

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2016-8867C

Uncertainty Quantification with Model Error

H. Najm, K. Sargsyan, X. Huan,
L. Hakim, J. Oefelein, G. Lacaze, and Z. Vane

Sandia National Laboratories
Livermore, CA

Dagstuhl Seminar on UQ in HPC
Wadern, Germany
Sep 11-16, 2016

This paper is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgement

C. Safta, – Sandia National Laboratories, CA

R.G. Ghanem – Univ. Southern Calif., Los Angeles, CA, USA

Y.M. Marzouk – Mass. Inst. of Tech., Cambridge, MA, USA

J. Bender – Lawrence Livermore National Laboratory, Livermore, CA, USA

This work was supported by:

- DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.
- DOE Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- Defense Advanced Research Projects Agency (DARPA), EQUiPS program

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

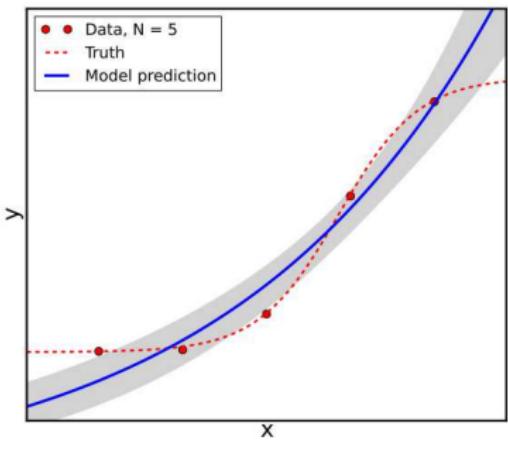
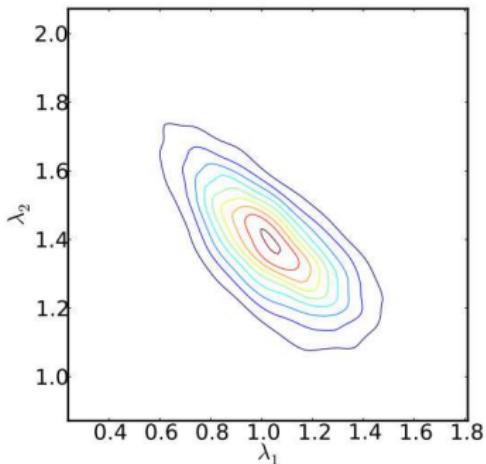
Outline

- 1 Introduction
- 2 Proposed Approach
- 3 Model-to-model Calibration – no data noise
- 4 Chemistry model calibration
- 5 Model calibration with noisy data
- 6 LES with model error
- 7 Closure

Motivation

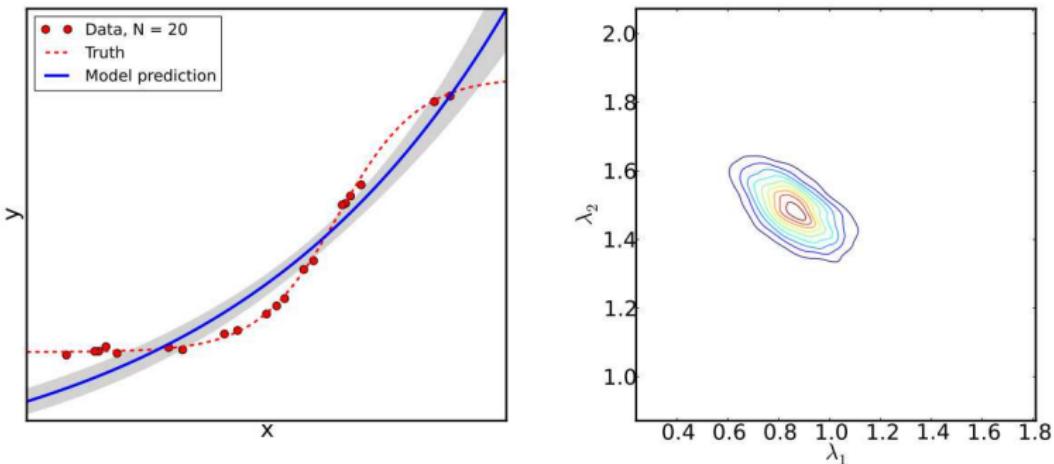
- All models are wrong in principle
- Models of physical systems rely on
 - Presumed theoretical framework
 - Mathematical formulation
- Practical models of complex physical systems rely on
 - Simplifying assumptions
 - Numerical discretization of governing equations
 - Computational software & hardware
- model error is frequently non-negligible
- Estimating model error is useful for
 - model comparison & validation
 - model improvement & scientific discovery
 - reliable computational predictions

Challenges with Model Calibration due to Model Error



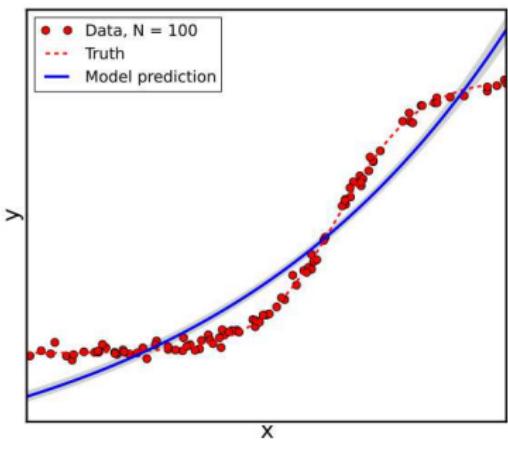
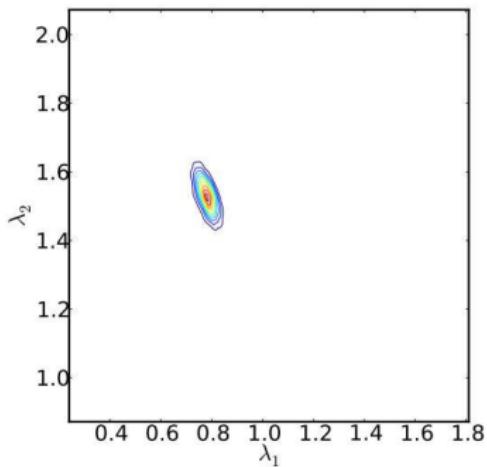
- Conventional parameter estimation context: $y_{\text{data}} = f(x, \lambda) + \epsilon_d$
- Additional data results in reduced parameteric posterior uncertainty
- One gets more confident about predictions with the wrong model
- Predictive uncertainty in calibrated model has no utility for prediction
- Ignoring model error leads to irrelevant predictive errors

Challenges with Model Calibration due to Model Error



- Conventional parameter estimation context: $y_{\text{data}} = f(x, \lambda) + \epsilon_d$
- Additional data results in reduced parameteric posterior uncertainty
- One gets more confident about predictions with the wrong model
- Predictive uncertainty in calibrated model has no utility for prediction
- Ignoring model error leads to irrelevant predictive errors

Challenges with Model Calibration due to Model Error



- Conventional parameter estimation context: $y_{\text{data}} = f(x, \lambda) + \epsilon_d$
- Additional data results in reduced parameteric posterior uncertainty
- One gets more confident about predictions with the wrong model
- Predictive uncertainty in calibrated model has no utility for prediction
- Ignoring model error leads to irrelevant predictive errors

Statistical modeling of model error

Error framework:

Measurements: $y_{\text{data}} = y_{\text{truth}} + \epsilon_d$

Model predictions: $y_{\text{truth}} = y_{\text{model}} + \epsilon_m$

Thus: $y_{\text{data}} = y_{\text{model}} + \epsilon_m + \epsilon_d$

Error modeling – example

Model: $y_{\text{model}} = f(x, \lambda)$

Data Error: $\epsilon_d \sim \mathcal{N}(0, \sigma^2)$

Model Error: $\epsilon_m \sim \mathbf{GP}(\mu(x), C(x, x'))$

Model calibration:

