a)2 )

o Multiple singularities, a 2, (a) = 0, i = 1, , N

e Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

can potentially be controlled via priors on a
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y D) is centered on the data

• With µi(a) = Ee [f (xj, A(; a))]:

minimize II — Ydata,i II

The width of the distribution p(yID) is consistent with the spread of the
data around the nominal model prediction

• With q(a) = [f (xi, )k(, ct))]:

minimize H ai(a) — 1dt/4(a) — data, i II

• 'y is a factor that specifies the desired match between ai and the
discrepancy (a) — Ydata, i on average

SNL Najrn ModErr
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as an
ABC likelihood:

LABC (a) = E 
K (1) 

where E controls the severity of the consistency

) 

control

Propose the Gaussian kernel density:

L,(Œ) =  1 exp (Pi(a) Yd,i)2 + (ai(a) — 7
€Y27 262

Yd,iD2 
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Test problem - Cubic data fit by a line - ABC

N = 11

7

s. 6

45' 5

o

• . Complex model, g(x)

— MAP predictive mean, Z,V,:„(x)

MAP predictive stdev, VZ,tf(x)

2

—1.0 —0.5 0.0
x

0.5 1.0

8

7

6

45' 5

2

•
N = 51

• . Complex model, g(x)

— MAP predictive mean, Z,E„(x)

MAP predictive stdev,

—1.0 —0.5 0.0
x

0.5

o MAP predictive (MP) mean centered on data

o MP standard deviation captures range of discrepancy

a Increasing number of data points has a small effect on both MP
mean and stdev

1.0
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Tes •ro em - Posterior density on ce

o Cubic data, line-fit

o Joint posterior on two
elements of a

o Uncertainty in (1 is
decreased by

o Increasing N
o Decreasing

2.8 3.0 3.2
a00

e =0.5, N=11

€ =0.1, N=11

e =0.5, N=51

e =0.1, N=51

3.4 3.6
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Test problem - Cubic data fit by a quadratic - ABC

N = 11
8

6

'5' 50
.7%4
z 3

• • Complex model, g(x)

— MAP predictive mean, ZI:,,(x)

II= MAP predictive stdev, Zot,

2

—1.0 —0.5 0.0 0.5 1.0

N = 51
8

5 6

'5 5

4
0
a 3

2

• • • Complex model, g(x)

— MAP predictive mean, ZZP,„,(n)

MAP predictive stdev,

—1.0 —0.5 0.0 0.5 1.0
x

• Quadratic has better fit to the data

• Smaller MP stdev consistent with smaller discrepancy
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Test problem - Cubic data fit by a cu• ic - ABC

N = 11 N = 51
8 • • Complex model, g(x) 8 • • Complex model, g(x)

7 — MAP predictive mean, Z,r,,,(x) 7 — MAP predictive mean, Z/P„„,(n)

MAP predictive stdev, Zot,f(x)
6

IM MAP predictive stdev, Z,1", f(x)

'' 6 ''

"5' 5 '5' 5

0
-7,J 4

2. 2 3

2 2

—1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0
x

• Cubic has perfect fit to the data

• Negligible MP stdev consistent with negligible discrepancy
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o Homogeneous ignition, methane-air
mixture

o Single-step global reaction model
calibrated against a detailed chemical
kinetic model - ODE system

o Data: ignition time; range of initial T &
equivalence ratio

o Single-step model:

CH4 + 202 CO2 + 2H20

— [CH4] [O2]k

k = A exp(—E 111°T)

[In
[ E 

l 
akt f k(0

k=o

E

—2 o

- —3 cn

CD
-4 0

• 6

101
1000 1°5° 1100 

1150 
o.8

1200 1250 1300 0 6 0'Temp., r (<,
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onstant Pressur Ignition Problem S ructure

• N species, M reactions, rate parameter vector A

• State vector u = (X1, . . . X N T) - mole fractions, temperature

o ODE system

du.,(t; A) 
(

dt 
u; A), i = 1, , N

u(0) UP

o Observable: ignition time 7ign (u0 À) = t (t;u0 , A)=Tgn
o Challenge, for any proposed À, computing Tip (Up, A) is expensive

