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Why quantum algorithms? ) .

Potential power of guantum resources is too great to ignore

= Bold science: our insights into the unique advantages quantum resources
for discrete optimization can shape future quantum systems and
applications. Quantum perspective has inspired new classical algorithms!

= Quantum algorithms to complement, validate, and leverage Sandia’s
world-class efforts in quantum hardware: need for quantum applications
and algorithms that may be executed on near-term quantum systemes.
We identify such applications in discrete optimization. Complements
guantum testbed efforts.

= |ncreased external funding agency interest in novel quantum applications
and techniques



State of quantum “speedups” ) 2.

= Unproven exponential speedup:
Shor’s quantum factorization algorithm

" Provable modest speedup:
Grover’s quantum search algorithm

= Provable exponential resource advantage in specialized
models of computation:
Query and communication complexity




Limited bag of tricks for speedups ) .

50+ algorithms: http://math.nist.gov/quantum/zoo

Phase Estimation (ca. 1994) Amplitude Amplification (ca. 1996)

Unordered search
Graph/network properties
Data collision problems
Matrix product verification

* Factoring

* Quantum chemistry

* Linear systems

* Topological invariants

Hamiltonian Simulation (ca. 1996) Quantum Walk (ca. 2002)

. . i
Quantum chemistry Boolean formula evaluation

e Spatial search

Linear systems
* Quantum chemistry

Maze solving

New quantum algorithmic approaches are desperately needed!




Quantum Approximation Algorithms: ) .
Better instead of just faster

4 PSPACE problems )

Motivation: hard to efficiently find optimal " NPProbems )

solutions for NP-complete optimization problems,

even for quantum computers | | Toe———
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Approach: an approximation algorithm efficiently
produces a near-optimal solution with a
mathematically provable bound on quality

Optimal

Approximaj@‘

Innovation: quantum approximation algorithms (QAA) direct quantum
resources towards higher-quality solutions instead of faster running times,
sidestepping barriers to quantum speedups




Approximation Algorithmes: )
Rigorous bounds on performance

A [-approximation algorithm runs in polynomial time, and for any instance /,
delivers a solution such that:

Cost(Solution;) = [ - Cost(Relaxation;) = - Cost(OPT;)

REIaxationl | ]
OPT Relaxation ”‘ “ f = largest gap
| quality between relaxation and
SO|uti0n| [ ., ; 4 . solution over all instances
|
|
Heuristics

* Guided by intuitive ideas

e Often perform well on practical instances

* May perform very poorly in worst case

e Often difficult to prove anything about performance

Approximation Algorithms

e Guided by performance proof

* May perform poorly compared to heuristics
* Rigorous bound on worst-case performance

e Designed with performance proof in mind
————
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Quantum bits

State space

Classical bit:

{0, 1}
(bit)
. & | I |
Prob. bit: {q i} Owith probability 1 —p 1 |
(p-bit) r 1 with probability p 0 p 1

. 'a
Quantum bit: (), @0 +BI1)
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Quantum gates

Can take the “square root” of ordinary logic gates

Conventional logic gate: NOT 0,
yes — no

no — yes

Quantum logic gate: \/NOT f
yes — 50/50 chance of yes or no ©

no — 50/50 chance of yes or no




Quantum Algorithms

Sequence of physical
manipulations of the N qubits
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Sequence of
(o o 0 0 ¢ 0" 0" "0
000 001 010 011 100 101 110 111 quantum gates 000 001 010 011 100 101 110 111

Probability distribution over
2N binary classical states

Conceptually




Sandia
ﬂ'l National
Laboratories

Quantum Approximate Optimization

The Quantum Approximate Optimization Algorithm (QAOA)
was introduced by Farhi et al. in 2014

et i BXigi Xijen ZiZs | 1 \®"

Only known quantum approximation algorithm framework
Classical approximation algorithms have been studied since the 1960s

= Can be viewed as a discretization of adiabatic quantum computing
=  Results in low-depth quantum circuits, suitable for near-term quantum
=  Generic framework for discrete optimization problems

[Farhi et al., A Quantum Approximate Optimization Algorithm, arXiv:1411.4028, 2014]
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Application: Constraint Satisfaction

Maximum SAT is an optimization version of SAT:

(X1 Vx3) A(=x1Vx3) A(x1 V=xy) A (mxg V—xy)

Impossible to satisfy all 4 constraints, but can satisfy 3 of them.