Estimate model parameters λ along with those of ϵ_m, ϵ_d

Kennedy & O'Hagan 2001; Bayarri et al. 2002

Challenges - Physical Models

- Arbitrary choice of statistical model (e.g. GP) spatial structure does not take the physical model into acct
 - Potential violation of implicit constraints in physical models
 - e.g. incompressible flow: $\nabla \cdot v = 0$
- Difficulty in disambiguation of model & data error
- Calibration of model error on measured observable does not impact quality of other model predictions
- Physical scientists are unlikely to augment their model with a statistical model error term on select outputs

Key idea - Targeted model error embedding

- Embed model error in specific submodel phenomenology
 - a modified transport or constitutive law
 - a modified formulation for a material property
- Pros:
 - Allows placement of model error term in locations where key modeling assumptions and approximations are made
 - as a correction or high-order term
 - as a possible alternate phenomenology
 - explore if it can explain discrepancy on observable
 - naturally preserves model structure and associated constraints
- Cons:
 - complex likelihood $p(y|\lambda)$ for general nonlinear $f(x, \lambda, \epsilon_m)$

Consider a simple no-data-noise setting

- Calibration of a (simple) model against a complex model
- Let the complex model be presumed to represent the truth
- In this context, the data has no noise
- Discrepancy between model and data is all due to model error

$$y_{\text{data}} = y_{\text{truth}} = y_{\text{complex_model}} = y_{\text{model}} + \epsilon_m$$

- $\epsilon_m = y_{\text{data}} - y_{\text{model}}$ is a deterministic quantity
- The only information as to the quality of the calibrated uncertain model, e.g. via a posterior predictive check, is in a unique ϵ_m for any x

model-to-model calibration

Model: $y = f(x, \lambda, \phi(\epsilon_m))$

- Random variable ϕ in augmented model components carries model error

Data: $D = \{(x_i, y_{\text{data},i}), i = 1, \dots, N\}$

- Goal:
 - Establish $\lambda, p(\phi)$ such that the likelihood of the data is high, based on the posterior predictive $p(y|D)$
- This puts us in a density estimation framework for ϕ :
 - The utility of additional data is to improve the specification of λ , and $p(\phi)$

Present Context

Embed ϵ_m in λ

- In other words: $\lambda \leftarrow \lambda + \epsilon_m$
- Model: $y = f(x, \lambda)$ with $\lambda : \Omega \rightarrow \mathbb{R}^M$
- Density estimation problem for $p(\lambda)$
- λ : a random field $\lambda(x, \omega)$, or a random variable $\lambda(\omega)$
 - focus on the latter
- Let the random variable λ be parameterized by α
 - For example, define λ as a polynomial chaos expansion

$$\lambda = \sum_{k=0}^P \alpha_k \Psi_k(\xi)$$

- Parameter estimation problem for $\alpha = (\alpha_0, \dots, \alpha_P)$
- Bayesian setting
 - Prior $\pi(\alpha)$
 - Likelihood $L(\alpha) = p(D|\alpha)$

Polynomial Chaos Expansion (PCE)

- Given a *germ* $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$ – a set of *i.i.d.* RVs
 - where $p(\xi)$ is uniquely determined by its moments

Any RV in $L^2(\Omega, \mathfrak{S}(\xi), P)$ can be written as a PCE:

$$u(\omega) = f(\xi) = \sum_{k=0}^{\infty} u_k \Psi_k(\xi(\omega))$$

- u_k are mode strengths
- $\Psi_k()$ are functions orthogonal w.r.t. $p(\xi)$

Orthogonal basis examples:

- Hermite polynomials with Gaussian germ
- Legendre polynomials with Uniform germ, ...
- Global versus Local PC methods
 - Adaptive domain decomposition of the support of ξ

Full Likelihood

$$L(\alpha) = p(D|\alpha) = \pi_f(y_{\text{data},1}, \dots, y_{\text{data},N} | \alpha)$$

where:

$\pi_f(\cdot | \alpha)$: **N -variate density of the random variable** (f_1, \dots, f_N)
with $f_i = f(x_i, \lambda(\xi; \alpha))$

Problem: $\pi_f(\cdot)$ is degenerate in general when $N > M$

- Consider a case with $M = 1$, $\lambda \sim N(\mu, \sigma^2)$, and $f = \lambda$
- Let $N = 2$, hence $(f_1, f_2) = (\lambda, \lambda)$ for any λ sample
- With $f_1 = f_2 = \lambda$, (f_1, f_2) are dependent and $\pi_f(\cdot | \mu, \sigma)$ is non-zero only along the line $f_2 = f_1$
- $\pi_f(y_{\text{data},1}, y_{\text{data},2} | \mu, \sigma)$ is non-zero only along the line $y_{\text{data},2} = y_{\text{data},1}$
 \Rightarrow potentially can ameliorate singularity with a smoothing nugget

Marginalized Likelihood

$$L(\alpha) = p(D|\alpha) = \prod_{i=1}^N \pi_{f_i}(y_{\text{data},i}|\alpha)$$

where

$\pi_{f_i}(\cdot, \alpha)$ is the univariate density of the RV $f_i = f(x_i, \lambda(\alpha))$

Problem: the likelihood has multiple singularities corresponding to α values leading to vanishing marginal variances at each x_i

- Gaussian example: Let $f_i \sim N(\mu_i(\alpha), \sigma_i(\alpha)^2)$, then

$$L(\alpha) = \frac{1}{(2\pi)^{N/2}} \prod_{i=1}^N \frac{1}{\sigma_i(\alpha)} \exp\left(-\frac{(\mu_i(\alpha) - y_{\text{data},i})^2}{2\sigma_i(\alpha)^2}\right)$$

- Multiple singularities, $\sigma_i(\alpha) = 0, i = 1, \dots, N$
- Posterior maximization always finds one of these singularities, fitting one point perfectly, while misfitting the rest

⇒ can potentially be controlled via priors on α

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select constraints:

Uncertain prediction $p(y|D)$ is centered on the data

- With $\mu_i(\alpha) = \mathbb{E}_\xi[f(x_i, \lambda(\xi; \alpha))]$:

$$\text{minimize } \| \mu_i(\alpha) - y_{\text{data},i} \|$$

The width of the distribution $p(y|D)$ is consistent with the spread of the data around the nominal model prediction

- With $\sigma_i^2(\alpha) = \mathbb{V}_\xi[f(x_i, \lambda(\xi, \alpha))]$:

$$\text{minimize } \| \sigma_i(\alpha) - \gamma | \mu_i(\alpha) - y_{\text{data},i} | \|$$

- γ is a factor that specifies the desired match between σ_i and the discrepancy $|\mu_i(\alpha) - y_{\text{data},i}|$, on average

ABC Likelihood

With $\rho(\mathcal{S})$ being a metric of the statistic \mathcal{S} , use the kernel function as an ABC likelihood:

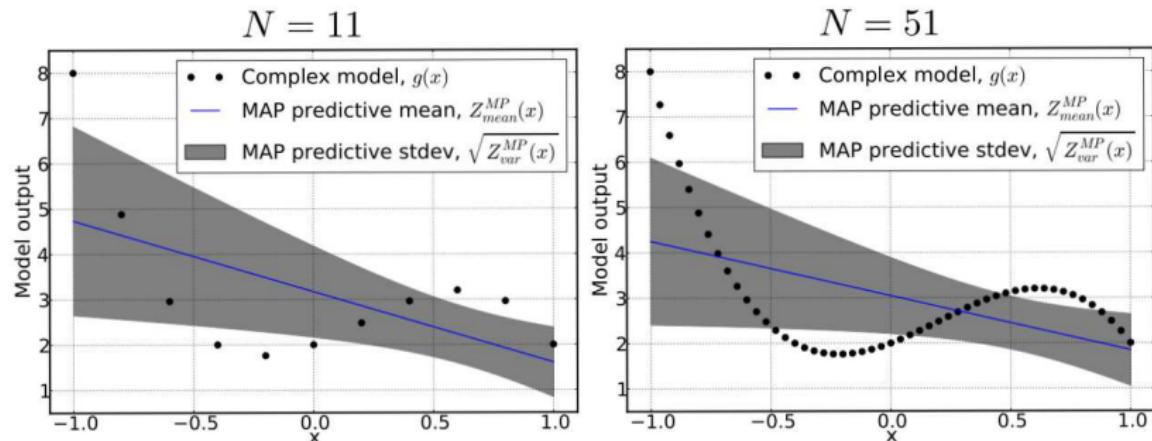
$$L_{\text{ABC}}(\alpha) = \frac{1}{\epsilon} K \left(\frac{\rho(\mathcal{S})}{\epsilon} \right)$$

where ϵ controls the severity of the consistency control

Propose the Gaussian kernel density:

$$L_{\epsilon}(\alpha) = \frac{1}{\epsilon \sqrt{2\pi}} \prod_{i=1}^N \exp \left(-\frac{(\mu_i(\alpha) - y_{\text{d},i})^2 + (\sigma_i(\alpha) - \gamma|\mu_i(\alpha) - y_{\text{d},i}|)^2}{2\epsilon^2} \right)$$

