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Weeks&Duley,1974

(first 111 paper)
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Weeks, R. W., & Duley, W. W. (1974).
Aerosol-particle sizes from light emission during
excitation by TEA CO2 laser pulses.

Journal of Applied Physics, 45(10), 4661-4662.

Recipe:

• Pulsed TEA CO2 laser (4 ps pulse width)

• Photomultiplier

• Oscilloscope
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Evolution of hardware for 111

FLAME
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L

DYE LASER

FIG. 2, Two-color optical pyrometer. Symbols: L., Iens;
Sp aperture; P, polariation filter; D, dichraic, NI, mirror;
F, blocking and narrow-band EnterFcrcnce filters;
photoroultiplier,

Eckbreth,1977

(first schematic)

Eckbreth, A. C. (1977).

Effects of laser-modulated particulate
incandescence on Raman scattering diagnostics.

Journal of Applied Physics, 48(11), 4473-4479.

Recipe:

• Pulsed dye laser (1 ps pulse width)

• Photomultiplier

• Oscilloscope
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Evolution of hardware for 111
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Melton, 1984

(YAG lasers)

Melton, L. A. (1984).

0,06 7, Soot diagnostics based on laser heating.

0 Applied Optics, 23(13), 2201-2208.Q
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Recipe:

• Nd:YAG laser (<10-nsec FWHM)

• Photomultiplier

Oscilloscope
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Evolution of hardware for 111
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Rohlfing, 1988
(Spectrometer)

Rohlfing, E. A. (1988).
Optical emission studies of atomic, molecular, and
particulate carbon produced from a laser vaporization
cluster source.
The Journal of Chemical Physics, 89(10), 6103-6112.

Recipe:

• Nd:YAG laser (<10-nsec FWHM)

• Spectrometer
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777-
cRF; Evolution of hardware for 111

Injector
Camera

Filter
Pack

Nd:YAG
Laser
Sheet

Window

1

Figure 3 Schematic of the enqine's optical corif a
uration.

Zur Loye, A. O., Siebers, D. L., & Dec, J. E. (1990).
2-D soot imaging in a direct injection diesel engine
using laser-induced incandescence.
In COMODIA (Vol. 90, pp. 523-528).

Recipe:

• Nd:YAG laser (<10-nsec FWHM)

• Camera (intensified CID)

Dec, 1990
(2D 1_11- ICID)

11111 
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Evolution of hardware for 111

Tait, N.P., & Greenhalgh, D.A. (1993).
PLIF imaging of fuel fraction in practical devices
and LII imaging of soot.
Berichte der Bunsengesellschaft fuer Physikalische
Chemie, 97(12), 1619-1624.

Recipe:

Nd:YAG laser (<10-nsec FWHM)

intensified CCD

Fig. 9
LII image from a strongly turbulent jet flame

Greenhalgh, 1993
(2D 111— ICCD)
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Evolution of hardware for 111

Michelsen, H. A. (2003).
Understanding and predicting the temporal response
of laser-induced incandescence from carbonaceous
particles
The Journal of Chemical Physics, 118, 7012-7045.

Recipe:

Nd:YAG laser (injection seeded)

Photomultiplier

Oscilloscope

Michelsen, 2003

(Injection-seeded laser)
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Evolution of hardware for 111

0.057 J/cm2
.... ........ .......... . 

0.114 J/cm2...... ............................
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Time (ns)

Michelsen, H. A. (2006).
Laser-induced incandescence of flame-generated
soot on a picosecond time scale.
Applied Physics B, 83(3), 443.

Recipe:

Nd:YAG laser ( FWHM)

Michelsen, 2006

(Picosecond laser)
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r, Evolution of hardware for 111

(a) (hi

Black, J. D. (2010).
Fiber Lasers as a Source for Laser-lnduced
lncandescence in Practical Applications.
OSA Technical Digest Series (CD) paper LWB5.

Recipe:

High power fiber laser

ICCD

Black

2010

111111 I I
1975 1985 1995 2005 2015

12 CD Sandia National Laboratories



77.17-
CRF; Evolution of hardware for 111

N 1
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Figure I. Sketch of the Multi-YAG laser clusler in 532

coufiguration.

Sjöholm, J., Wellander, R., Bladh, H., Richter, M.,
Bengtsson, P. E., Alden, M., Johansson, B. (2011).
Challenges for in-cylinder high-speed two-dimensional
laser-induced incandescence measurements of soot.
SAE International Journal of Engines, 4(2011-01-
1280), 1607-1622.

Recipe:

Nd:YAG laser (<10-nsec FWHM)

SIM 8 Camera (1 intensifier and 8 CCD)

Lund group
2011

1975 1985 1995 2005 2015
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Evolution of hardware for 111
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Ditaranto, M., Meraner, C., Haugen, N.E.L., and
Saanum, I. (2013).
lnfluence of long pulse duration on time-resolved
laser-induced incandescence.
Appl. Phys. B 112: 359-367.

Recipe:

Nd:YAG laser with temporal shaping
capabilities (50 — 1500 ns)

Spectrometer and PMT

Ditaranto et al.

2013
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Fiber
input

HWP

Evolution of hardware for 111

EOM

Amp 2 pH

PH

Amp 4

PH
•
•

PH

Amp l

Amp 3

Michael, J. B., Venkateswaran, P., Shaddix, C. R., &
Meyer, T. R. (2015).
Effects of repetitive pulsing on multi-kHz planar laser-
induced incandescence imaging in laminar and
turbulent flames.
Applied Optics, 54(11), 3331-3344.

