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Introduction
Motivation

All models are wrong in principle
Models of physical systems rely on
o Presumed theoretical framework
e Mathematical formulation
Practical models of complex physical systems rely on
o Simplifying assumptions
o Numerical discretization of governing equations
e Computational software & hardware

model error is frequently non-negligible
Estimating model error is useful for

e model comparison & validation
e model improvement & scientific discovery
o reliable computational predictions
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Challenges with Model Calibration due to Model Error

e e Data, N=5 2.0
== Truth

= Model prediction
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o Conventional parameter estimation context:  ygaa = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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Introduction

Challenges with Model Calibration due to Model Error

® o Data, N =20 2.0
== Truth
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o Conventional parameter estimation context:  ygaa = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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Introduction

Challenges with Model Calibration due to Model Error

® e Data, N =100 2.0
== Truth

= Model prediction
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o Conventional parameter estimation context:  ygaa = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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Introduction

Statistical modeling of model error

Error framework:

Measurements: Ydata = Ytruth + €d
Model predictions: Yruthl— Urnodel s €
Thus: Ydata = Ymodel T €m + €4
Model: Ymodel = f (2, )
Data Error: €a ~ N(0,0?)
Model Error: em ~ GP(u(z), C(z,2"))

Model calibration:

Estimate model parameters X along with those of ¢,,,, €4

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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Challenges - Physical Models

@ Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

e Potential violation of implicit constraints in physical models
e eg. incompressible flow: V- v = 0

e Difficulty in disambiguation of model & data error

@ Calibration of model error on measured observable does not impact
quality of other model predictions

@ Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Key idea - Targeted model error embedding

@ Embed model error in specific submodel phenomenology
o o (Berliner 2003)
e a modified transport or constitutive law
e a modified formulation for a material property
@ Pros:

o Allows placement of model error term in locations where key modeling
assumptions and approximations are made

@ as a correction or high-order term
@ asa possible alternate phenomenology

e explore if it can explain discrepancy on observable
o naturally preserves model structure and associated constraints

e Cons:
o complex likelihood p(y|\) for general nonlinear f(z, A, €)
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Introduction
Consider a simple no-data-noise setting

@ Calibration of a (simple) model against a complex model

@ Let the complex model be presumed to represent the truth

@ In this context, the data has no noise

@ Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel + em

€m = Ydata — Ymodel IS @ deterministic quantity

The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique ¢, forany x
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model-to-model calibration

Model: y=f(z,\ ¢(em))

- Random variable ¢ in augmented model components carries
model error

Data: D = {(zz, Ydatai )5t = Ly N}
@ Goal:

o Establish A, p(¢) such that the likelihood of the data is high, based on
the posterior predictive p(y|D)

@ This puts us in a density estimation framework for ¢:
o The utility of additional data is to improve the specification of A, and

p(9)
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Proposed
Present Context

Embed ¢, in A
@ In other words: A= A+en
@ Model: y = f(z,\) with X : Q@ — RM
@ Density estimation problem for p())
@ )\ :arandom field \(x,w), or arandom variable A(w)
- focus on the latter

Let the random variable )\ be parameterized by «
e For example, define )\ as a polynomial chaos expansion

o
A= alu(é)
k=0

Parameter estimation problem for o = (g, - - , ap)
Bayesian setting

e Prior 7(a)
o Likelihood L(a) = p(D|a)
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Proposed

Polynomial Chaos Expansion (PCE)

e Givenagerm §(w) = {&1,- -+ ,&,} —asetofiid RVs
- where p(&) is uniquely determined by its moments

Any RVin L?(Q, &(€), P) can be written as a PCE:

u(w) = £(€) = 3 wTr(Ew)

k=0
- uy, are mode strengths
- WUy () are functions orthogonal w.r.t. p(&)

Orthogonal basis examples:
@ Hermite polynomials with Gaussian germ
@ Legendre polynomials with Uniform germ, ...

@ Global versus Local PC methods
o Adaptive domain decomposition of the support of &
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Full Likelihood

L(a) = p(D|a) =T7f (ydata,la cee 7ydata,N|a)

where:
77 (-|a): N-variate density of the random variable (fi, ..., fn)

with f; = f(x;, M(&; )

Problem: 74 (-) is degenerate in general when N > M
@ Consider a case with M = 1, A ~ N(u,0?),and f = A
@ Let N = 2, hence (f1, f2) = (A, A) for any X\ sample

o With f1 = fa = A, (f1, f2) are dependent and 7 (+|x, o) is non-zero
only along the line fo = f1

@ 7 (ydata,lv Ydata,2 |/,L, U) is non-zero Only along the line Ydata,2 = Ydata,1

= potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood 7 . i

N

L(a) = p(D]a) = [ ] 7, (yeata,ilr)

i=1

where
71, (-, @) is the univariate density of the RV f; = f(z;, A(a))