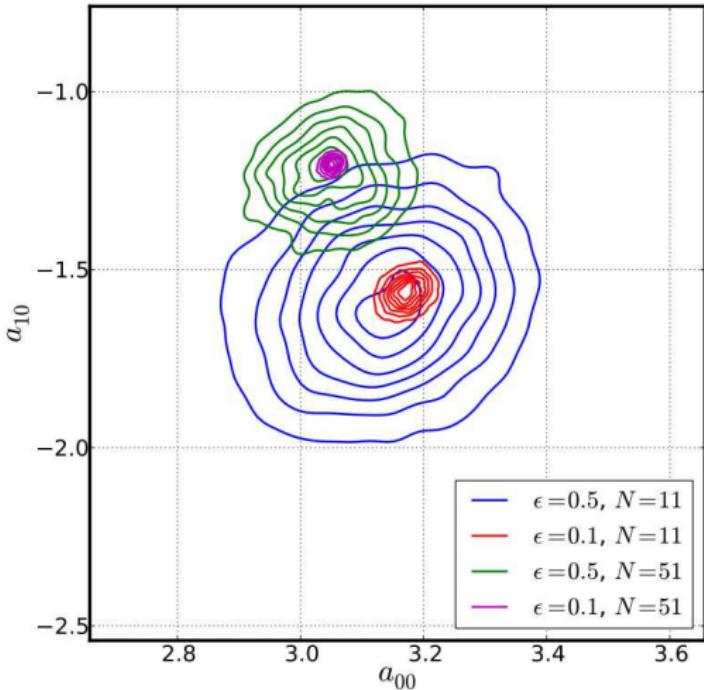
Test problem - Cubic data fit by a line - ABC



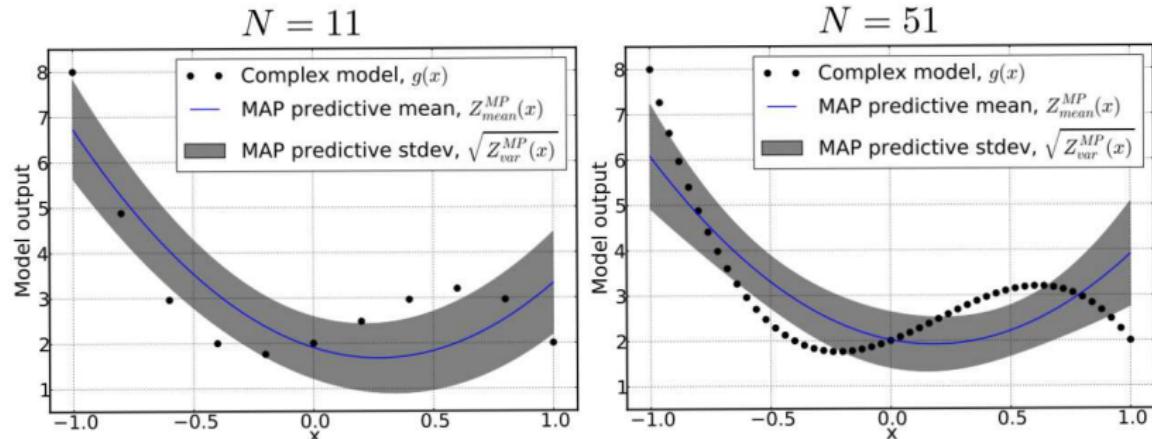
- MAP predictive (MP) mean centered on data
- MP standard deviation captures range of discrepancy
- Increasing number of data points has a small effect on both MP mean and stdev

Test problem – Posterior density on α

- Cubic data, line-fit
- Joint posterior on two elements of α
- Uncertainty in α is decreased by
 - Increasing N
 - Decreasing ϵ

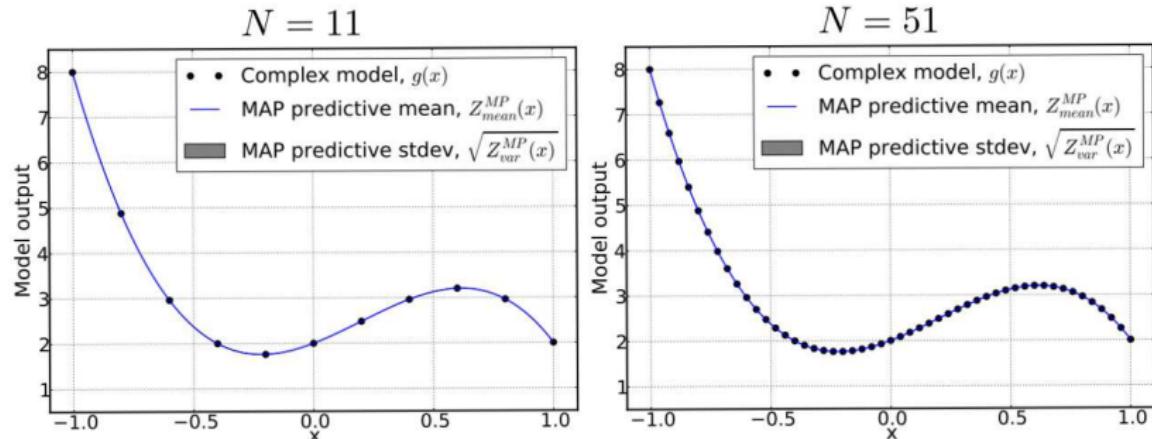


Test problem - Cubic data fit by a quadratic - ABC



- Quadratic has better fit to the data
- Smaller MP stdev consistent with smaller discrepancy

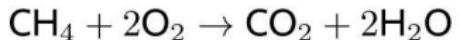
Test problem - Cubic data fit by a cubic - ABC



- Cubic has perfect fit to the data
- Negligible MP stdev consistent with negligible discrepancy

Chemistry problem - ABC

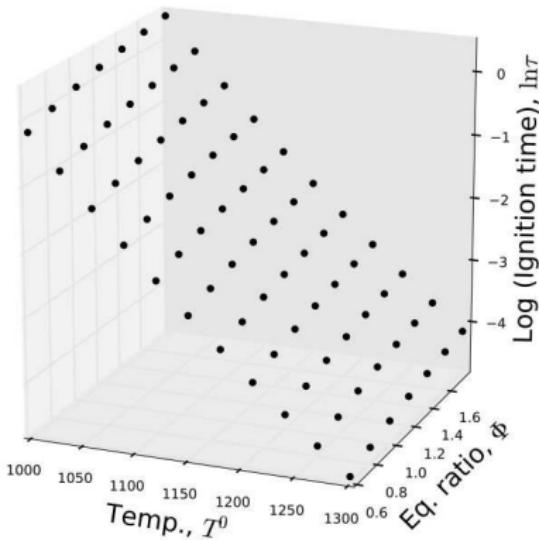
- Homogeneous ignition, methane-air mixture
- Single-step global reaction model calibrated against a detailed chemical kinetic model - ODE system
- Data: ignition time; range of initial T & equivalence ratio
- Single-step model:



$$\mathfrak{R} = [\text{CH}_4][\text{O}_2]k$$

$$k = A \exp(-E/R^\circ T)$$

$$\lambda = \begin{bmatrix} \ln A \\ E \end{bmatrix} = \sum_{k=0}^P \alpha_k \Psi_k(\xi)$$



