

Dynamical Learning:

Spectral methods for reducing large datasets with motion

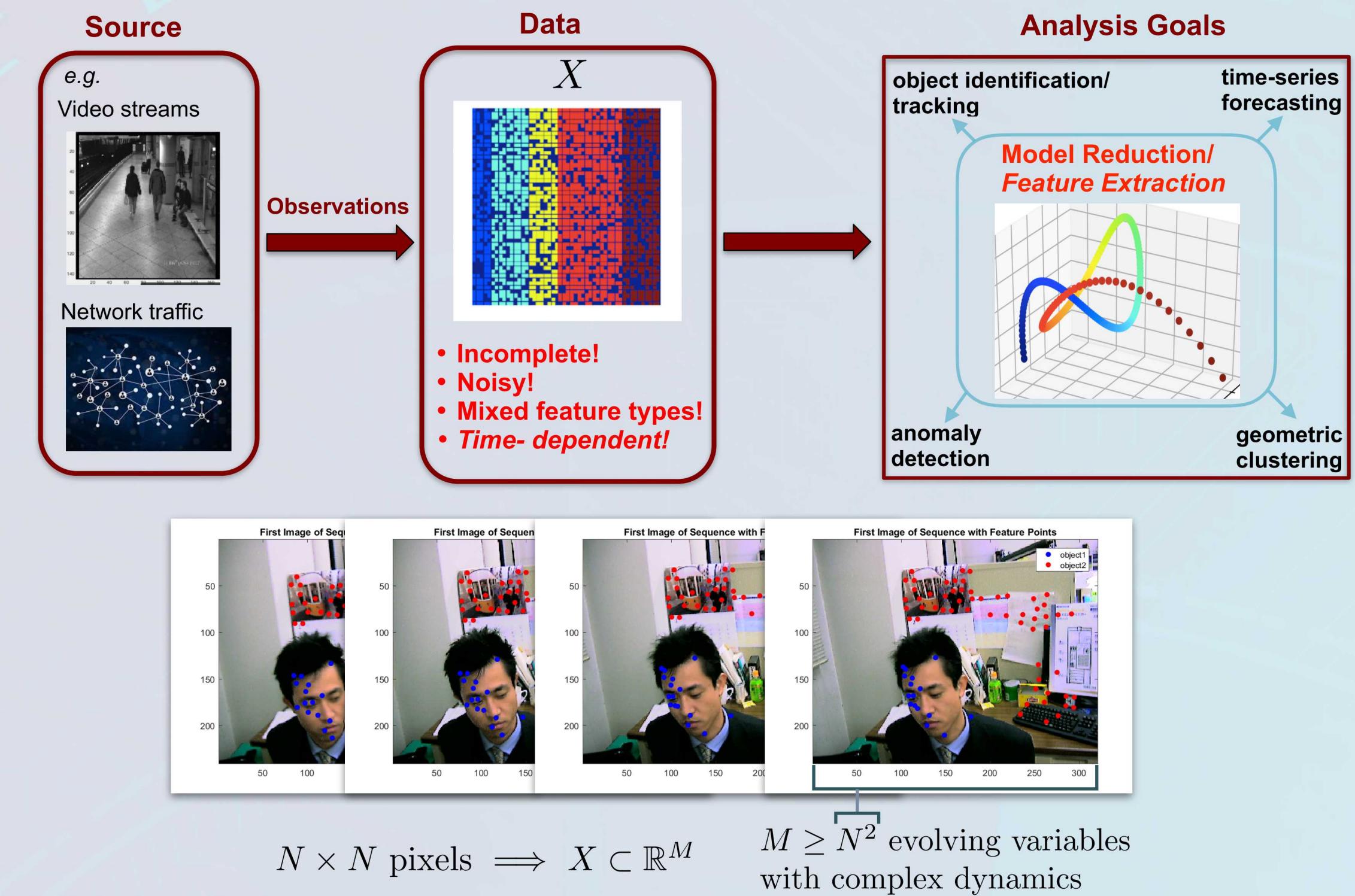
Sandia National Laboratories

A. Kumar*, I. Mezić†, R. Mohr†, C. Brown†

* Sandia National Laboratories, California 94551

† Department of Mechanical Engineering, UCSB, California 93106

Problem



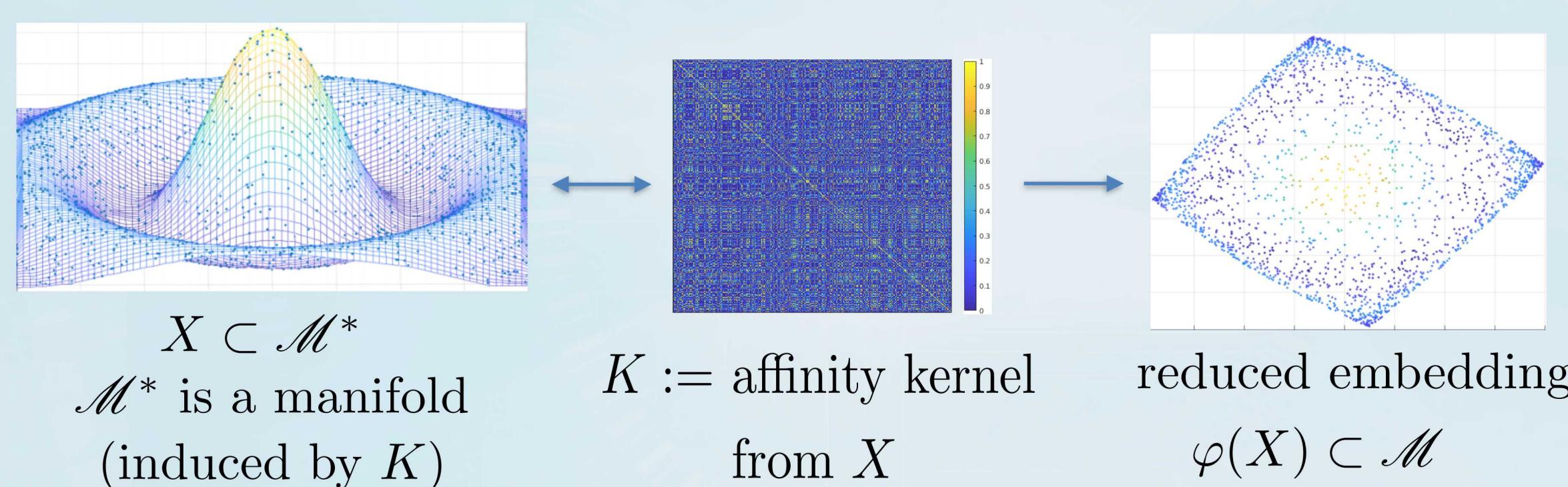
Data has internal structure (spatial) that evolves according to its dynamical characteristics

Goals: Develop efficient, data-driven representations of time-dependent datasets with high dimensionality and presence of noise/chaos:
 Spatial dimensionality reduction, with
 Dynamical (temporal) separation & robust evolution

