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• Laser Collisional Induced Fluorescence (LCIF)

• Experimental Setup

• Pure He Base Case

• Pressure

• Humid He Shrouded Jet
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ATMOSPHERIC PRESSURE PLASMA JETS

• Atmospheric pressure plasma
jets (APPJs) are a popular
source of chemistry for
biomedical applications.

• The plasma propagates as an
ionization wave (IW) that is
repetitively pulsed.

• The IW gives rise to reactive
oxygen and nitrogen species
(RONS) which produce the
biological effect.

• Objective: Study the IW
dynamics in a plasma jet in a
well controlled environment.
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S. Mohades, et al., Physics of Plasmas 22,
122001 (2015).
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LASER COLLISIONAL INDUCED
FLUORESCENCE (LCIF)
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Barnat and Fierro, J. Phys. D: Appl. Phys., 50,
14LT01 (2017).
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• An ultrafast laser (<100 fs) is used to
measure the electron density with a
high time resolution.

• Electrons collide with laser excited
He(33P)

e + He(33P) —> He(33D) + e

• ne - 588 nm / 389 nm
• Sufficient He(23S) density is critical
for accurate LCIF data.

• LCIF was developed for a pure He
environment, but extending this
diagnostic to mixtures is important
for APPJs.
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EXPERIMENTAL SETUP
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• Annular powered electrode within the center tube

• Placing the APPJ in a vacuum chamber - consistent and controlled
chemistry, ground planes, and gas flow.

• Coaxial tube allows a gas shroud — control environment
independently of gas in main jet.
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BASE CASE
• +6 kV

• 430 ns pulse, 100 ns rise

• 200 Torr

• Faster dynamics (for
modeling)

• Lower background LCIF
signal (for experiment)

• 500 sccm He in center tube

• Base pressure 20 mTorr

• Gap to target = 7.5 mm

• 650 pm thick alumina disk

• Current measured at ground
electrode under the alumina.
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BASE CASE PLASMA EMISSION 
t 195 ns
W

2 mm

t = 205 ns t = 215 ns t = 220 ns t = 255 ns

• •

• 5 ns ICCD gate

• Ionization wave expands as it exits the tube.

• Approaching the alumina, it becomes more directed.

• Upon contacting the alumina, forms a surface IW (SIW) and
spreads, charging the surface.

• As voltage falls, there a restrike occurs.
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CONVERT LCIF TO ne
LIF (389 nm)
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Calculate ne using Ohm's law and measured E/N.
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An LCIF ratio of 1, is approximately 4 x 1012 cm-3
electrons.
Previously, conversion factor estimated at 1.5 x
1013 cm-3 at 600 Torr.
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BASE CASE LCIF
t — 200 ns
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• +6 kV, 430 ns
0 5 • Pure He, 200 Torr

0

• Before IW reaches the surface, He(23S) densities are low.
• ne in the SIW is nearly double that of the bulk.
• Elevated ne in IW front may be due to Stark mixing.
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VARY PRESSURE EMISSION 
150 Torr
■ ■
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■ ■
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■ ■
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■ ' ■
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■ ■

600 Torr
■ ■

• 6 kV, 500 sccm He, 390 nm plasma emission
• Varied pulse duration so that voltage on for 80 ns after contact.
• Increasing pressure reduces electron mobility, preventing the
IW from spreading as it exits the jet.

• IW propagates slower and SIW becomes thinner for higher
pressures.

ICOPS_2018

University of Michigan

Institute for Plasma Science & Engr.



VARY PRESSURE — ne
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• 6 kV, 500 sccm He, 30 ns after !IN contacts surface.
• Plasma is more confined at higher pressure, ne increases.
• Current and energy deposition decrease with increasing pressure.
• Above 500 Torr, ne is collisional enough that ionization rate drops.

ICOPS_2018

University of Michigan

Institute for Plasma Science & Engr.



HUMID He SHROUD

MFC #1

MFC #2

MFC #3

 ► To center
of jet

 ►To shroud

2.3% H20
in shroud

Pure He
(base case)

LI LI

• Humid He shroud allows an investigation of molecular gasses
surrounding the jet, without interfering with LCIF measurements.

• First bubbler oversaturates water vapor, second bubbler removes
excess.