Constant Pressure Ignition – Problem Structure

- N species, M reactions, rate parameter vector λ
- State vector $u = (X_1, \dots, X_N, T)$ – mole fractions, temperature
- ODE system

$$\begin{aligned}\frac{du_i(t; \lambda)}{dt} &= w_i(u; \lambda), \quad i = 1, \dots, N \\ u(0) &= u_0\end{aligned}$$

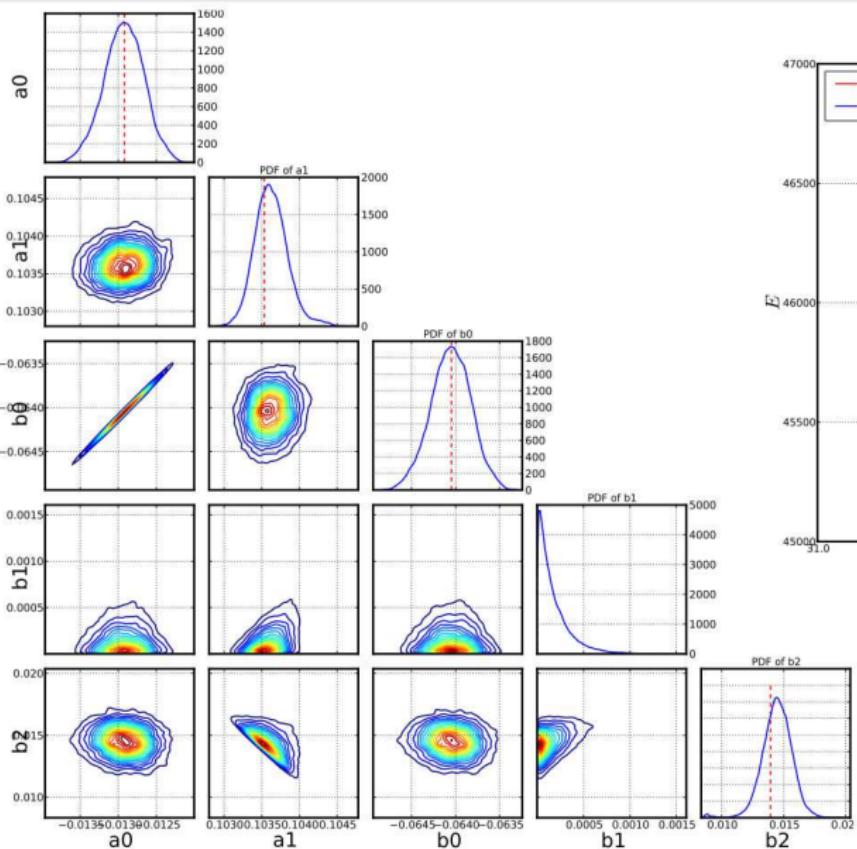
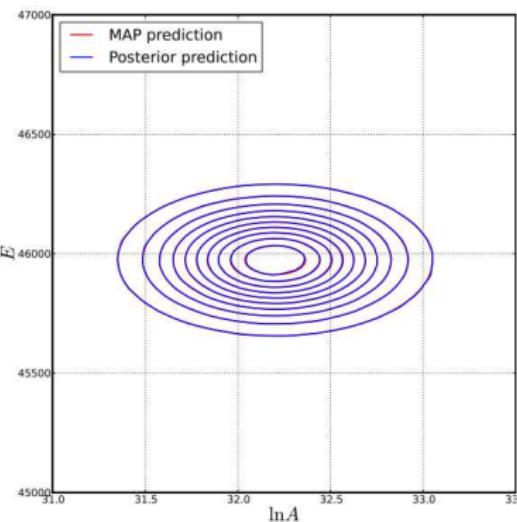
- Observable: ignition time $\tau_{\text{ign}}(u_0, \lambda) = t \mid_{T(t; u_0, \lambda) = T_{\text{ign}}}$
- Challenge, for any proposed λ , computing $\tau_{\text{ign}}(u_0, \lambda)$ is expensive
 - Large stiff ODE system for complex fuels
- Polynomial chaos formulation allows construction of a surrogate

$$\tau_{\text{ign}}(u_0, \lambda(\xi; \alpha)) = f(u_0, \xi; \alpha) = \sum_{k=0}^P f_k(u_0; \alpha) \Psi_k(\xi)$$

- Surrogate replaces the forward model in the Likelihood function

Posterior on α

-

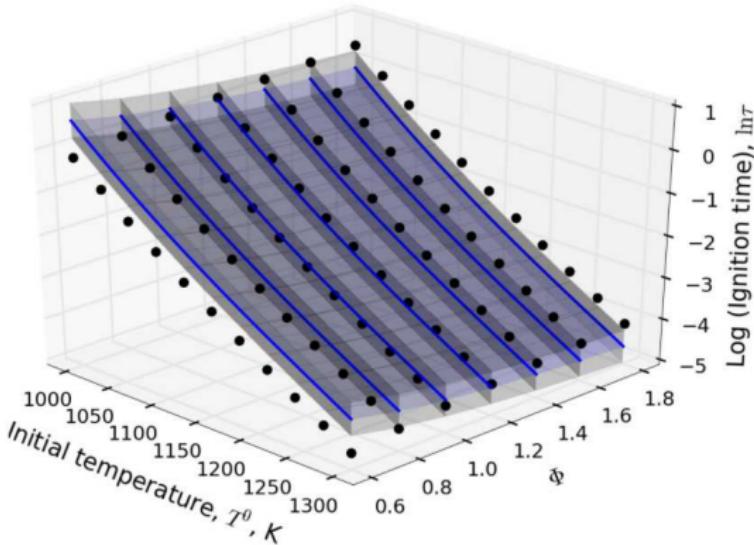
Posterior Predictive on $(\ln A, E)$ 

Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T^0, Φ) :

- MAP predictive mean ignition-time is centered on the data
- MAP predictive stdv is consistent with the scatter of the data



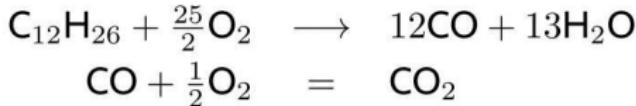
K. Sargsyan, HNN, and R. Ghanem
"On the Statistical Calibration of Physical Models"
Int. J. Chem. Kin., 47(4): 246-276, 2015

n-dodecane ignition - 1

with L. Hakim, M. Khalil, J. Oefelein, and G. Lacaze, SNL

ABC Lik.

- Homogeneous ignition, *n*-dodecane/air mixture
- Two-step global reaction model calibrated against a “detailed” model
 - Reference chemical kinetic model: 255 species, 2289 reactions
[Narayanaswamy et al. 2014](#)
- Data: ignition time; range of initial T & equivalence ratio Φ
- Two-step model:



$$\mathfrak{R}_1 = Ae^{\frac{-E}{RT}} [\text{C}_{12}\text{H}_{26}]^{0.25} [\text{O}_2]^{1.25}$$

$$\mathfrak{R}_{2f} = 3.98 \cdot 10^{14} e^{\frac{-4 \cdot 10^4}{RT}} [\text{CO}][\text{H}_2\text{O}]^{0.5} [\text{O}_2]^{0.25}$$

$$\mathfrak{R}_{2b} = 5 \cdot 10^8 e^{\frac{-4 \cdot 10^4}{RT}} [\text{CO}_2]$$

- $E = \lambda_0$, $\ln A = \lambda_1 + \lambda_2 e^{\lambda_3 \Phi} + \lambda_4 \tanh((\lambda_5 + \lambda_6 \Phi)T_0 + \lambda_7$

