
Improving
MPI Multi-threaded RMA Communication Performance

Nathan Hj elm* t
Los Alamos National Laboratory

hjelmn@lanl.gov

Taylor Groye0
Lawrence

Berkeley National Laboratory
tgroves@lbl.gov

Matthew G. F. Dosanjht
Ryan E. Grant

Sandia National Laboratories

Center for Computational Research
mdosanj,regrant@sandia.gov

Patrick Bridges
University of New Mexico

bridges@cs.unm.edu

ABSTRACT

One-sided communication is crucial to enabling communication con-
currency. As core counts have increased, particularly with many-core
architectures, one-sided (RMA) communication has been proposed
to address the ever increasing contention at the network interface.
The difficulty in using one-sided (RMA) communication with MPI
is that the performance of MPI implementations using RMA with
multiple concurrent threads is not well understood. Past studies have
been done using MPI RMA in combination with multi-threading
(RMA-MT) but they have been performed on older MPI implemen-
tations lacking RIVIA-MT optimizations. In addition prior work has
only been done at smaller scale (<=512 cores).

In this paper, we describe a new RIVIA implementation for Open
MPI. The implementation targets scalability and multi-threaded per-
formance. We describe the design and implementation of our RIVIA
improvements and offer an evaluation that demonstrates scaling to
524,288 cores, the full size of a leading supercomputer installation.
In contrast, the previous implementation failed to scale past approx-
imately 4,096 cores. To evaluate this approach, we then compare
against a vendor optimized MPI RMA-MT implementation with mi-
crobenchmarks, a mini-application, and a full astrophysics code at
large scale on a many-core architecture. This is the first time that
an evaluation at large scale on many-core architectures has been
done for MPI RIVIA-MT (524,288 cores) and the first large scale ap-
plication performance comparison between two different RIVIA-MT
optimized MPI implementations. The results show a 8.6% benefit to
our optimized open source MPI for a full application code running
on 512K cores.

ACM Reference format:
Nathan Hjelm, Matthew G. F. Dosanjh, Ryan E. Grant, Taylor Groves, Patrick
Bridges, and Dorian Arnold. 2018. Improving MPI Multi-threaded RMA Com-
munication Performance. In Proceedings of 47th International Conference on
Parallel Processing, Eugene, OR, USA, August 13-16, 2018 (ICPP 2018), 10 pages.
https://doi.org/10.1145/3225058.3225114

'Work supported by the Advanced Simulation and Computing program of the U.S.
Department of Energys NNSA. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC for the NNSA. LA-UR-16-xxxxxx.

tAlso with Computer Science Department, University of New Mexico.
*Sandia National Laboratories is a multi-mission laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.
Nrork primarily done as an employee of Sandia National Laboratories.

Dorian Arnold
Emory University

dorian.arnold@emory.edu

1 INTRODUCTION
Most traditional high performance computing (HPC) applications
leverage process-level parallelism via message passing, for example
using Message Passing Interface (MPI). However, proposed exascale
systems (those capable of 1018 floating point operations per
second) will have to leverage levels of parallelism several orders
of magnitude beyond that of current systems. The expected
increase in intra-node and inter-node parallelism motivates two
seemingly orthogonal techniques: (1) hybrid programming models
that integrate multi-threading and (2) alternative communication
methods such as one-sided communication (or Remote Memory
Access (RMA)). Multi-threading provides intra-node parallelism in a
single memory address space, while one-sided communication pro-
vides opportunities for optimizing communication by decoupling
communication and synchronization.

One-sided or RIVIA communication has been supported by the MPI
standard for many years, beginning in MPI 2.0 [16] and enhanced in
MPI 3 [23]. Past inefficiencies in MPI RIVIA implementations, as well
as challenges in exploiting communication/computation overlap
have held back RIVIA adoption rates, but with the push towards
increased thread parallelism, the benefits of RIVIA are beginning to
be recognized. The major benefits of RIVIA are its ability to be easily
offloaded to existing network hardware for data movement and
its lack of message matching requirements. This means that it can
more efficiently exploit today's network hardware without the need
for strong MPI progress engines running on compute cores.

Traditionally, multi-threaded communication in MPI is limited
by serial data structures needed to support the message matching
requirements inherent to two-sided MPI. A lack of ordering
requirements outside of completion/barrier semantics with RIVIA
means that many threads can interact with MPI with fewer
serialization points and rarely conflict with each other. This makes
MPI RIVIA an excellent candidate for multi-threaded environments
and a compelling area of study. We refer the combination of remote
memory access and multi-threading in MPI as R/vIA-MT.
A limiting factor to the adoption of MPI RMA is that the

performance when using multiple threads (called RMA-MT) is not
well studied and no comparisons have been done between any
of the MPI implementations that have been recently optimized
RA/IA-MT communication. Prior work in the area of RIVIA-MT
performance evaluation was performed on unoptimized RMA-MT

SAND2018-5929C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



ICPP 2018, August 13-16, 2018, Eugene, OR, USA N. Hjelm et al.

MPI libraries [9]. In addition, this work only focuses on micro-
benchmarks and mini-applications as, at the time, there were no
applications available that used RIV1A-MT. Prior work was also
limited to relatively small scale (< =512 processes) and traditional
CPU architectures. While prior work was a motivating factor in
the improvement of MPI implementations' RIVIA-MT operation,
there is no work demonstrating the current progress that has been
made. Such work would be useful for developers to determine if MPI
RIVIA-MT performance is sufficient to meet their application's needs.
The performance of RMA-MT is also not understood for many-core
architectures and, as these are a prime motivating factor in moving
to RMA-MT, given their large core counts, such information is
essential to the applications and MPI communities.

In this paper, we describe the design, implementation, and eval-
uate the performance of a high-performance, scalable, thread-safe
RMA component in Open MPI. This component works for any
underlying network fabric that supports native put/get Remote
Direct Memory Access (RDMA) operations and basic remote Atomic
Memory Operation (AMO) primitives. By providing a native RMA
(RDMA-based) communication component for Open MPI that
supports thread-level parallelism, the module provides significant
performance improvements over previous versions of Open MPI.
While we focus on a specific MPI implementation and hardware
platform, our design and implementation is generalizable to any MPI
implementation or hardware platform, from small clusters to other
leadership class supercomputers. For several networks, our solution
is the only open-source optimized RIVIA-MT MPI implementation
available (e.g. Cray Aries). Open source highly optimized libraries
are essential for rapid troubleshooting and bug fixing versus closed-
source implementations as the users themselves can solve issues
as they arise and diagnose observed behaviors without requiring
assistance from an outside party (that controls the source code).
Our study uses Trinity, a Cray XC supercomputer located at Los

Alamos National Lab (LANL). Trinity is a hybrid system with an
equal number of nodes utilizing Intel Haswell and Intel Phi Knights
Landing (KNL) processors. This study investigates the performance
on both the Haswell and Xeon Phi partitions independently. A
performance comparison is run with Open MPI against Cray-MPI
at both small scale with micro-benchmarks and at large scale with
mini-applications and WOMBAT [21].

This paper makes several contributions:

(1) A complete, optimized open-source implementation of
multi-threaded RIV1A in Open MPI

(2) An evaluation of multi-threaded MPI RMA performance at scale
on one of the top 10 supercomputers in the world.

(3) The first comparison of two RMA-MT optimized MPI imple-
mentations at scale (closed-source Cray-MPI and open-source
Open MPI).

(4) The first study of RMA-MT performance on a many-core
architecture, i.e. KNL.