Recipe:

• 100 kHz using a burst-mode laser system

• High-speed intensifier

• High-speed CMOS camera

Meyer et al.
Amp 5 

2015
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r, Evolution of hardware for 111
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Recipe:

• Nd:YAG (injection seeded)

• Ultra-high-speed CMOS camera (10 million fps)

FTCMOS2 burst image sensor
Extreme sensitivity (ISO 16,000)

6000 Max. Recording Speed 10 million frames/second
Resolution 400 (horizontal) x 250 (vertical) pixels

4000

2000

Number of Frames Recorded 256
Exposure time 50 ns

Light shielding film

Burst image Sensor Using Next-Generation CMOS Technology

2018

1
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Particle sizing with 111

Time-resolved laser-induced incandescence (TiRe-LII)
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Michelsen, H.A., et al. Prog. Energy Combust. Sci. 51 (2015) 2-48
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r, Particle-size imaging with 111
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Particle-size imaging

Determine the spatial distribution of dp

Will, S., Schraml, S., and Leipertz, A. (1995).

Two-dimensional soot-particle sizing by time-resolved laser-induced

incandescence. Opt. Lett. 20: 2342-2344.
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77
Particle-size imaging with 111
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4e+4 3e+4 2e+4 le+4 0

-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time / ns

Nd:YAG laser

1064 nm

Camera 1

= 425±15 nm

Camera 2

= 425±15 nm

Laser sheet
optics

P MT -10.

.........

........

. 

.....

• ................ 
Relay imaging

Slit aperture

injector

Spray

Time-gate sweeping:

Only works for steady flames/flows
Flame perturbations

• Laser shot-to shot variations

• Extended data acquisition duration

Multiple camera:

Image mapping

Different light-to-signal linearity

• Packaging

19



cRE; 111 imaging at 10 million fps

/ The proof of concept measurements:
Co-annular non-premixed laminar ethylene/air flame (Santoro burner)

1064-nm (injection seeded) laser sheet

Fluences from 0.03 to 0.15 J/cm2.

Detection wavelength band: 608-674
Experiments were done in New Mexico. Altitude: 5000 ft 4 P atm = 0.84 bar
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Fluence: 0.08 J/cm2
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iI
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ii
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The first 10 to 20 images following laser excitation show Lll signal that is clearly above the
background signal and sufficiently strong to compare to the modeled Lll decay.
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77
Benchmarking signal decay
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3 single shots (Run#2 is an outlier).

PMT and ICCD (gate sweeping, 92 nodes) data are acquired in 2012 at
IFPEn (at 1 bar, 0.08±0.01 J/cm2, 655±20 nm).
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Ilgt7igr:Ell model:

Particle-size prediction with 111 model

HAB 40 mm

Gas temperature 1850 K (pyrometry)

Pressure 0.84 bar (5000 ft)

Laser fluence 0.08 J/cm2

E(m) 0.4 (literature)

TAC 0.37 (literature)

Aggregate size 60 (TEM)

Time domain 4500 ns (aLaser)

Detection band 603 - 678 nm

Annealing Off

Bath-gas heating On (f, = 6 ppm)
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Laser Induced Incandescence Simulator v0.33

General settings

0 Simulation

0 Curve-fitting
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Model:
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lutal system condrtions
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0 Polydisp. Geo. width:

Particle temperature: [K]
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Matenal properties

Soot density: [kg/m]]
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Mass accornm. coeff.:
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Total simulation time: [s] 10.4

initial particle diameter: [nini 32.1

Coef. of determination

amines temperature

LaZer induced ilcantleSCenCe arnaatar

IDtB
Scrip. by Emre Cenker
Laat

aasts on aasorpas.n a an. awaits

I

31 
0

0.9

0.8

0.7

,1 0.6

10.5

5 04

0.3

0.2

0.1

3
.1.10

0
0 1000 2000 3000 4000 5000

0.5

3 °
-0.5

-1  
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time / ns Time / ns

 Fit

soo 1000 isoo 2000 2500 3000 3500 MOO 4.50i 5000

Tittle I ns

Puri, R., Richardson, T. F., and Santoro, R. J. (1993). Aerosol
Dynamic Processes of Soot Aggregates in a Laminar
Combust. Flame 92: 320-333.

Successful fit: R2>0.99
Predicted dp = 32.1 nm
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Particle-size prediction with 111 model
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• Optimized for 0.08 J/cm2

• 0.15 J/cm2 fails because of the
Gaussian laser profile.

The model is simulating a
homogenous heating (top-hat laser
profile) and due to the strong
evaporation, solid material
vanishes and signal drops.

Experiments, on the other hand,
were performed with 1D Gaussian
laser sheet where evaporated soot
at the center is compensated with
heated soot at the wings.
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Conclusion

The new CMOS technologies provide sufficient sensitivity for (delayed) Lll imaging.

Temporally and spatially resolved Lll signal can be acquired at 10 million fps. The
state of the art cameras provide very short gating capabilities.

Signals from the ultra-high-speed camera are in good agreement with the previous
PMT measurements.

Evaluated particle sizes show good agreement with those reported in the literature.

Compared to imaging with multiple sensors or time-gate sweeping strategies, this
new ultra-high-speed 111 imaging reduces uncertainties due to

image mapping

flame perturbations

laser shot-to-shot variations.

Thank you.
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