Approach

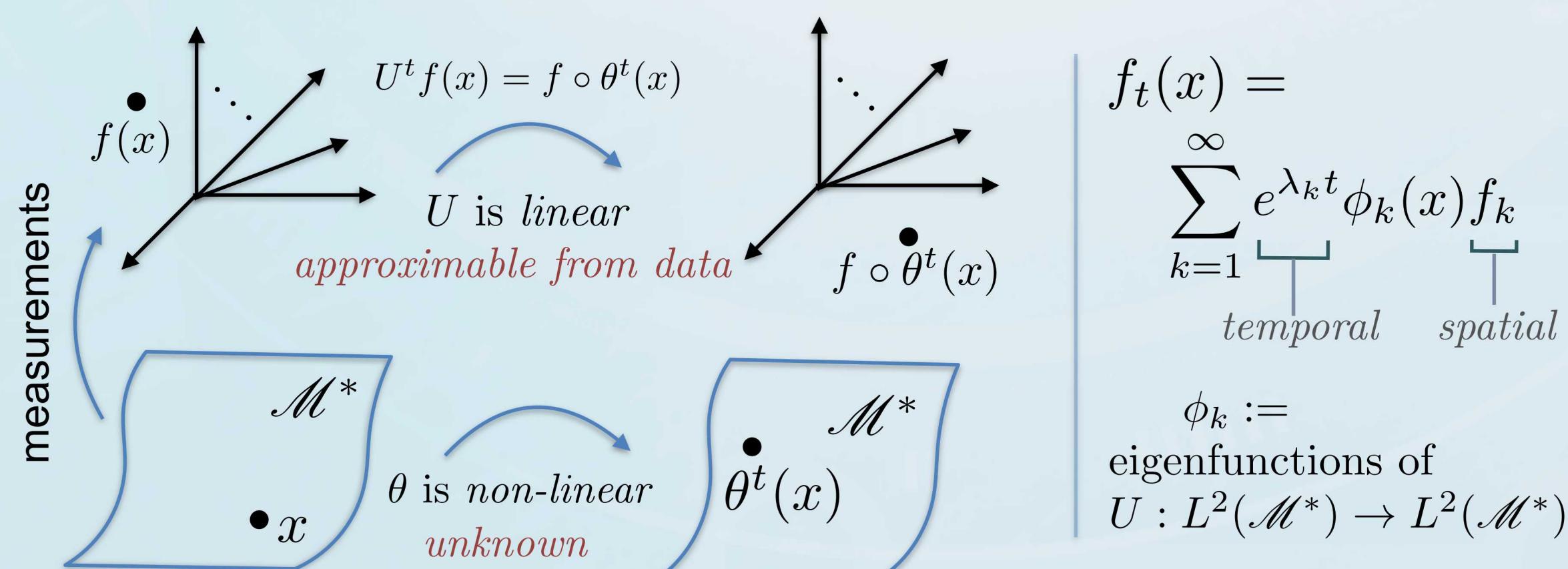
Hypothesis: Data with structure has low *intrinsic* dimensionality and small number of primary governing dynamical features

Spatial organization & reduction: Manifold learning



Computation of φ amounts to a low-order eigen-decomposition
 Robust to noise & sampling density; typically, $\dim(\mathcal{M}) \ll \dim(X)$

Data-driven dynamical recovery: Koopman theory



Approach: Combine these spectral methods to achieve reduced representations of complex, high-dimensional datasets

