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The Electric Power Grid

Millions of complex physical,
communications, computational, and
networked components and systems.

Our complex modern society depends on reliable electric supply, requiring a
resilient electric power grid.

New instrumentation, sensing, communication, and automation:
• Pro: Situational awareness, efficient operation, and corrective action
• Con: Additional complexity
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Power System Operation and Control

• Balance power generation and
demand continuously

demand
generation

• Maintain scheduled voltages

• Monitor flows and thermal limits

Maintain system stability

Operate system reliably even if a
contingency occurs, such as the loss of
a generator or transmission facility
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Historically done with local
resources, such as:
• Generator governor
• Power System Stabilizer (PSS)
• etc.

Now, distributed resources may be used. pIEEE
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Changing Generation Mix
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Reductions in solar and wind
capital costs and clean energy
tax credits sustaining rapid
renewable growth.

co

Cost reductions primarily due to
high volume manufacturing and
large scale deployments.
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Cost Reductions Since 2008
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>19,900 MW of installed wind
capacity, the most of any state in
the nation.

Wind Generation record:
16,141 MW (March 31, 2017)

Wind Penetration record:
54 percent (October 27, 2017)
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1,000 MW of utility-scale
installed solar capacity as
of October 2017

Solar capacity in queue:

2017: 109 MW

2018: 791 MW

State of the Grid Report 2015 & ERCOT Quick Facts

2015
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CAISO "Duck Curve"

Energy and environmental

goals are driving change.

Emerging grid conditions:
• Short, steep ramps
• Oversupply risk

• Decreased frequency
response
• Lower inertia

Need flexible, controllable
resources to match variable
demand and variable
supply.

www.caiso.com
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Stability Challenges Related to Renewables

• Need to be firmed and made dispatchable
• Mostly cannot respond to frequency changes
• Lower inertia faster rate of change of freq. (RoCoF) and lower nadir
• Often steep ramps

Frequency control: 

Freq. with active power deficit.

load

Freq. with active power surplus.

freq.

load
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Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Mitigate $79B/yr in commercial

losses from outages
Max denund natant storage

Max demand vaM storage

Reduce commercial and industrial electrical bills

through demand charge management. 7.5 million
U.S. customers are enrolled in dynamic pricing

IEEE (EIA 2015)
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Balance the variability of 825 GW of

new renewable generation while
improving grid reliability and efficiency.

ENERGY
IEEE

Advancing Technology
for Humanity



Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Spending on i SID Projects Compieted by
20 Heavily Weighted lowards the Rockies
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Can act as a controllable, flexible resource (source and
sink) that can firm renewables, provide synthetic inertia,
frequency regulation, limit ramp rates, etc.

Reduce commercial and industrial electrical bills

through demand charge management. 7.5 million
U.S. customers are enrolled in dynamic pricing

IEEE (EIA 2015)
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Balance the variability of 825 GW of

new renewable generation while
improving grid reliability and efficiency.
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Power System Stability

Power System Stability

Ability to remain in operating equilibrium

Arn iStability Voltage Stability

Ability to maintain synchronism Ability to maintain steady acceptable voltage
I 

Small-Signal Stability Transient Stability

Non-oscillatory Stability

IEEE „....
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Oscillatory Instability

• Insufficient damping torque

• Unstable control action

Small disturbances occur
continually because of small
variations in loads and
generation.
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Kundur, "Power system stability and control," McGraw-Hill, 1994.

IEEE
Advancing Technology

for Humanity



Small Signal Stability - Power System Oscillations
Oscillations can lead to instability and system breakup, so they must be damped
effectively to maintain secure and stable system operation.

lntra-area oscillations:
• Low frequency (1-3 Hz) oscillations characteristic of interconnected power systems

with synchronous generators in a local region excited by normal variations in
system load.

• Power system stabilizers were designed to damp these oscillations.

