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Abstract

The International Atomic Energy Agency (IAEA) has expressed interest in eliminating the need for
on-site analytical laboratories at nuclear facilities. The Department of Safeguards (SG) has set a
priority to "explore data analysis methods to strengthen the synthesis and evaluation of information
(e.g. optimal random verification schemes, nuclear material flow analysis, material balance
evaluation, near real-time accountancy and process monitoring tools)." [1] The goal then is to
develop a system of unattended measurements that can reduce the reliance on destructive analysis
(DA) measurements, which, are expensive and time consuming This unattended measurement
system may be realized through breakthroughs in measurement technology or through use of
advanced data algorithms. In this work the latter approach is considered and a brief introduction to
using machine learning is provided with the goal of incorporating process monitoring data into the
safeguards evaluation. This approach is particularly valuable for advanced nuclear facilities, such as
pyrochemical processing plants, where destructive analysis may be difficult.

Introduction

The inclusion of process monitoring data may increase the confidence of the evaluation while
reducing the required number of person hours. Process monitoring systems might include NDA
measurements such as gamma and neutron measurements, scales for bulk masses, and tank level
measurements. The use of these measurements by the IAEA has thus far been limited due to
relatively high measurement uncertainty. The use of gamma spectroscopy, for example, can
determine plutonium content, but with a 5-10% measurement uncertainty. Relying on such
measurements alone would result in a significant reduction in diversion detection. The purpose of
this paper is to introduce machine learning concepts that could be applied to multiple process
monitoring measurements to develop a new safeguards approach. A safeguards implementation that
does not rely on traditional metrics such as the uncertainty in material unaccounted for (MUF) is
explored.

Background

The main goal of the IAEA SG group is to "deter the proliferation of nuclear weapons, by detecting
early the misuse of nuclear material or technology, and providing credible assurances that States are
honoring their safeguards obligations". The established method of accomplishing this goal in a bulk
handling facility is to setup a material balance area around an area of the facility with a nuclear
material flow. The inputs, outputs, and change in inventory are measured to calculate the MUF
value. Statistical tests are then applied to these measurements and calculations to detect facility
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misuse. These statistical tests use thresholds that are tuned to have a particular false alarm
probability (FAP).

While the traditional safeguards approach is sensitive to facility misuse and meets the IAEA
timeliness goals it requires a substantial amount of sampling. Transportation of samples from a
facility to IAEA's analytical laboratory is problematic due to the large number of samples and
significant amount of time required for transit. This has led to the construction of an on-site
laboratory at Rokkasho reprocessing plant at a considerable operating cost to the IAEA. The ideal
case is to have a facility safeguarded with unattended monitoring supplemented with a much
smaller quantity of samples. This paper considers the implementation of machine learning
algorithms to better leverage PM data.

Separations and Safeguards Performance Model

The results presented in this work are generated using data from the Separations and Safeguards
Performance Model (SSPM) [2] that is developed and maintained at Sandia National Laboratories.
The SSPM platform was created in Matlab Simulink that tracks elemental and isotopic material
flows through various unit operations. Measurement blocks simulate material accountancy and
process monitoring data and are used with traditional statistical tests or external safeguards method
development. SSPM has also recently been integrated with the GADRAS (Gamma Detector
Response and Analysis Software) [3] code to provide simulated gamma spectra at a variety of
locations in the modeled facilities. Several SSPM models exist including several reprocessing
models such as PUREX, UREX+, and pyrochemical processing in addition to enrichment and
molten salt models. This work uses data from the pyrochemical model to develop and prototype
machine learning algorithms for safeguards. Figure 1 shows the flowsheet of a generic pyrochemical
reprocessing facility.