Max constraint satisfaction seeks to satisfy as many constraints as possible.
Constraints may be arbitrary Boolean functions.

Impact on complexity: e.g., 2-SAT is in P, but Max 2-SAT is NP-hard.

Applications: hardware/software verification and validation, VLS| design
bioinformatics, data analysis, machine learning

[J. Berg et al., Applications of MaxSAT in data analysis, 2015]
[PFM da Silva, Max-SAT Algorithms For Real World Instances, 2010]
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QAOA for Max 3-XORSAT

Goal of Max 3-XORSAT is to satisfy max number out of m given XOR clauses:
(SL’l . I3 b _I.’E4), (_I£U1 $b L9 b £L'3), i@ B
Restricted version: each variable appears in at most d clauses

Farhi et al. showed that QAOA beats the best known classical approx alg:

Trevisan 2000 (l x 0(1)) m  Classical
27" d
Farhietal. 2014 (} . 03(/12) o Quantum
27" d
Barak etal. 2015 (1 0(1)) _ Classical Barak et al.’s result is best possible up to
2 Vd constants unless P=NP
Farhietal. 2015 (1 L 0@ )m Quantum
2 logdvVd

[Farhi et al., A Quantum Approximate Optimization Algorithm..., arXiv:1412.6062v2, 2015]
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The Max Cut Problem

Max Cut is a fundamental NP-hard graph partitioning problem

Partition vertices of a(n edge-weighted) graph two parts
to maximize (weight of) crossing edges
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QAOA for Maximum Cut

We show that QAOA outperforms best classical algorithm for the well-known
Maximum Cut problem on d-regular triangle-free graphs with m edges

Shearer 1992 m Classical
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Hirvonen et al. 2014

(% 0-281) . Classical '
Parekh et al. 2017 0.303
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> n - Quantum
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Rigorous performance proof: Only known quantum approximation algorithm
outperforming the best-known classical algorithm
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Recovering a cut from our algorithm

Our QAOA-based quantum algorithm samples from a probability
distribution on cuts in a graph, likely to yield a cut with many edges

Probability

Cut
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Expectation of QAOA for Max Cut

If |W(B,y)) be the state produced by QAOA for Max Cut; then:

(V22| %) = ésin%w) cos(y)" F AT (1 — cos(29)™7)

_ %sin(llﬂ) sin(7y) ((:os(fy)ai_1 -+ 008(7)5j_1) ;

where 6; is the degree of vertex i, and n;; is the number of common
neighbors of vertices i and j.

Surprising that QAOA expectation may be precisely computed classically!
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Quantum Constraint Satisfaction

Classical clause: (—x; V ;) Quantum clause: rank 3
0,0 0,1 1,0 1,1
x, =001 0 0 O 1/2 0 0 —1/27
Xi,x]' = 0,1 0 1 0O O 0 1 0 0
xi,xj = 1,0 0 0 0 0 0 0 1 0
xi,xj = 1,1 _O 0 0 1_ __1/2 0 0 1/2 ]
N .. 1
2-local Hamiltonian H; j on i, Hijj=1- E(|0()) + [11))((00] + (11])

Objective is to find max eigenstate of sum of “local Hamiltonians”

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization




New classical approximation algorithm
for guantum Max SAT

Maxl.p (Lplz HS|LIJ> ’
where each Hg is a rank (2|S|—1) projector on the gqubits in set S

Result: 3/4-approximation, where only a trivial 1/2-approximation was known,
based on classical Max SAT approximation (Goemans-Williamson 1994)

Research challenge: find applications for qguantum Max SAT, since it is a natural
generalization Max SAT (candidates: machine learning, data analysis)
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- ﬁg?igir?al
Quantum Max SAT Relaxation ) fasor

(Hc= 1 — | )| is the constraint for each set of qubits )

max Z Wo 20

cec

_ . > quantum: mr. is “bad” space for
gs; (1= {mclpilme)) 2 20, forall € C constraint on C
(AStele;

20 <1, forall C €C
Tr(p;) =1, foralli e V
pi = 0, forall s € V,

The above is a semidefinite program, but not obvious this is a relaxation
(i.e., are single-qubit reduced density matrices of a state p feasible for the above?)