The rest of this paper is organized as follows: after offering a
background on the concepts and MPI functions relevant to our
work (Section 2), we describe the design and implementation of the
enhanced RIV1A support in Open MPI as well as improvements that
provide a scalable, performant and thread-safe RMA component
in (Section 3). Then we present our experimental framework
(Section 4) followed by our experimental results and an analysis
thereof (Section 5). Finally, we discuss related works (Sections 6)
and our conclusions and future work (Section 7).

2 BACKGROUND
In this section we provide background necessary for understanding
the performance of MPI RMA.

2.1 MPI Remote Memory Access
The RMA interface was introduced in version 2.0 [16] of the MPI spec-
ification to expose network hardware features for one-sided commu-
nication. To use RMA in MPI, process groups, encapsulated by an MPI
communicator, are associated with MPI windows, regions of mem-
ory that may be read from or written to by a remote nodes. In other
words, RMA operations are performed within the context of the MPI
window to transfer data between the local MPI process (origin) and
a remote MPI process (target). The R/VIA interface provides support
for reading (MPI_Get ( )), writing (MPI_Put ), and atomic memory
operations (MPI_Accumu la te ()) on data exposed in an MPI window.
In MPI, all RIV1A communication must occur while the initiator

has an access epoch, a time period for which a memory region is
guaranteed to be in a consistent state, to the target. Access epochs are
opened and closed using synchronization functions. For the requisite
synchronization between target and origin processes, MPI-2 RIV1A
provides three methods; Post-Start-Complete-Wait (PSCW), fence,
and lock. The PSCW and fence methods provide 'active target'
synchronization [12], where the target process must participate in
the synchronization. For example, fence necessitates a collective op-
eration that involves all the processes in the process group associated
with the MPI window to open or close an access epoch. PSCW opens
an access epoch on a subset of the processes participating in the
MPI window. Lock/unlock provides passive target synchronization
that does not require any involvement from the target process; this
method manages access epochs on a single target at a time.
MPI-3 RIV1A introduced global shared locks (lock-all) as well as

various forms of flush. The global shared lock provided by lock-
all allows multiple processes associated with a memory window
simultaneous access. This allows a lock-all operation to potentially
replace multiple MPI-2 lock operations. Flush synchronization can be
called during any passive-target access epoch and ensures either local
(flush-local, flush-local-all) or both local and remote (flush, flush-all)
completion of all preceding RIV1A operations to the target with the
benefit of not dropping the lock. This provides a way to synchronize
without the overhead associated with re-obtaining a lock.
Note that, while the RIV1A in MPI provides a one-sided com-

munication interface, the MPI standard does not require that the
underlying implementation to be one-sided. The implementation
simply must provide some level of progress for passive target op-
erations without requiring the user to call into the MPI library to be
standard compliant. In fact, the initial MPI-3 RIVIA implementation
in Open MPI used two sided communication (e.g. MP I_Se n d () and
MP I_I recv ()) to provide an MPI-3 compliant RIVIA interface. While
this approach allows for compliance with the specification, it defeats
the purpose of RMA communication by imposing many of the
overheads associated with two-sided communication.

2.2 MPI Threading Modes
The number of processing elements per node for HPC systems has in-
creased dramatically. For example, platforms based on Intel Xeon-Phi
processors have approximately 4X more cores per node than their
counterparts based on older Intel Haswell processors. Accordingly,
HPC communication libraries are being adapted to accommodate
the increased levels of intra-node parallelism; these adaptations



Improving MPI Multi-threaded RMA Communication Performance IC PP 2018, August 13-16, 2018, Eugene, OR, USA

include considerations for thread-safe library implementations. MPI
provides only one thread mode (MPI THREAD_MULTIPLE) that
guarantees thread safety.Additionally, existing MPI thread-safety
features are not performant due to the complex (and high overhead)
synchronization requirements of serial data structures, such as the
matching engine. The matching engine in MPI must enforce the
message ordering requirements in the MPI Specification [23], which
state that two-sided communication must be matched in the order
in which it was posted. This means that the matching list must be
operated on in a serial fashion in order to prevent overtaking on
the list and correct matching behavior in general. In addition, there
are two matching lists, a priority list for expected messages and an
unexpected list, such that when a new receive operation is posted
both lists must be locked while the unexpected list is searched in
case the receive request needs to be appended to the priority list.
The combination of RMA and multi-threading, RIVIA-MT, is a

compelling pairing as it can exploit hardware device capabilities to
provide higher message rates and greater efficiency by using multiple
hardware device contexts without the need for locking or serializa-
tion. This is because RMA communications do not require strict data
ordering; the synchronization of windows is the only requirement,
but it does not state what order data needs to be placed into a window.
RMA-MT has recently attracted enough attention that applica-

tions are beginning to leverage the approach. WOMBAT [21], an
astrophysics code, uses RIVIA as its main communication mechanism
and relies on multi-threading through OpenMP.

2.3 Cray XC-40
The Cray XC-40 uses a high-performance RDMA capable network
known as Aries. The Aries network is deployed on a number
of Top500 systems including Trinity at Los Alamos and Cori at
Lawrence Berkeley National Laboratories. The features of this net-
work can be accessed with two Cray libraries called ugni[6] and
DMAPP [6] [5]. The ugni library is targeted at MPI and similar pro-
gramming models and provides support for send/recv as well as ac-
cess to many of the low-level RDMA and atomic memory features of
the network. Access to the network is performed through device con-
texts. Multi-threaded access to these device contexts is not allowed
and external serialization is required to protect access. The DMAPP
library is targeted at one-sided programming models like Partitioned
Global Address Space (PGAS) and SHMEM. This library provides sup-
port for additional Aries features and is thread-safe (allows concur-
rent access from multiple threads). Unlike ugni the DMAPP library
is deeply integrated with Cray's runtime environment. This makes
it difficult to make use of DMAPP when using alternative run-times
such as the Open MPI Open Run-Time Environment (ORTE).

Both network libraries provide access to two modes of operations;
Fast Memory Access (FMA), and Block Transfer Engine (BTE). The
FMA mode gives low-latency access to remote memory and can be
used without registering the origin buffer when using RDMA put.
The BTE mode gives high-bandwidth access but requires that both
the origin and target buffers be registered with the NIC.

3 IMPROVING MULTI-THREADED OPEN MPI
To overcome the inherent limitations of Open MPI's original
One-Sided Communication (OSC) implementation (pt2pt, which
leveraged a two-sided back-end), we designed and implemented
an enhanced OSC component (rdma) for Open MPI v2.0.0. This new
component was designed to support multi-threaded applications

in a scalable manner and to support any network that provides
RDMA, the fetch-and-add, and compare-and-swap network AMOs.
We now describe the key optimizations and tradeoffs we made in
the design and implementation of the rdma component to ensure
high performance and scalability.

3.1 Memory Scaling
Generally, RDMA networks require memory regions that will be
the target of RDMA or AIVIOs operations to be registered with the
network stack. The registration process usually produces an access
handle in the range of 8-16 bytes. The registration handle and the
target pointer are then used to initiate a network RDMA operation.
A naive RMA implementation might perform an all-gather operation
and store the registration handles and base pointers for every
process participating in the MPI window, requiring O(n) memory
where n is the number of processes. Such a strategy is similar to
pre-connecting all MPI processes for point-to-point.
In our rdma component, we avoided this potentially prohibitive

memory overhead by distributing the registration handles and
pointers across all participating nodes and storing the array in
shared memory. The registration data and pointers associated with
the processes holding the distributed array are gathered and stored in
a shared memory region on each node. The first time an MPI process
attempts to open an access epoch on a remote MPI process it reads
the registration and pointer data on-demand from the distributed
array and caches it locally. This scheme reduces the up-front memory
requirements to O(N) where N is the number of participating nodes.
This approach will prove to be very useful particularly for future
systems with high degrees of intra-node parallelism.