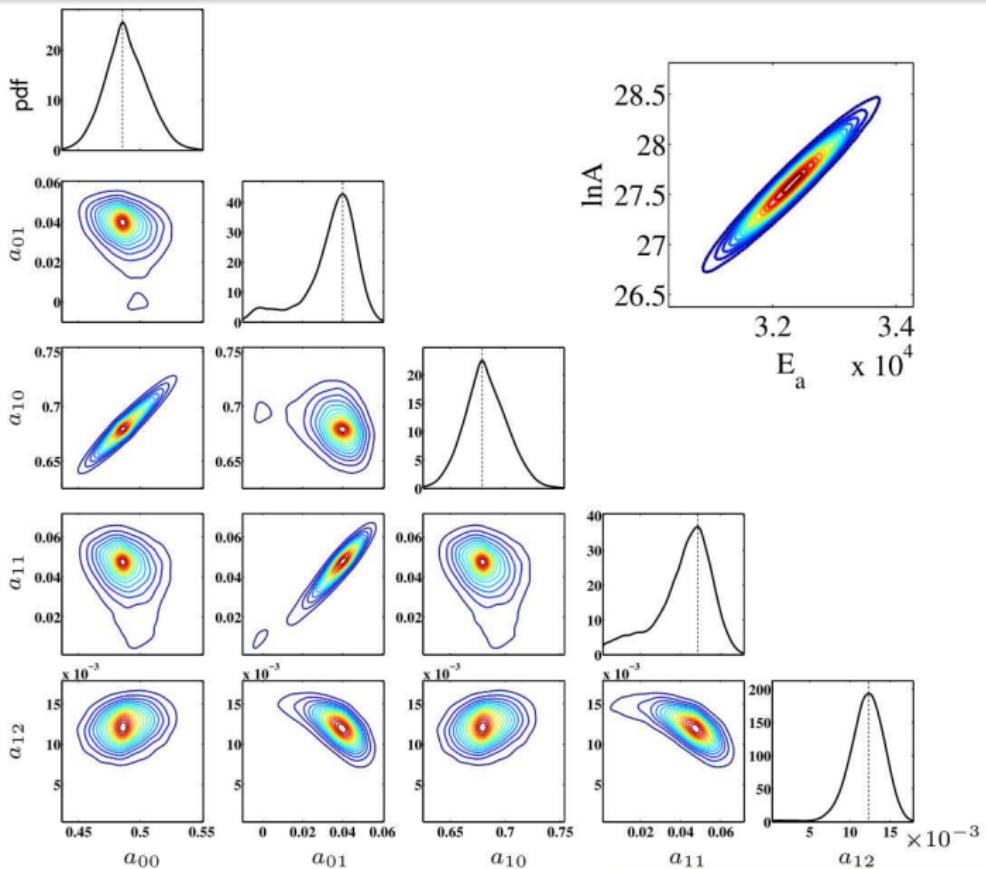
n-dodecane ignition - 2

- $(E, \ln A) = (\lambda_0, \lambda_1 + \lambda_2 e^{\lambda_3 \Phi} + \lambda_4 \tanh((\lambda_5 + \lambda_6 \Phi)T_0 + \lambda_7))$
- Original parameter vector $\lambda = (\lambda_0, \dots, \lambda_7)$
- Embed model error in (λ_0, λ_1)
- PCE model:

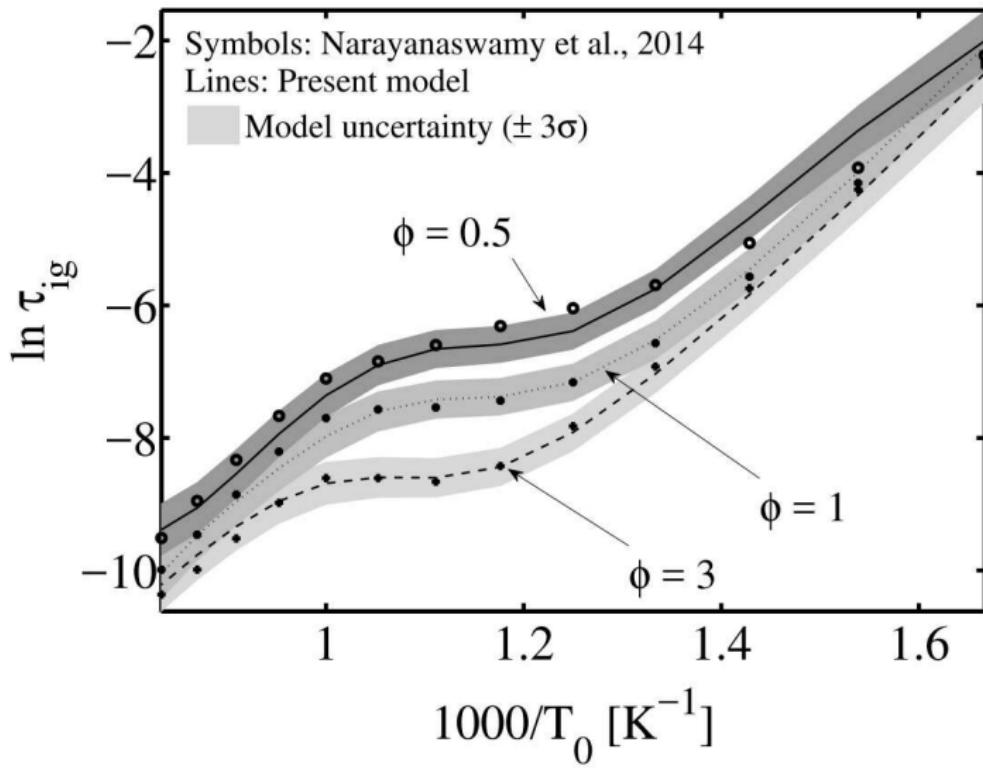
$$\begin{aligned}
 \lambda_0 &= a_{00} + a_{01}\xi_1 \\
 \lambda_1 &= a_{10} + a_{11}\xi_1 + a_{12}\xi_2 \\
 \lambda_2 &= a_{20} \\
 &\vdots \\
 \lambda_7 &= a_{70}
 \end{aligned}$$

- ABC targets parameters $(a_{00}, a_{01}, a_{10}, a_{11}, a_{12}, a_{20}, \dots, a_{70})$

n-dodecane ignition - 3



n-dodecane ignition - 4



Consider a noisy-data setting

- Calibration of a model $y_m = f(x, \lambda)$ against noisy data
- Synthetic noisy data is generated from a “truth” model + Gaussian noise
- Discrepancy between fit model prediction and data is due to both model error & data noise

$$y = y_{\text{data}} = y_{\text{truth}} + \epsilon = f(x, \lambda) + \epsilon$$

- Modeling strategy:
 - Model λ as a random vector, represented with PC
 - Represent the noise similarly using PC
 - Estimate all PC coefficients using Bayesian inference

Model Error formulation - noisy data

$$y = f(x, \lambda) + \epsilon$$

Let $\epsilon \sim N(0, \sigma^2)$. With N i.i.d. data points we have

$$y_i = f(x_i, \lambda) + \epsilon_i, \quad i = 1, \dots, N$$

For Hermite-Gaussian PC:

$$\begin{aligned}\lambda &= \sum_{k=0}^P \alpha_k \Psi_k(\xi_1, \dots, \xi_d), \quad \alpha \equiv (\alpha_0, \dots, \alpha_P) \\ f(x, \lambda) &= \sum_{k=0}^P f_k(x, \alpha) \Psi_k(\xi_1, \dots, \xi_d) \\ y_i &= \sum_{k=0}^P f_k(x_i, \alpha) \Psi_k(\xi_1, \dots, \xi_d) + \sigma \xi_{d+i}\end{aligned}$$

Augmented PC germ $\xi = (\underbrace{\xi_1, \dots, \xi_d}_{\epsilon_m}, \underbrace{\xi_{d+1}, \dots, \xi_{d+N}}_{\epsilon_d})$

Model Error Estimation - noisy data

Inverse problem:

- Given:
 - data:

$$D = \{(x_i, y_i)\}_{i=1}^N$$

- data model:

$$y_i = \underbrace{\sum_k f_k(x_i, \alpha) \Psi_k(\xi_1, \dots, \xi_d)}_{y_{\text{model}}(\epsilon_m)} + \underbrace{\sigma \xi_{d+i}}_{\epsilon_d}, \quad i = 1, \dots, N$$

- Estimate parameters (α, σ)

Bayesian context:

- posterior: $p(\alpha, \sigma | D)$
- options: Full Bayesian likelihood; Marginalized; ABC
- All are viable here in principle, as the data noise introduces regularity
- We illustrate the case with a Marginalized Gaussian approximation

