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2 Outline

Additive: A Motivating & Challenging Technology

Image Segmentation Toolbox

3D Quantification Metrics

3 On-going Studies in Additive

In-Situ Defect Detection for Powder Bed Fusion
• in-situ characterization

• global post mortem process : structure relationship

High-Throughput Mechanical Testing
• ex-situ characterization
• global post mortem structure : properties relationship

• S andia's 3rd Fracture Challenge
• in-situ characterization

• local post mortem structure : performance relationship

Summary



3 I Additive Manufacturing —A Motivating and Challenging Technology
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4 I Additive Manufacturing —A Motivating and Challenging Technology

99

e

8: 20
w
>
+7, 10
fts

5
E=
u

Strain to Failure, o/o

1
250

Generation 2 HTT
AM Geometry

1 column x 25 rows
25 tensile dog bones per build

1 mm x 1 mm tensile gage section
Internally fabricated by SNL

300 350 400 450 500

Yield Stress, MPa
1



5  Image Processing

Images must be properly prepared for three-dimensional reconstruction and
porosity analysis by:

Pre-processing to improve image quality, remove extraneous data, and accentuate features
of interest.

Segmentation to create a binary image format. Associates individual pixels with either
material or voids.

Pre-Processing Feature Identification

Raw Data Image Preparation Image Processing Segmentation



6 Image Processing Toolbox

Over 20 image processing and three-dimensional analysis scripts created. Each is fully customizable and adaptable for

different data sets. These scripts allow automated, batch processing necessary for organization and analysis of big data.

Image preparation (6)

Automated image

preparation scripts:

• Rotations

• Cropping

• Image selection and

renaming

• Image alignment

procedures

• Region of interest

definition

• Image noise

reduction

File organization:

• Creates uniform file

locations.

• Reports meta-data

Matlab# Dream3d

Fiji/Imagej

Image Processing (5)

Normalizing image intensity:

• Bimodal histogram

analysis. Normalizes

image intensity
throughout an image

stack.

Image smoothing:

• Three dimensional

smoothing filters with

customizable options.

Advanced filtering:

• Removes uneven

background intensity

while preserving local
image features

Matlab# Dream3d
z/
/

Segmentation (4)

Global threshold:

• Multiple threshold

values can be selected

and compared.
• Different segmentations

can be combined.

Local threshold:

• Adapts to local image

criteria. Accepts custom

or established threshold

methods.

• Full customization of

local search areas and

paths.

• Allows baseline filtering.

Matlab4,

3D Reconstruction (8)

Reconstruction:

• Interactive 3D

visualizations.

• Create flythrough

movies and rendered

images.

Quantitative analysis:

• Individual features of

interest and statistical

distributions.

• Selectively analyze

certain regions or

features.

• Plotting and

visualization of

statistical measures.

Matlab# IDL



7 Assessment Metrics — Scalar
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Characterize individual bodies:

0 Measure volume by counting
voxels

0 Calculate equivalent spherical
diameters



8 Assessment Metrics — Relational

First order
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9 Assessment Metrics — Contextual

First order
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o Fit shapes to voids. Find aspect
ratios and shape parameters

. Measure orientation of voids

Ellipse fit



10  Effects of Segmentation

Improper segmentation will adversely affect

results, but by how much?

Original image

Poor

Segmentation

Overly

Conservative

Overly

Ambitious

Neighboring Voxel Searching

1D: 2 neighbors

M-1
zA

2D: 4 neighbors

MEM

1 voxel •

3D: 6 neighbors 26 neighbors
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3D analysis is strongly influence by:

• Segmentation decisions

Mechanical

Serial -

Sectioning

r

Mechanical

Serial -

Sectioning

• Image acquisition method and resolution

• Minimum detectable volume (voxels)

• Voxel neighbor scheme
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12 n-Process Thermal Characterization
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1 3 Multi-Modal Data for Defect Identification