3.2 Lock Scaling
Improvements for Lock-all Synchronization

Lock-all is an important synchronization method that facilitates
passive data transfer with an epoch spanning multiple processes.
We have implemented two different performance-aware lock-all
schemes into Open MPI v2: an on-demand locking strategy and a two-
level locking strategy. The best strategy is application-dependent,
so an optimized implementation must support both well.

On-demand locking. The on-demand locking support in the
rdma component is similar to that of the pt2pt component. When
executing a lock-all synchronization, the current access epoch is
marked as lock-all and a shared lock on the local process is obtained.
The implementation will not attempt to acquire any other lock.
Before executing the first R/VIA operation on a target process (during
the access epoch), the origin process acquires the target's remote
lock using a network fetch-and-add and checks for an existing
exclusive lock. If an exclusive lock was already set, the lock is
decremented and the lock operation is re-attempted until the lock is
obtained. When the lock-all epoch is complete the implementation
releases each lock obtained during the access epoch. This lock-all
implementation requires O(m) network atomic memory operations
to obtain and release the global lock where m is the number of
processes that are the target of an RIVIA operation during the lock-all
access epoch. On-demand locking is optimal for application that
either do not use lock-all or make extensive use of exclusive locks.

Two-level locking. Two-level locking is a lock strategy that enables
the support of a lock-all operation without needing to perform a lock
operation per-target. The two-level lock implementation in Open



ICPP 2018, August 13-16, 2018, Eugene, OR, USA N. Hjelm et al.

MPI is similar to the design described in [10]. Two-level locking is
used for both lock-all and exclusive locks. The first level is a 64-bit
global counter held by the lowest rank process in the communicator
used to create the RMA window. This counter is divided into two
32-bit counters; an exclusive lock counter and a global shared lock
counter. When obtaining either an exclusive lock or a global shared
lock, the corresponding counter of the global lock is incremented
using a 64-bit network atomic fetch-and-add. The result is checked
for a competing lock. If no competing lock is found, either the lock
was obtained (lock-all) or an attempt is made to acquire a local lock
at the target process using an atomic compare-and-swap (exclusive
lock). If a competing lock is found, the global counter is decremented
and the operation is retried until the lock is obtained. Single target
shared locks only modify the local lock at the target using atomic
fetch-and-add and do not modify the global counters.
One of the benefits of the two-level lock design is that when

executing a lock-all under low contention it only requires 0(1)
network atomic operations instead of O(m) needed by the on-
demand locking implementation. The trade-off is that this locking
implementation introduces a network bottle-neck at the node that
holds the global lock when there is heavy usage of exclusive locks.
The implementation also imposes the overhead of an additional
network atomic operation when obtaining an exclusive lock that
is not present in the on-demand locking implementation.

3.3 Byte Transport Improvements
The Byte Transport Layer (BTL) interface [11] in Open MPI supports
data movement between communication endpoints for many types
of interconnects. We identified several multi-threading bottlenecks
and limitations in the BTL interface that were largely a product of
the original design which was meant to support high-bandwidth
two-sided operations using network RDMA. This RDMA support
was necessary to provide access to the full bandwidth available on
the network by eliminating extra copies when delivering a message
to a target buffer.
BTL operations (put, get, send) were implemented using

information stored in an internal structure known as a fragment.
For RDMA operations, fragments were allocated using a BTL
module's prepa re_s rc () and prepare_dst 0 functions. The
prepa re_s rc () function additionally supported the send func-
tionality in the BTL module. These functions registered the local
memory with the network and prepared the fragments for the
BTL put () and get () functions. To support single send-receive
operations, a BTL fragment could only be used for a single RDIVIA
operation. This limitation forced rdma to allocate and release a
fragment for each RMA operation, thereby introducing additional
serialization points and function call overheads into the RMA critical
path. We fixed this bottleneck by removing the prepa re_dst ()
function and removing the overloaded usage of the p re pa re_s r c ().
The parameters originally passed to these functions are now passed
directly to the BTL module's put () and get () functions.
The original BTL interface did not provide functions to perform

atomic network operations supported by many high-performance
network APIs. To support these operations, we added additional
functions to the BTL interface to support compare-and-swap, and
both fetching and non-fetching atomic operations. The new interface
supports 32 and 64-bit integer and floating point operations.

3.3.1 uGNI BTL lmprovements. Additional improvements were
made to further optimize the RMA-MT performance of Open MPI

on Intel KNL with Aries and Gemini networks. In prior versions
of Open MPI access to the ugni library was done using locks and
a single network device context. The locking is required due to the
single-threaded nature of the ugni library. To reduce the thread
contention on the network resources and provide better support
for many-core architectures we updated Open MPI with support
for multiple simultaneous ugni device contexts. This is similar to
an optimization in use in Cray-MPI [21]. These device contexts are
assigned round robin to threads for RIVIA operations (put, get, atom-
ics) only. Since there is no benefit to using multiple contexts with
single-threaded operation this new support is only enabled when
when the MPI THREAD_MULTIPLE threading model is requested.
By default Open MPI currently bases the number of device contexts
on the number of local ranks to reduce contention of the underlying
kernel and hardware resources. The number of device contexts can
be controlled by setting the btl ugni virtual device count Modular
Component Architecture (MCA) variable via an environment variable
or on the mpirun command line. In general, to optimize network
utilization, a user should attempt to match the virtual device count
with the number of threads that are expected to make concurrent
calls into the R/vIA interface.

4 EXPERIMENTAL SETUP

We designed our experiments to help us answer the following
questions:

• Is the enhanced rdma RMA implementation better than the pt2pt
version?

• How does rdma in Open MPI compare to a highly optimized
vendor MPI?

• How does the rdma scale with multi-threaded applications?

To answer these questions we used Trinity, a large system located at
LANL and run by Alliance for Computing at Extreme Scale (ACES).
As of November 2017 the Trinity system ranked in the top 10 of the
Top500 [22]. This system was chosen as it supported the necessary
RDMA and AMO features and has a highly tuned vendor MPI for
performance comparisons. This system is made up of 9408 nodes
each with two 16 core Intel E5-2698v3 processors and 9848 nodes
with a single 68 core Intel KNL processor. A11 nodes have 128 GB of
DRAM. The interconnect is a Cray Aries network which is arranged
in a dragonfly topology. To evaluate at small scale with the micro-
benchmarks, we used a small test bed cluster, Trinitite, which pro-
vides the same hardware and software environment. Both systems
were running Cray CLE 6.0 UP01 and all benchmarks were compiled
with gcc 5.3.0. We had dedicated time on Trinity during two inde-
pendent open-science periods and were able to run on 8,192 Haswell
nodes with 262,144 cores and 8,192 KNL nodes with 557,056 cores.
We used a version of Open MPI pulled from the master branch

of the Open MPI git repo hash f858647. This version contained
most the improvements described in Section 3. This version did not
include multi-device context support and is equivalent to setting
the btl ugni virtual device count MCA variable to 1.

For performance evaluation, we used the Latency and Bandwidth
benchmarks from the RMA-MT benchmark suite [9], which was
designed to test and analyze the RMA interfaces of MPI under a
Thread Multiple invocation. For scaling studies, we used a Mantevo
miniapp [26] (HPCCG). HPCCG addresses implicit unstructured
partial differential equations. HPCCG targets the sparse iterative
solver and creates a 27-point finite difference matrix, for which
each MPI rank is designated a user-defined sub-block. The miniapp



Improving MPI Multi-threaded RMA Communication Performance ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Table 1: pt2pt vs. rdma (Put and Get) bandwidth and latency
with relative performance between pt2pt and rdma.