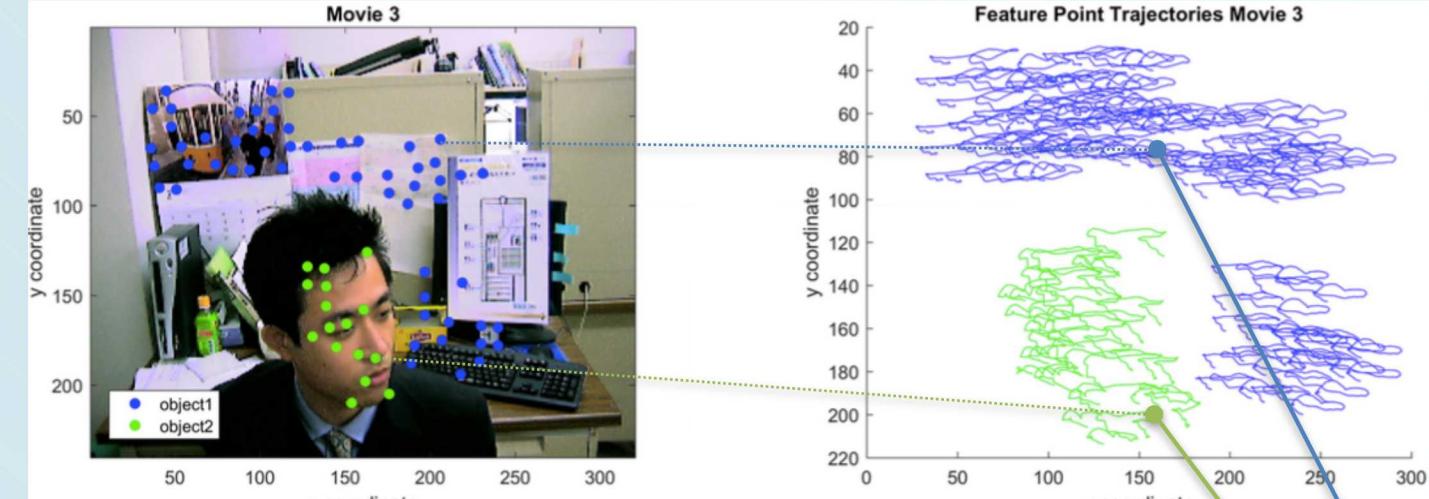
Results

Techniques reveal structure in video datasets with several motions, allowing decomposition into simpler primitives & lower-dimensional representations

Method: $(X, \theta) \rightarrow ((f^1, \dots, f^m) : X \rightarrow \mathbb{R}^m, \theta) \downarrow ((\lambda_1, \dots, \lambda_n), \vec{f}_k) \downarrow$
 Data-driven dynamical feature extraction with application-specific observables f^j

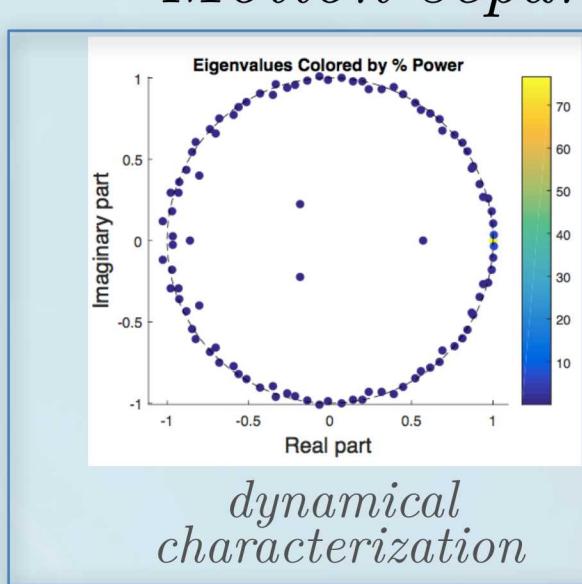
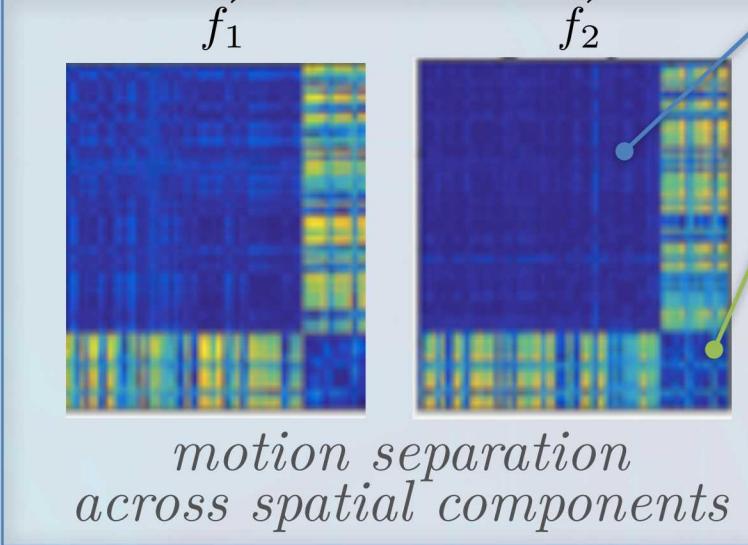
Dynamical classification & spatial reduction through manifold learning