Inter-area oscillations:
• Very low frequency oscillations (0.1-1 Hz) characteristic of wide-area power grids in

which synchronous generators in different regions oscillate against one another.
• Prominent in grids with major load and generation centers separated by long

(hundreds of miles) AC transmission corridors.
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USA/Canada Western Power System Breakup
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PPSM at DittmerControl Center
Vancouver, WA

15:42:03
Keekr-Allston line trips

0.270 Hz
7.0% damping
(Ambient analysis)

0.264 Hz.
3.46°. clamping
(Ringclown)

Reference tirne = 13:35:30 PDT

15:48:51
Out-of-Step separation

15:47:36

Ross-Lexington line trips/
McNary generation drops off

0.252 Hz
1.2% damping
(Ambient analysis) /

(System unstable)
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Control System for Active Damping

POWER
Business & Technology for the Global Generation Industry Since 1882

Official Publication of CONNECTEDPLANT ELECTRIC (5, POWERnrf CONFERENCE

More EE I

Decade-Old Power Grid Problem Solved by
Smart Grid Technology
01/11/2018 I Sonal Patel

• Only safe and effective way to prevent oscillations
has been to reduce the amount of power sent
through a transmission line.

• Inter-area oscillations have been studied for more
than 40 years.

• Damping (or controlling) them has been elusive,
owing to a lack of real-time measurement data
throughout the grid.
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Other resources:

•Sandia Labs News Release 

•ECN Magazine 

•Phys.org 

•Science Magazine 

•Daily Energy Insider 

•Metering & Smart Energy International 

•Pbsi 

•EnvironmentGuru 

•Electric Energy Online 

•R&D Magazine 

•In Compliance Mag 

•Power Mag 

•T&D World 

•Machine Design 

B O N N E V I L L E
POWER ADMINISTRATION

Montana Tech
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Modulation of Pacific DC Intertie (PDCI)

BRITISH
COLUMBIA

Washingto

PDC! California

North-South

Montana-NW

9 North PMU measurements
East-West

South PMU measurements
BC-US

ALBERTA

MEXICO

ontana

South Dakota

Nebraska

Texas
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O PDC! Terminals

Western Interconnection

Project launched in Summer 2013:

• Build, install, and demonstrate a
damping controller via real-time
feedback modulation of PDCI (Pacific
DC lntertie) power.

• Control signal based on wide-area PMU
(Phasor Measurement Unit) feedback.

Oct 2015 — Sept 2017:
• System install at BPA Celilo Converter

Station, The Dalles, Oregon.
• Closed-loop testing on western North
American grid using PDCI.

Jan 2018 — Sept 2019:
• Operationalize controller (cyber security
compliance).
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High-voltage DC (HVDC) transmission

• Promoted in 1930s in Europe.

• Proven technology in 1950s in Russia.

• Gigawatts, thousands of kilometers, up to 1000kV

Advantage:

• Improved system stability with lower losses

Pacific DC lntertie (PDCI):

• High Voltage DC line: +/- 500 kV

• 3220 MW capacity

• 850 miles long — Celilo to Sylmar

• Operational since 1970

• Annually used for probing tests since 2008

to identify and better understand inter-area

oscillations on the western grid
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Phasor Measurement Units (PMUs)
Availability of wide-area measurements has recently enabled wide-
area damping control (automated frequency response).

GPS
antenna

Analog inputs
(voltages/currents)  

GPS
receiver

  A/D
 tconv.

11M111110

Phasor
M ea su rement -DI-

U nit

Data
streaming

Modem \WA/

• Prototypes developed at Virginia Tech 1995.
• Time-synchronized using GPS
• Provide measurements throughout system providing significant improvements

in monitoring and situational awareness
• Measures 50/60 Hz waveform (voltages and currents)
• In general, 30-240 samples per second (often 60 for existing devices)
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(Feedback) Control System

Control: The design of an action that affects a system in a desired way.

noise

11111101.

gE 
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external disturbances noise

Actuators

D/A  

System

Computer 41111

Sensors
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output

Controller
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Damping Controller

PDCI
PDC

Disturbances

VNorth ONorth
PMUNorth

Western

inter-

connection
Vsouth South

PMUSouth
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Controller

Gain

Module

fSouth

fNorth

H(z)
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Damping Controller

PMUs take measurements Packets arrive at damping controller

PMUs send data packets over network Controller sends power command to PDCI

PDCI injects power command into grid
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Time Delays in PDCI
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Additional Requirements

Real-time Supervisor 
Disarm controller if abnormal condition

detected.

