
1

A Learning-based Measurement Framework for

Traffic Matrix Inference in Software Defined

Networks
Mehdi Malboubi, Shu-Ming Peng, Puneet Sharma, Chen-Nee Chuah

Abstract

In this paper, we propose an intelligent framework for Traffic Matrix (TM) inference in Software Defined Networks (SDN)

where the Ternary Content Addressable Memory (TCAM) entries of switches are partitioned into two parts to: 1) effectively

aggregate part of incoming flows for aggregate measurements, and 2) de-aggregate and directly measure the most informative

flows for per-flow measurements. These measurements are then processed to effectively estimate the size of network flows. Under

hard resource constraints of limited TCAM sizes, we show how to design the optimal and efficient-compressed flow aggregation

matrices. We propose an optimal Multi-Armed Bandit (MAB) based algorithm to adaptively measure the most rewarding flows.

We evaluate the performance of our framework using real traffic traces from different network environments and by considering

two main applications: TM estimation and Heavy Hitter (HH) detection. Moreover, we have implemented a prototype of our

framework in Mininet to demonstrate its effectiveness.

KeyWords Network Measurement and Inference, Traffic Matrix Estimation, Software Defined Networking, Compressed Sensing,

Multi-Armed Bandit Algorithms.

I. INTRODUCTION

In a network, a flow is a sequence of packets that shares common fields that can be readily extracted from packet headers,

such as source and destination IP addresses, port numbers and protocol. The size of an Origin-Destination Flow (ODF) quantifies

the volume of traffic between the source node and the destination node (in packets or bytes), and the traffic matrix represents

the volume of network flows between all nodes. Fine-grained estimates of traffic matrices provide essential information that

is central in many networking applications including network design, network traffic monitoring and management [1][2], and

network anomaly detection and security [3].

There are two main approaches for TM measurement and estimation. Direct flow-based measurements such as NetFlow

and Sampled Flow (sFlow) offer fine-grained measurements that can support different measurement tasks. However, such an

At the time of this work, Mehdi Malboubi and Shu Ming Peng were with the Department of Electrical and Computer Engineering, University of California,
Davis, CA, USA. E-mail: {mmalboubi, shmpeng}@ucdavis.edu

Puneet Sharma is the head of Networked Systems Group at Hewlett Packard Labs, Palo Alto, CA, USA. E-mail: puneet.sharma@hpe.com

Chen-Nee Chuah is Professor at the Department of Electrical and Computer Engineering, University of California, Davis, CA, USA. E-mail:
chuah@ucdavis.edu

© 2017. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

2

approach not only requires dedicated hardware and specialized algorithms, but it is also often challenging, inefficient or even

infeasible to monitor each and every flow due to exploding traffic volume and limited monitoring resources (e.g., the number

of TCAM entries, storage capacity and processing power). Accordingly and due to non-scalability of direct flow measurement

techniques in large-scale networks, intelligent sampling and streaming algorithms have been proposed to estimate statistics

or answer specific queries of, e.g., approximate size of elephant flows [4]. These solutions are task-specific and lack the full

flexibility to dynamically choose which traffic sub-population to measure, and how, depending on application requirements.

An alternate approach is estimating the traffic matrix based on a limited set of measurements using Network Inference (NI)

and network tomography methods. However, most network inference problems are naturally formulated as ill-posed Under-

Determined Linear Inverse (UDLI) problems where the number of measurements are not sufficient to uniquely and accurately

determine the solution. Hence, side information from different sources must be incorporated into the problem formulation to

improve estimation precision [5][6].

In today’s large-scale networks, the flows of interest can be sparse, or highly fluctuating over time and/or space, due to the

presence of a variety of applications and services with different behaviors and Quality of Services (QoS) requirements. The

management and operation of today’s networks, and providing high QoS for a variety of applications in these complex and

highly dynamic networks, depend on the accurate measurement and estimation of the size of network flows. In fact, many

recent network operation, monitoring and security applications require timely estimates of both large and small traffic flows

with high accuracy. Therefore, the network measurement infrastructure must be agile enough to cope with the dynamic network

and traffic conditions. Such a flexible architecture can be achieved due to the recent advent of software defined networking.

In fact, an SDN enabler, such as OpenFlow, nicely separates the measurement data plane and control plane functions, and

provides the capability to control/re-program the internal configurations of switches in dynamic environments. Consequently,

SDN allows applying more complex network monitoring and management applications which results in providing more effective

and efficient network services [7] [8].

An important resource in SDN switches and routers is TCAM entries which are essential for effective flow classification

and forwarding in today’s high-speed networks. TCAMs are special computer memory with the capability of real-time and

exact-match search which can be used for noncontiguous and arbitrary bitwise packet matching and classifications in network

switches and routers [9]. However, TCAMs are expensive hardware and consume a lot of power; hence, the number of TCAM

entries in network switches and routers are limited. Therefore, to efficiently allocate such an important resource in dynamic

environments, where the behaviors of operating network change, effective optimization and adaptive learning algorithms must

be utilized. In fact, adaptive learning algorithms and optimization techniques give us the capability of learning the behavior of

network flows and optimally allocating TCAM resources among different network operation and monitoring applications. For

this purpose, the run-time programmability of SDN plays an important role to achieve such an intelligent framework with the

ability of reconfiguring measurement modules and constructing effective TCAM rules, and to adaptively and easily collect a

set of timely-effective flow statistics using counters associate with TCAM entries [10] [11] [12] [13].

Accordingly, we propose a framework called intelligent SDN based Traffic (de)Aggregation and Measurement Paradigm

(iSTAMP). In iSTAMP, measurement modules can be configured on-the-fly to collect fine-grained measurements of specific

3

traffic sub-populations of interest that directly reflect the monitoring application requirements. Based on the philosophy that

not all attributes of interest are equally important, iSTAMP utilizes an intelligent sampling algorithm to select the most

informative traffic flows, using information gathered throughout the measurement process. It also exploits Compressed Sensing

(CS) inference methods that are effective for estimating highly fluctuated sparse unknown quantities from a set of well-defined

compressed linear measurements [14], [15].

In order to do this, iSTAMP leverages OpenFlow to dynamically partition the TCAM entries of a switch/router into two parts.

In the first part, a set of incoming flows are optimally aggregated to provide well-compressed aggregated flow measurements

that can lead to the best possible estimation accuracy via network inference process. The second portion of TCAM entries

are dedicated to track/measure the most rewarding flows (defined as flows with the highest impact on the ultimate monitoring

application performance) to provide accurate per-flow measurements. These flows are selected and ”stamped” as important

(or rewarding from monitoring’s perspective) using an intelligent multi-armed bandit based algorithm. These two sets of

measurements (aggregated and sampled flows) are then jointly processed to estimate the size of all network flows using

different optimization techniques.

Therefore, iSTAMP is scalable framework because it uses a limited number of aggregated flow measurements to estimate

the size of a large number of flows. In addition, iSTAMP produces accurate flow estimates since: 1) it uses compressed sensing

NI techniques which are effective for estimating highly fluctuated network flows, and 2) part of the flows are perfectly and

directly measured by intelligently tracking them, depending on the application.

A. Related Work

There is a rich literature on improving the accuracy of traffic flow measurements and estimation. We will briefly discuss

the most relevant work here. In [16], ProgMe proposes a re-programmable architecture allowing statistics collection based on

the notion of flowsets (arbitrary traffic sub-populations) using a flexible flowset composition language. From SDN perspective,

most current research has focused on leveraging the run-time programmability/reconfigurability of SDN to passively measure

the size of the sub-set of network traffic flows, or identify heavy hitters and/or Hierarchical Heavy Hitters (HHH), which

is of a particular importance in different traffic monitoring and network security applications. In [7], [8] and [17], SDN

reconfigurable measurement architectures are proposed where a variety of sketches for different direct measurement tasks can

be defined and installed by the operator. In [18], an adaptive flow counting method is proposed that controls the temporal

and spatial aggregation using a linear prediction method. In addition, in [19], OpenTM directly measures the network’s TM

by keeping track of statistics for each flow. However, these methods suffer from two challenges: first, the pure SDN based

passive flow measurement systems [19] can not provide per-flow measurements of all ODFs in large-scale networks, due to

the hard constraint of measurement resources, and second, SDN-based network inference methods, such as [7], [8], [17], are

mainly focused on sub-population flow size estimation and they can not provide the complete visibility of all flows over long

time-horizon. Furthermore, these approaches do not directly optimize the usage of available flow-table entries.

iSTAMP, in contrast, leverages off-the-shelf SDN devices and existing OpenFlow API to construct a global view of the

available measurement resources which can be used for optimal resource allocation, and consequently, provides the most

4

informative flow measurements at the right time and place. In fact, iSTAMP addresses the problem of SDN-based fine-

grained traffic matrix estimation under monitoring resource constraints that has not been addressed previously. In particular,

it leverages statistics field in OpenFlow to collect traffic measurements. Hence, network TM estimation can be accomplished

without affecting packet forwarding behavior or performance. In this paper we concentrate on the centralized implementation of

iSTAMP. However, as it has been shown in [10], [11], and [13], iSTAMP paves the way toward providing a unified-distributed

framework for traffic matrix estimation in SDN enabled networks which can be used for a variety of networking applications.

