
LLNL-CONF-777853

Extending {OpenMP} to Facilitate
Loop Optimization

I. Bartolocci, M. M. Strout, B. R. de Supinski, T. R.
W. Scogland, E. C. Davis, C. Olschanowsky

June 13, 2019

iWOMP
Barcelona, AL, Spain
September 1, 2018 through September 1, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Extending OpenMP to Facilitate Loop

Optimization

Ian Bertolacci1, Michelle Mills Strout1,
Bronis R. de Supinski2, Thomas R.W. Scogland2,
Eddie C. Davis3, and Catherine Olschanowsky3

1 The University of Arizona, Tucson, AZ 85721 USA
ianbertolacci@email.arizona.edu and mstrout@cs.arizona.edu

2 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
{bronis,scogland1}@llnl.gov

3 Boise State University, Boise, ID 83725 USA eddiedavis@u.boisestate.edu and
catherineolschan@boisestate.edu

Abstract. OpenMP provides several mechanisms to specify parallel source-
code transformations. Unfortunately, many compilers perform these trans-
formations early in the translation process, often before performing tra-
ditional sequential optimizations, which can limit the e↵ectiveness of
those optimizations. Further, OpenMP semantics preclude performing
those transformations in some cases prior to the parallel transformations,
which can also limit overall application performance.
In this paper, we propose extensions to OpenMP that require the appli-
cation of traditional sequential loop optimizations. These extensions can
be specified to apply before, as well as after, other OpenMP loop transfor-
mations. We discuss limitations implied by existing OpenMP constructs
as well as some previously proposed (parallel) extensions to OpenMP
that could benefit from constructs that explicitly apply sequential loop
optimizations. We present results that explore how these capabilities can
lead to as much as a 20% improvement in parallel loop performance by
applying common sequential loop optimizations.

Keywords: loop chain abstraction · loop optimization · performance
optimization · pipelining · temporary storage reduction

1 Introduction

E�cient use of the complex hardware commonly available today requires com-
pilers to apply many optimizations. OpenMP already supports many of these
optimizations, such as o✏oading regions to accelerators like GPUs and the par-
allelization of code regions through threads and tasks. However, OpenMP cur-
rently ignores the large space of sequential optimizations, such as loop fusion,
loop fission, loop unrolling, tiling, and even common subexpression elimination.

One might argue that the compiler can automatically apply traditional se-
quential optimizations. This approach has worked reasonably well for sequential

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

2 Bertolacci et al.

code regions. However, the space of sequential optimizations, when to apply
them, and in what order is complex and OpenMP parallelization complicates it
further. Thus, hints, or even prescriptive requirements, from the application pro-
grammer could substantially reduce the complexity of the compiler’s navigation
of that space.

More importantly, the semantics of several existing OpenMP constructs pre-
clude the use of some sequential optimizations prior to the transformations rep-
resented by those constructs. Further, many proposed OpenMP extensions, such
as ones to support pipelining [3] and worksharing across multiple accelerators [9,
7], increase these restrictions. Others, such as loop chaining [1, 2] complicate the
optimization space further. Thus, the ability to specify sequential optimizations
and when to apply them could substantially improve the compiler’s ability to
exploit the complex hardware in emerging systems.

A key issue today is supplying su�cient data to keep the computational units
busy. Sequential optimizations frequently improve arithmetic intensity and mem-
ory performance. OpenMP parallelization can also improve memory performance
by reducing the memory footprint per thread and providing a larger amount of
total L1 cache space. Many proposed data and pipelining optimizations also
address these issues. Often the programmer understands which optimizations
to apply and the best order to apply them. Other times, the programmer can
easily determine that the order in which they are applied will not impact code
correctness. Thus, OpenMP extensions should allow the programmer to provide
this information to the compiler.

This paper makes the following contributions:

– An initial review of some of the limitations that existing OpenMP constructs
and proposed extensions impose on the use of sequential optimizations;

– Proposed syntax to allow OpenMP programmers to request the use of se-
quential optimizations;

– A discussion of the performance implications, including an initial experi-
mental study, of the current limitations on and the proposed support for
sequential optimizations.

Overall we find that flexible support to specify sequential optimizations could
use existing compiler capabilities to produce significantly more e�cient code.

The remainder of the paper is structured as follows. In the next section, we
discuss the limitations that OpenMP semantics place on the use of traditional
sequential optimizations. Section 3 then presents our proposed syntax for an
initial set of sequential optimizations to include directly in OpenMP. We then
present an initial performance study in Section 4 that demonstrates that these
sequential extensions could provide significant performance benefits.

