
Sandia
National
Laboratories

Exceptional

service

in the

national

interest

Sandia
National
Laboratories

Quantum Optimization
Algorithms

Ojas Parekh

with

Sevag Gharibian and Ciaran Ryan-Anderson

broduer c:ir-ldia team.

Andrew Baczewski, Matthew Grace, Kenneth

Rudinger, Mohan Sarovar, Jaimie Stephens

CIS External Review 2018

U.S. DEPARTMENT OF 1111 .W ,C"hVt4

ENERGY //V L' / 11
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

Unclassified Unlimited e ease SA

SAND2018-6199PE



Why quantum algorithms?

• Potential power of quantum resources is too great to ignore
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• Bold science: our insights into the unique advantages quantum resources
for discrete optimization can shape future quantum systems and
applications. Quantum perspective has inspired new classical algorithms!

• Quantum algorithms to complement, validate, and leverage Sandia's
world-class efforts in quantum hardware. need for quantum applications
and algorithms that may be executed on near-term quantum systems.
We identify such applications in discrete optimization. Complements
quantum testbed efforts.

• Increased external funding agency interest in novel quantum applications
and techniques
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State of quantum "speedups"

• Unproven exponential speedup:
Shor's quantum factorization algorithm

• Provable modest speedup:
Grover's quantum search algorithm

• Provable exponential resource advantage in specialized
models of computation:
Query and communication complexity
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Limited bag of tricks for speedups
50+ algorithms: http://math.nist.gov/quantum/zoo

Phase Estimation (ca. 1994)

• Factoring

• Quantum chemistry

• Linear systems

• Topological invariants

Hamiltonian Simulation (ca. 1996)

• Quantum chemistry

• Linear systems

• Maze solving

Amplitude Amplification (ca. 1996)

Sandia
National
Laboratories

• Unordered search

• Graph/network properties

• Data collision problems

• Matrix product verification

Quantum Walk (ca. 2002)

• Boolean formula evaluation

• Spatial search

• Quantum chemistry

New quantum algorithmic approaches are desperately needed!
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Quantum Approximation Algorithms:
Better instead of just faster

Motivation. hard to efficiently find optimal
solutions for NP-complete optimization problems,
even for quantum computers
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Approach: an approximation algorithm efficiently

E 

produces a near-optimal solution with a

8- mathematically provable bound on quality

J

Innovation: quantum approximation algorithms (QAA) direct quantum
resources towards higher-quality solutions instead of faster running times,
sidestepping barriers to quantum speedups



Approximation Algorithms:

Rigorous bounds on performance
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A /3-approximation algorithm runs in polynomial time, and for any instance /,
delivers a solution such that:

Cost(Solutionj) > [3 • Cost(Relaxationj) > [3 • Cost(OPT1)

Relaxation 1

OPT1 Relaxation

quality
Solution 1

Heuristics
• Guided by intuitive ideas
• Often perform well on practical instances
• May perform very poorly in worst case
• Often difficult to prove anything about performance

Approximation Algorithms
• Guided by performance proof
• May perform poorly compared to heuristics
• Rigorous bound on worst-case performance
• Designed with performance proof in mind

1 161 = largest gap

between relaxation and

solution over all instances
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Quantum bits

Classical bit:
(bit)

Prob. bit:
(p-bit)

Quantum bit:
(qubit)

OR

1 = Head 0 = Tail

A-- 1%

it 0 with probability 1 — p
1 with probability p

\ •
' —

alO) +
0 with probability lal2
1 with probability 11312

State space 

{0, 1}

1
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Quantum gates

Can take the "square root" of ordinary logic gates

Conventional logic gate:

yes no

no yes

T

•

Quantum logic gate: v/NOT

yes 50/50 chance of yes or no

no 50/50 chance of yes or no
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Quantum Algorithms
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Probability distribution over
2N binary classical states

Sequence of physical
manipulations of the N qubits

Sequence of
quantum gates
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Quantum Approximate Optimization

The Quantum Approximate Optimization Algorithm (QAOA)

was introduced by Farhi et al. in 2014

Ee e E E Zj ) n

Only known quantum approximation algorithm framework
Classical approximation algorithms have been studied since the 1960s

• Can be viewed as a discretization of adiabatic quantum computing

• Results in low-depth quantum circuits, suitable for near-term quantum

• Generic framework for discrete optimization problems

[Farhi et al., A Quantum Approximate Optimization Algorithm, arXiv:1411.4028, 2014]
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Application: Constraint Satisfaction

Maximum SAT is an optimization version of SAT:

(x1 V x2) A (-ix1V x2) A (x1 V -1x2) A (-1x1 V -ix2)

Impossible to satisfy all 4 constraints, but can satisfy 3 of them.