Small Messages < 16KiB I I Large Messages > 16KiB

I pt2pt I RDMA I % I I pt2pt I RDMA I %

Bandwidth MiB/s (more is better)

get 205
put 209

395 +92% 4846 6815
414 +98% II 4202 6471

Latency ps (less is better)

+40%
+54%

get
put

82
64

73
59 -11% 11 

159
-8% 136

103
99

-35%
-28%

was modified to use lock-all synchronization. All benchmarks were
run with the Open MPI process affinity set to none to allow the
application threads to move between cores.

For each configuration, we ran the RMA-MT micro-benchmarks
10 times with each comprising 100 iterations. For each configuration,
we ran HPCCG four times.

For the comparison study with Cray-MPI we used the Intel KNL
partition of the Trinity supercomputer. At the time this partition
was comprised of 8909 compute nodes. The system was running
Cray CLE 6.0 UP03. For these tests we used a version of Open
MPI pulled from the master branch of the Open MPI git repo hash
6886c12. Open MPI was compiled with gcc 6.3.0 and Cray Fortan for
the language-specific bindings. The btl ugni virtual device count
MCA variable was set to auto-set the number of device contexts.
For the micro-benchmarks and mini-apps we used the same

programming environment used with Open MPI but for WOMBAT
we used the Cray programming environment. WOMBAT was
built with Cray Fortan in all cases and was configured to use
passive-target RMA. To evaluate the performance of Cray-MPI
with DMAPP, all executables were linked against the Cray
DMAPP library and with MPICH_RMA_OVER_DMAPP=1, and
MPICH_MAX THREAD_SAFETY=multiple set.

5 EXPERIMENTAL RESULTS

5.1 Evaluation of OSC RDMA

5.1.1 OSC point-to-point vs. RDMA. In this section, we present
our performance evaluation based on the latency and bandwidth
benchmarks. Our micro-benchmark-based evaluation included a
comparison of our Open MPI improvements versus the original
code using different synchronization methods, thread counts,
message size, and RIVIA operations. Each benchmark was run 10
times, with 100 put/get operations per run. This combination of
features resulted in approximately 45,000 latency and bandwidth
measurements. We summarize key results (as opposed to results
for each evaluated message size) due to data volume. In particular,
we have divided message sizes into two classes: small and large (less
than or equal to 16KiB; greater than 16KiB, respectively1). We also
split the results by (1) put or get, (2) synchronization method, and (3)
thread count, in Tables 1-3 respectively. For each split in the data we
report the averages with respect to the attribute being split on. For
example, Table 1 shows small-message get operations averaged 205
MiB/s, across all synchronization modes and thread counts for pt2pt.

Put and get. Table 1 shows that (1) rdma outperforms pt2pt; (2) for
small messages, the best latency is achieved with put operations; (3)

116KiB being a common transition point between eager and rendezvous protocols in
MPI implementations

Table 2: pt2pt vs. rdma (Thread Count) bandwidth and
latency with relative performance between pt2pt and rdma.

Small Messages < 16KiB I I Large Messages > 16KiB

I pt2pt I RDMA I % II pt2pt I RDMA I %

Bandwidth MiB/s (more is better)

1 thread 361 1062 +194% 7261 8780 +21%
2 thread 248 590 +138% 6493 8413 +30%
4 thread 222 293 +32% 5120 7833 +53%
8 thread 166 117 -29% 3942 6608 +68%
16 thread 108 63 -42% 2749 5031 +83%
32 thread 61 27 -56% 1582 3198 +102%

Latency ps (less is better)

1 thread 26 19 -24% 62 50 -19%
2 thread 28 23 -18% 64 49 -23%
4 thread 32 33 +3% 78 53 -32%
8 thread 49 51 +4% 100 65 -35%
16 thread 89 90 +1% 165 110 -33%
32 thread 268 232 -13% 419 280 -33%

Table 3: pt2pt vs. rdma (Synchronization methods) band-
width and latency with relative performance between pt2pt
and rdma.

Small Messages < 16KiB I I Large Messages > 16KiB

I I pt2pt I RDMA I % I I pt2pt I RDMA I %

Bandwidth MiB/s (more is better)

fence 216 388 +79% 3755 6638 +77%
lock 205 425 +107% 4636 6633 +43%
lock-all 198 391 +97% 4740 6679 +41%
PSCW 216 388 +79% 3755 6638 +77%

Latency ps (less is better)

fence 66 76 +15% 147 112 -24%
lock 89 67 -24% 157 100 -36%
lock-all 80 66 -18% 150 98 -35%
PSCW 56 56 0% 138 94 -32%

for large messages the best bandwidth is provided by get operations.
Put and Get performance are largely dependent on underlying
network architecture design, and therefore, the results observed
reflect the network performance of the Aries network as used by the
Open MPI rdma component. Specific to the Aries network [1], a 64B
read (or get) operation requires 3 request flits and 12 response flits,
whereas a put operation results in 14 request flits and 1 response
flit. Furthermore, it is expected that get latencies are higher than
put latencies because put operations require a PCI-e read on the
remote node to complete.

Thread count. On examination of Table 2, there are a few occasions
where pt2pt outperforms rdma in bandwidth (small messages, 8,
16, and 32 thread). At these thread counts, the message is divided
into smaller and smaller segments across the threads. rdma provides
lower bandwidth in this case due to a feature of pt2pt that aggregates
multiple small puts into a single MPI send. rdma has a similar feature
for small puts to consecutive memory locations but it is not currently
supported when using MPI THREAD_MULTIPLE. This means each
MPI_Put 0 operation translates to a separate network transaction.
This highlights a scenario where a developer might want to

leverage a two-sided point-to-point implementation of RMA
operations. A caveat of this observation is that to realize the higher
potential small message put bandwidth of pt2pt either the BTL
component needs to support asynchronous progress or the target
MPI process needs to enter the MPI library to progress the RIVIA



ICPP 2018, August 13-16, 2018, Eugene, OR, USA N. Hjelm et al.

operations. In the case of the RMA-MT benchmark the target
process is spinning in a call to MP I_Ba rrier (). During our study
we found that for message sizes smaller than 2MiB, pt2pt provides
greater bandwidth than rdma. This is not surprising since RDMA is
designed to facilitate efficient transfer of large messages, due to the
inherent costs of registering memory. However, for messages in this
range, the absolute difference in bandwidth is just tens of megabytes
per second. Our improvements to one-sided communication reflect
the idea that small messages should be optimized for latency and
large messages should be optimized for bandwidth.

Synchronization method. Table 3 provides an overview of the
performance of different synchronization methods in MPI-3. While
this table shows some differences between performance of different
synchronization techniques, it does not fully illustrate the benefits of
passive data transfer that lock-all synchronization provides. Lock-all
is most beneficial when an application can take advantage of the
passive data transfer to overlap computation and communication.

Tables 1-3 show that our enhancements to rdma result in
widespread improvement in both bandwidth and latency over pt2pt.
In particular, rdma outperforms pt2pt 89 out of 96 times. At its best,
rdma achieves an almost 3X increase to bandwidth (1 thread, small
messages) and a 35% decrease to latency (lock-all, large messages).