2 Existing Limitations

Existing OpenMP constructs can require that their semantics be instantiated
prior to performing several important sequential optimizations. These require-
ments can limit the scope and the e↵ectiveness of those optimizations. Other

Extending OpenMP to Facilitate Loop Optimization 3

#pragma omp for s chedu le (static , 1) nowait
for (int i = 0 ; i < n ; ++i)

A[i] += B[i] ∗ c ;

Fig. 1: A simple static loop, with a chunk size that interferes with optimization

optimizations may be complicated by the order in which a specific OpenMP
implementation interprets OpenMP semantics and applies sequential optimiza-
tions. In this section, we discuss the example of common subexpression elimina-
tion, unrolling, CoreTSAR, and loop chaining.

2.1 Common Subexpression Elimination

A simple example that we do not address in this work is common subexpression
elimination (CSE). For CSE, the optimization could take the form of code hoist-
ing to outside of an OpenMP parallel region and creation of firstprivate copies
that are stored in registers for each thread. CSE would be performed before
parallelization.

2.2 Unrolling

Of particular interest in the context of our proposed extensions are limitations
implied by the loop construct. Consider, for example the loop unrolling op-
timization. In Figure 1, the specification of a static schedule with a chunk size
parameter of one implies that unrolling cannot be performed prior to implement-
ing the schedule. Specifically, since OpenMP requires iterations to be distributed
in chunks of the given size, a single thread cannot be provided with any more
than one consecutive iteration in this case.

2.3 Pipelining

The expression of data access patterns can be leveraged to allow for pipelining of
data transfers and computation in loop o✏oad. This is a topic that we have ex-
plored before in the context of pipelining individual loops [3]. Given annotations
of the data access pattern of a given iteration in a loop nest, the implementation
can implement multiple bu↵ering and an overlapped pipeline of data transfers
and computation for the user. Figure 2 shows a simple example of a stencil code,
which uses another method of describing the data access pattern, by using the
iteration variable to split on the pipeline_map clause. Specifically, referring to
the induction variable k in the pipeline_map clause expands to a reference to
all iterations of the range of iterations from one to nz-1 as defined by the loop.

A weakness of the previously proposed approach however is that it cannot
easily be extended to work for asynchronous loops with dependencies. It has
to be synchronous with respect to other loops at least, if not with respect to

4 Bertolacci et al.

#pragma omp ta rg e t \
p i p e l i n e (stat ic [1 , 3]) \
pipe l ine map (to :A0 [k� 1 : 3] [0 : ny�1] [0 : nx�1])\
pipe l ine map (from : Anext [k : 1] [0 : ny�1] [0 : nx�1])\
p ipe l i n e mem l im i t (MB 256)

for (k=1;k<nz�1;k++) {
#pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l for

for (i =1; i<nx�1; i++) {
for (j =1; j<ny�1; j++) {

Anext [Index3D (i , j , k)] =
(A0 [Index3D (i , j , k + 1)] +
A0 [Index3D (i , j , k � 1)] +
A0 [Index3D (i , j + 1 , k)] +
A0 [Index3D (i , j � 1 , k)] +
A0 [Index3D (i + 1 , j , k)] +
A0 [Index3D (i � 1 , j , k)]) ∗ c1

� A0 [Index3D (i , j , k)] ∗ c0 ;
} }

}

Fig. 2: An example stencil kernel using pipelining.

host execution. Since the entirety of one loop must complete before the next can
start, loop fusion is e↵ectively impossible, at least unassisted. Likewise tiling is
complicated somewhat by the fact that pipelining also modifies the loop bounds,
possibly dynamically. Given extensions to express how the data flows from one
loop to the next however, this kind of pipelining might be applied to multiple
loops in sequence without having to complete one loop in full before beginning
the next.

2.4 CoreTSAR

As with the pipelining extensions CoreTSAR [9, 7], the Core Task Size Adapting
Runtime, leverages data access pattern information to coschedule loops across
di↵erent resources such as CPUs and GPUs or coprocessors. The main abstrac-
tion is a loop iteration mapping to the accesses made by any given iteration.
Figure 3 shows a simple partitioning of a GEMM kernel by its outer loop, split-
ting the loop by rows according to the i index. The syntax used by CoreTSAR
is somewhat more abstract, the hetero clause selects which devices and sched-
ule to use, and defines that the associated loop over i should be split. In each
part_map clause the array section syntax is overloaded to represent split by
loop iter:length.

