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Aims of HyMARC Pnd Sandia's Objective
Provide foundational understanding of phenomena governing
thermodynamics and kinetics and develop a knowledge base to
accelerate the development of on-board H2 storage materials.

-Develop and validate thermodynamic models of hydrogen adsorption and
metal hydride reactivity, including effects of H2 pressures of up to 700 bar.

-Identify structures, compositions, and diffusion processes for gas-surface
and solid-solid interfaces and their role in the kinetic processes. .

-Determine mechanisms by which additives can promote improved
hydrogen storage performance.

-Apply multiscale codes to gain clarity on the physical mechanisms of
hydrogen storage materials that may impact behavior and the ability of
any material to achieve or surpass DOE performance targets.

-Leverage specialized and in-situ capabilities and expertise: a high-
pressure (up to 1000 bar) H2 system, low-energy ion scattering
spectroscopy, air-free transfer systems compatible with ALS, and high-
throughput molecular dynamics calculations.

Theory/modeling Synthesis

DFT, Classical MD, database

development

Bulk and nanoscale synthesis

of MOFs, metal hydrides, high-

pressure H2 synthesis,

controlled additives studies

Characterization

LEIS, porosimetry/gas

sorption, in situ XRD, FTIR,

soft X-ray synchrotron

techniques (XAS, XES, AP-XPS)

mffusion of Hydrogen
Objective: Calculate and measure bulk and surface transport rates of hydrogen to
understand kinetics of hydrogenation and dehydrogenation.

Molecular Dynamics Simulations of H in Aluminum 

• Relate myriad diffusion jump pathways to overall diffusion behavior
• Generate dynamic evolution of structures and positions of H atoms
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Low-Energy lon Scattering (LEIS) Measurements on Magnesium 

• Proven LEIS can be used to monitor hydrogen surface diffusion
• The LEIS approach allows surface diffusion studies on thermally sensitive samples.
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Model Bulk MetP Hyd- lopeC aAIH
Objective: Understand factors controlling enthalpy (dW) and entropy (6S°) of H2
adsorption and desorption, including the role of titanium dopants in the thermodynamics
of NaA1H4, to develop validated multi-scale models for computational materials design.

Pressure-Composition-Temperature Studies 

• TiCI3 is known to enable
reversibility and improve kinetics

• Increasing the concentration of
TiCI3 increases the plateau
(equilibrium) H2 pressures,
indicating a shift in the
thermodynamics.

• Need to study interactions
between Al and Ti in the system.
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In situ Surface Analysis with Heating 
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LEIS and XPS
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• LEIS indicates segregation of H to the
surface as hydride is heated to 150°C.

• Able to measure hydrogen directly as it
thermally desorbs.
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• Al 2p XPS spectrum shows conversion
of Al-H to Al° upon heating to 150 °C.

• Rehydrogenated material again has
peak for Al-H.

• Ti not detected by either method (even at 10 mol%) without sputtering off surface layer.
• Surface becomes enriched with Na during heating, and Al becomes depleted.
• New clean transfer capabilities preserve hydride without additional oxidation.

Examination of Ti-based Catalytic Additives

• Determine whether Ti halides
are active for hydrogenation or
their own.

• Heat TiF3, TiCI3 at 200°C under
120 bar H2 for 17 hours.

• XAS, FTIR show no change in
electronic or vibrational
structure of either Ti halide.
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Nanosca:, Fifer' nd Nanointerfaces
Objective: Use nanostructuring to improve kinetics, alter reaction pathways, and
study the effects of particle size, defects, and nanointerfaces on thermodynamics.

Infiltration of Hydride Nanoparticles into Porous Materials 

Templated Carbons

Polymer/silica
composite

Carbon/silica
composite

Ternplated
carbon
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Nanoconfined Li3N Bypasses Li NH Intermediate 
Bulk (two steps):
Li3N + H2 Li2NH + LiH

Li2NH + LiH + H2 -'' LiNH2 + 2LiH
(work of P. Chen, D. Chandra, B. David, et al.)

Nano (one step, Li3N in 3-10 nm npC):
Li3N + 2H2 LiNH2 + 2LiH 200 nm Zero-loss

MOFs

hydride@MOF-74

0.5

-1.5

5

4

2

1

Sieverts
IVA

DSC
[LiNH2+2LiN©npC

Ball-milled
[LiNH2+2LiH]

Ball-milled
[LiNH2+2 LiH +C]

, ,
100 200 300 400 500

Temperature (°C)

cc

1 1 1

«. -t

T,°C

1  

-2

-4

-5
0 3 6 9 12 15 18 21 24

time, hours

27 30

275

250

225

200

175

150

125

100

75

50

25

NVS, N/ST, T. Udovic 3nm-Li N

LiH

LiNH2

Li2NH

40 60 BO 100 120 140 160 180

Neutron energy transfer (meV)"

Summary and 'nnclusions
• Hydrogen diffusion rates in metals has been measured experimentally and modeled using

molecular dynamics codes developed at Sandia.
• Established Ti-doped NaAIH4 displays concentration effects on the H2 plateau equilibrium.
• Hydrogen surface speciation was detected in situ by LEIS and XPS upon heating of NaAIH4.
• Bulk Ti-based additives TiCI3 and TiF3 alone are unreactive to hydrogenation.
• Methods for infiltrating complex metal hydrides into porous hosts have been developed.
• Li3N synthesized and confined in nanoporous carbon can be fully hydrogenated in one step.
• LEIS can be used to measure hydrogen surface diffusion on thermally sensitive materials.
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