Calibrated Uncertain Model Posterior Predictive

- Calibrated data model: $y_i = f(x_i; \lambda(\xi; \alpha)) + \sigma \xi_{d+i}$
- Full posterior on α, σ : $\alpha, \sigma \sim p(\alpha, \sigma | D)$
- Marginal posteriors: $\alpha \sim p(\alpha | D), \sigma \sim p(\sigma | D)$
- Posterior Predictive (PP):

$$p(y|D) = \int p(y|\alpha, \sigma)p(\alpha, \sigma|D)d\alpha d\sigma = \mathbb{E}_{\alpha, \sigma}[p(y|\alpha, \sigma)]$$

- PP Mean:

$$\mathbb{E}_{\text{PP}}[y] = \mathbb{E}_{\alpha}[\mathbb{E}_{\xi}[f]]$$

- PP Variance:

$$\mathbb{V}_{\text{PP}}[y] = \underbrace{\mathbb{E}_{\alpha}[\mathbb{V}_{\xi}[f]]}_{\text{model error}} + \underbrace{\mathbb{E}_{\sigma}[\sigma^2]}_{\text{data noise}} + \mathbb{V}_{\alpha}[\mathbb{E}_{\xi}[f]]$$

Calibrated Uncertain Model Predictions

- Calibrated model: $y = f(x; \lambda(\xi; \alpha))$
- Marginal posterior on α : $\alpha \sim p(\alpha|D)$
- Pushed forward posterior (PFP):

$$p(f|D) = \int p(f|\alpha)p(\alpha|D)d\alpha = \mathbb{E}_\alpha[p(f|\alpha)]$$

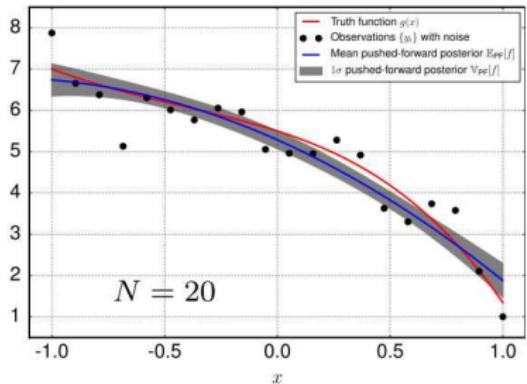
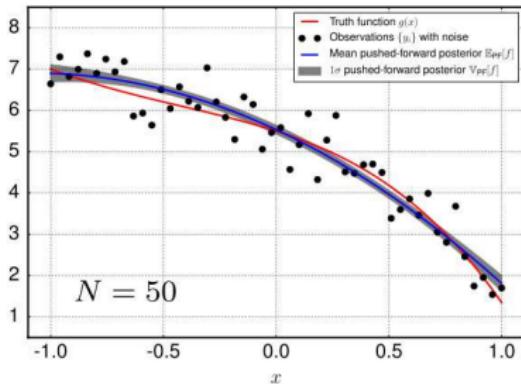
- PFP Mean:

$$\mathbb{E}_{\text{PFP}}[f] = \mathbb{E}_\alpha[\mathbb{E}_\xi[f]]$$

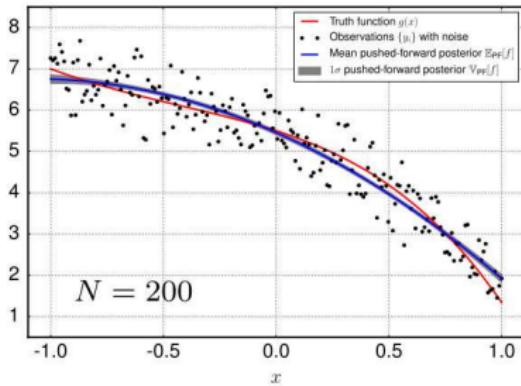
- PFP Variance:

$$\mathbb{V}_{\text{PFP}}[f] = \underbrace{\mathbb{E}_\alpha[\mathbb{V}_\xi[f]]}_{\text{model error}} + \underbrace{\mathbb{V}_\alpha[\mathbb{E}_\xi[f]]}_{\text{data noise}}$$

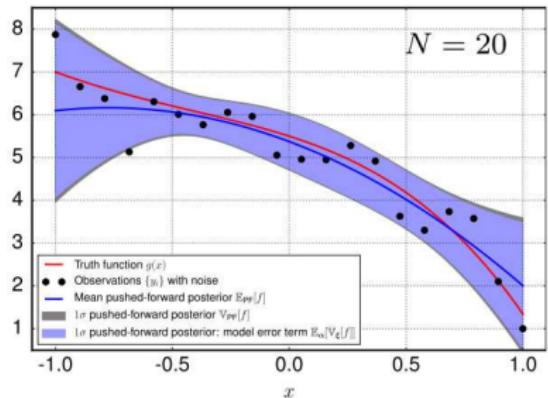
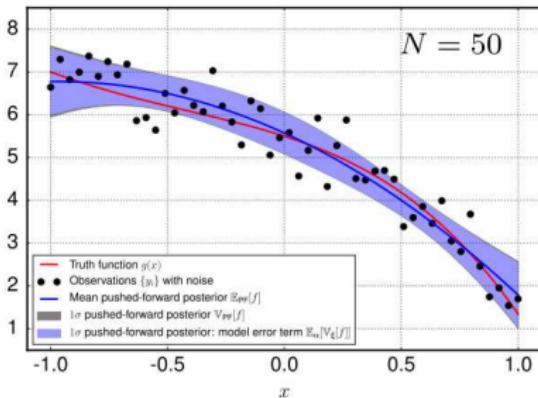
Quadratic-fit - Classical Bayesian likelihood



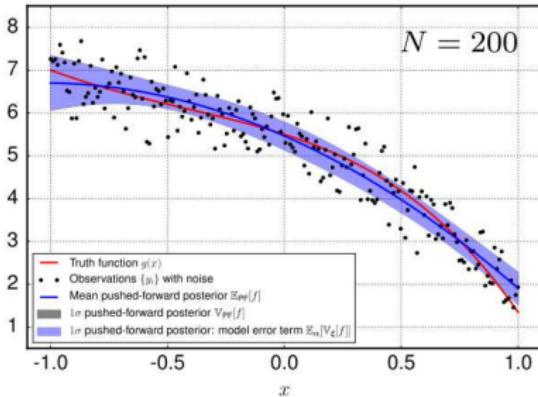
- With additional data, predictive uncertainty around the wrong model is indefinitely reducible
- Predictive uncertainty not indicative of discrepancy from truth



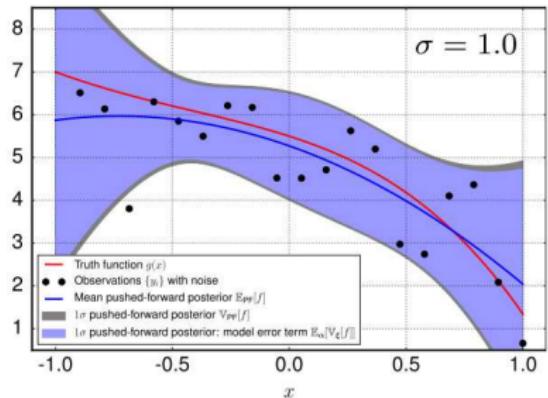
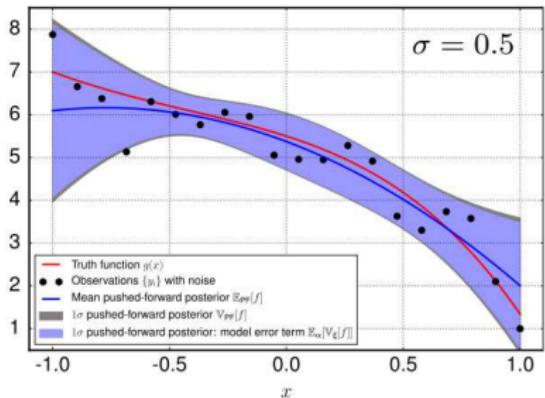
Quadratic-fit - ModErr - MargGauss