5.1.2 Discussion. We offer two explanations of rdma's
performance benefit observed in this section:

• Reduced network usage from implicit synchronization
• Improved algorithms for explicit synchronization

Our rdma component provides reduced implicit synchronization
costs because it doesn't incur the same implicit synchronization of
two sided communication. There is less transfer facilitation data that
needs to be sent. For instance, the call already has a destination in
memory from the time the put or get is issued, thus the rendezvous
protocol is not needed for large message. The improvements here
are likely dependent on network congestion and topology. This may
explain some of the degradation of the miniapp performance as the
scale increases and the network becomes a bottleneck.
The effect of the improved explicit synchronization can be seen

in the miniapp results. As we increase the number of processes
participating in the explicit synchronization call, the calls get more
expensive. We can attribute a part of the scale based performance
degradation in the pt2pt miniapp results to an unoptimized
implementation of MP I _Wi n_Lock_All ( ) that sends a lock request
to each peer process in the MPI window.

Addressing the questions of Section 4. Going back to the questions
we put forth at the start of Section 4, our results support several
conclusions. First, the rdma component performed correctly. Within
the RIVIA-MT benchmarks are checks to verify data is transferred
across windows as expected. While some of the early benchmarking
of RMA-MT [9] found occasional errors within these windows, we
did not observe any such errors in the rdma component. Additionally,
our mini-applications did not observe any change in the residual,
compared with the pt2pt component. Our rdma component saw
significant improvements at scale compared to the pt2pt component
when running multi-threaded MPI code. Specifically, our rdma was
able to scale up to the full system size of 262,144 cores for FIPCCG.
Making it the first implementation of RMA-MT to be validated at
such scales. For these weak-scaled problems, rdma did not show
any signs of slowdown until reaching 65,536 cores. In contrast, the
pt2pt component began to experience significant scaling problems

beginning at 1,024 cores, failing to scale past 4,096 cores. The
rdma component has improved the scalability of Open MPI RMA-MT
by a factor of 64X. The impact of the rdma component on application
performance varies according to scale. For small scale applications
this impact is limited to minor improvements, but as the application
increases in core count the benefits of rdma increase. At scales of
4,096 cores, the rdma component cuts the application runtime in
half compared to the native pt2pt component.

General applicability. Traditionally applications have been
written for single-threaded two-sided communication. Modern HPC
networks support one-sided communication (e.g. Cray Aries, Omni-
Path, InfiniBand and RoCE) and if we want to get the most out of these
networks, applications need to adopt asynchronous, multi-threaded
communication. While this work focuses on the combination
of multi-threaded and RMA, many of our improvements would
benefit applications using single-threaded RMA and multi-threaded
independently. Our work is generally applicable to MPI applications
in the HPC space, since any two-sided application could be adapted
to utilize one-sided operations. As HPC applications explore alter-
native communication paradigms some high-level knowledge of the
MPI RIVIA implementation may help drive algorithm design. Ideally,
the improvements to RMA-MT performance made in this paper will
help drive adoption of more scalable communication methods.

5.2 Performance Comparison to Cray-MPI
5.2.1 Micro-benchmark Results. In order to compare the two

implementations in terms of basic MPI performance we used a mod-
ified version of the RIVIA-MT benchmark suite [9]. The new version
includes support for flush synchronization and a number of improve-
ments to reduce overhead within the benchmark. These benchmarks
provide basic latency and bandwidth tests in MPrs multi-threaded
mode. Our evaluations sweep the following attributes: message size,
put and get, and thread count (1, 2, 4, 8, 16, 32, 64). Each test reports the
mean of 1000 iterations of bandwidth or latency and we run 10 tests
per data point. In all cases the reported bandwidth is the cumulative
bandwidth of all threads for a particular process. Similarly, reported
latency is the latency of the slowest thread for a particular process.
This creates roughly 22,000 data points which we post-process to pro-
vide a general overview of performance in Tables 4 - 5. In each of these
tables we present slices of the data filtered by a particular attribute.
Each value in the table corresponds to the median value. Micro-
benchmark results were collected on an active production system.
For Open MPI we modified the default MCA variable configuration
to set the FMA/BTE switch-over point to 16k. This switch-over point
was picked as it represents the best multi-threaded performance
with Open MPI when using RMA-MT. The aprun and mpirun pro-
cess launchers were used for Cray-MPI and Open MPI to launch the
benchmark with two MPI processes placed across two nodes on the
same Aries ASIC. MPI process bindings were disabled using the -cc
none and —bind-to none options for aprun and mpirun respectively.
For Example in Table 4, we have binned all results as either put

or get operations (represented as sub-rows) and small, medium,
and large messages (columns < 64B, 128 to 16 KiB and > 16KiB,
respectively). As such, Table 4 masks the impact of thread count
and synchronization method.
These tables reveal that DIVIAPP performance is generally better

than Open MPI, by a significant amount. This difference is most
noticeable for small messages and medium sized messages and at
higher thread counts. This is not all that surprising given DIV1APP



Improving MPI Multi-threaded RMA Communication Performance ICPP 2018, August 13-16, 2018, Eugene, OR, USA

Table 4: Cray-MPI with DMAPP and Open MPI with ugni
(Put and Get).

64B I I 128B to 16KiB I I > 16KiB

I I DMAPP I OMPI II DMAPP I OMPI II DMAPP I OMPI

Bandwidth MiB/s (higher is better)

get 17 2 I 964 306 7414 7427
put 11 4 962 646 8532 8225

Latency ps (less is better)

get

37 73 56 84 155 140
put 32 43 55 56 137 129

Table 5: DMAPP and OMPI (Thread Count).

64B I I 128B to 16KiB I I > 16KiB

I I DMAPP I OMPI II DMAPP I OMPI II DMAPP I OMPI

Bandwidth MiB/s (higher is better)

1 thread 7 2 442 339 7557 7727
2 thread 13 2 668 451 7560 7713
4 thread 23 2 804 525 7482 7679
8 thread 42 2 722 533 7220 7623
16 thread 25 3 864 528 7569 7280
32 thread 21 2 1380 468 7632 7170
64 threads 17 2 1372 410 7736 5820

Latency ps (less is better)

1 thread 18 22 16 25 72 76
2 thread 20 27 24 34 80 84
4 thread 22 35 35 50 118 111
8 thread 28 57 50 70 152 155
16 thread 41 85 87 111 213 189
32 thread 65 121 162 180 285 293
64 threads 125 253 340 355 465 509

includes architecture specific enhancements for the Cray Aries
network not available when using the ugni library that Open MPI
uses. The exception to this is large messages using less than 8
threads, where Open MPI outperforms Cray-MPI's DMAPP RMA
implementation by about approximately 5%. In addition, many
of the DMAPP performance benefits come in RMA modes that
are not typically used, where we have concentrated on the most
popular/useful RMA mode, lock_all.

For small messages the Cray-MPI RMA-MT implementation ben-
efits from the DMAPP API's non-blocking implicit functions. These
allow multiple put operations to be combined into a single network
transfer. The ugni library does not support this feature. This gives
Cray-MPI an advantage when running a bandwidth benchmark.

For large messages sent over the Aries network. The BTE mode
requires that the memory region associated with the source or target
memory on the initiator (put and get respectively) be registered
before it can be used for an RDMA operation. To reduce the costs
associated with this registration Open MPI keeps a cache of recently
used memory registrations. This cache is currently implemented
with a synchronous data structure protected by a mutex. As the
thread count increases, this mutex quickly becomes a bottle-neck
within Open MPI. Cray-MPI and the DMAPP library also use a
registration cache but we do not have any details on how Cray-MPI
manages its memory registration cache. We attempted to use a Cray
library (udreg) for memory registration in Open MPI but found that
it reduced performance.