Problem: the likelihood has multiple singularities corresponding to o
values leading to vanishing marginal variances at each z;

@ Gaussian example: Let f; ~ N(y;(a), 0;(c)?), then

= 15(QY) — Yetatari)®
= WHa{@) — Ydata,i)”
Ho = N/2 H1 oife) P ( 204(a)? )

@ Multiple singularities, ;(a) =0,i=1,...,N
@ Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

= can potentially be controlled via priors ona |
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Proposed

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data
o With ;(a) = Ee[f(2i, A(&; @))]:

minimize || 1 (@) — Ydata,i ||

The width of the distribution p(y|D) is consistent with the spread of the

data around the nominal model prediction
® With o7 (ar) = Ve[f(xi, (€, )]

minimize || o () — |1 (@) — Ydata,il

@ ~ is a factor that specifies the desired match between o; and the
discrepancy |1 (@) — Ydata | ON average
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as an
ABC likelihood:
p(S)

1
LAgc(Oé) =-K (—)
€ €
where e controls the severity of the consistency control

Propose the Gaussian kernel density:

Le<04) =

(pi(@) —ya.)* + (0i(@) — |pi(e) — yd,i|)2>

| X
ex
V2 E P ( 2¢2
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no-noise

Test problem - Cubic data fit by a line - ABC

ge e o Complex model, g(z) a s ¢ o Complex model, g(x)

b —  MAP predictive mean, Z)" (z) 1. — MAP predictive mean, Z2" (x)
6 B MAP predictive stdev, \ 22" (x) 6 ° BN MAP predictive stdev, / 2" (z)
a 3
S5 EE
o (=}

84 84
o (=]
=3 =3
2 2 *oeraceenes®’
1 1
-1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ MAP predictive (MP) mean centered on data
@ MP standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both MP
mean and stdev
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no-noise

Test problem - Posterior density on «

@ Cubic data, line-fit

@ Joint posterior on two
elements of

@ Uncertainty in «is
decreased by
o Increasing N
o Decreasing e

L5T)

—-1.0f
—-1.5 6@
—2.0)
€=0.5, N=11
€=0.1, N=11
€=0.5, N=51
e=0.1, N=51
_2‘5 3 4
2.8 3.0 3.2 3.4 3.6
Ao
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no-noise

Test problem - Cubic data fit by a quadratic - ABC

N =11 N =51

8 e o Complex model, g(z) L a4 e o Complex model, g(z)

1 — MAP predictive mean, zZ) (z) 1 — MAP predictive mean, Z) (z)
.4 B MAP predictive stdev, / 22" (x) d EEE MAP predictive stdev, \ 27 ()

o

g g
S5 5 S5
o o
54 T4
o (=}
= 3 = 3

2 2

1 1

-1.0 -0.5 0.0 0.5 1.0

@ Quadratic has better fit to the data
@ Smaller MP stdev consistent with smaller discrepancy
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no-noise

Test problem - Cubic data fit by a cubic - ABC

8 e o Complex model, g(x) 8 e « Complex model, g(x)

1 — MAP predictive mean, zZ) (z) 1 — MAP predictive mean, Z)" (x)
6 B MAP predictive stdev, \ 27 (z) 6 EEE MAP predictive stdev, \ Z} (z)
=] 5 5
o o
24 T4
o o
=3 =3

2 2

1 1

=10 =05 0.0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ Cubic has perfect fit to the data
@ Negligible MP stdev consistent with negligible discrepancy
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Chemistry problem - ABC

@ Homogeneous ignition, methane-air
mixture o

@ Single-step global reaction model o &
calibrated against a detailed chemical 0}
kinetic model - ODE system £

@ Data: ignition time; range of initial 7" & ’§
equivalence ratio -5

@ Single-step model: =8

CH4 + 205 — COQ + 2H,0 .. - S

M = [CH4[O2)k v .-
k = Aexp(—E/R°T) Temp., 7o 0 1008 ¢

{ln A] Z aUa (€

k=0
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Chem

Constant Pressure Ignition - Problem Structure

@ N species, M reactions, rate parameter vector A

@ State vectoru = (Xy,..., Xn,T) - mole fractions, temperature
@ ODE system
uét’ ) _ wilw;A), i=1,...,N
u(0) = wg

@ Observable: ignition time  Tign (10, A) = t |7(t;u0,\)=Tipn

@ Challenge, for any proposed ), computing 7ign(uo, A) is expensive
- Large stiff ODE system for complex fuels

@ Polynomial chaos formulation allows construction of a surrogate

P

Tign (U0, A(§; ) = f(uo, & a) = ka(uo;a)‘l’k(f)

k=0
@ Surrogate replaces the forward model in the Likelihood function
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Posterior on o Posterior Predictive on (In A, F)