- Large stiff ODE system for complex fuels

o Polynomial chaos formulation allows construction of a surrogate

Tign(Uo, A(; (1)) f (uo, = f k(u0, ()1-1/ k

k=0

it Surrogate replaces the forward model in the Likelihood function
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Pos - • •n a Posterior Predictive on (ln A, E)
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Quality of Unc, rtain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (V.4)):

o MAP predictive mean
ignition-time is centered
on the data

o MAP predictive stdv
is consistent with the
scatter of the data

10001050

1100
"0/1.., 1150

1200
'"e'ret.,. 1250

zo 1300

• IC
0.6

0.8
1.0

K. Sargsyan, HNN, and R. Ghanem
"On the Statistical Calibration of Physical Models"

Int. J. Chem. Kin., 47(4): 246-276, 2015

o

—1 -

—2 2
—3 ;

—4 0

—5 —1
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n-dodecan
with L. Hakim, M. Kh

ignition - 1
[il, J. Oefe[ein, and G. Lacaze, SNL

ABC Lik.

• Homogeneous ignition, n-dodecane/air mixture

• Two-step global reaction model calibrated against a "detailed" model
• Reference chemical kinetic model: 255 species, 2289 reactions

Narayanaswamy et at 2014
• Data: ignition time; range of initial T & equivalence ratio .1)

• Two-step model:

C121-126 + 202

CO + 202

- 12C0 + 13H20

CO2

— E 
[]1.25

gt1 = Ae RT [C12 H26]°.25
0 2

N2 f = 3.98 • 1014e ziiI194 [CO] [H20]115 [02]0.25

-912b = 5 • 108e 4A-?4  [CO2]

• E = A0, in A = + A2034) + A4 tanh(pk5 + A6.1))T0 + A7
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n-dodecane ignition - 2 •

o (E. ln A) = (Ao, A1 + A2eA34' + A4 tanh((A5 + A6.13.)To + A7)

o Original parameter vector A = (A0, , A7)

o Embed model error in (A0,

o PCE model:

Ao = aoo + amei.

A1 = aio + au6 + a1g2

A2 = a20

A7 = a70

o ABC targets parameters (aoo, am, am, an, a20, • • • , a70)

SNL 25 45



Introduction Proposed no-noise Chem noise LES Closu

n- •o• ecane ig
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n- •o• ecane igniti

—2
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• Symbols: Narayanaswamy et al., 2014
Lines: Present model

Model uncertainty (± 3a)
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Consider a oisy-data setting

• Calibration of a model yrn = f (x, A) against noisy data

o Synthetic noisy data is generated from a "truth" model + Gaussian
noise

o Discrepancy between fit model prediction and data is due to both
model error & data noise

Y = Ydata = Ytruth 6 = f (x, A) + 6

o Modeling strategy:
o Model as a random vector, represented with PC
o Represent the noise similarly using PC
• Estimate all PC coefficients using Bayesian inference
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Model Erro ormulation - noi y data

y = f (x, A) +

Let c N(0, o-2). With N data points we have

Yi = f (xi, À) + Ei, i =

For Hermite-Gaussian PC:

A = E akI k(6, • • • ,U) a (ao, • • • (k/7')
k=0

f (x, À) = E fk(x, a)Wk(6, • • • ,U

yi =

k=0

k=0

fk(xi, a)qf k(6). • • 1U + cfd+i

Augmented PC germ = (6, • • • • • • , Gl+N)
Em Ed
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Model Erro Estimation - noisy data

Inverse problem:

• Given:
• data:

D = {(xj,yj)}il'Ll

* data model:

Yi = fk (xi, a)W k(1-7 7 + d-Pi

lirnodel (nrn) nd

= 1, . , N

to Estimate parameters (a, a)

Bayesian context:

fa posterior: p(ct, alD)

• options: Full Bayesian likelihood; Marginalized; ABC

• All are viable here in principle, as the data noise introduces regularity

• We illustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncert in Model Posterior P edictive

o Calibrated data model : yi = f (xi; A(; a)) + c;rd+i

o Full posterior on (1. u : a, a p(a, alD)

o Marginal posteriors: a — p(alD), a p(aID)

o Posterior Predictive (PP):