Max constraint satisfaction seeks to satisfy as many constraints as possible.

Constraints may be arbitrary Boolean functions.

Impact on complexity: e.g., 2-SAT is in P, but Max 2-SAT is NP-hard.

Applications: hardware/software verification and validation, VLSI design

bioinformatics, data analysis, machine learning

[J. Berg et al., Applications of MaxSAT in data analysis, 2015]

[PFM da Silva, Max-SAT Algorithms For Real World Instances, 2010]
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QAOA for Max 3-XORSAT

Goal of Max 3-XORSAT is to satisfy max number out of m given XOR clauses:

(x1 e x3 e -,x4 )1 (—Z1 e X2 e x3 ) . . .

Restricted version: each variable appears in at most d clauses

Farhi et al. showed that QAOA beats the best known classical approx alg:

Authors Year

Trevisan 2000

Farhi et al. 2014

Barak et al. 2015

Farhi et al. 2015

Result Type

C 
+ 

0(1) 
m

2 d 
Classical

(1 OM 
+ m Quantum

2 d3/ 4 

2 
(1 + 0(1)) m Classical

N/d

(i 0(1)  m Quantum
2 log cbs/ii

Barak et al.'s result is best possible up to

constants unless P=NP

[Farhi et al., A Quantum Approximate Optimization Algorithm..., arXiv:1412.6062v2, 2015]

14



Sandia
National
Laboratories

The Max Cut Problem

Max Cut is a fundamental NP-hard graph partitioning problem

►

•
•

•
•

Partition vertices of a(n edge-weighted) graph two parts
to maximize (weight of) crossing edges
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QAOA for Maximum Cut

We show that QAOA outperforms best classical algorithm for the well-known
Maximum Cut problem on d-regular triangle-free graphs with m edges

Authors Year Result Type

Shearer 1992 
+ 

(1 0.177) Classical
-
2 vd

Hirvonen et al. 2014 (1 0.281) 
m 

Classical

Parekh et al. 2017 (1 0.303)
- + m Quantum
2 vd

.
•

Rigorous performance proof: Only known quantum approximation algorithm
outperforming the best-known classical algorithm
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Recovering a cut from our algorithm

Our QAOA-based quantum algorithm samples from a probability
distribution on cuts in a graph, likely to yield a cut with many edges

Probability

Cut

•
•

•

5 edges 3 edges

.

•

9 edges

•••

17



:3 Sandia
National
Laboratories

Expectation of QAOA for Max Cut

If ltP((3,)f)) be the state produced by QAOA for Max Cut; then:

1
(W1Z-Z • IT) = —

2 
sin2(20) cos(7)si+6.1-2(nij+1) (1 — cos(27r13)3

1
— —
2 
sin(40) sin(7) (cos(ry)6,-1 + COS(7)(53-1)

where 6i is the degree of vertex i, and nii is the number of common

neighbors of vertices i and j.

Surprising that QAOA expectation may be precisely computed classically!
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Quantum Constraint Satisfaction

Classical clause: (—oci V xj) Quantum clause: rank 3

0,0 0,1 1,0 1,1
xi,xj = 0,0 1 0 0 01
xi, xj = 0,1 0 1 0 0
xi, xj = 1,00 0 0 0
xi, xj=1,10 0 0 1

[

2-local Hamiltonian Hij on i,j

1/2 0 0 —1/2
0 1 0 0
0 0 1 0

—1/2 0 0 1/2

1
= I — 2(I00) +Ill-WWI+ (111)

Objective is to find max eigenstate of sum of "local Hamiltonians"

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization
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New classical approximation algorithm
for quantum Max SAT

Maxtp (TIE Hs IT) ,

where each Hs is a rank (2151-1) projector on the qubits in set S

c) Sandia
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Result: 3/4-approximation, where only a trivial 1/2-approximation was known,

based on classical Max SAT approximation (Goemans-Williamson 1994)

Research challengt find applications for quantum Max SAT, since it is a natural

generalization Max SAT (candidates: machine learning, data analysis)
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Quantum Max SAT Relaxation