4
=l MAP prediction
Posterior prediction
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

.
US|
N b O

Over the range of (7°, ®):

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data

A
Log (Ignition time), Inr

b =0
|
w

)
v

K. Sargsyan, HNN, and R. Ghanem

"On the Statistical Calibration of Physical Models”
Int. |. Chem. Kin., 47(4): 246-276, 2015
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Chem

n-dodecane ignition - 1 ABC Lik.

with L. Hakim, M. Khalil, J. Oefelein, and G. Lacaze, SNL

@ Homogeneous ignition, n-dodecane/air mixture
@ Two-step global reaction model calibrated against a “detailed” model

o Reference chemical kinetic model: 255 species, 2289 reactions
Narayanaswamy et al. 2014

@ Data: ignition time; range of initial 7" & equivalence ratio ®
@ Two-step model:

CioHos + 20, — 12CO + 13H,0

CO+30, = CO;
—E
R = Aeﬁ[cmH%]O.%[Oﬂl.%
Roy = 3.98- 104e BT RT [CO][H20]%5[0,]%2
Ry = 5- 1086# [COy)

@ E=)yp InA=X+ )\26)‘3(I> + M\ tanh((A5 + )\GCI’)TQ + A7
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n-dodecane ignition - 2

(E, InA) = (Mg, A1 + A2e™3® 4+ Agtanh((As + X6 @) Tp + A7)
Original parameter vector A = (Ao, ..., A7)

Embed model errorin (Ag, A1)

PCE model:

Ao = ago+apéy
A= apptané +ané
A2 = ax

A7 = ap

ABC targets parameters ((1,00, ap1, @10, @11, @12, @20, - - - (170)
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SNL

Chem

-dodecane ignition - 3
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n-dodecane ignition - 4

—2} Symbols: Narayanaswamy et al., 2014
Lines: Present model

Model uncertainty (+ 30)

1g

In 7.

~10i’;;/ . . 0=3 .
1 1.2 1.4 1.6
1000/T, K]
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Consider a noisy-data setting

@ Calibration of a model y,,, = f(z, \) against noisy data

@ Synthetic noisy data is generated from a “truth” model + Gaussian
noise

@ Discrepancy between fit model prediction and data is due to both
model error & data noise

Y = Ydata = Ytruth T+ € = f(l‘,)\) +€

@ Modeling strategy:

@ Model A as a random vector, represented with PC
o Represent the noise similarly using PC
o Estimate all PC coefficients using Bayesian inference

SNL Najm ModErr 29/45



Model Error formulation - noisy data

y=f(z,A)+e
Lete ~ N(0,0?). With NV iid. data points we have

yi = f(zi,\)+e&, i=1,...,N

For Hermite-Gaussian PC:
P
A= Zak\pk(gla"'7§d)7 CYE(OZ(),"',OAP)
k=0

P
f@) = D ful@a) Ui, -, E)

k=0

P
Yo = ka(xi7a)qlk(€17"' 7€d)+0’€d+i
k=0
Augmented PCgerm & = (&1, -+, €4, &a41, -+ > €aanN)
—_

€m €4
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Model Error Estimation - noisy data

Inverse problem:
o Given:
o data:
D = {(i,y)}it
e data model:

vi =Y fulzi, @) Us(by, -+ ,8a) +0bati, i=1,...,N
k
——

Ymodel (€m) €d

@ Estimate parameters («, o)

Bayesian context:
@ posterior: p(«a, o|D)
@ options: Full Bayesian likelihood; Marginalized; ABC
@ All are viable here in principle, as the data noise introduces regularity
@ We illustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncertain Model Posterior Predictive

o Calibrated data model : y; = f(z:; A\(§; @) + 0€ati
@ Full posterioron a,0: «,0 ~ p(a,c|D)
@ Marginal posteriors:  « ~ p(a|D), o ~ p(c|D)
@ Posterior Predictive (PP):
p(61D) = [ byl )p(a0|D)dade = Eo. oyl o)
@ PP Mean:

Epp[y} =Eq [Ef [f]]

@ PP Variance:

Veply] = Eal Ve[ f] 14+ Eo[0®] + Vo[ Ee[ f] ]

model error data noise
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Calibrated Uncertain Model Predictions

@ Calibrated model: y = f(z; A(§; @)
@ Marginal posterioron «:  « ~ p(a|D)

@ Pushed forward posterior (PFP):

p(fID) = / p(fla)p(a| D)da = Eq[p(flo)]

@ PFP Mean:
Eprp[f] = Ea [EE [f]]

@ PFP Variance:

Verp[f] = Ea Ve[ f] ] + Vol E¢[ f] ]

model error data noise
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noise

