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Application:
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Dynamical clustering:

Data has internal structure (spatial) that evolves Wl paraion & alasstfesien

according to its dynamical characteristics
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Develop efficient, data-driven representations of

Goals: time-dependent datasets with high dimensionality
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and presence of noise/chaos: A URE

Real part

Spatial dimensionality reduction, with dynamical motion _sipardtion t
. . . h terizati across spatial components
Dynamical (temporal) separation & robust evolution B 8 .

Structural recovery & low-dimensional representation enable

ApprOaCh efficient identification & tracking of multiple motions

Hypothesis: Data with structure has low intrinsic dimensionality and S]gn]fl cance
small number of primary governing dynamical features -
Algorithms grounded firmly in theory: framework and theory
Spatial organization & reduction: Manifold learning are kept general so they are effective across analysis on all
types of time-dependent datasets; Application-dependence is
separated into choice of observables & embedding parameters

Results reveal structure in natural data, extendible to a
dictionary between structure in reduced representations &
dynamical characteristics
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H* is a manifold K := affinity kernel ~ reduced embedding = wide application space across mission areas: Fluid dynamics,

(induced by K) il 7 o(X)C . A anomaly detection, pattern classification & tracking, quantum
dynamics
Computation of ¢ amounts to a low-order eigen-decomposition Low-dimensional representation

Robust to noise & sampling density; typically, dim(.#Z) < dim(X)

Data-driven dynamical recovery: Koopman theory Example: Chaotic systems:
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it Future work: g omplex small-scale dynamics through
local-to-global principles

¢ o i §
[N N FS
‘**‘\\‘\\
e NN\

measurements

Combine these spectral methods to achieve reduced

Approach:
poLoac representations of complex, high-dimensional datasets Funding: Laboratory Directed Research & Development, Computing Information Sciences
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