P(?O) = f P(Yla, g)p(a, alD)dada = Ea,c, [P(yla, cf)]

o PP Mean :

EPP [y] = Ea [lEe [f]]

o PP Variance:

vpp [y] = [ f +1E0[ + V c,[ f
model error data noise
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Calicertain Model Predictions

o Calibrated model : y = f (x; A(; a))

o Marginal posterior on a : p(alD)

o Pushed forward posterior (PFP):

p(f1D)= f P(fla)p(a1D)da = IE,[p(fla)]

o PFP Mean :

o PFP Variance:

EPFP [f] = E.[Ee[f]]

= E.[ V d.f + V a[ f

model error data noise
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Ounrtic-fit - Classical Bayesian likelihood
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Qua• ra lc- l - odErr - MargGauss
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Qua• ra lc- - ModErr - MargGauss
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Qua• ra lc- - ModErr - MargGauss

103
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o°
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101

•- -A Pushed-forward variance VPF[f]
• - • Model error lE„[v£[f]]

• - .• Data error V„[EC[f]]

"••

102 103 104
N

105 106

Calibrating a quadratic 3' (x) w.r.t. g(x) = 6 + x2 + 0.5(x + 1)3.5
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Model Error - Fit wit Different Models
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LES subgri static-vs-dynamic - Jet-in-crossflow

• Large Eddy Simulation (LES) subgrid model fidelity

e Dynamic: subgrid parameters variable in space/time, g,

e Static : subgrid parameters constant in space/time, fi (À)
e Target: Calibrate a static model against a dynamic model

o Fit parameters A = (CR, Prt-1 , Sct 1) of static model f(a) to data from
dynamic model simulations, accounting for model error

co Static model surrogate construction using 43 = 64 simulations of f (A)

o Legendre polynomial expansion surrogate of 3-rd order

- Account for surrogate error: zero-bias Gaussian noise

o Global sensitivity analysis: impact of CR » impact of Prt-1 and Set-1

- Selected only CR for model error embedding

~PFP[f = ED, [ V[ f ] + V, [ 11E,[ f ] ] E„ [ 0-2s ]

model error surrogate error
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Introduction Proposed no-noise Chem norse LES aosure

Caa nrMrtvith TKE data; Predict both TKE and Pressure
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Introduction Proposed no-noise Chem noise LES Closure

• Target: Calibrate a 2D LES model against a 3D model

o Fit parameters = (CR, Pr- 1, , , Ir, Li) of 2D model to data
from 3D model simulations, accounting for model error

• 2D model surrogate construction

co Account for surrogate error: zero-bias Gaussian noise

o Global sensitivity analysis

- Selected one parameter for model error embedding

• Calibrate 2D model with observable: M(y) at a given x-location

e Predict both M(y) and P(y), and compare to 3D model
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Introduction Proposed no-noise Chem noise LES Closure

Global Sensitiv ty Analysis Results
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o Dominant paramter is employ it to embed model error
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Introduction Proposed no-noise Chem noise LES Ctosure

Pos redictive on Calib ation Qol:

2.6
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• • Data from high-fid model

- 2o due to low-fid model error

- 2o due to posterior

- 2o due to surrogate for low-fid

—4 —3 —2
y Location

o Poor 2D model performance in the near-wall region

o Insufficient correction via embedded model error

0
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Introduction Proposed no-noise Chem noise LES Closure

osterior dicti e on another Qol: P
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2cr due to posterior
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—4 —3 —2
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0

o Worse 2D model, including model error, performance for prediction
of pressure

o No variation in I is sufficient to explain the discrepancy between 2D
and 3D models
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Introduction Proposed no-noise Chem noise LES Closure

• Presented a strategy for dealing with model error
• targeted at physical models

o Density estimation framework - y = f (x; )k(; a))

o Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

fa Results suggest disambiguation of the two components

• Demonstrations in chemical ignition and LES of jet-in-crossflow
o Including accounting for PC surrogate error

• Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model
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