B. Our contributions

iSTAMP is simple, scalable, and efficient with the ability to intelligently track and measure the most rewarding flows, and

effectively aggregate others. iSTAMP adaptively allocates TCAM entries amongst the constantly evolving flows to achieve

the highest flow estimation accuracy. Therefore, it is robust in dynamic environments (with highly fluctuating flows over

time/space) and under hard resource constraints where, TCAM entries, storage capacity, and network bandwidth are severely

limited. In fact, iSTAMP can be easily deployed on commodity OpenFlow-enabled routers/switches to enhance the performance

of various network monitoring applications, including TM estimation, Traffic Engineering (TE), Heavy Hitter Identification

(HHI), hierarchical heavy hitter detection and different security applications. It also offers timely estimates of network flows with

low computation and communication overhead between control and data planes. Furthermore, by providing a well compressed

form of aggregated measurements, iSTAMP significantly reduces the required storage for monitoring tasks.

The iSTAMP framework has been originally published in our paper in the proceeding of the 33rd IEEE International

Conference on Computer Communication (INFOCOM) in 2014 [10]. This journal version significantly strengthens the previous

conference version by improving the presentation of the main concepts, adding new technical contents, developing the

mathematical foundation of our main ideas, and providing additional results. In particular, we have added four new sections

where: 1) we provide the mathematical foundation for our TCAM partitioning technique (Section III); 2) we add our new

results to indicate the performance of iSTAMP in hierarchical heavy hitter identification (Section VI-C); 3) we demonstrate the

prototype of our centralized implementation of iSTAMP framework in mininet (Section VII), and 4) we present the mathematical

proofs in Appendix A.

Our main contributions in this paper are summarized as follows:

• iSTAMP is a SDN based framework for network TM estimation in which both aggregated flow and per-flow measurements

are incorporated into its inference engine. In the context of compressed sensing, we theoretically explain why such a hybrid

framework is effective under hard resource constraint of TCAM entries.

• We formulate and solve the problem of designing an optimal binary aggregation (or observation) matrix to maximize the

estimation accuracy while providing a compressed form of measurements that are compatible with flow aggregation constraints.

Also, we propose a method for designing an efficient-compressed flow aggregation matrix which is effective for estimating

highly fluctuated TMs under hard resource constraints of limited TCAM sizes.

• We propose a simple, efficient and an optimal MAB based algorithm to adaptively track and measure the most rewarding

flows while achieving logarithmic regret over time. The optimality of this multi-armed bandit flow sampling algorithm is proved

in Theorem 1.

5

•We evaluate the performance of iSTAMP using real traffic traces from a variety of network environments and by considering

different networking applications, including TM estimation, HH detection, and HHH identification.

• We implement a prototype of iSTAMP in Mininet environment. The feasibility and effectiveness of this prototype has

been successfully demonstrated in the 21th GENI Engineering Conference (GEC 21).

The rest of this paper is organized as follows. Section II provides an overview of iSTAMP and different network inference

techniques that we have used, and Section III introduces our main compressed sensing network inference technique. In

Section IV we describe our optimal aggregation matrix design procedure, and in Section V we present our intelligent MAB

based flow sampling algorithm. In Section VI, we evaluate the performance of iSTAMP considering three main applications:

ODF estimation, heavy hitter detection, and hierarchical heavy hitter detection. Section VII demonstrates the results of our

centralized implementation of iSTAMP in mininet environment. Finally, Section VIII summarizes our most important results.

II. NETWORK MODEL AND SYSTEM DESCRIPTION

Consider a network with N nodes where an IP address is assigned to each node. In the context of SDN, a flow can be

identified by multiple fields in a flow-table entry. For developing the main ideas in this paper, without loss of generality, a

flow is defined by a tuple consisting of a source IP address and a destination IP address as < source IP, destination IP >. In

addition, to address the problem of flow measurement and estimation under hard resource constraints of TCAM sizes in SDN

switches, it is assumed that the size of a flow is measured by counters associated with TCAM entries. However, the same idea

can be applied to the cases where other technologies such as virtual/software-based switches are used for flow classification

and forwarding.

Figure 1 shows the general block diagram of the centralized iSTAMP framework where the TCAM at the switch or router

is partitioned into two parts for (i) aggregate measurements, and (ii) per-flow monitoring of selected flows, respectively. The

effective aggregate statistics from the first part provide a set of well-formed compressed linear measurements as input to a

network inference process to perform flow size estimation. The second part of TCAM is allocated for tracking individual flows

that are deemed important (or rewarding) for the monitoring application in question. This process is called the intelligent

sampling of flows. For illustrative purpose, we consider ODF size estimation, and more generally, traffic matrix (as a measure

of origin-destination traffic size between nodes) estimation, as the driving application in this section. In this context, ODFs

with the largest volume will be the ’important’ candidates for per-flow monitoring. Note that a single router may only observe

a subset of ODFs (or partial TM) in the network. We will first discuss how iSTAMP can be deployed on a single router/switch

to estimate the ODFs it observes. Due to the flexibility and scalability of iSTAMP, such a hybrid framework (where both

aggregated and per-flow measurements are used for TM estimation) can be easily extended to a distributed monitoring case

[11] [13], where multiple routers running iSTAMP can coordinate to estimate the complete TM for the network.

Assume there are n ODFs in the network and T entries of TCAM at the switch which can be used for network measurement

where n >> T . At each measurement interval τ , K out of T entries are used to track and measure the most rewarding ODFs

and m entries are used to optimally aggregate other ODFs (i.e. T = m+K). For this purpose, the flexibility of OpenFlow is

used to install TCAM wildcard matching rules (prefix keys) ci and collect associated statistical counts yi in each measurement

6

Fig. 1: The architecture of centralized iSTAMP framework, and an illustrative example for configuring TCAM rules.

Notation Description

N Number of nodes in the network.
n Number of flows in the network (n ≤ N(N − 1)).
T Number of TCAM entries at the switch (T = m+K).
m Number of TCAM entries used for flow aggregation.
K Number of TCAM entries used for direct per-flow measurement.
t Notation used to denote time.
Itg Set of flow indices that must be aggregated at tth epoch.
Itk Set of flow indices that must be directly measured at tth epoch.
Xt Vector representation of traffic matrix at tth epoch.

Xtg = Xt(Itg) Vector of aggregated ODF sizes at tth epoch.
Xtk = Xt(Itk) Vector of directly measured ODF sizes at tth epoch.

At Flow measurement matrix of size T × n at tth epoch.
Atg Flow aggregation matrix of size m× n at tth epoch.
Atk Direct per-flow measurement matrix of size K × n at tth epoch.
Y t Flow measurement vector at tth epoch.
Y tg Aggregated flow measurement vector at tth epoch.
Y tk Direct per-flow measurement vector at tth epoch.
YS Vector of SNMP link-load measurements.
H Routing Matrix.
τt Flow measurement interval at tth epoch.
λ Regularization parameter.

(p, q, F) Notations used to denote norm operators.
‖X‖1

∑n
j=1 |xj |.

‖X‖22
∑n
j=1 |xj |

2.
‖A‖2F

∑m
i=1

∑n
j=1 |aij |

2.

TABLE I: The most commonly used notations where Itg
⋂
Itk = ∅.

interval τt. At the controller, which can be co-located on the switch or reside on a separate machine/server, the measurement

statistics/counts are processed. In the next epoch τt+1, the best ODFs (determined based on the application requirement)

for direct measurement are selected and their corresponding prefix keys are installed in K TCAM entries. This process is

called de-aggregation and the TCAM lookup mechanism, which is based on highest wildcard matching rule, facilitates the

implementation of this process. In addition, m entries of TCAM is used for optimal aggregation of n−K flows. The controller

can poll the statistic counts periodically or in different measurement intervals, the frequency of which is limited by practical

constraints.

At each epoch t, the set of measurement statistics Y t is represented by the under-determined linear system of equations shown

in Eq.(1) where Y tg denotes the aggregated measurements and Y tk denotes the direct per-flow measurements. In this equation,

7

At is an (T × n) measurement matrix consisting of an (m× n) binary aggregation matrix Atg , where non-zero entries in each

row of Atg represents the set of flows aggregated (or mapped) to that entry, and an (k × n) binary matrix Atk, where the only

one non-zero entry in each row demonstrates the selected flow for direct measurement in tth measurement interval τt. Also, Xt

denotes the tth vector of flows where Xt
g is the set of ODFs that are being mapped to m groups for aggregate measurements

(that must be estimated) and Xt
k is the set of directly measured ODFs (i.e. Xk = Yk). Having these measurements, the set of

unknown flows Xt
g can be estimated using the following general optimization formulations Eq.(2) and Eq.(3) where Atg(:, I

t
g)

indicates a sub-matrix of Atg consisting of all its rows (indicated by the colon operator) and its columns indicated by set Itg .