Intentional and unintentional voiding is identifiable via in-situ

thermal imaging for powder bed fusion, however variation in

resolution between imaging techniques present challenges in

one-to-one correspondence with µCT and other post-
mortem techniques
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1 4  Multi-Modal Data for Defect Characterization

2D Planar Views

Design µCT Thermal

_ 3D Reconstructions
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Calculated void volumes from AM

build design, µCT characterization
and thermal imaging for each

intentional defect

In all cases the designed void volume
is larger than the result reported by
µCT which is larger than the recorded

thermal indicator



15 Defect Shape Approximations
150

How well do the intentional defects compare to their

8 1 oo

Error estimations are calculated based on differences
between the designed void volume and the volume

measured by: 50

1. Cuboidal fit
2. Ellipsoidal fit and

Direct voxel count from 1.1CT data

designed shape?

2 3 4 5 6 7 8

Hole Number

9

Cuboidal fit Ellipsoidal fit Voxel Count



16 1

HIGH THROUGHPUT
MECHANICAL TESTING IN

ADDITIVE BUILDS



17 Additive Manufacturing —A Motivating and Challenging Technology
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Quantifying mean, outlier &
statistical probabilities of
performance

Broad variability in strain to
failure for AM vs.
conventionally wrought

How do we leverage our
understanding of
performance to inform
our predictions?
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18 Fractography — 17-4 PH Stainless Steel

Strain-to-Failure: 10.1%

• -6 area% of fracture surface
contains lack-of-fusion defects

• Partial shear lip formation

Boyce, et al., Adv. Engr. Mat. vol. 19 (2017) pp. 1-10

o
Strain-to-Failure: 1.8%

• -22 area% of fracture surface
contains lack-of-fusion defects

• Gross defects primarily all
internal

• No shear lip formation—
macroscopically brittle failure



19 µ-Computed Tomography

North Star Imaging,
X50 XViewCT Cabinet System

YXLON Demountable Microfocus Tube
(10-225kV)

Nikon Avonix M2 225/450 kV
Helical Scanner

r) Sandia National laboratories

Gen 1
µCT approach

7-10 vtrn per voxel edge
defect threshold > 20µm ESD

- 60 MB per dogbone (image stack)
7+ GB for µcT of entire build group

operating at 220kV
Varian 2520V flat panel detector

Gen 2
µCT approach

14.9 vim per voxel edge
defect threshold > 26µrn ESD

- 70 MB per dogbone (image stack)
1.75 GB for vtcT of entire build

group
operating at 350kV

Perkin Elmer 1611, 100µrn detector



20 Global Void Projections

A

D

E

XY-projections of voids throughout build (top-down view through each gauge
region)

Each square represents a single specimen within its as-built location. Green lines
highlight long range order of void absence across specimens throughout the build
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21
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22 Global Mechanical Performance
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23 Global Correlations with Yield Strength
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24 M ulti va r i at e Regression
In relation to Y.S.

No. of
Descriptors

R2
No. of
Defects
(N)

Avg.
Defect
Volume

(Vavg.)

Avg. Equivalent
Spherical
Diameter
(ESDavg.)

Total Pore
Volume
(Vt0t)

Maxi m u m
Pore Volume

(Vmax)

Average Nearest
Neighbor
Distance
(NND„g.)

Maximum Cross-
Sectional Area

Reduction
(CSAredux )

E* 1

1 .398 X

E* 2 .548 X X

2 .542 X X

.579 X X

.579 X

3 X

3 X X

E* 4

4 .594 X

.604 X X

.603 X

X X X

5 X X

5 X X X X

6 .604 X X X X X X

6 .604

.604

X X X X X X

7 X X X X X X X

ays = 1132 - 0.5(N) R2- 0.5

ays = 835 - 0.382 (N) + 6.74 (ESDavg.) R2- 0.55

uys = 963 - 0.431 (N) + 5.33 (ESDavg.) + 3132 (Vtot) - 0.005 (CSAredux) R2- 0.6
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SANDIA'S 3RD FRACTURE
CHALLENGE ON ADDITIVE

METAL



26 Sandia Fracture Challenge

Can we correlate intentional
void metrics with mechanical
test data in additively
manufactured metal?
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The 3rd Sandia Fracture
Challenge: Predictions of

ductile fracture in additively
manufactured metal

Lead Author: Sharlotte L.B. Kramer

Side channels

O

3D reconstruction of the gauge region of a

SFC3 tensile dogbone. The solid material gauge

section is shown at left and the internal

channels and porosity are shown at right).



