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e.g.

Video streams

Observations

Network traffic

Data

• Incomplete!
• Noisy!
• Mixed feature types!
• Time- dependent!

Analysis Goals

object identification/ time-series
tracking forecasting

Model Reduction/
Feature Extraction

anomaly
detection

geometric
clustering
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Data has internal structure (spatial) that evolves
according to its dynamical characteristics

Goals:
Develop efficient, data-driven representations of
time-dependent datasets with high dimensionality
and presence of noise/chaos:

Spatial dimensionality reduction, with
Dynamical (temporal) separation Et robust evolution

Techniques reveal structure in video datasets with
several motions, allowing decomposition into simpler

primitives Et lower-dimensional representations

Method:

Application:

Hypothesis: Data with structure has low intrinsic dimensionality and
small number of primary governing dynamical features

Spatial organization Et reduction: Manifold learning

X c e/1*
ele* is a manifold

(induced by K)
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reduced embedding
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Computation of (pi amounts to a low-order eigen-decomposition
Robust to noise & sampling density; typically, dimV") « dim(X)

Data-driven dynamical recovery: Koopman theory
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Approach:
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Combine these spectral methods to achieve reduced
representations of complex, high-dimensional datasets
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Dynamical clustering:
Motion separation classification

T2

motion separation
across spatial components

\) Modal structures
separate objects
by geometry a

dynamics

Structural recovery Et low-dimensional representation enable
efficient identification Et tracking of multiple motions

Signi
Algorithms grounded firm(y in theory: framework and theory
are kept general so they are effective across analysis on all
types of time-dependent datasets; Application-dependence is
separated into choice of observables Et embedding parameters

Results reveal structure in natural data, extendible to a
dictionary between structure in reduced representations ec
dynamical characteristics

Wide application space across mission areas: Fluid dynamics,
anomaly detection, pattern classification Et tracking, quantum
dynamics

Example:

(X , 0) ((fl , . . . , fm) : X n , 0)

((Al, , An), fk)

Dynamical c(assification Et spatia( reduction
through manifold learning
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Data-driven dynamical
feature extraction

with application-specific
observables f

Feature Point Trajectories Movie 3
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Chaotic systems:
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Future work:

Low-dt▪ mensional representation ]

Takens Distance vs Initial Condition Spacing
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Stable regions separation

Extend to datasets with implicit time-dependence
ec complex small-scale dynamics through
local-to-global principles
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