Having both sets of estimated flow-sizes X̂t
g and directly measured flow-sizes Xt

k, X̂t is constructed as X̂t = X̂t(Itg)
⋃
X̂t(Itk)

where X̂t(Itg) = X̂t
g and X̂t(Itk) = Xt

k. In Eq.(2) and Eq.(3), parameters (p, q, λ) are defined based on different optimization

techniques. The particular choices of p = 2, q = 1 and λ = λ0(∈ R) defines a realization of Compressed Sensing (CS) inference

technique, called Least Absolute Shrinkage and Selection Operator (LASSO) [14]. The compressed sensing inference techniques

(defined in Eq.(5) in general form) are effective for estimating highly fluctuating unknown quantities (e.g. network flows) from

a set of limited number of linear combinations of unknowns of interest. Furthermore, Eq.(3) incorporates side information

YS into the optimization problem to improve the performance of the overall TM estimation process (in both centralized and

extended multi-point/distributed monitoring case). Here, side information Y tS is the SNMP link load measurements Y tS = HXt
g

where H is the routing matrix. Table I lists our commonly used notations.

Y t =

 Y tg

Y tk

 = AtXt where At =

 Atg

Atk

 (1)

X̂t = minimize
Xtg

∥∥Y tg −Atg(:, Itg)Xt
g

∥∥2
p

+ λ
∥∥Xt

g

∥∥
q

s.t. Xt
g ≥ 0

(2)

X̂t = minimize
Xt

∥∥Y tS −HXt
∥∥2
p

+ λ
∥∥Xt

g

∥∥
q

s.t. Y tg = AtgX
t, Xt

k = AtkX
t, Xt

g ≥ 0

(3)

A. TCAM Configuration in iSTAMP: An Illustrative Example

Given the set of IPv4 flows {xt1, ..., xt6}, the flow aggregation matrix Atg and per-flow measurement matrix Atk at tth epoch,

Figure 1 illustrates how TCAM rules can be configured to provide the set of desirable flow statistics {yt1, ..., yt4}. In this

example, it is assumed that network flows are distinguishable based on the Most Significant Bits (MSB), and accordingly,

TCAM rules can be constructed by appropriately configuring of the MSBs of network flow tuples where × indicates the

don’t-care operator. TCAM rules can be (re)configured using OpenFlow protocol, as a standard protocol to configure SDN

switches. Note that, arbitrary bitwise matching (for IP addresses) is supported by OpenFlow 1.2 and higher. Accordingly, the

iSTAMP controller uses flow-table modification and flow statistics request messages to configure flow-table entries and collect

statistics.

8

B. iSTAMP: Centralized and Distributed Implementations

Considering the above optimization formulations in Eq.(2) and Eq.(3), iSTAMP framework can be implemented in both

centralized (i.e. a single-point) and distributed (i.e. multi-points) measurement scenarios. In this paper, the focus is on developing

the main ideas and establishing the foundations of an adaptive and effective network flow inference framework in the centralized

scenario [10] which can be easily extended to distributed scenarios. As a matter of fact, in [11] and [13], we have addressed the

implementation of iSTAMP framework in a distributed scenario with considering more practical flow-aggregation and routing

constraints. In iSTAMP framework, the vector of ODF sizes Xt represents different notion of flows at different levels. For

example, ODFs can be traffic between routers in an ISP network, or they can be traffic between servers in different racks in

data centers.

Under single point measurement, we consider two sub-cases: (a) when OpenFlow Switch (OFS) is used for both routing and

measurement, and hence the aggregation matrix Ag cannot be arbitrary in order to preserve routing of the aggregate flows, and

(b) the OpenFlow switch is used primarily for flow measurement, and routing does not have to be preserved, as in the case of

random or hash-based routing. These two cases are compatible with both formulations in Eq.(2) and Eq.(3). In the former case

Atg is the local routing matrix and part of the TCAM entries is used to directly measure a set of the most informative flows.

Note that reserved-empty TCAM entries are always available at switches. In the later case, all TCAM entries of the OFS are

used for flow measurement; accordingly, along with directly measured flows, Atg can be optimally designed to enhance the

accuracy of estimation. Likewise, there are two possible cases in the multi-point measurement scenario, where installation rules

are transmitted from Central Controller (CC) to local OFSs and their measurements are transmitted to the CC. If all TCAM

entries of OFSs are used for measurement, then both Eq.(2) and Eq.(3) are applicable and Atg can be optimally designed.

However, if local OFSs are used for routing and measurement, then only Eq.(2) can be applied because, in this case, Atg ∼= H .

Please refer to [20] for more details.

In iSTAMP, the communication overhead between the controller and switch is low because only a few flows are directly

measured and other entries are used to aggregate a large number of flows. Hence, T instead of n (where T << n) aggregated

and per-flow measurements are transmitted to the controller which is important under hard constraints of limited TCAM sizes

and in multi-point measurement scenario. iSTAMP is also computationally efficient because it exploits existing low-complexity

NI techniques [14], [21].

III. INSIGHT INTO COMPRESSIVE NETWORK INFERENCE IN ISTAMP

Today’s network traffic are highly fluctuating over time and/or space. These high variations can be modeled as sparse signals

(modeling large flows known as heavy hitters or elephants) contaminated with noise (modeling small flows known as mice).

Therefore, efficient compressed sensing estimation algorithms with low computational complexity, such as Orthogonal Matching

Pursuit (OMP), can be used for recovery of sparse signals [14]. For this purpose, it has been shown that if the coherence

of the observation matrix Ag (defined as µ in Eq.(4)) is sufficiently small, then the convex optimization program Eq.(5), can

exactly recover a sparse signal with l non-zero quantities (in some basis) from m = O(l log(n/l)) properly designed linear

observations. In fact, the recovery succeeds if l ≤ 0.5
(

1 + 1
µ

)
. Thus, the smaller µ, the higher the bound on the sparsity of

9

Xg [14]. It should be noted that for the sake of simplicity, in the following discussions, we drop the notion t and assume

Ag = [aij] ∈ Rm×n (i = 1 : m, j = 1 : n) is written as Ag(m×n)
:= [a1, ..., an] where {aj}nj=1 ∈ Rm.

µ = max
i 6=j

∣∣aTi aj∣∣
‖ai‖2 ‖aj‖2

(4)

X̂g = min
Xg
‖Xg‖1 s.t. Yg = Ag(:, Ig)Xg (5)

In iSTAMP we partition the T entries of TCAM at the switch or router into two parts for (i) aggregate measurements (with

m TCAM entries where m = T − K), and (ii) per-flow monitoring of the K heaviest flows (using K entries of TCAM),

respectively. The main intuitions behind the proposed hybrid technique are as follows. First, this technique allows us to provide

a set of possible aggregated/compressed measurements of the larger subset of flows such that a good estimation accuracy is

achieved via compressive network inference process. Second, measuring the K heaviest flows and reducing the large variations

in the input traffic enhance the performance of network inference techniques. This is consistent with the previous studies where

it has been shown that in real networks a small number of flows may account for a large fraction of traffic volume [16], [22],

[23]. Therefore, this approach improves the performance of HH identification, Load Balancing or Denial of Service (DoS)

attack detection.

To explain and quantify the effectiveness of this method we consider the simple scenario of CS recovery in the presence of

White Gaussian Noise (WGN). For this purpose, we compute the number of required measurements for the exact CS recovery

of an l-sparse signal (i.e. a signal with l non-zero elements). To be consistent with our framework, the number of required

measurements is denoted by T . Here for the exact CS recovery T ≥ C0llog
(
n
l

)
where depending on the original Signal-to-

Noise Ratio1 (denoted by SNRo) C0 is computed as C0 = 2
log(1+SNRo) [24]. Accordingly, in our hybrid architecture where

the K heaviest flows are directly measured, the number of required measurements for the CS recovery of a sparse signal of

dimension (n−K) with sparsity (l −K) must be greater than Ć0(l −K)log
(
n−K
l−K

)
, where Ć0 = 2

log(1+SNRn) and SNRn

is the new SNR. Therefore, the improvement achieved by our hybrid framework can be quantified by the Compressed Sensing

Measurement Gain (CSMG), as defined in Eq.(6). The CSMG indicates the number of measurements that we gain to accurately

infer an l-sparse signal via the CS recovery process in our hybrid fine-grained flow measurement framework comparing against

the CS inference where all n flows are aggregated using all T entries of TCAM without direct flow measurement. The positivity

of CSMG shows that, by measuring the K heaviest flows in our hybrid technique, the number of required measurements for

the exact CS recovery of an l-sparse signal is reduced.

CSMG = C0llog
(n
l

)
−
(
Ć0(l −K)log

(
n−K
l −K

)
+K

)
(6)

To evaluate the performance of this technique, first, we quantify CSMG for a general case where the original signal X consists

of l non-zero elements with amplitude ãm and (n− l) zeros, contaminated with WGN2 with variance σ2. Accordingly, the SNR

of original signal is SNRo =
lã2m
nσ2 . By measuring K non-zero elements, the new SNR is computed as SNRn =

(l−K)ã2m
(n−K)σ2 .

1The Signal-to-Noise Ratio (SNR) is defined as the ratio of the power of the signal to the power (or variance) of the noise.
2Note that flow measurement is a noisy process due to sampling and disalignment of polling intervals which are modeled as WGN [6].

10

Fig. 2: CSMG for different values of l
n

where n = 1000 and ãm = 1 (solid line: SNR = 10 dB, dotted line: SNR = 15 dB).