The information provided by the user, along with the usual loop trip count
information, feeds into a scheduler that selects how much of the given iteration
range should be provided to any given device, and distributes the data accord-
ingly. This scheduler can be any of a wide range, but the static and adaptive

Extending OpenMP to Facilitate Loop Optimization 5

void runGemm(T ∗∗ a a , T ∗∗b a , T ∗∗ c a) {
T ∗a = ∗a a , ∗b = ∗b a , ∗c = ∗ c a ;

#pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l \
for part map (c [1 :N] [0 :N]) \
part map (to : a [1 :N] [0 :N]) map(to : b [0 :N∗N]) \
hete ro (1 , a l l , adaptive , default , 10)

for (int i = 0 ; i < N; i++) {
for (int j = 0 ; j < N; ++j) {

c [(i ∗ N) + j] ∗= B;
for (int k = 0 ; k < N; ++k) {

c [(i ∗N) + j] += A ∗ a [(i ∗N) + k] ∗ b [(k∗N) + j] ;
}

}
}

}

Fig. 3: An example GEMM kernel with CoreTSAR.

schedules are most common. The static schedule works much like the default,
but skewed by performance of the given hardware targets, while adaptive starts
out as static and uses a linear-optimization approach to attempt to complete the
work given to each device in as close to the same amount of time as possible
while minimizing time. In the resulting code, loop fusion is out for the same
reason as it is with pipelining. If the loop transformations to generate the dy-
namically sized inner chunks are applied before sequential optimizations, tiling is
also e↵ectively out since the loop distribution extension would need information
about the tiling to be correct.

2.5 Loop Chain Abstraction and Optimization

A loop chain is N (N > 1) loop nests with no code between them that explicitly
share data. Figure 4 shows an example of a simple loop chain. These are common
in stencil applications and present an opportunity for both data-reuse optimiza-
tions and temporary-storage optimizations. The loop chain abstraction [5] rep-
resents a loop chain as a sequence of loops domains L1, L2, ..., LN , well defined
data space domains D1, D2, ..., DM , read access functions Readl,d : Ll ! Dd,
and write access functions Writel,d : Ll ! Dd. This model of a loop chain
provides a framework for developing and implementing scheduling and storage
optimizations between loops.

The key optimization applied to loop chains is loop fusion, and is used in con-
junction with other loop optimizations such as tiling and wavefront parallelism.
However these optimizations can be di�cult to manually apply to complex sci-
entific codes because the code transformations required are complex and tedious.
Further, there is a large space of possible combinations of these optimizations

6 Bertolacci et al.

including the parameterization of tile sizes, and a developer would need a great
deal of expertise to know ahead of time what optimizations would be useful.

The loop chain abstraction is leveraged to provide loop fusion, tiling, and
parallel wavefronting of loop chains in an automated fashion through a source-
to-source compiler [1, 2]. A major contribution of that work is an OpenMP styled
annotation language that allows the developer to explicitly state the loop chain
domains, access functions, and a list of desired optimizations to be applied to the
loop chain. Figure 5 shows how the loop chain in Figure 4 would be annotated
using this language. The separation of the schedule(..) specification in only
one location for the entire loop chain enables the use of autotuning for trying
di↵erent potential schedules.

The annotations give the developer the ability to identify the entirety of the
loop chain, each loop nest of the chain, the domains of the loops, and the read
and write access functions. In turn, the annotations provide the transformation
tool information about the code (loop domains and data access patterns) re-
quired to perform the optimizations, replacing the need for complicated analysis.
Additionally, loop chain scheduling operators (fuse, tile, wavefront, serial,
and parallel) are provided that allow the developer to specify a list of opti-
mizations to apply to the loop chain. Combined, this allows developers to easily
perform otherwise complicated optimizations on new and existing code without
requiring cumbersome and unnecessary rewriting and redesigning of the appli-
cations. These annotations can be written by non-experts, and optimizations
applied to the loops can be easily changed. This allows the developer to easily
use these optimizations and quickly experiment to find the fastest schedule by
simply changing the scheduling annotations and not the actual code.

for (int i = lb ; i <= ub ; i += 1)
A[i] = (B[i �1] + B[i] + B[i +1]) ;

for (int i = lb ; i <= ub ; i += 1)
A[i] = A[i] ∗ (1 . 0 / 3 . 0) ;

Fig. 4: Example of simple loop chain.