Sif Feed—

Source Term

ihuch—a

FuelArei.. IfIee

SNF Storage

E-CHEM PLANT FLOW DIAGRAM

hl %hided F
linetery—lE1

Shah Fed

Shedder Input

or Whereas Accothatiity

MBA1

LAT

hi See hvereery—

Paste heaven-

1.2 Reduced Puha

urine-haw

Ealinge

Electrorytic

Reduction

Ziei.".  
HOLAJun hturAuTt 

hire Interests El

hi bile Shoe D

KM horn

Cobh Med

Cetionne Vint

Xe44 hoed

Offgas Capture

I

uLTOAN

hl

Si huhu,—

Confirralcua

—eu 
Achuncsd

 hl 
inentore- LIDA3

Wel Wade Fenn CD
Ka.. ram

—h2 PecSd 

Meta nocessiv

Sinai h2

URRU Rada 

Se11rOURRI1—  U Product

U Recede

Carhnudety3

Arlowcad
10A1

 CZ)
U

Uranium

Bectioreiner

MBA2

Processing

hl 
huirech—

UffRU 

112
Sid 

IITRU Roth

Processing

conrerierchi

eehersed
NOM

hl here

h2 %cowed

WIRU DIWACIOUll
Pededrit)

UTRU Onurdown
saver or MIA

111 Reducim—

FPWeete 

hicleCtilas 

Safi Reification

Cardiusloy5

hl

Shed '

Of,

BedrotefinerCoidat
Poodunial

ox. Rut
suu.

ti Imentieri

FPINseo 

FP Waste

Reduction

some.

CcreArtokory8

unstunoa.

Figure 1: MATLAB Simulink pyrochemical reprocessing model

Machine Learning Introduction



Machine learning algorithms are a class of techniques that "leare with data without being explicitly
programmed. Many of the concepts have been around for several decades, but recent advances in
computing capabilities and the rise of big data have led to their successful implementation. Perhaps
the most well-known machine learning algorithm, the neural network, consists of layers of nodes
that can collectively "leare to categorize different types of input data. In the following section a
brief introduction to machine learning is given to support ideas in this work as well as describe their
limitations.

Supervised versus Unsupervised Machine Learning Techniques

The most popular machine learning techniques, the ones that power artificial intelligence systems
and self-driving cars, are known as supervised techniques. These techniques require input labels or
classification. For example, a convolution neural network (CNN) [4] trained to recognize objects in
an image must be trained to recognize stop signs, cars, chairs, people and so on. This requires an
input data set containing examples with labels of each possible output category. A Long-Short Term
(LSTM) [5] neural network used for machine translation requires a large body of training data of
specific labeled training data to map between languages. Most recent state-of-the-art advancements
in machine learning have been in supervised techniques.

Unsupervised machine learning techniques, on the other hand, do not require labeled training data.
Instead, these methods try to find clusters, groupings, and relationships through the structure of the
data itself. This group of techniques includes clustering, manifold learning, mixture models, and
outlier detection methods. The unsupervised problem is more difficult because additional human
level knowledge is not provided to the algorithm, which is different from supervised methods in
which images may be labeled cats or dogs. Figure 2 shows the ways different clustering methods try
to find structure in unlabeled data.
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Figure 2: Classification of data from several unsupervised learning methods [6]

For the application of machine learning to facility level safeguards, unsupervised techniques must
be used. Examples of all possible misuse cases must be provided during training in order for a
supervised method to accurately detect those cases. However, with unsupervised methods only
normal data and few, if any, misuse cases are used to train the models. The use of unsupervised
methods eliminates the burden of identifying all possible diversion pathways.

One-Class Support Vector Machine

One-class support vector machines (OCSVM) [7] are traditional support vector machines (SVM)
[8] that are trained in a one-class sense. To understand the OCSVM and how it enables anomaly
detection at nuclear facilities, the traditional SVM must be described. Support vector machines are a
type of supervised learning model that is known as a large margin classifier. Put simply, the
objective of the SVM is to create a hyperplane that maximizes the margin of separation between
two labeled classes. An example of a support vector machine is given in Figure 3 where the two
classes only have two features so they can be represented in a two-dimensional space.
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Figure 3: Margin separating two classes of data as determined by a SVM

The case presented in Figure 3 is trivial and could be performed using another method such as linear
regression. However, the power of SVMs is derived from the ability to produce a non-linear
boundary through a technique called the kernel method. In short, kernels map the input data from
the given input space to a higher dimensional space. The motivation is that a set of data that is not
linearly separable in the input dimensional space will be linearly separable in a higher dimensional



space. The hyperplane in the higher dimensional space can be represented as a polynomial in a
lower dimensional space. A visualization of a support vector machine implemented with the kernel
method can be seen in Figure 4.