Figure 2 shows the CSMG which indicates that there is a positive K for the range of values of l
n (equivalently the percentage

of the number of large flows in network traffic) and SNRs that we are facing in network monitoring applications [25], [6]. Note

that, the CSMG is higher at low or moderate SNRs, that is, at low SNRs it is more constructive to directly measure part of

the attributes of interest. Therefore, it is beneficial to partition the TCAM entries (or measurement resources, in general) into

two parts and directly measure the K heaviest flows. For example, in GEANT network (Table II), by setting the threshold for

identifying large flows to 10% of the link capacity, traffic flows can be approximately modeled as sparse signal contaminated

with additive noise with SNR=22.85 dB, l
n =0.0335 and C0=0.6305; here, the power of the signal and noise are computed as

the power of flows higher and less than threshold, respectively. Accordingly, the CSMG is positive for all values of K where

Ć0 changes from 0.6305 to 0.6766.

In addition, in [14] and references therein, it has been shown that for measurements contaminated with WGN, the upper bound

of estimation error
∥∥∥X − X̂∥∥∥

2
is reduced for a smaller µ, and also, it is proportional to

√
llog(n). Hence, the measurement

accuracy may be improved by measuring K largest flows (i.e. lowering l), supporting the effectiveness of our hybrid technique

for measuring the K heaviest flows.

Measuring the K largest quantities can also enhance the estimation accuracy of other inference methods. For example, since

Least Square Estimation (LSE) methods are sensitive to unusual inputs, reducing the number of large variations could enhance

the estimation accuracy. Therefore, it is of particular importance to track and measure the K heaviest flows in highly dynamic

network environments where flows are rapidly fluctuating over time and space. In the following, we introduce effective methods

for the efficient-compressed aggregation and optimal tracking of heaviest flows.

IV. OPTIMAL FLOW AGGREGATION: METHODOLOGY AND CHALLENGES

In this section, we explain how to design the optimal compressed sensing aggregation matrix Atg in our iSTAMP framework.

We also discuss the various challenges involved and how we address them.

In the literature of compressed sensing, it has been shown that random observation matrices with i.i.d. Gaussian or random

±1 entries, and sufficient number of rows can achieve small coherence with overwhelmingly high probability. However, it is

a valid question to ask what the optimal observation (i.e. aggregation) matrix is to maximize the performance of CS recovery.

Such a direct optimization approach for designing the optimal observation matrix AOptg , to maximize the performance of CS

recovery technique, is prohibitive due to the complexity of the process [26]. Therefore, to simplify the process of designing the

11

optimal observation matrix other objective functions are considered in the optimization process, while accepting the unavoidable

sacrifice in performance [26].

In [27], it has been demonstrated that by minimizing all off-diagonal elements of the corresponding Gram matrix G = ATg Ag ,

an observation matrix with small coherence can be designed. For this purpose,
∥∥ATg Ag − I∥∥2

F
is minimized using continuous

optimization approaches. The main motivation behind this technique is that minimizing the sum of the squared inner products

of all columns(/atoms) of Ag results in an observation matrix with more orthogonal columns which improve the performance

of the CS recovery process.

Accordingly, here the same strategy is used for designing the flow aggregation matrix. However, to design the optimal

flow aggregation (i.e. observation) matrix, we must note that Openflow switches typically classify the incoming packets (e.g.

forward/measure or drop) based on the longest prefix match against pre-configured TCAM/flow-table entries. As a result, our

aggregation matrix is typically a binary matrix (i.e. aij ∈ {0, 1}). Also, since in [27] the column of the observation matrix is

normalized, that is, {‖aj‖ = 1}nj=1; therefore, in our binary formulation, we consider the diagonal matrix φ, instead, to force

the optimization engine to focus on minimizing the sum of off diagonal elements of the objective function
∥∥ATg Ag − φ∥∥2

F
, and

to control the number of ones’s in each column. Proposition 1 represents lower and upper bounds for our objective function in

Eq.(8). This Proposition shows that the performance of the objective function Eq.(8) is a function of the size of matrix and φ.

Proposition 1: Assume Ag is a real-positive m×n matrix where m < n and φ is a positive diagonal matrix . Then objective

function
∥∥ATg Ag − φ∥∥2

F
is bounded as the following (for complete proof please refer to [20]).

∥∥∥ATg Ag − φ∥∥∥2
F
≥ Tr

[
φ2
]
−mφ2iimax∥∥∥ATg Ag − φ∥∥∥2

F
≤
[
Tr
(
ATg Ag

)
− φ2iimin

]2
+ Tr

[
φ2
]
− φ2iimin

In this paper, we introduce the following generic integer optimization program Eq.(8) to design the optimal aggregation

matrix where the first constraint emphasizes that Ag is a binary matrix. The second constraint controls the redundancy between

aggregated measurements where, in general, redundancy can be achieved by observing a flow at multiple TCAM entries3. The

non-zero entries of diagonal matrix φ is chosen properly by the designer to control the redundancy among measurements. Note

that, Cl and Cu are important parameters that are constrained by routing rules, flow table configurations, and TCAM lookup

limitations.

The third constraint enforces the optimization engine to design an optimal aggregation matrix that is compatible with any

other set of desirable flow aggregation rules denoted by set F where |F| indicates the number of flow aggregation rules.

Realization of F can be the set of rules representing flow aggregation policies or network routing constraints. In practical

implementations, these constraints can be eventually mapped into internal forwarding rules in SDN switches [11] [13]. In

the third constraint, ai: denotes the ith row of the aggregation matrix Ag , and � denotes the matching operator where the

compatibility of ai: with jth rows of F (denoted by Fj) is examined by bit-by-bit comparison. If ai: is compatible with

jth row of F then |ai: �Fj | = 1. Accordingly, in OpenFlow 1.2 and higher that matching against arbitrary bitmasks for IP

addresses is allowed (where bitmasks can be in a given field and need not be adjacent or at the beginning of the field), the

3In fact, this constraint is effective for the distributed implementation of iSTAMP where a flow can be measured by different aggregation rules at different
SDN switches, distributed across the network [13].

12

generated optimal flow aggregation rules can be feasibly configured on TCAM entries.

Considering the fact that Ag is a binary matrix and aij’s are binary variables, we have shown that such a complex, non-

convex and non-linear objective function in Eq.(8) can be reformulated as Eq.(9) that is still a non-linear integer program. To

effectively convert Eq.(9) into a linear integer optimization program we use the trick that each multiplication xy of binary

variables x and y can be linearized by rewriting the multiplication term xy as a new variable z, where z = xy, and considering

three constraints: z ≤ x, z ≤ y and z ≥ x+ y− 1. Accordingly, Eq.(9) is converted to the linear integer optimization program

in Eq.(10) that can be solved using standard integer optimization tools, such as CPLEX, to design the optimal CS aggregation

matrix. Here, to reduce the computational complexity, we have ignored the third constraint in Eq.(8). In Eq.(10), Cj denotes the

set of zj and zi where the corresponding aij satisfies the second constraint in Eq.(8), respectively. Note that, if Cl = Cu = 1,

then the objective function in Eq.(10) is simplified by reducing Ku to mn(n− 1) and removing
∑Kv
i=1 vi; in this case φ = I .

In addition, parameter φ is given, based on desirable redundancy amongst measurements. To justify the performance of binary

optimization framework Eq.(10), we used CPLEX to implement our optimization engine. An example of optimal Ag with size

(m = 4,n = 8) and µ = 0.7066 has been shown in Eq.(7).

Ag4×8 =


1 1 0 0 0 1 1 0

0 1 1 1 0 0 0 0

0 0 1 0 1 1 0 1

1 0 0 1 0 0 0 1

 (7)

minimize
Ag

∥∥∥ATg Ag − φ∥∥∥2
F

= minimize
Ag

Tr[(ATg Ag − φ)2] (8)

s.t.