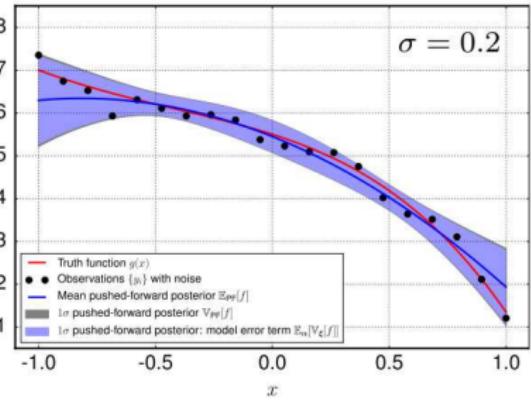
- With additional data, predictive uncertainty due to data noise is reducible
- Predictive uncertainty due to model error is not reducible



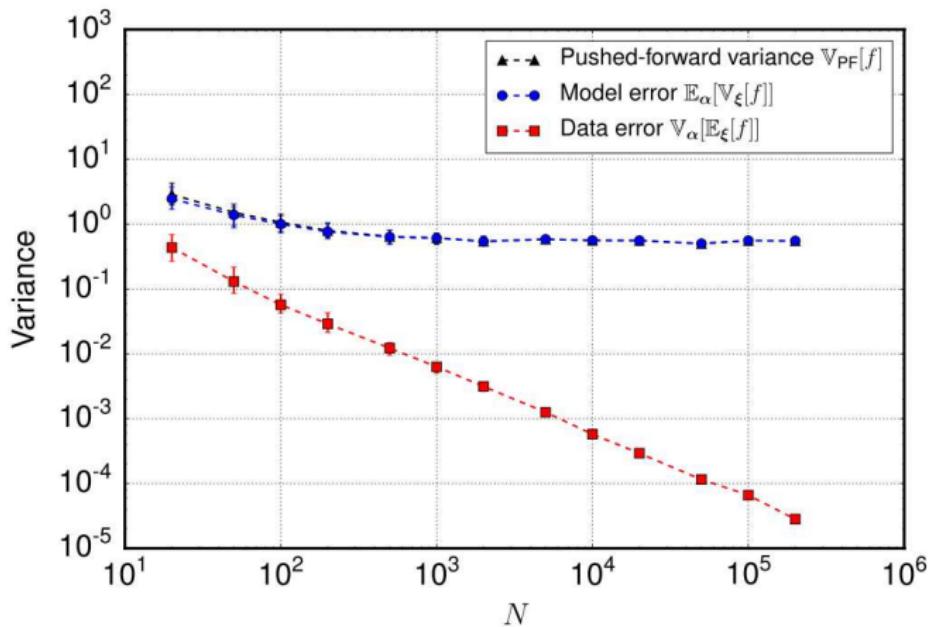
Quadratic-fit - ModErr - MargGauss



- Predictive uncertainty composed of both model-error and data-noise components
- The data-noise component is reducible with lower-noise in the data

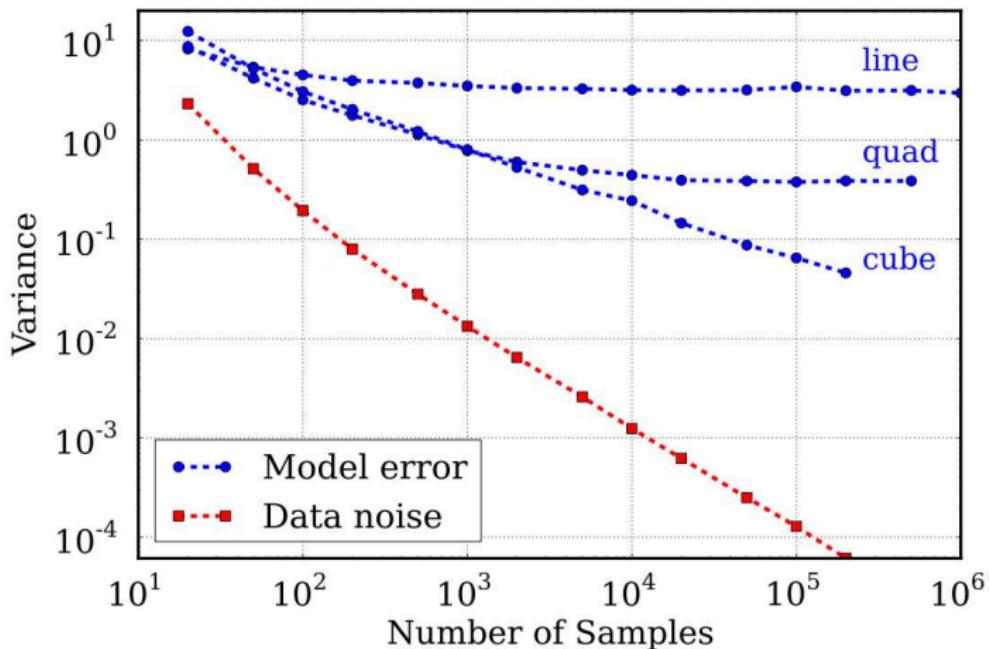


Quadratic-fit - ModErr - MargGauss



Calibrating a quadratic $f(x)$ w.r.t. $g(x) = 6 + x^2 + 0.5(x + 1)^{3.5}$

Model Error - Fit with Different Models

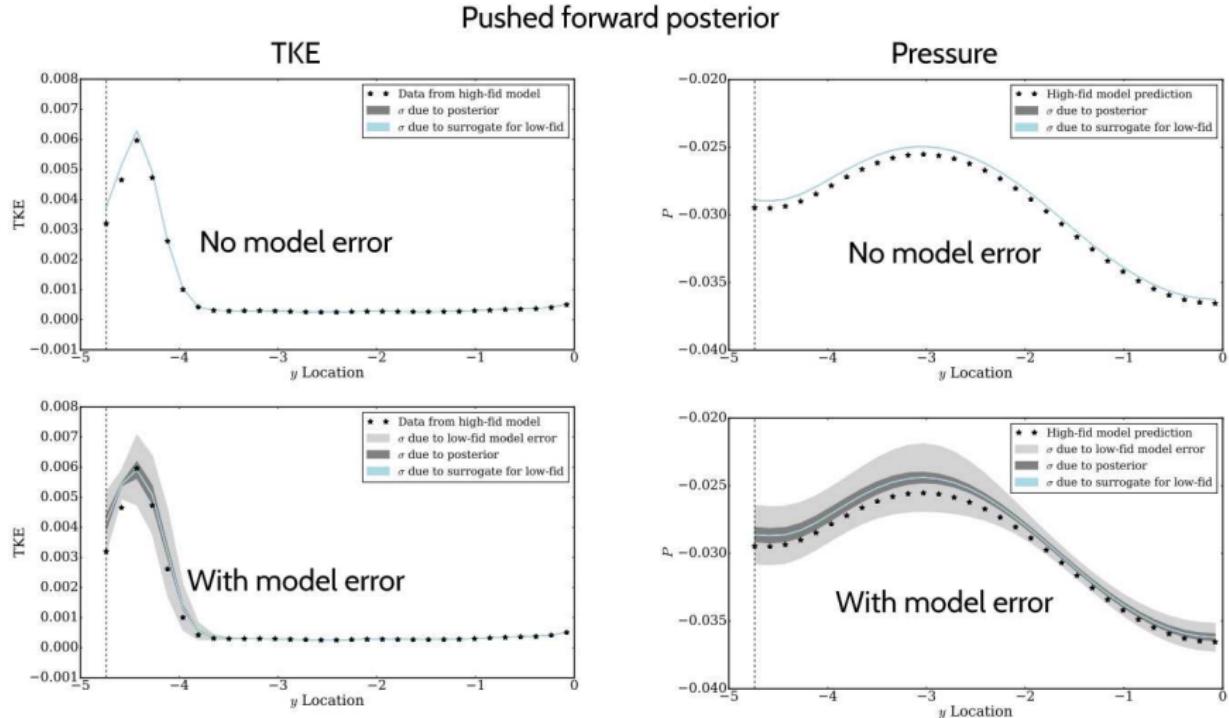


LES subgrid static-vs-dynamic – Jet-in-crossflow

- Large Eddy Simulation (LES) subgrid model fidelity
 - Dynamic: subgrid parameters variable in space/time, g_i
 - Static : subgrid parameters constant in space/time, $f_i(\lambda)$
- Target: Calibrate a static model against a dynamic model
 - Fit parameters $\lambda = (C_R, Pr_t^{-1}, Sc_t^{-1})$ of static model $f(\lambda)$ to data from dynamic model simulations, accounting for model error
- Static model surrogate construction using $4^3 = 64$ simulations of $f(\lambda)$
 - Legendre polynomial expansion surrogate of 3-rd order
 - Account for surrogate error: *i.i.d.* zero-bias Gaussian noise
 - Global sensitivity analysis: impact of $C_R \gg$ impact of Pr_t^{-1} and Sc_t^{-1}
 - Selected only C_R for model error embedding

$$\mathbb{V}_{\text{PFP}}[f] = \underbrace{\mathbb{E}_\alpha[\mathbb{V}_\xi[f]]}_{\text{model error}} + \underbrace{\mathbb{V}_\alpha[\mathbb{E}_\xi[f]]}_{\text{surrogate error}} + \mathbb{E}_{\sigma_S}[\sigma_S^2]$$