Quadratic-fit - Classical Bayesian likelihood

N W R O N @

¢ ) with noise
ward posterior Exel ]
= 10 pushed-orward posterior Ve
.
1.0 0.5 0.0 0.5 1.0

e With additional data, predictive
uncertainty around the wrong
model is indefinitely reducible

@ Predictive uncertainty not
indicative of discrepancy from
truth

Najm

8 — Truth function g1/
@ @ Observations {y,} with noise
.« *e, — Mean pushed-orward posterior Epelf
7 W 1 pushed-forward posterior Ver /|
6
5
4
3
2
1
1.0 -0.5 0.0 0.5 1.0
z
8 — rulh function 1]
G = Observations {y] with noise
158 = Mean pushed-forward posterior Epg|f
72 = 1 pushed-onward posterior Ve
6
5
4
3
2
1
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x
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noise

Quadratic-fit - ModErr - MargGauss

N oW A O N

— Truth function g(+)
@ @ Observations {y) with noise
—  Mean pushed-forward posterior Epe /|
= 1o pushed-forward posterior

— Truth function (r)
® @ Observations {y} with noi
— Mean pushed-forward post
= 1o pushed-forward posteri

17 pushed-forward posterior: model error term Vel 1 17 pushed-forward posterior: model error term (Ve f]] !
-1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
@ With additional data, predictive ®

uncertainty due to data noise is ’

. 6
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5
@ Predictive uncertainty dueto
model error is not reducible 3
N (i — %
1 || 1 s et s s
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noise

Quadratic-fit - ModErr - MargGauss

= T unciion o0 — T unction 41
o ' Observations [, wh roiss ® & Observations () wih o
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@ Predictive uncertainty
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@ The data-noise component is i
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Quadratic-fit - ModErr - MargGauss

10°

&-- Pushed-forward variance Vpe|f]
102 o-- Model error E,[V¢[f]]
u-a Data error V,[Ee[f]]

10
10° §=“’%--§-.
&

b B S S S S Sy

TRl R
i,

10 e

Variance

10 e S

10 , g

10 -
10° 102 108 10* 10 108

Calibrating a quadratic f(z) w.rt. g(z) = 6 + 22 + 0.5(z + 1)3°
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Model Error - Fit with Different Models

1 [
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LES

LES subgrid static-vs-dynamic - Jet-in-crossflow

@ Large Eddy Simulation (LES) subgrid model fidelity

e Dynamic: subgrid parameters variable in space/time, g;

e Static : subgrid parameters constant in space/time, f;(\)
@ Target: Calibrate a static model against a dynamic model

o Fit parameters A\ = (Cg, Pr; ', Sc;!) of static model f()\) to data from
dynamic model simulations, accounting for model error

@ Static model surrogate construction using 4% = 64 simulations of ()
e Legendre polynomial expansion surrogate of 3-rd order
- Account for surrogate error: i.i.d. zero-bias Gaussian noise
o Global sensitivity analysis: impact of Cr >> impact of Pr;* and Sc;*
- Selected only C'r for model error embedding

Verelf] = Ea[ Ve[ f] ]+ Val Be[f] ] +Eos[ 0 ]

model error surrogate error

SNL Najm ModErr 39/45



LES

Calibrate with TKE data; Predict both TKE and Pressure

Pushed forward posterior
TKE Pressure
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LES

LES subgrid 2D-vs-3D - Jet-in-crossflow

@ Target: Calibrate a 2D LES model against a 3D model
o Fit parameters A = (Cgr, Pr; ', Sc; !, I, I, L;) of 2D model to data
from 3D model simulations, accounting for model error
@ 2D model surrogate construction
@ Account for surrogate error: i.id. zero-bias Gaussian noise
o Global sensitivity analysis
- Selected one parameter for model error embedding
o Calibrate 2D model with observable: M (y) at a given z-location
e Predict both M(y) and P(y), and compare to 3D model
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LES

Global Sensitivity Analysis Results
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@ Dominant paramter is I;: employ it to embed model error

Najm

ModErr

42/45



LES

Posterior Predictive on Calibration Qol: M
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@ Poor 2D model performance in the near-wall region
@ Insufficient correction via embedded model error
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LES

Posterior Predictive on another Qol: P
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@ Worse 2D model, including model error, performance for prediction
of pressure

@ No variation in I,. is sufficient to explain the discrepancy between 2D
and 3D models

SNL Najm ModErr 44/45



Closure
Closure

Presented a strategy for dealing with model error
o targeted at physical models

Density estimation framework - y = f(z; A(§; @)

Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

Results suggest disambiguation of the two components

Demonstrations in chemical ignition and LES of jet-in-crossflow
@ Including accounting for PC surrogate error

Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model
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