1© : {aij}
(m,n)
(i,j)=(1,1)

∈ {0, 1}

2© : Cl ≤
m∑
i=1

aij ≤ Cu ∀j = 1, ..., n

3© :

|F|∑
j=1

|ai: �Fj | ≥ 1 ∀i = 1, ...,m

minimize
Ag

∥∥∥ATg Ag − φ∥∥∥2
F

= minimize
Ag

{
m∑
i=1

n∑
j=1

(1− 2φjj)aij+ (9)

m∑
i=1

n∑
j=1

n∑
k=1,k 6=j

aijaik +
m∑
i=1

n∑
j=1

m∑
k=1,k 6=i

aijakj+

m∑
i=1

m∑
j=1,j 6=i

n∑
k=1

n∑
l=1,l 6=k

aikailajkajl +
n∑
j=1

φ2jj}

minimize
Z,U,V


m∑
i=1

n∑
j=1

(1− 2φjj)z(i−1)n+j +
n∑
j=1

φ
2
jj +

Ku∑
i=1

ui +

Kv∑
i=1

vi

 (10)

13

where AT (:) = Z = [z1, ..., zmn], U = [u1, ..., uKu], V = [v1, ..., vKv],

Ku = mn(n− 1) + nm(m− 1) and Kv = m(m− 1)n(n− 1)

s.t.

a) for each multiplication zjzk: ui ≤ zj , ui ≤ zk, ui ≥ 0,

ui ≥ zj + zk − 1

b) for each multiplication zjzkzlzm: vi ≤ zj , vi ≤ zk, vi ≤ zl, vi ≤ zm,

vi ≥ 0, vi ≥ zj + zk + zl + zm − 3

c) Cl ≤
∑
j∈Cj

zj ≤ Cu

d) zi ∈ {0, 1}

A. Challenges in Optimal Aggregation Matrix Design and Solutions

In the previous sections, we explained that it is very hard to directly design the optimal CS observation matrix to maximize

the ultimate performance of NI problems and other metrics must be optimized, instead. Accordingly, we proposed a method for

designing optimal binary observation matrix for network monitoring applications. However, in reality for a switch with a single

TCAM set, the wildcard matching rule in current TCAM lookup technology does not allow a particular flow to be mapped

into more than one TCAM entry in each switch, that is, Cl = Cu = 1. This imposes hard constraints on our optimization

program Eq.(10), which otherwise could have benefited from redundant measurements when there can be multiple ones in

each column and the coherence of the aggregation matrix can be decreased which can potentially leads to a higher estimation

accuracy via CS estimation techniques. On the other hand, the optimal aggregation matrix framework Eq.(8), belongs to the

set of binary combinatorial optimization problems which are NP-Complete. Hence, for large-scale networks the computational

complexity of inputting this problem into a solver and solving it is intractable. Considering these challenges, in Section V we

introduce a new heuristic aggregation matrix which can provide accurate estimates for highly fluctuated TMs. Such a matrix

can be designed using information from other sources.

Among these, making use of auxiliary SNMP link counts, which are readily and reliably available, can improve the

performance of our TM estimation framework. SNMP link-loads are provided using using Y tS = HXt [21] where H is

the routing matrix with low average coherence as there are multiple ones in each column, and with the capability of providing

redundant flow measurements. Accordingly, Eq.(3) can be used for TM estimation where additional aggregated statistics are

used as auxiliary measurements which can significantly improve the estimation accuracy. This approach is compatible with

both of our single-point and multi-point measurement scenarios.

V. ONLINE FLOW IDENTIFICATION AND SAMPLING

The notion of flow sampling here denotes the process of sequential allocation of K out of T entries of TCAM at epoch t to

target flows, which are selected based on the information collected up to that time. The main goal is to adaptively track and

measure the most rewarding(/informative) traffic flows that, if measured accurately, can yield the best improvement of overall

measurement utility (the exact performance metric is dependent on the monitoring application). For this purpose, multi-armed

bandit sequential resource allocation algorithms are used. A classic MAB problem involves a number of independent arms,

14

each of which, when played, offers random reward drawn from a distribution with unknown mean. At each time, a player

chooses a subset of arms to play, aiming to maximize reward or minimize regret over some time horizon Tc. The Restless

Multi-Armed Bandit (RMAB) optimal policies [28] can be applied effectively to our framework for intelligent flow sampling

in dynamic networks where: a) flows are independent; b) the dynamics of flows are not-known, and c) flow sizes can vary

stochastically with time. In general, the optimal policies consists of two phases: exploration or learning phase, in which system

dynamics is learned, and exploitation phase, where the most rewarding flow(s) (i.e. arm(s)) are measured (i.e. played).

In our problem, we would like to identify, track, and measure the K largest flows amongst n flows using K out of T entries

of TCAM to: 1) improve the ability of our optimization techniques in Eq.(2) and Eq.(3) for fine-grained flow estimation and

2) enhance the capability of the monitoring system in heavy hitter identification where heavy hitters are flows with a flow size

larger than a threshold θ. Note that HHI is of particular importance in both network management and security applications. For

a flow sampling strategy, to function effectively and efficiently in dynamic environments and under hard resource monitoring

constraints (where T << n), the duration of the learning phase must be short. This is important because in many applications

measurement intervals τts are long, for example 5-15 minutes (see Table II) which leads to very long learning durations.

Therefore, after a comprehensive survey, we adopted the Upper Confidence Bound (UCB) algorithm in [28] and modified it

based on our application requirements to propose our Modified Upper Confidence Bound algorithm (Alg. 1).

In MUCB algorithm, we modify the original UCB algorithm [28] to choose the K most rewarding flows. For this purpose,

first, the time horizon Tc is determined. Then all T entries of TCAM are used to measure all n incoming flows over
⌈
n
T

⌉
measurement interval and the indices of incoming flows, sorted in descending order, are reported including the indices of K

heaviest flows (Itk) and the indices of flows that must be aggregated (Itg). Accordingly, the direct flow measurement matrix Atk

is defined as Atk(:, Itk) = 1 where : denotes all rows of matrix. In computing flow indices the first term x̄j favors measurement

resources toward flows that are historically larger. In fact, larger flows that are measured more frequently are dominated by

the first term and smaller flows that are observed less frequently are dominated by the second term. To improve the agility of

the algorithm in dynamic environment, for observing a variety of flows, we also modify the original UCB algorithm [28] by

multiplying the first term x̄j by a coefficient α where 0 < α ≤ 1. In this algorithm, the parameters Tc and α can be adjusted

by the user. We also propose the following method in Eq.(11) to use the temporal auto-correlation of flows to compute Tc as:

Tc =
1

n

n∑
j=1

t
R
j
x
(β) and β ≤ 1 (11)

where tRjx(β) is the delay (td) that the auto-correlation of jth flow xj (i.e. Rjx := E[xj(t)xj(t − td)]) drops to βmax(Rjx).

Typically, β is set to 0.5, but smaller β leads to larger Tc. In Theorem 1, we have proved that the total regret using this

algorithm can be bounded, logarithmically if α satisfies a specific convergent condition. In practice, α can be in the interval

(0, 1] without loosing the performance, as we have shown in Section VI through our direct experiment.

Theorem 1: For all n > 1, if policy MUCB is run on n machines having arbitrary reward distributions {Pi}ni=1 ∈ [0, U]

with expected values {νi}ni=1, then, the total expected regret after any number tc of plays is at most:

R̃K(tc) ≤
K∑
j=1

8α
2
U

2
∑

i:ν̃i<ν̃
∗
j

(
log(tc)

∆̃j
i

)
+ (1 + ψ(U,α)) Σj



15

Algorithm 1 Modified Upper Confidence Bound (MUCB)

Input: Time horizon Tc and parameter α.
Output: At each epoch t, the set of sorted indices of incoming flows (It) in descending order where It = Itk

⋃
Itg .

while True do
- Set t = 1, measure all n flows {xj}nj=1 using all T entries of TCAM over

⌈
n
T

⌉
epochs, and set tc = n.

while t < Tc do
- Compute flow indices Itj = αx̄j +

√
2log(tc)
tj(tc)

for all flows j = 1, ..., n where x̄j is the average flow size for jth flow, tj(tc) is the
number of times flow j has been measured upto time tc and tc is the overall number of measurements done so far.
- Sort the set It and report indices in descending order as It = Itk

⋃
Itg .

- Allocate k measurement entries to the k flows with indices in Itk and measure them.
- t = t+ 1, tc = tc +K.

end while
end while

Fig. 3: PeTK for Geant network with different configurations where α = 1 and the average of PeTK is taken over duration Tc, defined in Table II.

where ∆̃j
i := ν̃∗j − ν̃i, ν̃∗j denotes the jth maximum of the set {ν̃i}ni=1, ASj is the set of arms in jth play, Σj =

∑
i∈ASj

∆̃j
i ,

and ψ(U,α) is a bounded function of U and α (for complete proof please refer to App. A).

The MUCB algorithm is simple to implement and the exploration(/learning) phase is very short which is an important factor

in network monitoring applications in dynamic environments and under hard resource constraints. Furthermore, it is effective

for heavy hitter detection in dynamic environments as highly possible large flows are tracked and directly measured; this set

of large flows is indicated by Itk. The performance of this algorithm in selecting the most K heaviest flows is measured by

PeTK := 1
Tc

∑Tc
t=1

et
k where et is the number of errors in selecting K largest flows. Hence, PeTK denotes the probability of

selecting K largest flows using Alg. 1. Figure 3 shows PeTK for the different values of K and T (for a given n) indicating

that Alg. 1 has low probability of error in selecting the heaviest flows.

In MUCB algorithm, the set Itg in Alg.1 arranges other not-directly measured flows in descending order based on their flow

sizes. Consequently, an effective flow aggregation matrix is designed in the following section which is compatible different

optimization techniques.

A. Efficient-Compressed Flow Aggregation in Practice

Now lets suppose the set Itg is given where its elements declare the indices of network flow sizes in descending order.