27 Sandia Fracture Challenge
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3D characterizations were reconstructed for seven SFC3 tensile dogbones imaged
using X-ray microcomputed tomography

Global void metrics throughout the gauge region of each specimen were examined in
relation to mechanical performance in uniaxial tension.

No correlation
were observed to

exist between
global void metrics

and overall
mechanical

performance.
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R1

Initiation site

Cross-section of one SFC3 specimen showing
crack initiation and propagation are currently
being examined

Focus of interrupted tensile test is to map in 3D
cracks initiation and propagation.

Each sample provides a 4 locations for crack
initiation

I

s
Pre-test Increasing strain

 ►

o

R4

Failure

Failure
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Pre-test Increasing strain

Two voids located near the

crack initiation site

o

Failure
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Pre-test Increasing strain

Crack initiates and

consumes void 1

 ►

o

Failure
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Pre-test Increasing strain

o

Failure
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Pre-test Increasing strain

o

Failure
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Pre-test

Crack initiates

. at this corner

 ►
Pre-test Increasing strain

Expanded Crack volume at last step before failure

Failure



35 Summary (3

While image processing has been a focus of considerable effort
in the materials community, the sensitivity and impact of our
segmentation decisions has not been routinely documented along
with our results. Perhaps it should be.

- Multi-modal data holds significant promise for 3d studies
however multiple measures of congruence are useful to resolve
scale variations or inherent differences in data types

It can be challenging to relate global or aggregate defect metrics
to large-scale material performance in high ductility AM materials.
However, 3D techniques already show promise for identification
of localized failure modes even in AM metallic systems possessing
high ductility 1
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38 3D Reconstruction of Pore Defects

3D µCT surface render
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39 Defect Characterization
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Ultimate Tensile Strength (MPa)
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Yield Stress (MPa) 1.00
Unloading Modulus (GPa) 0.72 1.00

Ultimate Tensile Strength (MPa) 0.79 0.83 1.00
Elongation to Failure (%) 0.27 0.24 0.58 1.00

Ductility (%) 0.11 0.12 0.45 0.91 1.00
Area (mm

Power (% max)

-0.75 -0.63 -0.50 0.09 0.22

0.23 0.19 0.51 0.74 s.•:

Velocity 0.59 0.38 0.27 -0.08 -0.24
Hatch Pattern 0.26 0.15 0.06 0.06 0.07

Density 0.27
0.49
0.32

38 0.620.68 0.72
Defects / Unit Length (mm-l)

0.24
0.56
0.11

0.48
0.06

0.39
0.27Avg. Defect Volume (um3)

Avg. ESD (um) 0.14 0.25 -0.06 -0.14 0.08
Total Defect Volume (voxels) 0.42 0.29 0.28 0.21 0.35
Volume of Dogbone (voxels) 0.11 -0.58 0.17 0.38 0.30

Defect Vol. Fract. - sample (%) 0.41 0.31 0.27 0.18 0.33
Defect Vol. Fract. - gage (%) 0.42 0.29 0.28 0.21 0.35

o

Material
Properties

Processing
Parameters

Defect
Structure

• UTS, elongation Et ductility exhibit notable correlations (- 0.5+) with structure metrics such as density and pores / unit length.
• Likewise, UTS, elongation Et ductility exhibit higher correlation (- 0.5 - 0.7+) with processing parameters such as; laser

power.
• Comparable relations are seen for scan velocity's impact on YS.