Detailed analysis of lock-all. The performance of passive target
synchronization (lock, lock-all, and flush) is especially important to
understand. These are the only synchronization methods that allow

for a combination of passive operation 2 and shared access amongst
multiple MPI processes. Because of its importance we have included
detailed figures of the lock-all performance (Figures la - ld). This
provides the full performance details not provided in the tables.
In these figures, each data point represents the median and the
error bars represent the standard deviation. Open MPI results are
represented by solid lines while Cray-MPI results are dashed lines.

There are several general trends across all the latency results in
Figures la-lb. Overall, Open MPI latency is better than Cray-MPI
for any given thread count, with only small messages (<64B) at large
thread counts (32 threads and up) having better performance in
Cray-MPI over Open MPI. Thread count has a negative impact on
latency, such that increasing thread count correlates to monotonic
increases in latency. This trend holds across both put/get and for
Open MPI and DMAPP implementations, with 64 threads reaching
nearly double the latency of 32 threads. Some of this overhead is due
to the inclusion of thread synchronization within the benchmark
itself. These barriers are necessary to ensure that all threads have
completed their communication before the synchronization calls are
made. We do not have measurements on how much of the latency
is due to this synchronization and how much is due to the MPI
implementations. We can, however, compare the latencies produced
by the two MPI implementations. Specific to the Cray-MPI DMAPP
implementation, we see that very small messages (1 and 2 bytes) incur
a significant penalty to latency for high thread counts. These values
then decrease at 4 bytes, creating a temporary dip, which increases
substantially once message sizes surpass the 64 bytes. There are
additional jumps in latency as message sizes increase to 64KiB. Both
of these jumps are likely due to protocol decisions within both Cray-
MPI and the DMAPP library. Since both software products are closed-
source we can only speculate as to why these transition points exist.

Figures lc- ld show that thread count seems to impact bandwidth
only moderately for small and large sized messages. Threading has a
bigger impact on the performance of medium sized messages (128B
to 16KiB). Overall Cray-MPI has a slight edge in bandwidth, with
Open MPI outperforming with lower thread counts and message
sizes in the critical 32KiB-256KiB range. The results show a sweet
spot for bandwidth of medium size messages utilizing 8 threads for
Open MPI. This contrasts with the performance dip for medium
sized messages in DMAPP using 8 threads. Moving beyond 8 threads,
the results show that DMAPP performance steadily increases while
Open MPI performance decreases. Finally there is a substantial
increase to bandwidth in Open MPI once message sizes of 32KiB are
achieved. This is, again, due to the choice of the FMA/BTE transition
point made for this study. The plots of DMAPP bandwidth do not
contain this dramatic increase and reflect a smoother relationship
between message size and aggregate bandwidth. This difference is
likely due to the usage of registration cache that is better suited for
multi-threaded access. Improving registration cache performance
is work that is expected to be in a future Open MPI release.

5.2.2 Mini-applications.

HPCCG. Mini-applications are a proxy for larger full appli-
cation codes. We examined the performance of HPCCG, a part
of the Mantevo suite of mini apps that is meant to be a "best
approximation to an unstructured implicit finite element or finite
volume application in 800 lines or fewer." [14]. We ran the HPCCG
benchmark with the aprun launcher and 64 MPI processes per

'Meaning it does not involve the target node CPU.



ICPP 2018, August 13-16, 2018, Eugene, OR, USA
ag
gr
eg
at
e 
la
te
nc
y 
(u
se
cs
) 

80

70

60

50

40

30

10

Multithread OMPI vs Cray MPI Latency (lockal put)

,+

- - +

661111111Wall,

-+

x 0 6, , % %

msg. size per thread (B)
OMPI 2 thread —41— Cray MPI 4 thread - -* -

Cray MPI 2 thread - -• - OMPI 8 thread —•—
OMPI 4 thread —4— Cray MPI 8 thread •

(a) Open MPI vs Cray-MPI latency for small thread
counts (put-lockall)

ag
gr
eg
at
e 
la
te
nc
y 
(u
se
cs
) 

400

350

300

250

200

150

100

50

0

Mulfithread OMPI vs Cray MPI Latency (lockall put)

sa 7 6 QZ., s9 <06, % S‹, % 
FB 

sr%

msg. size per thread (B)
OMPI 16 thread —.11— Cray MPI 32 thread --•-

Cray MPI 16 thread - - OMPI 64 thread  D
OMPI 32 thread —71(— Cray MPI 64 thread - -

(b) Open MPI vs Cray-MPI latency for large thread
counts (put-lockall)

10000

8000

6000

4000

2000

N. Hjelm et al.

Multithread OMPI vs DMAPP Bandwidth (lockall put)

msg. size per thread (B)
OMPI 2 thread —41— Cray MPI 4 thread - -

Cray MPI 2 thread • OMPI 8 thread —r—
OMP I 4 thread Cray MPI Et thread - -

(c) Open MPI vs Cray-MPI bandwidth for small thread
counts (put-lockall)

10000

Multithread OMPI vs Cray MPI Bandwidth (lockall put)

170

HPCCG Mini-Application Runtimes OMPI vs Cray MPI

165
8000 160

155
6000

150

4000 E 145 E

140

2000 135

130
0

125 II_ •

120
64_ ws,rnsg. size per thread (B)

OMPI 16 thread Cray MPI 32 thread - -
Cray MPI 16 thread - - OMPI 64 thread —B—

OMPI 32 thread —x— Cray MPI 64 thread - -
Number of Cores

OMPI —41— Cray MPI - -

ag
gr
eg
at
e 
ba
nd
wi
dt

h 
(M
iB
ps
) 

HPCCG Mini-Application Boundary Exchange Time OMPI vs Cray MPI

6
•

5.5

5
•

4.5 -- •

3.5

3

2.5

• 

`94- 
* '.0,,_ g•

'r

Number of Cores
OMPI —6— Cray MPI •

(d) Open MPI vs Cray-MPI bandwidth for large (e) HPCCG runtime comparing both Open MPI (f) HPCCG boundary exchange time comparing
thread counts (put-lockall) and Cray-MPI both Open MPI and Cray-MPI

Figure 1: Open MPI vs Cray-MPI put latency, bandwidth and HPCCG Comparisons

node. MPI processes and their threads were not bound and were
allowed to float across all available cores and hyper-threads. This
benchmark's RMA-MT conversion is done in a reasonable but naive
way. It uses multiple threads for each neighbor communication,
spawning a thread for each direction of communication in the
neighbor exchange. This has the effect of over subscribing the cores
during communication, as each core is only 4-way SMT capable.
However, this communication can be easily overlapped as it is
RMA, and therefore this over-subscription technique is not a major
impediment to performance. Figure le shows the total runtime
including initialization and lf shows the total time spent exchanging
boundary data with both Open MPI and Cray-MPI of a weak-scaling
HPCCG simulation with a local grid size of 1203. The total runtime
with the two RMA-MT implementations is similar up to 32k cores.
At this point there is a divergence and Open MPI is 2 7 % slower
at 128k cores. This slowdown is not a problem with the RIVLA-MT
implementation inside Open MPI but it due to a fixed overhead
Open MPI incurs when being launched using aprun. This overhead
scales with the total number of MPI processes being launched.
Though the total runtime for these HPCCG runs are longer with
Open MPI the total time spent exchanging data with RIV1A is lower
than with Cray-MPI showing a 49.5% improvement over Cray-MPI
at 128K cores. This is a result of Open MPI having optimized the
critical lockall RMA operation, showing better results than when
considering the entire range of operations, many of which are not
widely used. MPI experts encourage all new RIVIA code to use lockall.