Oscillation detection
• Detect out-of-band oscillations in
feedback signal or on PDCI

lslanding detection
• Detect islanding between local and

remote signal locations

PMU validity & latency management
• Monitor measurements and latencies

Emergency stop

IEEE __.„-- ..-''a*‘•••••••'!-.g

SMARTGRID

Asynchronous Supervisor

Gain/Phase margin monitoring

• Makes sure controller is NOT

destabilizing any modes
• Requires periodic low-level

probing

PDCI monitoring

• Makes sure commanded
modulation is entering PDCI

system

IEEE
Advancing Technology

for Humanity



Grid Demonstrations

Experiments conducted at Celilo Converter Station Sept 2016, May & June 2017
Col Power Flow
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No Control

Faster
damping of
oscillations _
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Chief
Joseph
brake
test

Damping of North-South
Mode improved in closed-
loop vs. open-loop
operation.

All tests Controller consistently
improves damping and
does no harm to grid.
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Summary of Project Accomplishments

• First successful demonstration of wide-area control using real-time PMU
feedback in North America.

• Experience gained in networked controls will advance control design
using other network-enabled assets, such as energy storage, smart
inverters, and demand response.

• Supervisory system architecture and design can be applied to future real-
time grid control systems to ensure "Do No Harm".

Control System for
Active Damping of

lnter-Area
Oscillations

gMARTG R I
IEEE
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Summary of Project Accomplishments
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But...
Damping via HVDC transmission modulation has some
limitations:

• Need HVDC line installed
• Only area-pairs can be damped
• Limited controllability of some modes
• Approximately symmetric power flows
• Future implementations may not have proprietary,

fiber-based communication network.

Control System for
Active Damping of

lnter-Area
Oscillations
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What about multi-node distributed control?

Advantages: 

Robust to single points of failure

Controllability of multiple modes

Size/location of a single site not

as critical as more distributed

energy resources are deployed

Challenges: 

Siting and sizing multiple

resources

Communication

Distributed algorithms

gEMARTG R I

A Control center

PMU location

0 Injection site

110 W
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Multi-node distributed control

Objective:

Damp oscillations using power
injections from multiple

distributed resources.

Wide-area measurements (e.g.
from PMUs) can be used for
feedback.
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Siting and Sizing
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Siting and Sizing

Where to locate the resources, and how large should they be?

Area 1 Area 2
Ge y—

• Performance depends on power level and locations of injections IL)
• Performance is proportional to power level.

E, ,63
• The same size injections in different locations may result in

better/worse performance.
• More smaller injections can produce better results than fewer

larger injections (if larger injections are in poor locations).
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Communication Network Considerations

Future implementations will not be on
secure, resilient, efficient networks.

Need to accommodate:
• Packet dropouts
• Privacy concerns
• Latency (time delays)

How much delay can the system handle?

How does the distributed control action
affect stability in the presence of delays?

IEEE
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Stability Criterion
E1,61
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Stability Criterion
El, (51
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Eigenvalues and Regions of Stability
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Without delays, increasing
damping improves stability
(eigenvalues move to the left).
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In the presence
of delays,
increasing
damping may
lead to
instability.
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Time Domain Simulations
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Conclusions
Grid conditions are changing

Need flexible and controllable resources with the right operational
characteristics in the right locations.

All interconnected power systems experience oscillations.

Wide-area damping control can be used to damp inter-area oscillations.

Wide-area measurements (e.g. from PMUs) can be used for feedback.

Oscillations can be damped with power injections.

Several challenges considered:

Choose locations and sizes of resources.

Time delays in the feedback signals can cause the damping control to
destabilize the system, and stability depends on the size of the delays as well
as the size of the control gain.
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Future Challenges

(Optimal) distributed and networked approaches to wide-
area damping control

Big data methods to handle thousands of sensor
measurements

Simulation tools for studying transient stability of both
transmission and distribution grids

Addressing cyber-security and privacy (intellectual property)
concerns related to networked systems
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