3 Sequential Optimizations

In this section, we discuss how some of the most e↵ective sequential optimizations
for scientific codes; loop fusion, tiling, and unrolling, have been implemented with
pragmas in various tools.

Extending OpenMP to Facilitate Loop Optimization 7

#pragma omplc loopcha in schedu le (. . .)
{

#pragma omplc for domain (lb : ub) \
with (i) \

wr i t e A {(i)} , \
read B {(i �1) ,(i) , (i +1)}

for (int i = lb ; i <= ub ; i += 1)
A[i] = (B[i �1] + B[i] + B[i +1]) ;

#pragma omplc for domain (lb : ub) \
with (i) \

wr i t e A {(i)} , \
read A {(i)}

for (int i = lb ; i <= ub ; i += 1)
A[i] = A[i] ∗ (1 . 0 / 3 . 0) ;

}

Fig. 5: Example of annotated source code (schedule omitted)

3.1 Fusion

Loop fusion is a common optimization that takes two or more loop bodies and
combines them into one. The loop domains may also be shifted to respect data-
dependencies that occur between the loops. Loop fusion improves caching be-
havior by reducing the distance between when data is produced and when it
is used. Loop fusion can also enable reducing the amount of temporary storage
needed in a computation.

In the loop chain transformation framework [1, 2], the fuse() scheduling
operator is used to fuse all the loops in the loop chain. The tool will use the
read/write information to form a dependency graph and find the smallest shifts
required to make fusion legal. However, if the developer wishes to explicitly
specify the shifts they require they can.

Figure 6 shows the result of the schedule fuse() applied to the example
loop chain in Figure 5

for (int i = lb ; i <= ub ; i += 1){
A[i] = (B[i �1] + B[i] + B[i +1]) ;
A[i] = A[i] ∗ (1 . 0 / 3 . 0) ;

}

Fig. 6: Example of a fused loop chain using schedule(fuse())

8 Bertolacci et al.

3.2 Tiling

Tiling as another common optimization that breaks a loop into contiguous
chunks [13, 4, 12]. Tiling improves caching behavior by reducing the distance
between reuses of data.

In the loop chain transformation framework [1, 2], the tile() scheduling
operator is used to tile the loops in the loop chain. There are three mandatory
arguments. First is a tuple indicating the tile-size in each dimension. Currently,
tile-size is not parameterizable (a limitation of our polyhedral code generator,
ISL [11]), and requires a constant value. The tiling can be of fewer dimensions
than the loop being tiled (for example, strip mining is a one dimension tiling of a
two-or-more dimension space). The second argument to the tiling operator is the
schedule that will be applied over the tiles. This can by any one of the scheduling
operators tile, wavefront, serial, or parallel. For example, using the serial
operator over the tiles means each tile would be visited serially, whereas using the
parallel operator means each tile could be visited in parallel (with no guarantee
of order). Similarly, the third argument to the tiling operator is the schedule that
will be applied within a tile, and can also be any one of the scheduling operators
tile, wavefront, serial, or parallel. For example, using the serial operator
within a tile means each each point within a would be visited serially, whereas
using the parallel operator means that all the points in a tile could be visited
in parallel (with no guarantee of order).

Figure 7 show the result of the schedule tile((10), parallel, serial
) .

#pragma omp p a r a l l e l
for (int i o = lb ; i o <= ub ; i o += 10){

for (int i = i o ; i <= io +10; i += 1){
A[i] = (B[i �1] + B[i] + B[i +1]) ;

}
for (int i = i o ; i <= io +10; i += 1){

A[i] = A[i] ∗ (1 . 0 / 3 . 0) ;
}

}
// clean�up loop

Fig. 7: Example of a tiled loop chain using schedule(tile((10), parallel,
serial))

3.3 Unrolling

Unrolling is probably the most common sequential loop optimization. As a
result, there are many ways to express a desire for it in di↵erent compilers.

Extending OpenMP to Facilitate Loop Optimization 9

Unfortunately there is no consistent mechanism. For example, the Intel and
IBM XL compilers accept pragma unroll(n). On the other hand, gcc supports
pragma GCC unroll n. In contrast, the PGI and Microsoft C compilers don’t
o↵er an unrolling pragma at all.