5.2.3 Full Application. The number of applications that are
capable of using multi-threaded RMA is very limited due to the short
time frame in which optimized RMA-MT MPI implementations

have been available. One of these applications is WOMBAT [21], an
astrophysics simulation code written in Fortran developed by Cray.
We ran this benchmark with both Open MPI and Cray-MPI. All
WOMBAT runs were performed with the aprun launcher using the
depth mapper. This mapper binds the MPI process to a user specified
number of cores. We set this depth to the number of threads used by
WOMBAT to match the threads exactly to the number of available
cores. Due to issues running this benchmark with Open MPI we
disabled an internal optimization that accelerates node local RMA
communication. We ran a weak scaling problem with a patch size
of 483 and 2 patches per thread. For optimal performance we ran
with the max in-flight RMA communication parameter set to 4 for
the 4 threads/MPI rank runs, 16 for the 8 and 16, and 32 for the 32
and 64. All other WOMBAT parameters were left to their defaults.

Figure 2 shows the results of running 20 time-steps of the
weak-scaling problem varying the total number of threads on the
x-axis and the runtime for multiple different threads/MPI process.
The reported time is the total sum of just the time-steps and does
not include any initialization or cleanup time. The results show
that WOMBAT scales very well, with Cray-MPI results in Figure 2
represented as dashed lines and Open MPI as solid lines. There is
very little increase in runtime when weak-scaling the application
up to 512K cores. Both MPI implementations do a good job in
maintaining scalability for a very large many-core system. An
observable jump in runtime is experienced when moving to 32 or 64
thread with 64 thread variants having slightly more overhead than
the 32 thread case. This increase could be due to MPI process being
bound across more than one KNL quadrant. In addition, we see some
scaling impacts with smaller numbers of threads, most notably the



Improving MPI Multi-threaded RMA Communication Performance ICPP 2018, August 13-16, 2018, Eugene, OR, USA

75

70

65

60

55

50

45

9.4-

WOMBAT Application Runtimes OMPI vs Cray MPI

"34- 74-

Number of Cores
4 thread OMPI -A-

4 thread Cray MPI - -
8 thread OMPI

8 thread Cray MPI - -• -
16 thread OMPI —A—

;c3 s3,5'6,4_ 6-4_

16 thread Cray MPI - -
32 thread OMPI —X-

32 thread Cray MPI - -
64 thread OMPI

64 thread Cray MPI - -

Figure 2: WOMBAT application runtime comparing both
Open MPI and Cray-MPI with varying numbers of threads

Cray-MPI cases when reaching core counts of 256K and up. Open
MPI also experiences some runtime increases which occur for the
4 thread case. However, the 8 and 16 core cases scale very well with
a consistent trend, showing best performance at 8 threads at 512K
cores with a 8.6% performance advantage over the best Cray-MPI
thread configuration. Running at scale shows that either MPI
implementation should be run at 8 threads for best performance.
The results of the WOMBAT testing show that the two MPI

implementations under test have different performance for this
application. This is expected based on the micro-benchmark
results that showed differences in performance between the two
implementations for basic data movement. However, the results are
better than the micro-benchmark results imply. When we examine
the bandwidth and latency curves for the micro-benchmarks in
Figures la- ld we can observe that the curves for latency are
better for Open MPI and for bandwidth, some message sizes are
very similar or better in Open MPI. These message sizes are very
common for applications, and are used in WOMBAT. As such the
performance observed is better for Open MPI. In addition, the
performance reported by the micro-benchmarks is the performance
under heavy load when multiple threads are calling into the MPI
implementation simultaneously. This usage is not reflective of the
usage of a real application. The serialization points uncovered by
the micro-benchmarks likely have little impact on a real application.
WOMBAT shows the potential of RMA-MT application per-

formance at scale with optimized MPI implementations. This is
somewhat expected when we examine the characteristics of the
application's interaction with MPI. Firstly, MPI RMA allows for
a great deal of parallelism in the communications path due to its
lack of per-message data ordering. This means that multiple device
contexts can be used in parallel without fear of violating ordering
semantics required in MPI. In addition, shared data structures such
as two-sided matching lists are not required and such lists are natural
serialization points due to message ordering rules. This means that
MPI RMA-MT can avoid many of the traditional serialization points
in an MPI library and given that the library is optimized for this
parallelism, we would expect that this should lead to good scaling
behavior in terms of communications. This leads us to the conclusion
that at least for Astrophysics Magneto-hydrodynamics simulations,
R/VIA-MT is a viable communication path for highly scalable codes.

Realistically, the communication patterns that WOMBAT uses
are more generalizable outside of its particular scientific field, and
therefore we expect more applications to use RMA-MT in the future.

6 RELATED WORK

Independently, efforts to measure performance of RIVIA [12] and
multi-threading in MPI [2, 27] have been addressed. In order
to support measuring this performance, several benchmark
suites have been developed to measure RIVIA performance, such
as the OSU Benchmark Suite from Ohio State University [24],
which supports several different measurements associated with
MPI-3 RIVIA operations, including different window creation and
synchronization methods. However, it does not measure operations
in the context of multiple threads, similar to other benchmarks like
the Intel MPI Benchmark suite [17]. The multi-threaded benchmark
suite for Argonne National Laboratory [30] has been used to evaluate
multi-threaded MPI performance, but does not address RIV1A. A test
suite that uses both RMA and multi-threading at the same time in
MPI, RIVIA-MT, has been detailed [9] and is publicly available. Other
variants that include OpenSHMEM support are also available [31].

Recent work has centered on MPI-3 R/vIA compliant implementa-
tions but has not cross compared multiple different MPI implementa-
tions or examined performance for multi-threaded operation [7]. De-
vice level RDMA has been exploited for MPI in the past [20], however
such work concentrated on using RDMA as a data transport for tra-
ditional two-sided communication, not the MPI RIV1A interface. Mes-
sage rate evaluations have been previously performed on traditional
and many-core architectures in the past [3]. While RIV1A and RDMA
are promising in a multi-threaded environment, past work [13] sug-
gests that RDMA traffic needs to be handled carefully to avoid in-
terference with memory subsystems, and therefore MPI implemen-
tations should be carefully designed to avoid memory contention.

Efforts to harness high-granularity tasking models have been
explored through detailed investigation of tasking implementations
that utilize MPI for communication [29]. In addition, work has been
done to quantify the impact of highly parallel fine-grained tasking
with MPI and has found that it may be beneficial [4]. Many threading
and tasking libraries exist outside of MPI and are commonly used
in conjunction, the most common being MPI+OpenMP [25].
Some alternative support for multiple threads in MPI have been

proposed, such as the endpoints proposal for MPI [8, 28] that seeks
to offer enhanced network performance for multi-threaded MPI
applications. Other alternatives, such as native MPI threads have
been implemented in alternative MPI libraries such as FG-MPI [18].

This work is the first to compare two MPI libraries that have
been optimized for RIVIA-MT. Cray's DMAPP interface [5] provides
multiple device contexts with multi-threaded one-sided commu-
nication in its Aries networks. DMAPP's use in WOMBAT [21] is
the first case known to the authors' of a major RIVIA-MT enabled
application. It is expected that more applications will move in this
design direction now that optimized MPI libraries are available.
The closest R/VIA-MT performance evaluation at scale was done

using Cray-MPI with optimizations for multi-threading and RMA
through the DIVIAPP interface where tests showed good scaling up
to 32K cores [19], which is approximately one order of magnitude
less than the results shown in this paper. To the best of the authors'
knowledge this is the largest number of cores used to test RMA-MT
MPI ever performed, including the largest RMA-MT application run.