max Z WO 2o

ceC

Z T + Z (1—x;) > 2c, for all C € ¢ classical Max SAT
relaxation

i€S JE€SS

zo <1, forall C €C
0<ux;, <1, forallzeV
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Quantum Generalizations of Max Cut

Max Cut constraints:
Hij = I - ZLZ]

Generalization:
(maximization version of quantum Heisenberg model)

Most general form we consider:

Hij = I = Y=y (@iiXi + BiiYi + VieiZ) (i jXj + BiejY; + Vi jZ;)
(gives us basically any symmetric H;;)

First nontrivial results:

0.498-approx via a product state, where 1/2 is best possible for product states
0.649-approx for XY model, where 2/3 is best possible for product states




Approximate Solutions for Quantum Heisenberg Models via
Discrete Optimization

Scientific Achievement
Discrete optimization techniques enable new rigorous approximations of low-energy states of
guantum Heisenberg Hamiltonians, a central topic in condensed matter physics.

Significance and Impact
The Heisenberg model is fundamental for describing
guantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of the
anti-ferromagnetic Heisenberg model are notoriously
difficult to analyze. Exploiting analytical tools from
discrete optimization, a team led by Sandia National Labs
has developed new algorithms to rigorously approximate

Anti-ferromagnetic Heisenberg model: roughly hard-to-compute properties of this model beyond 1-D.
neighboring quantum particles aim to align in

opposite directions. This kind of Hamiltonian ResearCh Detal IS
appears, for example, as an effective Hamiltonian ~ — The researchers introduce a new quantum Hamiltonian model
for so-called Mott insulators. h . . : .
imultan I neralizes th ntum Heisenberg anti-
(Image: Sachdey, http://arxiv.org/abs/1203.4565) that simultaneously gene a. es the qua t.u_ .e senbe g ant
ferromagnet and hard classical graph partitioning problems.

. Ghariblan, O. Parekh, € Ryar-Andersen, 2018,  — A new classical algorithm produces a.pprOX|mate solutions for
Work was performed at Sandia National Laboratories  th€ @bove model that are mathematically guaranteed to be
And Virginia Commonwealth University. relatively close in quality to optimal quantum solutions.

i g i g Office of  Quantum Algorithms Teams ﬁa?dla |
ENERGY Science  PI: O. Parekh ationa

Laboratories



Quantum Optimization and Learning and Simulation

Future work: QOALAS ‘::'

New DOE/ASCR project funded through ASCR’s first quantum algorithms
program [FY18-20, S4.5m]

Developing quantum algorithms for optimization, machine learning, and
guantum simulation by unearthing new connections among these areas

Stellar team consisting of top quantum information scientists and
computer scientists from Caltech, LANL, and University of Maryland




Summary h) e,

= First or best approximation algorithms for qguantum problems arising in
condensed matter physics and generalizing classical Boolean satisfiability

=  The only known quantum approximation algorithm outperforming the
best-known classical algorithm (fundamental graph partitioning problem)

= Success by bridging discrete optimization and quantum information
science

= |nsights have lead to new funding to develop quantum optimization,
guantum machine learning, and quantum simulation algorithms
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Outputs

e Related Publications:

— Benchmarking adiabatic quantum optimization for complex network analysis.
O. Parekh, J. Wendt, L. Shulenburger, A. Landahl, J. Moussa, and J. Aidun
Technical Report SAND2015- 3025, arXiv:1604.00319, 117 pages, 2015

— Approximate Constraint Satisfaction in the Quantum Setting.
Sevag Gharibian, Ojas Parekh, and Ciaran Ryan-Anderson
26 pages, under preparation for submission to SODA, 2018
e Selected Presentations:
— Investigating the Quantum Approx. Opt. Algorithm's Advantage over Classical Algorithms

Ojas Parekh and Ciaran Ryan-Anderson
Selected as a full presentation at the 19th Annual SQuInT Workshop, 2017

— Quantum Approximation Algorithms
Ojas Parekh and Ciaran Ryan-Anderson.
Invited presentation at the SIAM Annual Meeting, 2017

e Related Funding:
— Benchmarking Adiabatic Quantum Computing [FY13-17, SPP, $1m)]
— Quantum Approximation Algorithms [FY16-18, LDRD, S1m]
— Quantum Optimization and Learning and Simulation (QOALAS) [FY18-20, DOE/ASCR, S4.5m]
— Benchmarking Quantum Sensor Placement Approaches [FY18-19, SPP, S1m]