The state of standardization for unrolling directives is not all that di↵erent
from the range of non-portable parallel directives before OpenMP, and extending
OpenMP to support it should carry the same overall benefit. Adding a new
unroll(n) clause to the loop directive or the same as a loop chain operator can
deliver this behavior portably. As a simple example, Figure 8 shows a simple
loop with the unrolling annotation and the result of unrolling it.

// Annotated
#pragma omp for un r o l l (2) schedu le (static , 1) nowait
for (int i = 0 ; i < n ; ++i)

A[i] += B[i] ∗ c ;
// Expanded
#pragma omp for s chedu le (static , 1) nowait
for (int i = 0 ; i < n ; i+=2) {

A[i] += B[i] ∗ c ;
A[i +1] += B[i +1] ∗ c ;

}

Fig. 8: Example of applying an unrolling clause to the loop directive.

3.4 Interaction Between Optimizations

In the loop chain source-to-source transformation framework, each scheduling
operator produces some function mapping from one polyhedral space to an-
other. These functions are composed together when performing the complete
transformation. In the more general case, any of the optimization operators or
clauses we have discussed could be composed, and in some cases even repeated.
For example, a loop might be tiled for one size, parallelized, then tiled again for
an inner cache on a given core. How these all compose together is a deeper topic
worthy of future work.

4 Experimental Results

Current results with the proposed loop chain optimizations [2] indicate that
stencil applications optimized with loop chain optimizations perform better than
the baseline at high thread counts.

10 Bertolacci et al.

Legend Label Description

Baseline Original implementation, series of loops
Fuse Loop Fusion
Tiled 8X8X8 Loop Fusion then Tile
Tiled 16X16X16 Loop Fusion then Tile
Tiled 32X32X32 Loop Fusion then Tile

Fig. 9: Descriptions for each of the execution schedules presented.

(a)

(b)

Fig. 10: Experimental results of Mini-Flux-Div (a stencil CFD code) micro-
benchmark, (a) overall performance results, (b) zoomed view of results for
threads 14 through 28

Extending OpenMP to Facilitate Loop Optimization 11

4.1 Loop Fusion and Tiling

MiniFluxDiv4 captures a subset of the stencil computations implemented in
PDE solvers for computation fluid dynamics simulations. It was developed to
emulate the behavior of the shared memory portion of code in the Chombo
framework [6]. A series (and some combinations) of sequential optimizations
including loop fusion, iteration space shifting followed by loop fusion, and tiling
were applied. The schedules presented here are described in Table 9.

The performance improvements observed as a result of the sequential op-
timizations were most significant with larger domains and larger core counts.
Figure 6 shows that shared memory scaling was improved for the cases with
larger domains (1283). This has an impact on the full application performance
as the interprocess communication can be reduced when larger shared memory
domains are utilized.

The fusion optimizations loop chains can enable also address some of the
issues caused by abstractions that produce a large number of workshared loops
nearly in direct contact [8], allowing the overheads of extra barriers and joins to
be elided.

The data for these experiments were collected on a single node of the multi-
node R2 cluster, at Boise State University. Each node contains a dual socket,
Intel Xeon E5-2680 v4 CPU at 2.40 GHz clock frequency with 28 cores (14 per
socket).

4.2 Loop Unrolling

Applying the unrolling optimization can have a benefit on non-chained loops as
well as chains. To get a basic idea of the benefits one could see with this we
took the clompk benchmark from the CORAL2 benchmark suite, a benchmark
for studying OpenMP overheads and execution patterns with behavior roughly
consistent with a sparse matrix hydro code. We produced three unrolling fac-
tors for each loop: no unrolling, unroll by two, and unroll by four. These were
then compiled with OpenMP in parallel, and separately without any OpenMP
directives. The performance results are presented in Figure 11.

For the sequential loop variant, an unroll factor of two produces a slowdown
of about one percent, while a factor of four is a speedup of a little more than
one percent. The di↵erences there are nearly in the noise, and show very little
change from the baseline. On the other hand, the OpenMP loops speed up by
over 23% with an unroll factor of two, and almost 12% for a factor of four. The
fact that these are so di↵erent underscores part of the point of this paper, manual
unrolling on serial makes almost no di↵erence, as the compiler can decide to do it
for itself, but in the context of OpenMP it can be substantial. This among other
things contributes to the fact that the version of clompk with OpenMP active
runs 10% slower with one thread than the version compiled without OpenMP.