ICPP 2018, August 13-16, 2018, Eugene, OR, USA N. Hjelm et al.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we described our new RMA support for Open MPI, com-
pared it to the old method, and conducted a study comparing Open
MPI to Cray-MPI for multi-threaded MPI remote memory access
optimized for a large Xeon Phi system utilizing a Cray Aries network.
In particular, we leveraged the RMA-MT benchmark suite [9] and
WOMBAT [21] to analyze performance of Open MPI's RDMA mod-
ule [15] and the Cray-MPI's DMAPP solution [5]. The results of this
study show that our improved Open MPI is better for the critical lock-
all synchronization method, showing better performance on commu-
nication in miniapps and RMA applications. For mini-apps, Cray-MPI
has better performance for very large scale runs including startup
times, but Open MPI is competitive at large scale and superior for ac-
tual data exchange. Our study of WOMBAT demonstrated that for ap-
plications, Open MPI can outperform Cray-MPI by 8.6% at full scale.
The KNL many-core processors allowed us to evaluate multi-

threaded RIVIA at core counts much larger than previous studies.
It was found that both implementations allow for excellent scaling
to large numbers of cores. This is encouraging for RMA-MT as an
application design decision, leading us to believe that RIVIA-MT may
be a viable programming approach for very large scale codes when
optimized MPI implementations are available. While Cray's imple-
mentation is meant for specific hardware, Open MPI' s optimizations
at a general level can be applied to many different networks.

8 ACKNOWLEDGMENTS

The authors would like to thank the WOMBAT team (Peter Mendy-
gral, Nick Radcliffe, Krishna Kandalla, David Porter, Brian J. O'Neill,
Chris Nolting, Paul Edmon, Julius M. F. Donnert, and Thomas W.
Jones) for providing access to their source code in order to test WOM-
BAT as well as guidance on configuration and execution of the code.
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

B. Alverson, E. Froese, L. Kaplan, and D. Roweth. Cray xc series network. Cray
Inc., White Paper WP-Aries01-1112, 2012.
P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. Toward efficient
support for multithreaded mpi communication. In European Parallel Virtual
Machine/Message Passing Interface Users' Group Meeting, pages 120-129. Springer,
2008.
B. W. Barrett, R. Brightwell, R. Grant, S. D. Hammond, and K. S. Hemmert. An
evaluation of MPI message rate on hybrid-core processors. International Journal
of High Performance Computing Applications, 28(4):415-424, 2014.
R. F. Barrett, D. T. Stark, C. T. Vaughan, R. E. Grant, S. L. Olivier, and K. T. Pedretti.
Toward an evolutionary task parallel integrated mpi+ x programming model.
In Proceedings of the Sixth International Workshop on Programming Models and
Applications for Multicores and Manycores, pages 30-39. ACM, 2015.
M. t. Bruggencate and D. Roweth. Dmapp: An api for one-sided programming
model on baker systems. Cray Users Group (CUG), 2010.
Cray Inc. Using the GNI and DMAPP APIs. In Cray Software Document, volume
S-2446-5202, Oct. 2014.
J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. An
implementation and evaluation of the mpi 3.0 one-sided communication interface.
Concurrency and Computation: Practice and Experience, 2016.
J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and R. Thakur. En-
abling communication concurrency through flexible MPI endpoints. International
Journal of High Peiformance Computing Applications, 28(4):390-405, 2014.
M. G. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, and P. G. Bridges. Rma-mt:
A benchmark suite for assessing mpi multi-threaded rma performance. In
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(IEEE/ACM CCGrid 2016), 2016.
R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-Scalable Remote
Memory Access Programming with MPI-3 One Sided. Nov. 2013. IEEE/ACM
International Conference on High Perfonnance Computing, Networking, Storage
and Analysis (SC13).

[11] R. L. Graham, T. S. Woodall, and J. M. Squyres. Open MPI: A flexible high
performance MPL In Proceedings, 6th Annual International Conference on Parallel
Processing and Applied Mathematics, Poznan, Poland, September 2005.

[12] W. D. Gropp and R. Thakur. Revealing the performance of mpi rma implemen-
tations. In European Parallel Virtual Machine/Message Passing Interface Users'
Group Meeting, pages 272-280. Springer, 2007.

[13] T. Groves, R. E. Grant, and D. Arnold. Nimc: Characterizing and eliminating
network-induced memory contention. In IEEE International Parallel & Distributed
Processing Symposium. IEEE, 2016.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich. Improving
performance via mini-applications. Sandia National Laboratories, Tech. Rep, 2009.

[15] N. Hjelm. An evaluation of the one-sided performance in open mpi. In Proceedings
of the 23rd European MPI Users' Group Meeting, EuroMPI 2016, pages 184-187,
New York, NY, USA, 2016. ACM.

[16] S. Huss-Lederman, B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir, J. Squyres,
et al. MPI-2: Extensions to the message passing interface. University of Tennessee,
available online at http://www. mpiforum. org/docs/docs. html, 1997.

[17] Intel. Intel MPI benchmarks 4.0. https://software.intel.com/en-us/articles/
intel-mpi-benchmarks, 2015.

[18] H. Kamal and A. Wagner. Fg-mpi: Fine-grain mpi for multicore and clusters. In
20101EEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), pages 1-8. IEEE, 2010.

[19] K. Kandalla, P. Mendygral, N. Radcliffe, B. Cernohous, D. Knaak, K. McMahon,
and M. Pagel. Optimizing cray mpi and shmem software stacks for cray-xc
supercomputers based on intel knl processors. 2016.

[20] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High performance
rdma-based mpi implementation over infiniband. In Proceedings of the 17th
annual international conference on Supercomputing, pages 295-304. ACM, 2003.

[21] P. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. J. O'Neill, C. Nolting,
P. Edmon, J. M. Donnert, and T. W. Jones. Wombat: A scalable and high-
performance astrophysical magnetohydrodynamics code. The Astrophysical
Journal Supplement Series, 228(2):23, 2017.

[22] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top500 supercomputing
sites. http://www.top500.org/, 2013.

[23] MPI Forum. MPI: A message-passing interface standard version 3.1. Technical
report, University of Tennessee, Knoxville, 2015.

[24] Ohio State University. OSU micro-benchmarks 4.4.1. http://mvapich.cse.
ohio-state.edu/benchmarks/, 2015.

[25] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel programming
on clusters of multi-core smp nodes. In Parallel, Distributed and Network-based Pro-
cessing, 2009 17th Euromicro International Conference on, pages 427-436. IEEE, 2009.

[26] Sandia National Laboratory. Mantevo project home page. https://mantevo.org,
2010.

[27] W. Schonbein, M. G. F. Dosanjh, R. E. Grant, and P. G. Bridges. Measuring
multithreaded message matching misery. In Proceedings of the International
European Conference on Parallel and Distributed Computing, 2018.

[28] S. Sridharan, J. Dinan, and D. D. Kalamkar. Enabling efficient multithreaded
MPI communication through a library-based implementation of MPI endpoints.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, November 2014.

[29] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and C. T. Vaughan.
Early experiences co-scheduling work and communication tasks for hybrid mpi+
x applications. In Proceedings of the 2014 Workshop on Exascale MPI, pages 9-19.
IEEE Press, 2014.

[30] R. Thakur and W. D. Gropp. Test suite for evaluating performance of mpi
implementations that support mpi_thread_multiple. In F. Cappello, T. Herault,
and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, volume 4757 of Lecture Notes in Computer Science, pages 46-55.
Springer Berlin Heidelberg, 2007.

[31] H. Weeks, M. G. Dosanjh, P. G. Bridges, and R. E. Grant. Shmem-mt: A benchmark
suite for assessing multi-threaded shmem performance. In Workshop on
OpenSHIVIEM and Related Technologies, pages 227-231. Springer International
Publishing, 2016.