Application:



Dynamical clustering:

Motion separation & classification



Modal structures separate objects by geometry & dynamics

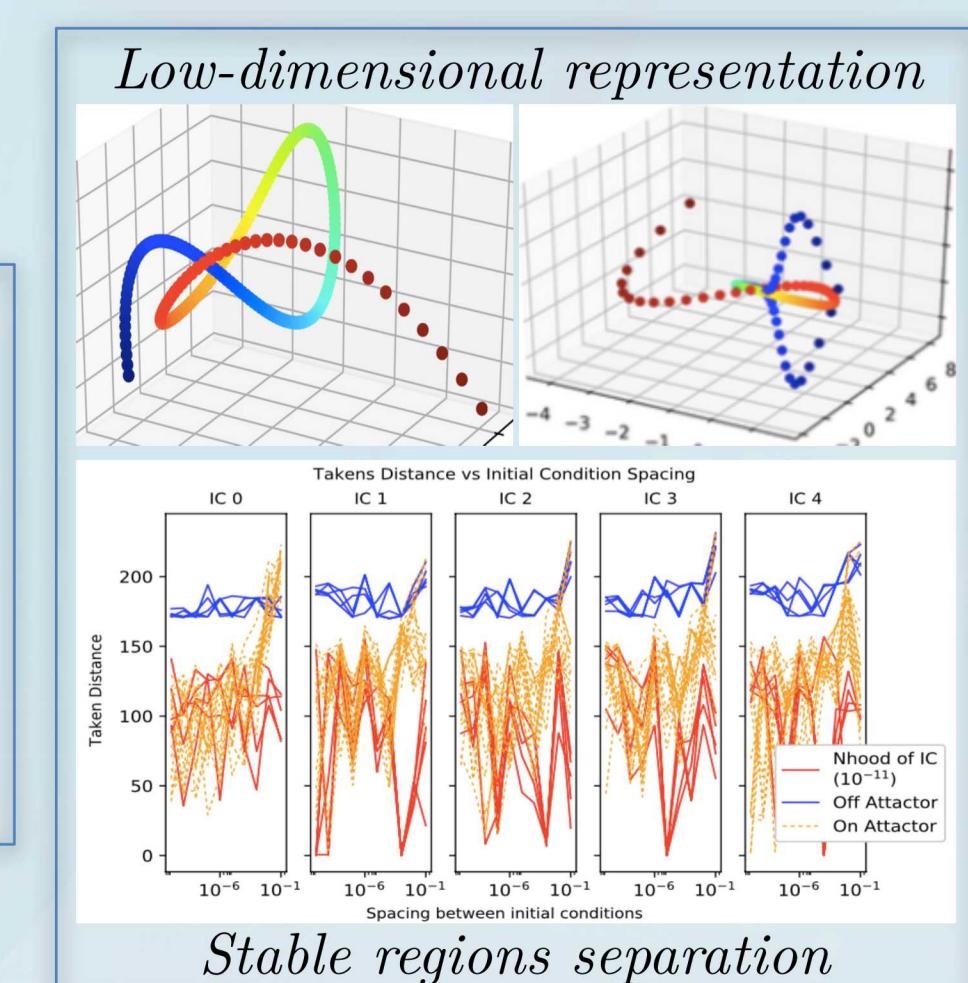
Structural recovery & low-dimensional representation enable efficient identification & tracking of multiple motions

Significance

Algorithms grounded firmly in theory: framework and theory are kept general so they are effective across analysis on all types of time-dependent datasets; Application-dependence is separated into choice of observables & embedding parameters

Results reveal structure in natural data, extendible to a dictionary between structure in reduced representations & dynamical characteristics

Wide application space across mission areas: Fluid dynamics, anomaly detection, pattern classification & tracking, quantum dynamics



Future work: Extend to datasets with implicit time-dependence & complex small-scale dynamics through local-to-global principles

Funding: Laboratory Directed Research & Development, Computing Information Sciences