Figure 4: Nonlinear SVM margin determined using the kernel method

As noted previously, the support vector machine is a supervised method that requires knowledge of
class membership. However, for this particular safeguards application an unsupervised method is
needed. The SVM can be implemented in an unsupervised manner resulting in the OCSVM
algorithm. Suppose data is collected with no knowledge of class membership. The SVM can be
formulated in a one class sense such that the classifier discriminates between the fractions of the
input data set. That is, the margin can be set to discriminate between y and (1- y) of the input data.
Assuming that there are few to no anomalies in the training data, the smaller the parameter y is the
higher the probability data outside the margin is an outlier or anomalous. Conversely, the larger the
y parameter is the higher the probability that the data outside the margin is normal.

New Safeguards Approach

The use of machine learning to classify abnormal operation at nuclear facilities require a different
approach to safeguards. As mentioned previously, the OCSVM develops a boundary for
classification for data. Once the OCSVM has been trained then new data can be divided into classes
depending on the learned margin. The result is that instead of identifying diversion events with
material based indicators such as MUF and sigma MUF, events are identified by their classification
as shown in Figure 5.

The classifications must then be evaluated to determine if an off-normal event is occurring. In order
to determine detection probabilities "windows" are constructed to evaluate the facility operation.
For example, consider a window that consists of the classification of 100 observations where y is set
to 0.05. Since the OCSVM margin is set to discriminate between 5% and 95% of the data, it is
expected that interval would contain about 5 measurements randomly distributed in the window that
are flagged as anomalous. However, in a misuse case several sequential anomalous flags in a short
period of time is expected. By changing the size of the window, the false alarm and detection
probability can be adjusted. An example of how the OCSVM might be used is provided in Figure
5.

This method does not reveal any information as to the magnitude of a misuse scenario. This
paradigm shift results in a safeguards system that does not provide a transparent materials



accountancy and only accounts for facility misuse. This aspect must be addressed in discussions
with the IAEA in the future.
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Figure 5: Graphical representation of a safeguards system using the OCSVM

Initial Results

For this preliminary evaluation of the OCSVM, two different measurement types are used; bulk
masses and gamma spectroscopy measurements. Bulk mass measurements, which have around
0.1% measurement uncertainty, can be implemented in a cost-effective manner to easily detect
direct material loss (either abrupt or protracted). These measurements are already implemented at
Rokkahso as the Solution Measurement and Monitoring System (SMMS). The bulk measurements
of inputs and outputs of the facility are used as direct inputs to the OCSVM. However, Page's test
score on a particular process monitoring balance is used as an input to the model as well. The
process monitoring balance is defined as the input minus the output and change in inventory. The
resulting process monitoring balance is value that is centered around zero with some noise. The
Page's trend test [9] is then applied to this balance. The use of Page's test as an input feature rather
than the process monitoring balance itself will likely result in a better detection probability.

While bulk mass measurements can easily detect direct loss, other measurements must be used to
detect substitution diversions. A substitution diversion is the removal of material while replacing it
with an equal mass of a surrogate in order to fool the mass balance. Surrogate material is unlikely to



match the gamma emissions of the original material without incurring significant effort. NDA
measurements, gamma emissions in particular, are often only used as confirmatory measurements
due to the relatively high measurement uncertainty. NDA is used to quantify plutonium content
though estimates of the transuranics and/or fission product signatures. In the machine learning
approach, the plutonium inventory is not estimated with a NDA measurement, instead, the
measurement itself is used directly and fed into the OCSVM. Specifically, certain channels relevant
to the detection of substitution diversions are used as input features. The gamma spectroscopy
measurements are generated using a simulated High Purity Germanium (HPGe) measurement in
GADRAS. The code uses geometry and material composition coupled with radiation transport to
generate a spectrum. The quantity of material used in the transport calculation was derived from the
SSPM simulation with a measurement uncertainty of 5%. Poisson statistics were also simulated to
represent the variations that occurs during a measurement.

For this work both protracted direct and substitution diversions are considered. Abrupt diversions
are not included here as they are easier to detect than protracted.