4 The code for the mini-flux-div benchmark can be found in the Variations on a Theme
[10] benchmark repository.

12 Bertolacci et al.

0.9

1

1.1

1.2

1.3

sequential parallel

Sp
ee

du
p

ov
er

 n
o

un
ro

llin
g unroll-2 unroll-4

Fig. 11: Performance of clompk with and without unrolling applied.

5 Conclusion

Modern systems are complex. They utilize powerful hardware and diverse archi-
tectures. Optimizations on loops, such as memory transfer pipelining, heteroge-
neous adaptive worksharing, and loop chain scheduling, are necessary to achieve
the performance o↵ered by these advanced hardwares. However, these, and other
necessary optimizations, are di�cult to implement in the compiler while main-
taining all the required invariants of parallel programming models like OpenMP,
and can be quite costly if added manually by the developer.

While OpenMP has traditionally been purposefully limited to providing an
easy-to-use API for adding parallelism, we argue that these sequential optimiza-
tions could be made more accessible and portable by adding them as extensions
to OpenMP. The proposed extensions follow the OpenMP model by provid-
ing the developer pragmas to explicitly prescribe specific optimizations. This is
combined with descriptive information that gives the compiler the necessary in-
formation, particularly data access patterns, to perform the optimizations legally
and e�ciently.

Some of these extensions require the compiler to be more intelligent. For
example, the fusion optimization in loop chaining requires the compiler deter-
mining what loop shifts are required of stencil computations to make fusion legal.
However, this intelligence is augmented by the descriptive information provided
by the annotations. This gives developers the ability to easily apply advanced
and complex optimizations to their application without restricting their ability
to maintain and improve the application around and beyond these optimizations.

References

1. Bertolacci, I.J., Strout, M.M., Guzik, S., Riley, J., Olschanowsky, C.: Identifying
and scheduling loop chains using directives. In: Proceedings of the Third Interna-

Extending OpenMP to Facilitate Loop Optimization 13

tional Workshop on Accelerator Programming Using Directives. pp. 57–67. IEEE
Press (2016)

2. Bertolacci, I.J., Strout, M.M., Riley, J., Guzik, S.M., Davis, E.C., Olschanowsky,
C.: Using the loop chain abstraction to schedule across loops in existing code. To
be published in the International Journal of High Performance Computing and
Networking

3. Cui, X., Scogland, T.R., de Supinski, B.R., Feng, W.c.: Directive-based partition-
ing and pipelining for graphics processing units. In: International Parallel and
Distributed Processing Symposium. pp. 575–584. IEEE (2017)

4. Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of the 15th Annual
ACM SIGPLAN Symposium on Priniciples of Programming Languages. pp. 319–
329 (1988)

5. Krieger, C.D., Strout, M.M., Olschanowsky, C., Stone, A., Guzik, S., Gao, X.,
Bertolli, C., Kelly, P.H.J., Mudalige, G., Straalen, B.V., Williams, S.: Loop Chain-
ing: A Programming Abstraction For Balancing Locality and Parallelism. In: Pro-
ceedings of the 18th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS) (may 2013)

6. Olschanowsky, C., Strout, M.M., Guzik, S., Lo↵eld, J., Hittinger, J.: A study on
balancing parallelism, data locality, and recomputation in existing pde solvers. In:
In The IEEE/ACM International Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (November 2014)

7. Scogland, T.R.W., Feng, W., Rountree, B., de Supinski, B.R.: Coretsar: Core task-
size adapting runtime. IEEE Transactions on Parallel and Distributed Systems
(2015)

8. Scogland, T.R.W., Gyllenhaal, J., Keasler, J., Hornung, R., de Supinski, B.R.:
Enabling region merging optimizations in openmp. In: International Workshop on
OpenMP (Sep 2015)

9. Scogland, T.R.W., Rountree, B., Feng, W., de Supinski, B.R.: CoreTSAR: Adap-
tive Worksharing for Heterogeneous Systems. In: International Supercomputing
Conference. Leipzig (Jun 2014)

10. Strout, M., Olschanowsky, C., Davis, E., Bertolacci, I., others.: Varitions on a
theme (2017), https://github.com/CompOpt4Apps/VariationsOnATheme

11. Verdoolaege, S.: Integer Set Library (2016), http://isl.gforge.inria.fr/
12. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Programming

Language Design and Implementation. ACM, New York, NY, USA (1991)
13. Wolfe, M.J.: Iteration space tiling for memory hierarchies. In: Third SIAM Con-

ference on Parallel Processing for Scientific Computing. pp. 357–361 (1987)

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