(Hc= I — lThc)(Thc l is the constraint for each set of qubits C)

max E tuczci
CeC

(1 - (7cPi7C) )> zc, for all C E C
iesc

zc < 1, for all C E C

Tr(pi) = 1, for all i E V

pi 0, for all i E V,

kjaartlidoinaal

Laboratories

quantum: Th, is "bad" space for
constraint on C

The above is a semidefinite program, but not obvious this is a relaxation
(i.e., are single-qubit reduced density matrices of a state p feasible for the above?)

max >_2 iwczc,

cec

E xi + xj) > zc, for all C E C classical Max SAT
relaxation

iESC jES'c-

zci < 1, for all C E C

0 < xi < 1, for all i E V
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Quantum Generalizations of Max Cut

Max Cut constraints:

H = I — ZLZj

Generalization:

Hij = / — XiXj — Yi Y— ZiZi

(maximization version of quantum Heisenberg model)

Most general form we consider:

Hij — I — E k=1}(crkiXi yk,iZi)( akjXj &jiff ykiZJ)

(gives us basically any symmetric Hij)

First nontrivial results:
0.498-approx via a product state, where 1/2 is best possible for product states

0.649-approx for XY model, where 2/3 is best possible for product states
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Approximate Solutions for Quantum Heisenberg Models via
Discrete Optimization

Scientific Achievement
Discrete optimization techniques enable new rigorous approximations of low-energy states of
quantum Heisenberg Hamiltonians, a central topic in condensed matter physics.

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.
(Image: Sachdev, http://arxiv.org/abs/1203.4565)

S. Gharibian, O. Parekh, C. Ryan-Anderson, 2018.

Work was performed at Sandia National Laboratories
And Virginia Commonwealth University.

Significance and impact
The Heisenberg model is fundamental for describing
quantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of the
anti-ferromagnetic Heisenberg model are notoriously
difficult to analyze. Exploiting analytical tools from
discrete optimization, a team led by Sandia National Labs
has developed new algorithms to rigorously approximate
hard-to-compute properties of this model beyond 1-D.

Research Details
— The researchers introduce a new quantum Hamiltonian model
that simultaneously generalizes the quantum Heisenberg anti-
ferromagnet and hard classical graph partitioning problems.

— A new classical algorithm produces approximate solutions for
the above model that are mathematically guaranteed to be
relatively close in quality to optimal quantum solutions.

U.S. DEPARTMENT OF Office of Quantum Algorithms Teams

ENERGY Science PI: O. Parekh
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Future work: QOALAS
Quantum Optimization and Learning and Simulation z7v

• New DOE/ASCR project funded through ASCR's first quantum algorithms

program [FY18-20, $4.5m]

• Developing quantum algorithms for optimization, machine learning, and

quantum simulation by unearthing new connections among these areas

• Stellar team consisting of top quantum information scientists and

computer scientists from Caltech, LANL, and University of Maryland
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■ First or best approximation algorithms for quantum problems arising in

condensed matter physics and generalizing classical Boolean satisfiability

■ The only known quantum approximation algorithm outperforming the

best-known classical algorithm (fundamental graph partitioning problem)

■ Success by bridging discrete optimization and quantum information

science

■ Insights have lead to new funding to develop quantum optimization,

quantum machine learning, and quantum simulation algorithms
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Outputs

• Related Publications:

- Benchmarking adiabatic quantum optimization for complex network analysis.

O. Parekh, J. Wendt, L. Shulenburger, A. Landahl, J. Moussa, and J. Aidun

Technical Report SAND2015- 3025, arXiv:1604.00319, 117 pages, 2015

— Approximate Constraint Satisfaction in the Quantum Setting.

Sevag Gharibian, Ojas Parekh, and Ciaran Ryan-Anderson

26 pages, under preparation for submission to SODA, 2018

• Selected Presentations.

- Investigating the Quantum Approx. Opt. Algorithm's Advantage over Classical Algorithms

Ojas Parekh and Ciaran Ryan-Anderson

Selected as a full presentation at the 19th Annual SQuInT Workshop, 2017

— Quantum Approximation Algorithms

Ojas Parekh and Ciaran Ryan-Anderson.

Invited presentation at the SIAM Annual Meeting, 2017

• Related Funding:

- Benchmarking Adiabatic Quantum Computing [FY13-17, SPP, $1m]

- Quantum Approximation Algorithms [FY16-18, LDRD, $1m]

- Quantum Optimization and Learning and Simulation (QOALAS) [FY18-20, DOE/ASCR, $4.5m]

- Benchmarking Quantum Sensor Placement Approaches [FY18-19, SPP, $1m]