Case 1: Normal Operation

This case models the normal operation of the facility. Figure 6 below shows the random
misclassifications that occur during normal operation. Note that many of the classifications are 1,
which is the label for normal. In this case y was specified to be 0.10. This means for the training
data 90% of the data is classified as normal while 10% is classified as off-normal. The model is
trained on a set of 75000 normal operation observations. Then, the OCSVM is tested on a separate
set of 5082 normal operation observations that were not used in training. Since it is expected that
the measurement errors are random then the data classified as the -1 class will also be random. In
the following sections it will be shown that during a diversion scenario there are clusters of off-
normal classifications rather than random observations.
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Figure 6: Classification of plant data during normal operation



Case 2: Protracted direct diversion

This case simulates the diversion of material from a unit process over more than one material
balance period. This case is relatively simple to detect through the use of statistical trend tests, such
as Page's trend test, on the level and mass measurements of unit operations. The advantage of using
the Page's score over the tank level measurement directly is that the OCSVM doesn't have to be
trained to handle patterns. It would be difficult to the OCSVM to detect diversions where the
measurement could be normal. For example, assume a tank level measurement ranged from 10 at
the beginning to the process to 7 at the end of the process. If a diversion occurred to reduce the tank
level measurement at the beginning of the process from 10 to 8 the OCSVM would likely classify
the data as normal as a level measurement of 8 is expected during normal operation. The OCSVM
does not incorporate knowledge of cycles in the data such as tanks emptying and filling.

One important feature of using the Page's test in the OCSVM rather than standalone is that since the
result of trend tests, such as Page's test, are used directly there is no need to tune multiple threshold
criteria for the statistical test. The OCSVM accurately detects the abrupt diversion with the use of
the Page's test score on the process monitoring balance. Note that the subsequent misclassifications
after the diversion has ended reflects the continued off-normal conditions in the unit operation
where the diversion occurred.
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Figure 7: Classification of facility data for protracted direct diversion



Case 3: Protracted substitution diversion

The final case is the most difficult to detect. The mass of material in the unit process at the
diversion location will not change as material that is removed is replaced by a surrogate of equal
mass. Traditionally this diversion type was only detected through the use of destructive analysis
measurements. In this method gamma spectroscopy measurements are used directly to detect these
diversions. As mentioned previously, the OCSVM does not account for patterns in the data so care
was used to select the right NDA metrics to use as input. In specific, certain gamma channels at
specific times during the unit operation cycle were used as input features to the OCSVM.

The OCSVM is able to detect this type of diversion while only using unattended measurement
methods. Note that the classifications are not off-normal for the entire diversion due to the
characteristics of the unit process in which the diversion occurred. However, the absolute detection
probability remains uncertain. The SSPM was run for 100 iterations for each scenario. Each
iteration has a different sequence of input fuels to the facility along with different systematic
measurement errors. Some data sets produced results that were classified as normal by the OCSVM.
Further work is required to further quantify and improve the detection probability.
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Figure 8: Classification of facility data for protracted substitution diversion

Future Work

While the preliminary results are encouraging there is still work to be done. First, the required
amount of training data must be determined. The training in this work used 80,000 observations
which is well beyond what could be collected in a typical facility before start-up. If a large quantity
of training data is required then perhaps artificial model data could be used to pre-train. A
parametric study will be conducted to determine how much training data is required.



Secondly, the "window" used to translate the classification of observations into detection
probabilities must be calculated. The window can be adjusted in size to tune the detection and false
alarm probabilities. It is possible that two OCSVMs with different margins will be more effective
than a single OCSVM.

Finally, the features that are fed to the OCSVM must be evaluated. While results using the bulk
masses, process monitoring data, and NDA data are promising perhaps different features could
enhance the detection probabilities. As mentioned previously care was used to design inputs that
capture features of the data while reducing the cyclical nature. For example, instead of using the
level measurement directly, which is cyclical, Page's trend test can be used on the process
monitoring balance across a unit operation to determine a score. This score has a range for normal
operation and is much higher for abnormal operation. Similarly, the NDA metrics used have to be
independent of both the randomized fuel input and the variations due to measurement uncertainty.
The proper utilization of signals, perhaps input as ratios, is essential to the effectiveness of the
OCSVM.
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