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This report summarizes the results of our project “Numerical Methods for
the Unsymmetric Tridiagonal Eigenvalue Problem”. It was funded by both
by 2 DOE grant (#DE-FG02-92ER25122, 6/1/92-5/31/94, $100,000) and
by an NSF Research Initiation Award (#CCR-9109785, 7/ 1/91-6/30/93,
$46,564.) The publications resulting from that project during the DOE

.. funding period are listed below. Two other journal papers ([11] and [10])
and two other conference papers ([6] and [3]) were produced during the NSF
funding period. Most of the listed conference papers are early or partial
versions of the listed journal papers.

J ournai Publications

[J0 ] E.R. Jessup, D. Yang, and S.A. Zenios, Parallel Decomposition of
Structured. Matrices Arising in Stochastic Programming Problems, to
appear in SIAM J. Opt.

[31 1-S. Crivelli and E.R. Jessup, Optimal FEigenvalue Computation on
Distributed-Memory MIMD Multiprocessors, to appear in Parallel Com-
puting.

Conference Publications

[C1 ]8S. Crivelli and E.R. Jessup, A Programming Paradigm for Distributed-
Memory Computers, in Parallel-Processing for Scientific Computing,
ed. R. Sincovec, D. Keyes, M. Leuze, L. Petzold, and D. Reed, SIAM,
1993.

[C2 ]8S. Crivelli and E.R. Jessup, Optimal FEigenvalue Computation on a
Mesh Multiprocessor, in Parallel Processing for Scientific Computing,
ed. R. Sincovec, D. Keyes, M. Leuze, L. Petzold, and D. Reed, SIAM,
1993. ’

" [C3 ] E.R. Jessup, On a Divide and Conguer Approach to the Nonsymmet-
ric Eigenvalue Problem, in the Proceedings of Jornadas Panamericanas
de Matematicas Aplicadas y Computationales, ed. M. Lentini, 1993.
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Papers C3 and [10] builds on our paper [11], references [1, 4, 5], and our
earlier work [8, 9] by discussing how how a divide and conquer eigensolver
might be developed for the nonsymmetric eigenvalue problem. In papers
C3 and [10], we show that, although the divide and conquer mechanism
can be adapted in a straightforward way to solve the real nonsymmetric
eigenproblem, most of the desirable characteristics of the other algorithms
are lost.

The speed and accuracy of divide and conquer eigensolvers rely largely
on the availability of a fast and globally convergent root-finder and on the
pr,evale;lce and ease of deflation. However, there appears to be no equivalent
root-finder for the nonsymmetric case, and deflation of the nonsymmetric
problem may not lead to such substantial savings as in the symmetric case.
Furthermore, if it is necessary to compute the left eigenvectors from the
right eigenvectors to maintain accuracy, the eigenvector computation may
become inefficient, especially in parallel. The greatest danger with the divide
and conquer method, however, lies in its potential instability. Even if the
original matrix is well-conditioned with respect to the eigenproblem, an ill-
conditioned submatrix can be created at any level of updating.. Given the
obstacles in the way of an efficient and accurate nonsymmetric divide and
conquer method, we do not intend to continue work on this approach at this
time. -

Papers C2, [3], and J1 discuss how to compute one eigenvalue of a
symmetric tridiagonal matrix efficiently on hypercube and mesh-connected
distributed-memory, MIMD multiprocessors. Understanding how best to
compute one eigenvalue in parallel is the first step in understanding how
best to compute an arbitrary number of eigenvalues in parallel. In our pa-
pers, we study and compare the costs of computing a single eigenvalue by
serial bisection [7], parallel multisection [8, 12], and Swarztrauber’s parallel
bisection method [14] on the target machines. All of these methods derive
from the Sturm sequence property of the determinants of the sequence of
principal minors of a symmetric tridiagonal matrix [7, 15]. Multisection is
implemented in parallel on p processors by simultaneously evaluating the
Sturm sequence at p interior points of the search interval, one evaluation
per processor. Swarztrauber’s method uses the associative property of ma-
trix multiplication to split the evaluation of the determinants among the

different processors.




Our approach to this problem was directed by Simon’s proof that bi-
section is not the optimal method for computing an eigenvalue on a single
vector processor [13]. However, we show that his analysis does not extend di-
rectly to the computation of an eigenvalue on a distributed>memory MIMD
multiprocessor. In particular, we show how the optimal number of sections
(and processors) to use for bisection or multisection depends on variables
such as the matrix size and certain parameters inherent to the machine. We
also show that parallel multisection consistently outperforms Swarztrauber’s
parallel bisection on machines with significant communication costs.

. Gel}eralizing the results of papers C2, [3], and J1 to the computation
of many eigenvalues leads to problems in processor load balance. Bisection
can be implemented in parallel by assigning the computation of different
eigenvalues to different processors. The processor workload then becomes
unbalanced when the different eigenvalues take different amounts of time
to compute. To keep the workload balanced, busy processors must split
and redistribute their computing tasks to idle processors. As the eigenvalue
computation tasks are generated asynchronously and unpredictably and also
require unequal times to complete, parallel bisection represents a dynamic
problem. Dynamic problems contrast with static problems for which all
tasks are assigned to processors a priori and with quasi-dynamic problems
where tasks are generated and redistributed in a way that is synchronous
and predictable in phases.

‘As we studied the load balance problem, we began to recognize common
patterns in the different schemes for balancing the processor workload. In
particular, we noted that a dynamic programming problem consists five dis-
tinct phases involving different programming issues. These phases may occur
in any number and order in a given program and can be named as follows.
The Partition phase splits a task into subtasks and takes care of all as-
pects related to handling the tasks and the task queue structure. The Map
phase distributes the subtasks among a virtual graph of processors intercon-
nected by some convenient virtual topology. The Embed phase embeds the
virtual interconnecting topology of the processors into the actual machine
architecture. The Solve phase represents the sequential computation that
is performed on each processor. The Communicate phase takes care of the
interprocessor communica.tion,. In Paper C1, we describe the PMESC pro-

gramming paradigm that guides program development according to those
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phases. While we developed PMESC to handle dynamic problems, it applies
equally well to static and quasi-dynamic problems.

We are beginning to develop a library of programming tools based on
the PMESC paradigm for distributed-memory MIMD multiprocessors. This
library is designed to fill the void of tools available to aid in the building of
programs requiring dynamic processor scheduling.

Paper JO covers our most recent work on parallel solution of stochastic
programming problems. Solving the deterministic equivalent formulation of

two-stage stochastic programs using interior point algorithms requires the
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solution of linear systems of the form
(AD?*AT)dy = b.

The constraint matrix A has a dual, block-angular structure. In this paper,
we develop a parallel matrix factorization procedure using the Sherman-
* Morrison-Woodbury formula, based on the work of Birge and Qi [2]. This
procedure requires the solution of smaller, independent systems of equations.
With the use of optimal communication algorithms and careful attention to
data layout we obtain a parallel implementation that achieves near perfect
speedup. We demonstrate scalable performance of our implementations on
an Intel iPSC/860 hypercube and a Connection Machine CM-5. ‘
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