This is a great source of information that can be used for designing aggregation matrices which are not only effective for

estimating highly fluctuated TMs under hard constraint of limited TCAM sizes but also they are compatible with different

under-determined NI techniques. Accordingly, considering the fact that grouping attributes with similar values can improve

the estimation accuracy of NI techniques, then an efficient aggregation matrix in a compressed form (i.e. with small number

16

Algorithm 2 Exponential Aggregation Technique (EAT)

Input: Aggregation parameters ρ and δ.
Output: Aggregation Matrix Atg .
Initialization: Set ic = 0 and Atg = 0m×n.
for i = m to 1 do

- r =
⌈
ρ(n−K) 1

δi

⌉
+ 1

for j = 1 to r do
- Atg(i, Itg(ic + j)) = 1

end for
- ic = ic + r

end for

Network Date Duration Resolution TM Size (n× Tc)

GEANT [30] 2005-01-08 1 week 15 min. 529 × 672
Abilene [29] 2004-05-01 1 week 5 min. 144 × 2016

Data Center (Univ1) [23] 2010 ≈ 1 hour 1 sec 48(/192) × 3500

TABLE II: Real Datasets under study.

of rows m) can be designed to aggregate n −K flows using m TCAM entries. For this purpose, the following exponential

aggregation algorithm is proposed (Alg. 2) where more measurement resources (TCAM entries) are allocated to the earlier

indices in the set Itg , indicating larger flows. Then, a large number of smaller flows with more stable behaviors are aggregated

using smaller number of TCAM entries. Parameters ρ and δ control the number of flows aggregated per entries which are the

inputs of the algorithm defined by the user, properly. As we show in Section VI, this aggregation technique is effective not

only for estimating highly fluctuated TMs and heavy hitter detection but also for the estimation of the sub-population of small

size flows which is of particular importance in network security applications such as Distributed Denial of Service (DDOS)

attack detection. The estimation accuracy of iSTAMP framework, in general, and this exponential aggregation technique, in

specific, can be significantly improved if we incorporate SNMP link counts into our formulation and use Eq.(3).

VI. iSTAMP PERFORMANCE EVALUATION

In this section, the effectiveness of iSTAMP network measurement and inference framework is justified. For this purpose,

three real networks (Table II) with different configurations are considered. The Abilene [29] and GEANT [30] networks are well

known networks with publicly available traffic traces. The routing matrices HAbilene and HGeant are (30×144) and (74×529)

binary matrices with full row-ranks. To consider a more dynamic environment with highly varying flows, we processed the

publicly available data center packet traces in [23] and randomly chose a subset of flows, which are non-zero over the period

of experiment and they rapidly fluctuate over time/space. We also assumed a Fat-Tree topology where the number of servers

communicating among different racks (nExt) vary and ECMP routing is used between aggregation and core levels. In this

case, flows are defined as traffic between servers in different racks.

Each configuration is defined by choosing an appropriate aggregation matrix and by selecting different values for T and K

and α. These parameters can be defined by the designer of the system based on the prior knowledge/experience and through

a trial and error process. Also, Alg. 1 is used to directly measure the highest possible large flows. In addition, we evaluate

the performance of three different aggregation techniques: 1) Block Aggregation Technique (BAT); 2) Random Aggregation

Technique (RAT), and 3) Exponential Aggregation Technique (EAT).

17

In BAT, m entries of TCAM are equally shared among (n−K) flows where each block contains a set of
⌈
n−K
m

⌉
consecutive

aggregable flows which models the mapping of flows into TCAM entries in many practical cases. RAT is an abstract model that

we used, through a Monte-Carlo process, to show the performance of our measurement framework where the routing/aggregation

structure is not under our control. In EAT, our aggregation method in Alg. 2 is used to efficiently allocate TCAM entries to

flows, and to produce a well compressed form of linear aggregated measurements. We also use different network inference

methods in Eq.(2)-Eq.(3) to verify the compatibility of our framework with a variety of optimization techniques which can

be efficiently solved by existing low-complexity algorithms [14]. In the following, using Eq.(2) for flow estimation based on

aggregated statistics and without Side Information (SI), is denoted by ”w/o SI”. We use ”w/ SI” to denote the case where

SNMP link loads are incorporated into our formulation using Eq.(3).

Eq.(12) defines the metrics used in our performance evaluation. NMSE is a metric that we used to measure the accuracy of

ODF estimation for each configuration. To justify the effectiveness of our framework for HH detection, we first set the threshold

θ as a fraction of the link capacity CL, and then, the average probability of detection (P dHH) and the average probability of

false alarm (P faHH) are computed as in Eq.(12). Given n, these metrics are measured based on two quantities by varying T

and K. First, T/n represents the ratio of the number of TCAM entries, used for both aggregation and direct measurement in

our framework, and the number of flows. Note that low T/n asserts the hard resource constraint regime where a large number

of flows (n) has been represented by T measurements including both per-flow and aggregated flow counts. Thus, T/n also

indicates the Flow Compression Ratio (FCR). Second, K/T represents the ratio of the number of TCAM entries used for

direct measurement and the total number of available TCAM entries.

Furthermore, we measure the effectiveness of our measurement framework in Sub-Population (SP) flow size estimation,

which is of particular importance in some security applications such as DDoS detection. In Eq.(12), SP t denotes the subset of

Itg where X(Itg) < θl and SP tl denotes the lth disjoint subset of SP t where the sum of flows in SP tl can be large (note that

θl < θ). Also, πt0 and πt1 are prior probabilities which are computed experimentally. In our Monte-Carlo evaluation process,

|SP tl | is randomly chosen from interval [αl(n−K) αu(n−K)] where parameters αl and αu are selected properly to cover

a wide range of SP sizes. Due to space limitation, we also summarize our results by averaging our performance criteria in

Eq.(12) over different choices of T and K (e.g. NMSEAvg).

18

NMSE =
1

Tc

Tc∑
t=1

∥∥∥Xt − X̂t∥∥∥
2

‖Xt‖2

P
d
HH =

1

Tc

Tc∑
t=1

Pr
(
X̂
t ≥ θ|Xt ≥ θ

)

P
fa
HH =

1

Tc

Tc∑
t=1

Pr
(
X̂t ≥ θ|Xt < θ

)

SPE =
1

Tc

Tc∑
t=1

1

|SP t|
∑
l∈SPt

∣∣∣∣∥∥∥∥X̂tSPt
l

∥∥∥∥
2

−
∥∥∥∥XtSPt

l

∥∥∥∥
2

∣∣∣∣∥∥∥∥XtSPt
l

∥∥∥∥
2

P
d
SP =

1

Tc

Tc∑
t=1

π
t
1Pr

(∥∥∥X̂tSPt∥∥∥
2
≥ θ|

∥∥∥XtSPt∥∥∥
2
≥ θ
)

+
1

Tc

Tc∑
t=1

π
t
0Pr

(∥∥∥X̂tSPt∥∥∥
2
≤ θ|

∥∥∥XtSPt∥∥∥
2
≤ θ
)

P
fa
SP =

1

Tc

Tc∑
t=1

Pr
(∥∥∥X̂tSPt∥∥∥

2
≥ θ|

∥∥∥XtSPt∥∥∥
2
< θ
)

(12)

A. iSTAMP Performance on ISP Networks

Figure 4 shows the NMSE for different configurations on Geant network where CS inference techniques Eq.(2) and Eq.(3)

are used for flow size estimation. The first plot in figure 4 justifies our intuition that direct measurement of K heaviest flows

in iSTAMP can significantly improve the estimation accuracy compared to the case where K flows are randomly selected

for direct per-flow measurement and its performance is evaluated through the Monte-Carlo simulation. In the absence of side

information in figure 4, a better accuracy is achieved at higher K/T ’s. However, in general, the optimal choice for the number

of direct flow measurements K which yields to the minimum NMSE (indicated by solid black points) is obtained at K/T < 1.

In other words, the best accuracy is often achieved by allocating at least part of the TCAM entries for direct measurement and

the remaining for flow aggregation. Among these, EAT can enhance the estimation accuracy, for example, NMSEBATAvg = 0.38

and NMSEEATAvg = 0.29; this improvement is significantly higher at low T/n’s.

As it is shown in figure 4, incorporating side information (i.e. SNMP link counts) and using Eq.(3) can remarkably improve the

precision of the estimation using BAT, RAT and EAT methods. In this case, EAT still can improve the accuracy (NMSEBATAvg =

0.19 and NMSEEATAvg = 0.16); however, since aggregated measurements are interpreted as side information in Eq.(3), the

difference between BAT and EAT is low.

In addition, although increasing T/n improves the accuracy, the slope of the improvement is slow after some near-optimal

FCR (e.g. T/n ≈ 0.1). On the other hand, Figure 5 shows the normalized error in sub-population size estimation, indicated

by SPE in Eq.(12), in the presence of SNMP side informations. This figure represents that EAT is also effective in SP size

estimation and, in general, a good performance is achieved when part of TCAM entries are used for measuring K flows,

directly. Also, note that, the slope of the improvement is slow after some optimal FCR (= T/n). Furthermore, Figure 6

represents the effectiveness of iSTAMP for reliably detecting both heavy hitters and heavy sub-populations. Among these, a

high probability of detection and low probability of false alarms are achieved for HH detection where threshold θ is set to

10% of link capacity CL = 10Mpbs. This figure also shows that the detection capability for heavy sub-pupolations (with

θl = 0.01CL) is still high for many choices of T and K. Under very hard resource constraints, although the sub-population

detection performance is lower, it is still acceptable and it improves, rapidly.