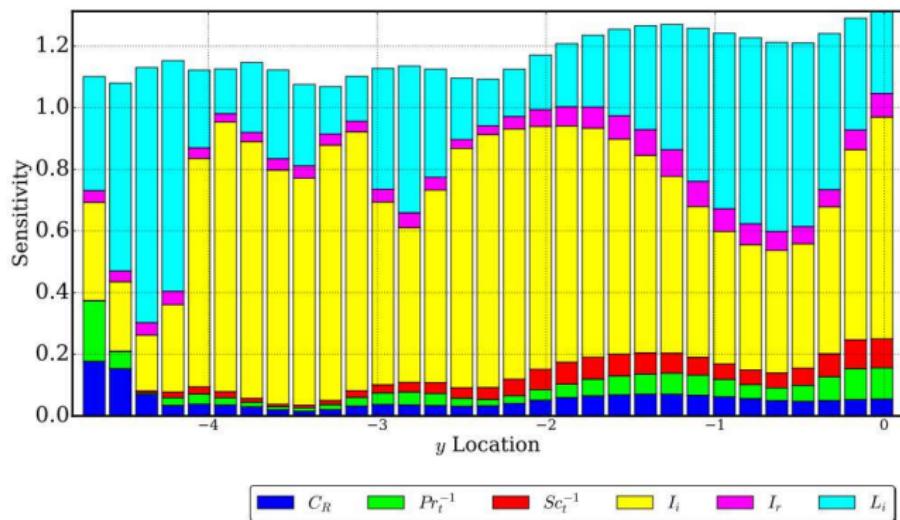
Calibrate with TKE data; Predict both TKE and Pressure



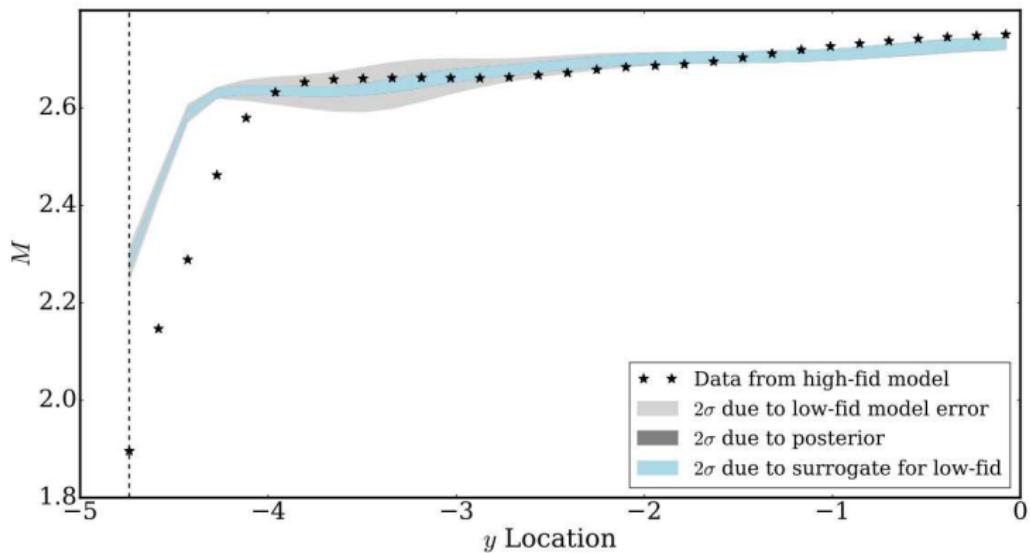
LES subgrid 2D-vs-3D - Jet-in-crossflow

- Target: Calibrate a 2D LES model against a 3D model
 - Fit parameters $\lambda = (C_R, Pr_t^{-1}, Sc_t^{-1}, I_i, I_r, L_i)$ of 2D model to data from 3D model simulations, accounting for model error
- 2D model surrogate construction
 - Account for surrogate error: *i.i.d.* zero-bias Gaussian noise
 - Global sensitivity analysis
 - Selected one parameter for model error embedding
 - Calibrate 2D model with observable: $M(y)$ at a given x -location
 - Predict both $M(y)$ and $P(y)$, and compare to 3D model

Global Sensitivity Analysis Results

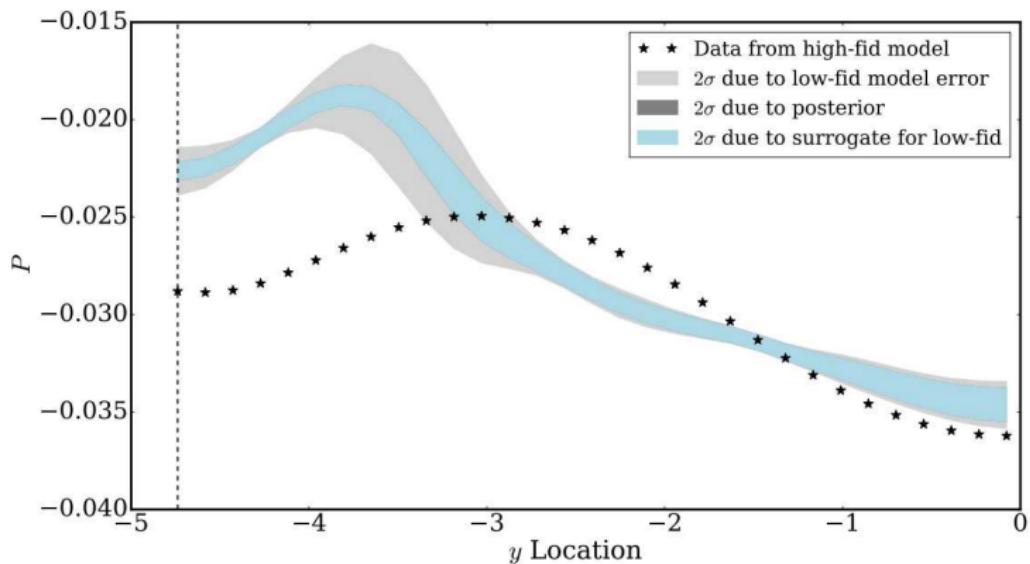


- Dominant parameter is I_i : employ it to embed model error

Posterior Predictive on Calibration QoI: M 

- Poor 2D model performance in the near-wall region
- Insufficient correction via embedded model error

Posterior Predictive on another QoI: P



- Worse 2D model, including model error, performance for prediction of pressure
- No variation in I_r is sufficient to explain the discrepancy between 2D and 3D models

Closure

- Presented a strategy for dealing with model error
 - targeted at physical models
- Density estimation framework - $y = f(x; \lambda(\xi; \alpha))$
- Uncertain predictions with the calibrated model include uncertainty due to both model-error and data-noise
- Results suggest disambiguation of the two components
- Demonstrations in chemical ignition and LES of jet-in-crossflow
 - Including accounting for PC surrogate error
- Limitation of model-error embedding: when no variation of the chosen parameter in the simple model could reproduce results of the detailed model