• Temperature of second bubbler determines humidity of gas.
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HUMID He SHROUD EMISSION 
t — 175 ns t = 185 ns

2 mm

t — 195 ns

1111111111M111111P

t — 220 ns t = 245 ns

• 2.3% H20 in shroud
• IW reaches outlet of the tube earlier than in base case —

photoionization from He2* causes non-local seed ionization.
• Photoionization and Penning ionization promote IW speed.
• Ha emission appears more annular — dominates at the

interface of the center and shroud flow.
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LIF (389 nm)

LCIF (588 nm)
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HUMID He SHROUD
• 6 kV, 430 ns pulse
• Center: 500 sccm He
• Shroud: 500 sccm He/H20

97.7/2.3
• t = 230 ns, 30 ns after IW contacts
surface

• Moving away from He core, there
are fewer He(23S), LIF signal
decreases.

20 He(23S) + H20 —> He + H20+ + e

1 .5

0 5

• In regions of high H20
concentration, there may be
significant ne which is not
detectable due to low He(235).
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SHROUD HUMIDITY
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• 30 ns after IW reaches surface.
• Transition from diffuse in pure helium case to confined by humid
shroud.

• Higher electron energy loss rates with H20 because of vibrational
and rotational excitation.

• ne increases with humidity due to Penning ionization.
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VARY He FLOW RATE - ne
300 sccm

600 sccm

400 sccm

700 sccm

500 sccm

• Vary center flow rate.
• Shroud: 500 sccm, He/H20 = 98.7/2.3
• Higher He flow rates more rapidly convect in-diffusing H20.
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CONCLUDING REMARKS

• A plasma jet interacting with a dielectric surface
produces a surface IW as it charges the dielectric.

• Molecular gases surrounding a plasma jet confine the
IW due to a lower electron mobility and higher
electron energy loss rates.

• In the presence of H20, the IW speed increases, and
the plasma and electron density become more
annular.

• LCIF can be used in humid He, as long as the He(23S)
density is sufficient.
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Appendix



BOLTZMANN CALCULATIONS

0.001% H20
0.01% H20
0.1% H20
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• For LCIF measurement to be a
linear representation of ne,
this rate must be independent
of Te:

e + He(33P) —> He(33D) + e

• Threshold = 0.06 eV
• In pure He, this occurs when

E/N > - 0.8 Td
• For H20 < 1%, LCIF is valid - 1
Td
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VARY PRESSURE EMISSION 
t = 135 ns
LoU 2 mm
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• 6 kV, 500 sccm He, 390 nm plasma emission
• Varied pulse duration so that voltage on for 80 ns after contact.
• Increasing pressure reduces electron mobility, preventing the
IW from spreading as it exits the jet.

• IW propagates slower and SIW becomes thinner for higher
pressures.
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• There is some portion of
the LCIF signal which is
caused by collisions with
the background He gas.

• Should be proportional to
pressure.

• Images take >4.5 ps after
pulse ends.

• In the late afterglow
electrons are thermalized
and no longer contribute
to LCIF.
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BOLTZMANN CALCULATIONS 
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• Cross section set to 0 for E < 0.15 eV
• For H20 < 1%, LCIF is valid - 1 Td
• For all N2 concentrations, LCIF is valid for > 0.8 Td



VARY VOLTAGE ne
4 kV

5.5 kV

4.5 kV

6 kV

5 kV

6.5 kV

1
• LCIF ratio 30 ns after IW contacts surface.
• SIW spreads more rapidly for higher voltage, but ne is only slightly higher.



VARY VOLTAGE Emission 
4 kV
- -

5.5 kV
_ _

4.5 kV
_ _

6 kV (Base)
_ _

• Pure He, 500 sccm
• Bubbler installed (leak rate slightly higher)
• 250 ns animated
• 390 nm emission
• 20180410, 20180411, 6kV on 20180403

5 kV

6.5 kV
_ _



VARY SHROUD HUMIDITY

• 24 ms fluid
simulation

• Region of high ne
does not
correspond to a
particular % H20

• Chemistry and
electron energy
losses change with
% H20, but mobility
changes very little

0.1% H20

0.1% H20

H20 - 2.3% (linear)
0.5% H20 1% H20

H20 - 2.3% (3-dec)
0.5% H20 1% H20

2.3% H20

2.3% H20
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• !IA/ propagates across the gap faster for higher H20 - penning
ionization, photoionization

• SIW spreads less rapidly for higher H20
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• 20180404 (2.3%), 20180327(1%,0.1%,pure He), 20180329 (0.5%)



VARY He FLOW RATE EMISSION
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• 250 ns animated
• OH emission was

not visible — UV
filter has lower
efficiency,
camera is less
sensitive

• H. is much more
accessible

• H. emission is
more annular at
greater distances
for 700 sccm