19

Fig. 4: NMSE for Geant Net. with different configurations using Eq.(2)-Eq.(3) with (p, q, λ)=(2,1,0.01), α = 1, ρ = 1 and δ = 1.975. Note that, using
only SNMP link-loads NMSE = 0.6153 is provided.

Fig. 5: SPE for Geant Network with different configurations where α = 1, (αl, αu)=(0.01,0.1), ρ = 1 and δ = 1.975.

Therefore, iSTAMP achieves high estimation accuracy using a small fraction of available TCAM entries at low FCRs and

using different aggregation techniques. Hence, it can produce well-compressed aggregated flow measurements and remarkably

decrease the required storage capacity and reduce the communication overhead between control and data planes. iSTAMP is

also effective for highly reliable heavy hitter and heavy SP detection which is of particular importance in different networking

applications. Table III summarizes the average performances for Abilene network. These results re-emphasize the flexibility

and capability of iSTAMP for different network monitoring applications under hard resource constraints. Note that, for both

Geant and Abilene networks, Tc is set to the duration of the data in Table II (i.e. small β in Eq.(11)) which is the worst case

scenario. Better accuracy can be achieved with smaller Tc’s.

Fig. 6: P d and P fa in Geant Network with different configurations for both HH and SP detection where (αl, αu)=(0.01,0.1), ρ = 1 and δ = 1.975.

20

Aggregation Technique NMSEAvg (w/o SI) P̄dHH (w/o SI) P̄ faHH (w/o SI)

BAT 0.3857 0.7762 0.0696
RAT 0.5239 0.4508 0.0900
EAT 0.3602 0.7282 0.0496

Aggregation Technique NMSEAvg (w/ SI) P̄dHH (w/ SI) P̄ faHH (w/ SI)

BAT 0.1663 0.8473 0.0396
RAT 0.2578 0.7361 0.0571
EAT 0.1762 0.8173 0.0341

Aggregation Technique SPEAvg (w/o SI) P̄dSP (w/o SI) P̄ faSP (w/o SI)

BAT 0.4943 0.7960 0.1360

Aggregation Technique SPEAvg (w/ SI) P̄dSP (w/ SI) P̄ faSP (w/ SI)

BAT 0.1765 0.9019 0.0086

TABLE III: The average performance for Abilene network where (p,q,λ)=(∞,0,0) in Eq.(2)-Eq.(3), α = 1, θ = 0.01CL, θl = 0.0025CL,
(αl, αu)=(0.01,0.2), CL = 1Mbps, ρ = 1 and δ = 5.Note that, using only SNMP link-loads NMSE = 0.5953 is provided.

Fig. 7: NMSE, P dHH and P faHH for Data Center with different configurations where α varies and β = 0 and (p, q, λ)=(2,0,0) in Eq.3.

B. iSTAMP Performance in Data Center (DC) Environment

In this section, the performance of our measurement framework under very hard resource constraint of TCAM sizes (e.g.

example T/n = 0.0625) in a data center environment with highly fluctuating flows is evaluated. We consider both the

absence/presence of SNMP side information, that is, using Eq.(2) and Eq.(3) where (p, q, λ)=(2,0,0). Here, the aggregation

matrix is a given block aggregation matrix and routing matrix H is computed for the fat-tree topology assuming the ECMP

routing between aggregation and core level [23]. As it was explained in Section.V, in dynamic environments we need to explore

different flows more frequently and, also, repeatedly learn the behavior of flows. For this purpose, proper values for α and β

in our Alg. 1 are chosen; note that smaller β leads to larger Tc. Figure 7 shows the performance of iSTAMP framework for

our two main applications in a highly dynamic Data Center environment. In fact, it shows that decreasing α can improve the

accuracy of flow size estimation for different values of T/n’s. These results re-emphasize that there is an optimal K for direct

measurements; therefore, our hybrid technique for providing aggregated and direct flow measurements is effective. Figure 8

shows the effect of different choices of Tc using different values of β in Eq.(11) when nExt vary. Here, (β = 0.5, nExt = 2),

(β = 0.5, nExt = 4), (β = 0.2, nExt = 2) and (β = 0.2, nExt = 4) correspond to Tc = 186(s), Tc = 260(s), Tc = 1051(s)

and Tc = 1085(s), respectively. Also, nExt = 2 and nExt = 4 yields the number of flows n = 48 and n = 192. It is clear that,

even in a very hard resource constraint (T/n << 1), our measurement framework can obtain a good estimation accuracy and

detecting capability by choosing optimum K/T . In practice, the designer of the system must appropriately set the controlling

parameters T , K, α and β based on the history of the system and the required performances through a trial and error process.

21

Fig. 8: NMSE, P dHH and P faHH for Data Center with different configurations where (p, q, λ)=(2,0,0) in Eq.3 and α, β (i.e. Tc) and nExt vary.

Algorithm Precision (%) Recall (%) # of TCAM used

OTS Alg. θ = 0.05CL 87.17 80.22 137
iSTAMP θ = 0.05CL 60.56 64.43 112
OTS Alg. θ = 0.10CL 89.50 68.19 105
iSTAMP θ = 0.10CL 74.82 75.74 112

TABLE IV: HHH detection using OTS and iSTAMP algorithms.

C. Hierarchical Heavy Hitter Identification using iSTAMP

Hierarchical heavy hitter are the longest prefixes that includes a high volume of traffic without considering any HHH

descendants in each interval [7]. A novel SDN based approach for HHH detection in [7], proposes an Online Tree Search

(OTS) algorithm for identifying HHHs. To compare the performance of this algorithm with iSTAMP, we run an offline algorithm

over the real traffic trace of Geant network for all leaf nodes in the trie. Similarly, we identify all possible HHHs by running

the same offline algorithm in each interval over TM estimates computed by iSTAMP framework. In addition, we run OTS

algorithm in [7] over the whole duration of the traffic. Table IV shows the precision and recall (as defined in [7]) for these

two algorithms indicating that, compared to OTS, iSTAMP can also provide a good performance for detecting HHHs (i.e. high

precision and recall) with less or very close number of TCAM entries. Note that iSTAMP is a general framework that can

provide the complete visibility of all flows over long time-horizon and it is useful in different applications.

VII. iSTAMP: A MININET IMPLEMENTATION

To show the feasibility and effectiveness of iSTAMP, we have implemented a prototype of iSTAMP in mininet which is a

network testbed for developing OpenFlow and SDN experiments. Figure 9 shows the system architecture diagram of iSTAMP

where we create a centralized configuration of Geant Network in mininet including 23 nodes (i.e. hosts), with distinct IP

addresses, connected to a single SDN enabled switch. These nodes send IP packets into the network (using scapy package in

python) to reproduce the real Geant traffic, according to Table II. The controller, which has been implemented using POX,

runs the iSTAMP algorithm. The main modules of iSTAMP controller are 1) the modules for interacting with the switch to

reset, configure and install the routing and measurement rules in flow-tables; 2) the modules for periodically collecting flow

statistics at predetermined time-intervals, and 3) the modules for applying network inference technique, and evaluating and

demonstrating the results.

In this implementation, without loss of generality and for demonstrating purposes, a flow is defined as 3-tuple

〈src IP, dst IP, protocol〉 and each TCAM (i.e. flow-table) entry is constructed to provide desired per-flow and/or aggregated

22

Fig. 9: System architecture diagram of iSTAMP in mininet and a snapshot of centralized iSTAMP GUI (m =92, K =20).

flow measurements. Incoming packets are matched against TCAM rules and forwarded to a specific output port, determined

by the action field for each rule. At the time of this implementation, mininet did not support OpenFlow 1.2 (or higher);

consequently, packet classification performed based on the longest IP-prefix matching. Therefore, 92 destination-based routing

rules (i.e. m =92) are configured on the Open vSwitch. That is, Atg = H where H is the routing matrix. Accordingly, the

iSTAMP framework collected both aggregated and per-flow statistics (at one minute intervals) and solved the network inference

Eq.(2) using CVXPY package where At =

 Atg

Atk

, and Atg denotes routing matrix H excluding Atk, which indicates flows

that must be directly measured. Accordingly, the performance of iSTAMP is computed by evaluating NMSE and PeTK .

Table V shows the performance of centralized implementation of iSTAMP framework in mininet indicating that estimation

accuracy can be improved by increasing K. This centralized iSTAMP has been implemented using more than 2000 lines

of codes in Python; further results and details of the implementation are available in [20]. These results, along with an

implementation of centralized iSTAMP on the SDN switch HP2920, have been successfully demonstrated in the 21th GENI

Engineering Conference (GEC 21). Figure 9 shows a snapshot of the GUI designed for this demonstration.

VIII. CONCLUSION

We introduced iSTAMP, an intelligent framework for measuring and inferring network flow sizes in software defined networks.

Our philosophy in developing iSTAMP was that under hard resource constraint of measurement resources, efficient and scalable

network inference techniques must be effectively utilized to provide the fine-grained estimate of network flows. Using the SDN

flexibility, we showed that: 1) a global view of available measurement resources in a network can be achieved which can be used

to effectively allocate TCAM/flow-table entries for both aggregated and per-flow measurements that are required for network

inference, and 2) the behavior of network flows in dynamic environments can be learned to measure the most informative

flows at the right time and place. Therefore, based on the application, it is essential to use appropriate network inference and

learning algorithms. We showed the effectiveness of iSTAMP for different applications, through extensive evaluations using

Perf. metric K = 0 K = 20 K = 30 K = 50 K = 75 K = 100
NMSE 0.8785 0.3003 0.1889 0.1226 0.0763 0.0575
PdHH 0.1179 0.5973 0.8790 0.9814 0.9852 0.9936
P faHH 0.8821 0.4027 0.1210 0.0186 0.0148 0.0064

TABLE V: iSTAMP performance where m = 92, and K varies (T = m+K).

23

real traffic traces and network topologies. By implementing a prototype of iSTAMP, we also demonstrated the feasibility and

effectiveness of iSTAMP for fine-grained TM estimation.

IX. ACKNOWLEDGMENT

This work is supported by National Science Foundation CNS-1321115 grant and HP Labs Innovation Research Award. Also,

we would like to thank Shiliang Tang for implementing our integer optimization problem in CPLEX.

APPENDIX: A

Considering the original UCB1 algorithm [28], it can be shown that:

Lemma 1: For all n > 1, if policy UCB1 is run on n machines having reward distributions {Pi}ni=1 ∈ [0, U] with mean {νi}ni=1

where the average reward of jth arm is computed as ¯̃xj = α 1
tj(tc)

∑tc
t=1 xj(t) with 0 < α < 2

U
√

3
. Then, the regret after tc

number of plays is bounded as:

R(tc) ≤ 8α
2
U

2
∑

i:ν̃i<ν̃
∗

(
ln(tc)

∆̃i

)
+ (1 + ψ(U,α))

 n∑
j=1

∆̃j

 (13)

where ∆̃i := ν̃∗ − ν̃i, ν̃∗ = max
1≤j≤n

ν̃j and ψ(U,α) is a bounded function of U and α (please refer to [20] for complete proof).

Proof of Theorem 1: Let Q∗K denotes the set of indicies of the K arms with highest mean and Qn−K = {1, ..., n}\Q∗K . Then,

arm k ∈ Qn−K is selected if the index of kth arm in MUCB policy is greater than all best arms Q∗K ; that is, {Ik > Ii}i∈Q∗K .

Therefore, the total regret of playing MUCB strategy and sampling K arms with highest indicies is not worse than playing K

simultaneous MAB plays where, in the jth play, the arm with the highest index in the (j − 1)th play has been removed from

the available set of arms. The set of arms for jth play ASj (j = 1, ...,K) are defined as:

1
thMAB play (j=1) : A

S
1 = {1, ..., n}

2
thMAB play (j=2) : A

S
2 =

{1, ..., n} \
j−1⋃
l=1

Sl

 where

S1 = {the index of the arm with the highest index in (j − 1)
st play}

...

K
thMAB play (j=K) : A

S
K =

{1, ..., n} \
j−1⋃
l=1

Sl

 where

SK−1 = {the index of the arm with the highest index in (K − 1)
st play}

According to the Lemma 1, the expected regret for the jth play is bounded as:

8α
2
U

2
∑

i:ν̃i<ν̃
∗
j

(
ln(tjc)

∆̃j
i

)
+ (1 + ψ(U,α))

 ∑
i∈AS

j

∆̃
j
i



where tjc is the overall number of plays for the jth play. Considering the facts that tjc ≤ tc and ∆̃j+1
i ≤ ∆̃j

i ; therefore, the

total expected regret can be bounded as:

R̃K(tc) ≤
K∑
j=1

8α
2
U

2
∑

i:ν̃i<ν̃
∗
j

(
ln(tc)

∆̃j
i

)
+ (1 + ψ(U,α)) Σj

 �

24

REFERENCES

[1] D. Medhi, Network Routing: Algorithms, Protocols, and Architectures. Morgan Kaufmann, 2007.

[2] M. Mardani and G. Giannakis, “Estimating traffic and anomaly maps via network tomography,” IEEE/ACM Transactions on Networking, vol. 24, 2016.

[3] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical methods for anomaly detection,” ACM SIGCOMM, 2005.

[4] A. Kumar and J. Xu, “Sketch guided sampling - using on-line estimates of flow size for adaptive data collection,” IEEE INFOCOM, 2006.

[5] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffic matrix estimation:existing techniques and new directions,” ACM SIGCOMM,

2002.

[6] Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust traffic matrix estimation with imperfect information: Making use of multiple data sources,” ACM

SIGMETRICS, 2006.

[7] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic aggregates on commodity switches,” ACM Hot-ICE, 2011.

[8] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opensketch,” ACM NSDI, 2013.

[9] J. Ligatti, J. Kuhn, and C. Gage, “A packet-classification algorithm for arbitrary bitmask rules, with automatic time-space tradeoffs,” IEEE ICCCN, 2010.

[10] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent sdn based traffic (de)aggregation and measurement paradigm (istamp),” IEEE INFOCOM,

2014.

[11] Y. Gong, X. Wang, M. Malboubi, S. Wang, S. Xu, and C.-N. Chuah, “Towards accurate online traffic matrix estimation in software-defined networks,”

ACM SOSR, 2015.

[12] M. Malboubi, Y. Gong, W. Xiong, C.-N. Chuah, and P. Sharma, “Software defined network inference with passive/active evolutionary-optimal probing

(sniper),” IEEE ICCCN, 2015.

[13] C. Liu, M. Malboubi, and C.-N. Chuah, “Openmeasure: Adaptive flow measurement and inference with online learning in sdn,” IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 9th IEEE Global Internet Symposium.

[14] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge Univ. Press, 2012.

[15] R. M, Y. Zhang, W. Willinger, and L. Qiu, “Spatio-temporal compressive sensing and internet traffic matrices,” IEEE/ACM Trans. on Networking, vol. 20,

pp. 662–676, 2012.

[16] L. Yuan, C.-N. Chuah, and P. Mohapatra, “Progme: towards programmable network measurement,” IEEE/ACM Trans. on Networking, vol. 19, no. 1,

2011.

[17] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: Dynamic resource allocation for software-defined measurement,” ACM SIGCOMM, 2014.

[18] Y. Zhang, “An adaptive flow counting method for anomaly detection in sdn,” ACM CoNEXT, 2013.

[19] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix estimator for openflow networks,” 2010.

[20] M. Malboubi, S.-M. Peng, P. Sharma, and C.-N. Chuah, “Intelligent sdn based traffic (de)aggregation and measurement paradigm (istamp): Technical

report,” tech. rep., 2013. Contact the author(s) or at: http://web.ece.ucdavis.edu/cerl/techreports/2013-3/.

[21] M. Malboubi, C. Vu, C.-N. Chuah, and P. Sharma, “Decentralizing network inference problems with multiple-description fusion estimation (mdfe),”

IEEE INFOCOM, April, 2013.

[22] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained traffic engineering for data centers,” ACM CoNEXT, 2011.

[23] D. M. T. Benson, A. Akella, “Network traffic characteristics of data centers in the wild,” ACM IMC, 2010. Data Center Data is Available At:

http://pages.cs.wisc.edu/∼tbenson/IMC10 Data.html.

[24] S. Sarvotham, D. Baron, and R. Baraniuk, “Measurements vs. bits: Compressed sensing meets information theory,” Allerton Conf. on Communication,

Control, and Computing, Sep, 2006.

[25] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Salamatian, and C. Diot, “A pragmatic definition of elephants in internet backbone traffic,”

ACM SIGCOMM, 2002.

[26] M. Elad, “Optimized projections for compressed sensing,” IEEE Trans. on Signal Processing, vol. 55(12), pp. 5695–5702, 2007.

[27] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On optimization of the measurement matrix for compressive sensing,” IEEE EURASIP,

2010.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine learning, vol. 47, no. 2, 2002.

[29] “Abilene traffic.” www.cs.utexas.edu/ yzhang/research/AbileneTM.

[30] “Geant network:.” http://totem.info.ucl.ac.be/dataset.html.

25

Mehdi Malboubi received his PhD in Electrical Engineering from the University of California, Davis, in 2015. His

main research interests include networking, communications, signal/image processing, machine learning/intelligence, and data

analysis/mining. His current researches include cloud computing, software defined networking, internet of things, and 5th

generation of mobile/wireless networks.

Shu Ming Peng is currently a Senior Product Development Engineer at Verizon. Her passion lies in computer networking,

microservices and distributed cloud computing. She completed her MS degree at the University of California at Davis in March

2015. Her major is Electrical and Computer Engineering.

Puneet Sharma is Head of Networked Systems Group at Hewlett Packard Labs. He received his PhD in Computer Science

from the University of Southern California and his B.Tech. from Indian Institute of Technology (IIT) Delhi. He has published

60+ research and has been granted 30+ US patents. He is an IEEE Fellow and a Distinguished Scientist of ACM.

Chen-Nee Chuah is a Professor in Electrical and Computer Engineering at the University of California, Davis. She received

her Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley. She is a Fellow of

the IEEE and an ACM Distinguished Scientist. Her research interests include Internet measurements, network management,

security detection, digital healthcare, and intelligent transportation systems.

iSTAMP: an intelligent framework for measuring and inferring network flow

sizes in software defined networks.

